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Abstract

In longitudinal studies, subjects may be lost to follow-up and, thus, present incomplete
response sequences. When the mechanism underlying the dropout is nonignorable, we need
to account for dependence between the longitudinal and the dropout process. We propose
to model such a dependence through discrete latent effects, which are outcome-specific and
account for heterogeneity in the univariate profiles. Dependence between profiles is introduced
by using a probability matrix to describe the corresponding joint distribution. In this way,
we separately model dependence within each outcome and dependence between outcomes. The
major feature of this proposal, when compared to standard finite mixture models, is that it
allows the nonignorable dropout model to properly nest its ignorable counterpart. We also
discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that
assumptions about ignorability of the dropout process may have on model parameter estimates.
The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics

of cognitive functioning in the elderly.
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1 Introduction

Longitudinal studies are frequently affected by dropout, with some units leaving the study before
its planned end. Rubin provided a well-known taxonomy for mechanisms that generate incomplete
sequences'. Looking at the impact of missing data on parameter estimates in the longitudinal data
model, we may define the dropout to be nonignorable in two cases: (i) when the participation to
the study still depends on future (potentially unobserved) response values, even after conditioning
on the observables (both covariates and responses); (i), when the longitudinal and the dropout
model share (completely or partially) model parameters. Such a phenomenon may bias the study
design and inference can not be based on a model for the observed responses only. Rather, we
need to take into account the mechanism leading to missing data. For this purpose, we focus on
the class of Random Coefficient Based Dropout Models? (RCBDMs). Two separate (conditional)
models are built for the longitudinal response and the dropout indicator; rather than establish a
rigid parametric dependence structure, the link between the two processes is assumed to raise due
to common or dependent random coefficients, with a given (often continuous) density function.
The choice for such a distribution is not obvious and, in the past years, has attracted the attention
of several authors. Frequently, the random coefficients are assumed to be Gaussian random vari-
ables, and the approach is fully parametric3*. However, this assumption was questioned by several
authors®, since the resulting inference can be highly sensitive, and it may have a strong impact
on parameter estimates, especially in the case of short longitudinal sequences. For this reason, the
random coefficient distribution may be left unspecified and estimated via a NonParametric Max-
imum Likelihood (NPML) approach, in a finite mixture context®®. More elaborated approaches

10 where finite mixtures

have been discussed by Beuckens et al.? and Bartolucci and Farcomeni
of regression models with either time-constant Gaussian (partially shared) random effects or time-
varying intercepts with Markovian structure are discussed. In the present paper, we start from a
simple semi-parametric approach, where the random coefficient distribution is left unspecified and
estimated through a discrete distribution. This leads to a finite mixture model which, however, has
the substantial drawback that dependence within outcomes can not be separated by dependence

between them. That is, the Missing Not At Random (MNAR) model does not reduce, at least not

simply, to the corresponding Missing At Random (MAR) counterpart. Furthermore, if we model



outcomes of mixed type (e.g. Gaussian longitudinal responses and binary missing indicators), they
may have a different impact on the global log-likelihood. As a consequence, heterogeneity in the
different profiles may be fitted with lower/higher precision, based on the corresponding weights.

Starting from such drawbacks, we suggest to consider two separate sets of discrete random co-
efficients to account for dependence within the longitudinal and the dropout process. Dependence
between profiles is modelled by specifying a matrix of prior probabilities connecting each compo-
nent in the longitudinal data model to each component in the dropout model. when the two are
independent, the matrix simply reduces to the product of the corresponding marginals. That is,
unlike standard finite mixture models, the proposed MNAR model properly nests the MAR coun-
terpart. As highlighted by Molenberghs et al.'!, for every MNAR model there is a corresponding
MAR counterpart that produces exactly the same fit to the observed data; therefore, a sensitivity
analysis is always recommended. We propose to explore sensitivity via the index of local sensitivity
to nonignorability (ISNT)12-16,

The structure of the paper follows. In section 2, we introduce the motivating application: the
Leiden 85+ study. Section 3 discusses general RCBDMs, while our proposal is detailed in Section
4. Sections 5 and 6 present the proposed Expectation Maximization (EM) algorithm for maximum
likelihood estimation and the index of local sensitivity we propose. Section 7 shows the application
of the proposed model to the Leiden85+ data and the results from the sensitivity analysis. Last

section contains concluding remarks.

2 DMotivating example: Leiden 854 data

The motivating data come from the Leiden 85+ study, a retrospective study entailing 705 Leiden
inhabitants (in the Netherlands), who reached the age of 85 years between September 1997 and
September 1999. The study aimed at identifying demographic and genetic determinants for the
dynamics of cognitive functioning in the elderly. We considered the following covariates collected at
the beginning of the study: gender, educational status (primary/higher education, corresponding
to less than/at least 7 years of schooling, respectively), and plasma Apolipoprotein E (APOE)
genotype. Three different APOE alleles can be observed: €2, €3, e4; these lead to 6 possible com-

binations (genotypes): €2/€2, €2/e3, €2/ed, €3/e3, €3/e4, e4/ed. Carrying at least one €2 allele is



known to reduce the risk of developing dementia, whereas the €4 allele is known to be linked to an
increased risk, see eg!”. The €2 allele is he rarest as it appears in about the 7% of the population;
allele €4 is carried by about 14% of the population, while €3 allele is the most common. Due to
prevalence and to their potential use as risk factors, we decided to group the possible combinations
in four categories: APOFEss_93, APOFEsy, APOFE33 (reference), APOF34_44. Only 541 subjects
present complete covariate information and will be considered in the analysis.

Study participants were visited yearly until the age of 90 at their place of residence and face-
to-face interviews were conducted through a questionnaire whose items are designed to assess
orientation, attention, language skills and the ability to perform simple actions. The Mini Mental
State Examination index, in the following MMSE!®, is obtained by summing the scores on the
items designed to assess potential cognitive impairment. The observed values are integers ranging
between 0 and 30 (maximum total score). With the aim at understanding how the MMSE score
evolves over time, we show in Figure 1 the corresponding overall mean value across follow-up
visits. We also represent the evolution of the mean MMSE stratified by participation in the study

(completer, dropout/death before next occasion).

Figure 1: Mean MMSE over time stratified by subjects’ participation to the study.
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As it is clear, cognitive functioning levels in individuals who die are much lower than those
corresponding to subjects who dropout for other reasons or participate until the study end. While
the decline in cognitive functioning through time seems to be (at least approximately) constant
across groups, the slope for the overall mean tends to the corresponding value for completers, as
the time passes by. Such a finding highlights a potential dependence between the evolution of the

MMSE score over time and the dropout process, which may bias the parameter estimates and the



corresponding inference. In the next section, we introduce a class of models for the joint analysis

of the longitudinal and the dropout process.

3 Random coefficient-based dropout models

Let Yj; be a longitudinal response recorded on ¢ = 1,...,n, subjects at time occasions t =1,...,T,
and let x;; = (T, . .- ,xitp)’ denote an observed p-dimensional covariate vector with xz;:1 = 1.
Let us assume that, conditional on a ¢i-dimensional set of individual-specific random coefficients
bi1 = (b1, - -, bi1g, ), the observed responses Yj; are independent random variables with density in
the Exponential Family. The canonical parameter for this density, 6;; is described by the regression
model:

i = X3 + Wi bi1. (1)

The terms b;1, ¢ = 1,...,n, represent sources of (individual-specific and time-constant) unobserved
heterogeneity; the vector 3 denotes a p—dimensional vector of regression parameters common to
all individuals. The covariates whose effects are assumed to vary with ¢ are collected in the vector
Wit = (Wi, . .., Witg), with wy C x. For identifiability purposes, standard assumptions on the
random coefficient vector postulate that E(b;;) = 0 and Cov(b;;) = D, @ = 1,...,n. Dropout
is a frequent issue with longitudinal studies, since some individuals do not reach the planned end
participating only to T; < T measurement occasions, ¢ = 1,...,n. Let R; denote the missing data
indicator which is equal to 1 if the i-th unit drops-out at any point in the window (¢ — 1,¢), and
is equal to 0 otherwise; clearly, when we consider dropout, Ry = 1= Ry =1,/ >t=1,...,T.
Here, we consider a discrete time structure for the study and the time to dropout; however, the
following arguments may apply, with a limited number of changes, to continuous time survival
process as well. To describe the (potential) dependence between the longitudinal response Y; =
(Yi1,...,Yir)" and the dropout indicator R; = (Ry1, ..., Rizy4+1) for the same subject i = 1,...,n,
we augment model in eq. 1 with an explicit model for the dropout mechanism, conditional on a set

of dropout-specific covariates, say v;, and a further set of random parameters bjs = (bi21, . . ., bizg, ):

Rit | bz, vi ~Bin(1, i)

logit(¢ie) = Viy +diba (2)



where dj; = (djs1, . . - ditg,) and dj; € v The density of the individual sequence is given by:

h(ri | vi,yi,bi2) = h(ri | vi,big) = [ h(rit | vi,bi2),  i=1,...,n (3)

where T} = min(7,T; + 1) and conditional independence holds.
Based on such modelling assumptions, the joint density for the couple (Y;, R;) can be built up

as follows:

T*
f(Yzarz ‘ X'LaV / Hf yzt|xzta i1 Hh rlt‘vlta 12) dG(bzlabZQ) (4)
t=1 t=1

where T = min(T,T; + 1) and G(b;1,b;2) denotes the joint density of b; = (b;i,bi2). When
bi1 = bje, or, a bit more generally, b;s = Cb;;, with C € M(q2,q1), ¢2 < ¢1, the model re-
duces to the so called shared parameter model 2. See also Creemers et al.?! for a more general
proposal. Frequently, a Gaussian distribution is considered. However, while the effect of misspec-
ifying G(b;1, bj2) is relatively small when dealing with a large number of repeated measurements,
assumptions on such a distribution may play a crucial role in the presence of short individual
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sequences, such as those coming from clinical studies
discrete, outcome-specific, random coefficients cam be used as an alternative®3. In this case, the
joint density for the longitudinal and the missing data process reduces to

K T

f(Y”urz ’ XZaV Z Hf Yit ‘ thClk Hh Tt ’ VztaCQk) T (5)

k=1 [t=1

As it is clear, the above density resembles that of a finite mixture with K different components
characterized by locations ¢;; and (y; (in the longitudinal and the missing data process, respec-
tively) and masses 7, = Pr(b; = ;) = Pr (b1 = {1, bi2 = {9;,). In this context, the distribution
G(b;1, by2) is estimated nonparametrically by a discrete distribution defined on K < n locations.
While the estimation of a (possibly continuous) distribution via a discrete distribution may seem
unsound, it is worth noticing that similar discretizations are used in all approaches that use nu-
merical integration techniques to approximate (non analytically tractable) integrals in eq. (4). The

advantage of the finite mixture approach is that locations (integration nodes) and prior probabili-



ties (masses) are not fixed in advance, but are estimated from (and are therefore optimal for) the
observed data. As we may notice by looking at eq. (5), the discrete latent variable describing the
random coefficient distribution is intrinsically uni-dimensional. That is, while the locations may
differ across profiles, their number (K) and the prior probabilities (7;) are common to both the
longitudinal and the missingness process. As a result, the model does not reduce the corresponding
MAR counterpart in the case of ignorable dropout, but in very particular cases (e.g. when K =1
or when either ¢, = ¢; or {95, = ¢y, VE =1,..., K). In the view of sensitivity analysis, this may
be a crucial drawback. In the next section, we extend the model following an approach similar to

that detailed by Alfé6 and Rocchetti?® and Lagona?* with the aim at addressing such issue.

4 A bi-dimensional finite mixture approach

Let us assume that the distribution of the random coefficients in the longitudinal data model b;;
is estimated by a discrete distribution defined on K support points {{q1,...,{ 1k, } With masses
mgx = Pr(bj1 = (y,). Similarly, let us assume that the distribution of individual-specific random
coefficients bo; in the missing data model is estimated via a discrete distribution with Ko distinct

support points {1, - .., ¢k, } With masses my = Pr(bs = {5). That is, we assume that

K K
by; ~ Zﬂ'g* 5(Clg) bo; ~ ZW*Z 5(C2£)
e =1

where §(a) denotes an indicator function that puts unit mass at a. We then define a joint distri-
bution for the random coefficients, with a mass gy = Pr(b;1 = ¢y, bi2 = () associated to each
couple of locations (¢;,, (). The associated probability matrix IT = {my} describes the associa-
tion between b;; and b;> and, indirectly, between Y; and R;. Obviously, probabilities 7y, and m.

in the univariate profiles are obtained by marginalizing 7,:

K2 Kl
Tgx = Z Tgt, Tyl = Z Tge-
(=1 g=1



Under the proposed model specification, the joint density in eq. (5) modifies to:

K1 Ko | Ty

Flyiri | X, Vi) =D Y AT Fwie | xir, ) Hhmvﬁ,c%) gt (6)

g=1¢=1 |t=1

When compared to a standard finite mixture model, it provides a more flexible (albeit more com-
plex) representation for the random coefficient distribution. By looking at eq. (6), it is immedi-

ately clear that the MNAR model directly reduces to its MAR counterpart when mg = g, .,

Vg=1,...,K1,£=1,..., K. Let us consider the logit transform for the joint masses m:
Mgt
ggﬁ = log =7+ Qgx + Qs + )\géa (7)
TR Ky

where v = log ([Tx «Twks) /TR Ks), Cgx = 108 (Tgw /T %), g = log (Tuy/TuK,). Furthermore, the
parameter \gy = log (mge/ [Tgxmse]) provides a measures of the departure from the independence
model. That is, if Ay = 0, for all (g,¢) € {1,..., K1} x {1,...,K»}, then my = mg.my. This
corresponds to independence between the random coefficients in the two equations, and, as a by-
product, to independence between the longitudinal and the dropout process. In this sense, the
vector A = (A11, ..., Ak, K,) can be formally considered as a sensitivity parameter vector; in fact,
when A = 0 the proposed MNAR model reduces to the corresponding MAR model. See? for a

similar proposal in a two-level hierarchical framework.

5 ML parameter estimation

The observed data log-likelihood for the proposed model specification is given by

1 2 i
Zlog ZZ Hf (Yit | xit, C14) Hh rit | Vit, Cag) | Tge ¢

g=1/¢=1 |t=1

where X' = {®, ¥, 7} denote the vector of all (free) model parameters, ® = (8,¢{11,-.-,C1k,),

¥ = (v,$21,---,C2k,), and ™ = (7m11,...,Tge, ..., MK, K,). To maximize the expression above and

25

estimate model parameters, we may rely on an extended EM algorithm To this purpose, let

z;, = (zi1, - s Zigls - - ., ZiK, K,) denote the indicator vector, with Zige = 1 if the i-th individual



comes from the g-th component in the first and the /-th component in the second profile. Let us
further assume the random vector z; follows a multinomial distribution, with parameter vector .

To derive the estimates, we start from the complete-data log-likelihood function:

n Ki Ko

Zzzzzgé Zlogf Yit | Xity Zigl = 1 + Zlogh Tit ‘ Vit, Zigt = 1) + logﬂ'gf . (8)

i=1 g=1 /=1

At the r-th iteration of the algorithm, we compute the posterior expectation (E-step) of the complete

< (r—1
data log-likelihood, conditional on the observed data (y;,r;) and the current estimates T(T ):

n Ki Ko

Q(T | T(T 1 Zzzwlgf Zlogf Yit | Xity Zigl = 1 + Zlogh Tit | Vit, Zigt = 1) + 10g7ng

i=1 g=1 /=1

(r—1)

In the above equation, wiy = E(zige | yirri, T ) is the posterior probability of component
membership. Conditional on such weights, in the M-step, we maximize Q(Y | T(“l)) with respect

to model parameters. That is we find the zeros of the following score functions:

Se(®) = Z Zzwzgé [log(fige) + log(mge)] Z szg* [log(fige)] » 9)

g 1/¢=1
K1 Ko
S.(P) = Z ZZ@UW log( fige) + log(mge)] Z Zw [log(fixe)] (10)
g 1/¢=1 =1
K| K K1 Ko
Sc(ﬂ-ge) = Zaﬂ_ Zzwzgﬁﬂ-ge_ﬂ Zzﬂgf_l ’ (11)
Zg 1/¢=1 g=11=1

‘ T
where fige = [Ty f(yit | Xits zige = 1) T2y log h(rie | Vie, zige = 1), while wz(;l, Xl, fige and fie

represent the marginals for the posterior probability w;, and the joint density f;s¢, respectively.
The updated estimates for the mixture probabilities can be derived analytically as
(r)
(r) > i wlg@

7T =
g¢ n

The remaining model parameters are updated via standard Newton-type algorithms. The E- and
the M-step are alternated until convergence, that is, until the (relative) difference between two

subsequent likelihood values is smaller than a given quantity € > 0. Given that this criterion may



indicate lack of progress rather than true convergence?® and the log-likelihood may suffer from
multiple local maxima, we usually suggest consider different starting points, for fixed (K7, K3),
retain the solution providing thee best fit; in the following analyses, we will use B = 50 starting
points. As it is typical of finite mixture models, the number of locations K and K is treated as
fixed and known; the optimal solution for (K7, K2) is chosen via model selection techniques, such
as AIC?7 or BIC?8,

Standard errors for model parameter estimates are obtained at convergence of the EM algorithm

by the standard sandwich formula2?:30:

Cov(¥) = L(T) ' Cov(S)I,(T) ",

where IO(T) denotes the observed information matrix computed via the Oakes’ formula3!, S denotes
the score vector evaluated at Y, and C/CR/(S) =3, S;(T)S}(T) denotes the estimate for Cov(S),

with S; being the individual contribution to the score vector.

6 Sensitivity analysis: definition of the index

The proposed bi-dimensional finite mixture model allows to account for potentially nonignorable
dropout. However, as highlighted by Molemberghs et al.'!, for every MNAR model there is a
corresponding MAR counterpart that produces exactly the same fit to the observed data; therefore,
a sensitivity analysis is always appropriate. In this section, we consider the index of local sensitivity
developed by Troxel et al.!2.

Let A = (A11,..., Ak, K,) denote the vector of non ignorability parameters, with A = 0 cor-
responding to the MAR model. Let 'i>()\) denote the maximum likelihood estimate for model
parameters in the longitudinal data model, conditional on a given value for A. According to Troxel
et al.'2, the Index of Sensitivity to Non-Ignorability (ISNI) measures the displacement of model
parameter estimates from their MAR counterpart, in the direction of A:

OB(N)

~_ (02«4@, \Imr)‘ >_1 PP, W, ) (12)
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Following Xie'*, it can be shown that the following approximate expression holds:

A

B(\) = (0) + ISNIgpA, (13)

so that the ISNI can also be interpreted as the linear impact that changes in A have on &. It is
worth to highlight that, in the present case, SN I$ denotes a matrix rather than a vector as in the
standard formulation. In particular, ISNIg is a [D x (K1K2 — 1)]-dimensional matrix, where each
column provides a measure of the effect that the K1 K5 — 1 elements in A have on the D elements
in ®. To derive a global measure of local sensitivity for by, d = ..., D, when we move far from
the MAR assumption, we need consider a summary of the corresponding rows in the ISNI matrix,

see the proposals by 14:16:32:33

7 Analysis of the Leiden 85+ data

In this section, the proposed model is applied to the Leiden 85+ data. We aim at understanding
the effects of genetic and socio-economic factors on the dynamics of cognitive functioning in the
elderly, while controlling for potential bias in parameter estimates due to potentially nonignorable
dropouts. In section 7.1, we provide an exploratory analysis of participants’ features. Afterwards,
we analyze the effect of these factors on the dynamics of the MMSE score. Results are reported in

sections 7.2-7.3. Last, in section 7.4, a sensitivity analysis is performed.

7.1 Exploratory analysis

In Table 1, we summarize the individual features, in terms of covariates and MMSE scores, stratified
by the observed pattern of participation. From this table, we may observe that females represent
66.73% of the whole sample and that the 64.88% of the sample has a low educational level. As
expected, the most frequent APOE category is APOFE33 (58.96%), far from APOFE34_44 (21.08%)
and APOFEss_93 (17.74%), while only few individuals (2.22%) are characterized by APOFE24. We
may notice that more than half of the study participants (50.83%) leave the study before the
scheduled end. This proportion is relatively higher for males (58.89%), lower educated participants
(52.71%), and for the APOF34_44 group (61.40%).

11



Table 1: Leiden 85+ Study: participation to the study by demographic and genetic characteristics

of participants

Variable Total Completed (%) Did not complete (%)
Gender

Male 180 (33.3) 74 (41.1) 106 (58.9)
Female 361 (66.7) 192 (53.2) 169 (46.8)
Education

Primary 351 (64.9) 166 (47.3) 185 (52.7)
Higher 190 (35.1) 100 (52.6) 90 (47.4)
APO-E

2223 96 (17.7) 54 (56.3) 42 (43.7)
24 12 (2.2) 6 (50) 6 (50)
33 319 (59.0) 162 (50.8) 157 (49.2)
34-44 114 (21.1) 44 (38.6) 70 (61.4)
Total 541 (100) 266 (49.2) 275 (50.8)

Figure 2: Leiden 85+ Study: mean of MMSE score stratified by age, and gender(a), educational
level (b), APOE (c)
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Figure 2 reports the evolution of the mean MMSE score over time, stratified by the available
covariates. As it is clear, cognitive impairment is higher for females than males, even if the difference
seems to decrease with age, maybe due to the differential dropout propensity by gender (Figure
2a). We may also observe that participants with a higher education are less cognitively impaired
at the beginning of the study, and this difference remains persistent over the analyzed time window
(Figure 2b). Rather than to a direct effect of education only, this may also reflect the impact of a
differential socio-economic status. Last, low MMSE scores are observed for the APOFE34_44 group,
and this is coherent with literature, suggesting that allele 4 represents a risk factor for dementia'7.

The irregular pattern for APOFEs4 may be due to the reduced size of this group (Figure 2c).

12



7.2 The MAR model

We start by estimating a MAR model, based on the assumption of independence between the
longitudinal and the dropout process. In terms of eq. (6), this is obtained by assuming myp = 7y, s,
g=1,..., K1, £=1,..., Ko; that is, we fit two separate models for the longitudinal response and
the dropout indicator, based on a Gaussian and a Bernoulli (conditional) distribution, respectively.
We considered as longitudinal response the transform Y;; = log[l + (30 — MMSE;;)] as this is
nearly optimal in a Box-Cox sense; as a result, higher values identify more impaired individuals. In
both models, we considered individual-specific random intercepts and the same set of covariates.
In particular, this includes the variable age (centered round 85), the gender (ref - females), the
educational level (ref - primary), and the APOFE genotype (ref - APOFE33). As regards the random
intercepts, we considered both a parametric (Gaussian) and a semi-parametric (discrete) approach.
In this latter case, for each profile, the algorithm was run for varying number of locations; we
retained the solution with the lowest BIC, that is with K1 = 5 and K9 = 3 components for the
longitudinal and the dropout process, respectively. Parameter estimates are reported in Table 2.

The two (parametric and semi-parametric) approaches lead to similar conclusions on the effect
of observed covariates on the longitudinal process. Cognitive impairment increases with age and
is lower for males than for females. Furthermore, a strong protective effect seems to be linked to
socio-economic status in early life as it may be deduced from the significant and negative effect of
higher educational levels. Table 2 also highlights that APO Fs4_44 represents a strong risk factor for
cognitive decline. Only few differences may be highlighted when comparing the estimates. These
are related to the gender effect, which is not significant in the parametric model, and the effect of
higher education, which is much higher under the parametric specification. These difference may
suggest that the choice of the random effect distribution may have an impact, in this case.

When the dropout process is considered, we may observe that the results are qualitatively the
same, but for the size of parameter estimates. This is due to the different scale of the estimated
random intercept distribution, with o3, = 5.393 and 03, = 1.525 in the semi-parametric and
parametric models, respectively. In the former case, estimated intercepts are quite higher than
those predicted by Gaussian quadrature locations, and this leads to inflated effects for the observed

covariates as well. However, if we look at the estimated dropout probabilities resulting either
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Table 2: Leiden 85+ Study: MAR models. Maximun likelihood estimates, standard errors, log-
likelihood, and BIC value

Process Semi-parametric Parametric
Variable Coeff. Std. Err. Coeff. Std. Err.
Intercept 1.686 1.792 0.050
Age 0.090 0.008 0.089 0.005
Male -0.137 0.042 -0.085 0.066
Higher education -0.317 0.068 -0.623 0.065

Y APOEsg2_23 0.062 0.072 0.056 0.083
APOEy, -0.105 0.062 0.096 0.211
APOE34_44 0.347 0.060 0.369 0.079
oy 0.402 0.398
Ob, 0.696 0.684
Intercept -11.475 -3.877 0.520
Age 2.758 0.417 0.526 0.131
Male 0.559 0.467 0.656 0.218
Higher education -2.162 0.772 -0.486 0.212

R APOEg2-_93 0.476 0.409 -0.246 0.252
APOEyy -0.026 0.939 0.131 0.618
APOE3;4_44 0.805 0.461 0.565 0.237
Oby 5.393 1.525
log L -2685.32 -2732.84
BIC 5534.26 5572.67

from the semi-parametric or the parametric models, these are very close to each other, but for
few extreme cases which are better recovered by the semi-parametric model. This is a further

suggestion that the choice for the random intercept distribution may matter3*.

7.3 The MNAR model

To avoid bias in the parameter estimates due to nonignorable dropout, we fitted the uni-dimensional
and the bi-dimensional finite mixture model discussed in Sections 3 and 4. For the former approach,
we run the estimation algorithm for K = 1,...,10; thr optimal solution according to the BIC index
corresponds to a model with K = 5 components. Similarly, for the proposed bi-dimensional finite
mixture model, we run the algorithm for K1 =1,...,10 and Ko = 1,...,5 components; the optimal
BIC solution corresponds to with K1 = 5 and Ko = 3 components for the longitudinal and the

dropout process, respectively. This result is clearly coherent with the evidence from univariate
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models. Parameter estimates are reported in Table 3. Looking at the longitudinal data model (left

Table 3: Leiden 85+ Study: MNAR models. Maximun likelihood estimates, standard errors, log-
likelihood, and BIC value

Process Semipar. “Uni-dim.” Semipar. “Bi-dim.”
Variable Coeff. Std. Err. Coeff. Std. Err.
Intercept 1.682 1.687
Age 0.094 0.007 0.094 0.007
Male -0.129 0.048 -0.135 0.039

Y Higher education -0.31 0.051 -0.317 0.050
APOEgs_93 0.091 0.061 0.086 0.058
APOEy, -0.098 0.055 -0.099 0.056
APOE34—44 0.345 0.050 0.344 0.051
oy 0.402 0.402
Ob, 0.701 0.699
Intercept -3.361 -10.767
Age 0.367 0.037 2.406 0.384
Male 0.504 0.147 1.061 0.850

R Higher education -0.200 0.151 -1.646 0.530
APOEgs_93 -0.090 0.199 0.481 1.090
APOEy, -0.148 0.508 -0.334 0.647
APOE34_44 0.541 0.174 1.365 0.745
Ob, 0.577 4.891
Ob1 by 0.349 0.985
Pb1 bo 0.863 0.288
log L -2686.902 -2660.391
BIC 5537.433 5534.758

panel in the table), we may conclude that estimates are coherent with those obtained in the MAR
setting. Small departures can be observed for the effect of age and gender. Males and individuals
with high education tend to be less cognitively impaired when compared to the rest of the sample,
while subjects carrying e4 alleles (in the APOFEs4_44 group) present a steeper increase in the
observed response (that is, a steeper decrease in the MMSE score). Focusing on the dropout process,
we may observe that age, gender and APO Fs33_34 are all positively related to an increased dropout
probability. By comparing the estimates obtained under the two models, the above results seem
to hold besides the chosen model specification. The only remarkable difference is in the estimated
magnitude of the effects for the dropout process and for the random coefficient distribution. For

the bi-dimensional finite mixture model, we may observe a stronger impact of the covariates on
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the dropout probability. As for the univariate model, this result is likely due to the estimated
scale with an intercept value which is much lower than under the uni-dimensional specification.
In this framework, the longitudinal response (conditionally Gaussian) may have a higher impact
on the likelihood function when compared to the dropout indicator (conditionally Bernoulli). As
a result, the estimates for the component-specific locations in the dropout equation substantially
differ when compared to those estimated in the univariate model, leading to a correlation estimate
equal to 0.865. On the other hand, for the bi-dimensional specification, the estimated correlation
is much lower (0.288), and the estimated standard deviations for the random intercepts in the two
equations are more in line with those estimated from the univariate models.

In Table 4 we report the estimated locations for the longitudinal and the dropout process,
together with the corresponding conditional distribution Tglg = Pr(bia = Cy | bi1 = C14). For the
longitudinal data process, the estimated locations (14 suggest that higher mixture components are
associated with a higher cognitive impairment. On the other hand, tor the dropout process, higher
estimated locations correspond to a higher chance to dropout from the study. When looking at
the estimated conditional probabilities, we may observe a link between lower (higher) values of
(g and lower (higher) values of (o,. That is, participants with better cognitive functioning (lower
response values) are usually characterized by a lower probability of dropping out from the study.
On the contrary, cognitively impaired participants (i.e. with higher response values) present a
higher chance to dropout prematurely, even if there is still some overlapping between the second

and the third component in the dropout profile.

Table 4: Maximum likelihood estimates and conditional distribution for the random parameters

Cor

Cig -15.0563 -8.701 -3.378
0.519 | 0.865  0.090 0.045
1.065 | 0.585 0.170 0.245
1.681 | 0.573  0.227 0.199
2.297 | 0.467 0.289 0.244
2.905 | 0.144  0.364 0.492
Tot. 0.528  0.229 0.243

== = = = =

To conclude the analysis, we report in Figure 3 the estimated prior (upper panel) and posterior

distribution (lower panel) of the random intercept in the longitudinal (left panel) and the dropout
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Figure 3: Estimated prior (upper panel)and posterior distribution (lower panel) of the random
effects in the longitudinal (left panel) and the missingness data model (right panel)
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model (right panel). By looking at this figure, we may conclude that the standard Gaussian
assumption is not that appropriate for the Leiden 85+ data. This is particularly evident for the
missing data process, where the estimated prior and posterior distributions are quite far from

symmetry.

7.4 Sensitivity analysis: results

To investigate robustness to the assumptions on the missing data mechanism, we computed the
ISN I matrix according to formulas provided in eq. (12). For each estimate <f>d, we derived global
measures of its sensitivity to the MAR assumption by computing the norm, the minimum, and

. We also considered the ratio between such quantities and the standard

the maximum of [ISN1g
errors of the corresponding fixed model parameters derived estimates derived from the MAR model.
We also considered the ratio between such quantities and the standard errors of the corresponding
parameters derived from the MAR model. Results are reported in Table 5. By looking at this table,
we may observe that, as far as the fixed parameters are concerned, the indexes we computed are all

close to zero but for the age variable. In this case, the ISNI takes slightly higher values, especially
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for the standardized statistics. Similarly, higher values are observed for the random intercepts, even
though this is an expected results, being these parameters directly connected to the missingness
process.

Table 5: MAR model estimates: ISNI norm, minimum and maximum (in absolute values), and
ratio to the corresponding standard error.

se  [[ISNI|| SN pin|fSNT| 2SN pax|rgN | maxIISNT]
¢y 0.117  0.0414  0.354 0.0014 0.012 0.0204 0.174
Cro 0.074  0.0580  0.784 0.0016 0.022 0.0303 0.409
Cs 0.074  0.044  0.595 0.0002 0.003 0.0255 0.345
Cu 0.083 0.1044  1.258 0.0005 0.006 0.0527 0.635
Cus 0.071  0.0088  0.124 0.0009 0.013 0.0045 0.063
Age 0.008 0.0089  1.113 0.0001 0.013 0.0054 0.675
Male 0.042  0.0058  0.138 0.0003 0.007 0.0028 0.067
Higher education | 0.068  0.0075  0.110 0.0001 0.001 0.004 0.059
APOEs_93 0.072  0.0111  0.154 0.0001 0.001 0.0074 0.103
APOEy, 0.062 0.0123  0.198 0.0005 0.008 0.0051 0.082
APOFs3_44 0.06 0012  0.200 0.0009 0.015 0.0061 0.102
oy 0.194  0.1123  0.579 0.0001 0.001 0.0824 0.425

To further study the potential impact that assumptions on the dropout mechanism may have
on longitudinal model parameters, we followed also a simulation-based approach. We considered
the following two scenarios: (i) we simulated B = 1,000 values for the sensitivity parameters A
from a Uniform distribution, A\ge(b) ~ U(=3,3) for g =1,..., Ky and £ = 1,..., Ky (Ag, K, = 0);
(#i) we simulated B = 1,000 values for a constant ¢ from a uniform distribution, ¢(b) ~ U(-3,3),
and computed Age(b) = ¢(b) ng, g=1,..., K1, =1,..., Ky, where j\gg denotes the MLe for Ay
under the MNAR model. To analyze how changes in A impact the estimates ff’, we computed, for

both simulated scenarios

A~

&(b) = ®(0) + ISNIp x A(D). (14)

Scenario (7) allows to study general sensitivity of parameter estimates; that is, it allows to investi-
gate how estimates vary with unstructured changes in A. On the other hand, under Scenario (i)
starts from the estimated pattern of dependence between the random intercepts in the longitudinal
and the dropout models and allows to analyze how parameter estimates change when the correla-
tion between the two processes increases (in absolute value) with respect to the estimated one. The

proposed approach for sensitivity analysis could be seen as a particular version of local influence
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Figure 4: Leiden 85+ Study: Sensitivity analysis according to Scenario ()
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diagnostics developed to check for influential observations by perturbing individual weights?3°37.

Here, we perturb weights associated to the group of subjects allocated to a given component. Ob-
viously, a global influence approach could be adopted as well>®. We report in Figures 4 and 5
the estimates obtained under Scenario (i) and (i), respectively. The red line and the grey bands
correspond to the point and the 95% interval estimates calculated under the MAR assumption for
model parameters. From the former figure, we can observe that only the effect of age is slightly
sensitive to assumptions on ignorability. Strong local changes in the random coefficient probabil-
ity matrix may cause positive (respectively negative) changes in the age effect. In particular, the
changes with the major impact are those in the upper left or intermediate right corners of the ma-
trix in Table 4, where low values of both random coefficients or high values for {5y and intermediate
values for (;, are stored. Overall, the relative frequency of points within the corresponding MAR
confidence interval is equal to 0.737. This suggests that, even if some sensitivity to assumptions
about ignorability of the dropout process is present, estimates always remain within a reasonable

set.
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Figure 5: Leiden 85+ Study: Sensitivity analysis according to Scenario (i)
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When looking at the results obtained under Scenario (i) (see Figure 5), we may observe that
changes in the parameter estimates are more clearly linked to correlation between the random effects
in the two profiles. As before, some sensitivity to departures from the MAR assumption is observed
for the age effect only. The relative frequency of points within the corresponding MAR. confidence
interval is equal to 0.851, which suggests a lower sensitivity to assumptions about ignorability of the
dropout process, when compared to Scenario (7). In this case, high positive/negative correlation
between the random intercepts leads to estimates that are higher/lower than the corresponding

MAR counterparts.

8 Conclusions

In this paper, we define a random coefficient based dropout model where the association between
the longitudinal and the dropout process is modelled through discrete, outcome-specific, latent

effects. A bi-dimensional representation for the random coefficient distribution is used, which
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allows for a (possibly) different number of locations in each model. A full probability matrix
connecting the locations in a model to those in the other one is considered. The main advantage
of this flexible representation is that the resulting MNAR model properly nests a model where the
dropout mechanism is ignorable. This allows us to consider a (local) sensitivity analysis, based
on the ISNI index, to check changes in model parameter estimates as we move far from the MAR
assumption. The data application show good robustness of all model parameter estimates. A slight
sensitivity to assumptions on the dropout mechanism is observed for the age effect which, however,
is always restricted to a reasonable set, and may be reasonably due to the differential participation

of more cognitively impaired individuals.
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