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Abstract: Drugs able to affect the auditory and nervous systems and consumed by workers to
treatdifferent pathologies can represent a possible source of risk in the work environment. All the
target compounds involved in the presented project show ototoxic and/or narcoleptic side effects and,
for these reasons, occupational safety organizations have recognized them as potential causes of work
injuries. A multiclass method for the analysis of 15 drugs among the most widespread worldwide
(belonging to nine different classes including antihistamines, beta-blockers, antidepressants, Z-drugs
and opioids), was developed and validated. This study describes a rapid, sensitive and effective
method to analyse these substances in whole blood using tailored pre-cut dried blood spots. Detection
was achieved with a triple quadrupole mass spectrometer after an easy and simple ‘dilute and shoot’
solubilisation followed by an UPLC separation. All the issues linked to the use of the dried blood
spots and whole blood, such as haematocrit variability, volumetric evaluation and sample carrier
choice were carefully studied and managed during method development. From the validation study
results it emerged that this approach can be deemed successful thanks to its few pg µL−1 LOQs,
good linear intervals, absolute recoveries of no less than 75%, an almost negligible matrix effect and
accuracy and precision in line with the European and American guidelines for validation. All the
obtained goals have been specifically pursued in order to encourage method diffusion as a primary
prevention intervention, even in small private workplaces.

Keywords: sleep inducers; ototoxic drugs; pre-cut dried blood spots; whole blood analysis; dilute
and shoot; UPLC-MS/MS; work safety

1. Introduction

Occupational safety requires a 360-degree study of the factors that can constitute a
risk for the figures involved. Among all the possible sources of danger, risks arising from
chemicals is certainly one of the most complex to understand and to manage, whose assess-
ment is usually devoted to the evaluation of types and concentrations of the substances to
which workers are potentially exposed.

However, this classical approach has a ‘blind spot’ since workers, like everyone else,
are exposed to chemicals in their private life, and, like everyone else, they take drugs whose
side effects can pose a safety risk on several levels.

The presented project was designed to cover a part of this often-neglected aspect.
All the chosen analytes, in fact, show side effects focused on the hearing and nervous
system. They belong to the antihistamines, antidepressants (serotonin-norepinephrine
and selective serotonin reuptake inhibitors), antihypertensive, beta-blockers, anxiolytics
(benzodiazepines), opioids and Z-drugs classes.
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From different studies conducted by the Organization for Economic Co-operation
and Development (OECD) in 2016 and by the Italian Medicines Agency in 2018, these
drugs appeared to be the most widespread in markets. Specifically, anti-hypertensive
and lipid-lowering drugs are among the leading therapeutic classes (even if they saw a
decline in the last few years) while analgesics (including opioids) and drugs used to treat
psychiatric disorders follow at a short distance [1–3].

The selected drugs have a narcoleptic effect and many of them affect the middle and
inner ear too, causing dizziness or tinnitus up to hearing loss [4,5]. Benzodiazepines, hyp-
notics, opioids and beta-blockers are cause of sensorineural hearing loss due to dysfunction
of the cochlea; moreover, even a single dose of these classes of drugs can significantly
impair body balance leading to dangerous falls [6,7].

The occupational health and safety literature reveals that the use of these sleep induc-
ers may negatively affect the performance of safety-sensitive work tasks such as driving
or operating machinery, and consequently increasing workers’ compensation costs [8,9].
Our Institute, through its studies, has highlighted that many workplace accidents can be
linked to ear problems and/or lack of attention [10,11]. The collected data show that at
least 10% of work accidents are attributable to auditory and psychic-behavioral patholo-
gies. Although evaluation of these molecules’ consumption in workers is not mandatory
(except for specific drugs of abuse), their use is increasingly becoming a parameter that
merits further investigation [12]. Therefore, from the perspective of ensuring 360◦ worker
protection, our goal was to develop and validate a fast and reliable method for the analysis
of these drugs in whole blood.

With this purpose, the time-consuming extraction step was bypassed developing a
lighter procedure, the so-called ‘dilute and shoot’-LC-MS (DS-LC-MS) method. Generally
applied to urine samples and often used in anti-doping controls [13–15], we decided to
transfer it to dried blood spots (DBS) with the same intent, i.e., the development of a fast
and cost-effective procedure.

DBS have gained an important role among the whole blood sampling techniques,
thanks to their extreme simplicity of collection, transportation and storage. Blood, in fact,
is taken through a small puncture on the finger or the heel (or on tail for animals), placed
on a support and allowed to dry. After that, sample can be sent as a simple letter avoiding
any need for following bio-hazard or cold chain procedures.

DBS has been used for screening of diseases in new-born since 1963 [16–18] but,
recently, they have attracted attention in different fields such as therapeutic drug monitor-
ing [19,20], home sample collection, pharmacokinetic studies and drug resistance [21,22],
anti-doping and forensic controls [23,24].The DBS technique offers numerous advantages
over the traditional venous sampling that can be performed only in equipped health-care
facilities by specifically trained personnel, and that represents a burden for the patient.
Small sample volume, increased analyte stability (due to lower enzymatic activity in dried
blood), safety and low-cost shipment are among blood spot analysis’ most evident benefits.

Despite the mentioned ‘pluses’, this sampling technique has still some drawbacks
that must be addressed. Two of the most preponderant of these are blood viscosity and
haematocrit (HCT) that have a non-negligible influence on quantitation results as well as
the nature of the support material from which analytes have to be extracted [25]. Another
source of result unevenness is due to the possibility that capillary blood may differ in
terms of analyte composition and matrix effects from venous blood. When this occurs,
DBS outcomes may be very different from traditional venepuncture ones [26,27]. No
specific studies exist on the drugs selected for this study, but a vast literature concerning
the correlation between capillary and venous concentrations is available [28–32]. The
majority of these studies suggest a venous/capillary concentration ratio near 1.00 (with
small fluctuations) and with closely correlated concentrations [33–35].

To overcome the variability arising from blood viscosity, especially the haematocrit im-
pact, spotting technique and conditions, two groups of researchers modified the traditional
blood spots technique by developing the pre-cut dried blood spot (PCDBS) method [36,37].
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For this purpose, the support chosen for the DBS was cut before being loaded with blood,
thus, the whole droplet is sampled and not only the part selected by the cutter.

The aim of this project was to apply this elegant and simple sampling procedure to
the analysis of different classes of ototoxic and narcoleptic drugs in whole blood. However,
the use of small volume of sample is at the same time an advantage and a weakness
whose only solution would be the adoption of very sensitive and powerful instrumentation.
This requirement also dictated by the low blood concentrations of the selected drugs at
therapeutic doses [38–41]. These considerations led us to the use of an UPLC system for
the analyte separation and a tandem mass spectrometer for the detection.

Among the selected analytes, we noticed that synthetic opioids and benzodiazepines
are widely studied and evaluated in biological and/or environmental matrices with many
purposes. In contrast, substances such as trazodone, some antihypertensive and antihis-
tamines are almost neglected by the scientific community but not less worrying ij the
context of interest. To the best of our knowledge, at present there are no other reports on
the analysis of all these ototoxic and narcoleptic compounds simultaneously with a simple
‘dilute and shoot’ procedure applied to whole blood on DBS.

2. Materials and Methods
2.1. Chemicals

First generation H1-antihistamines (diphenhydramine hydrochloride, cyprohepta-
dine hydrochloride, triprolidine hydrochloride); second generation H1-antihistamines
(cetirizine hydrochloride, ebastine); a selective serotonin reuptake inhibitor (SSRI) class
antidepressant (escitalopram oxalate (S-(+)-citalopram oxalate)), a serotonin antagonist
and reuptake inhibitor (SARI) class antidepressant trazodone hydrochloride, a serotonin-
norepinephrine reuptake inhibitor (SNRI) class antidepressant venlafaxine hydrochloride,
opioids (fentanyl and tramadol hydrochloride, also a SNRI class compound); benzodi-
azepines (alprazolam, bromazepam, delorazepam); a beta-blocker (atenolol) and the Z-drug
zolpidem with purities ≥98% were purchased from Sigma-Aldrich (Merck Life Science,
Milan, Italy). The internal standards (ISs) used were atenolol-d7 and diphenhydramine-d3
from Sigma-Aldrich; cyproheptadine-d3, cetirizine-d8 and tramadol-d6 purchased from
Alsachim (Shimatsu Corporation, Graffenstaden, France) and ebastine-d5 from Clearsynth
(Clearsynth Labs, Villeurbanne, France).

Individual stock solutions of all the analytes were prepared at 1 mg mL−1 in methanol
and stored at −18 ◦C for at least 6 months. Working standard solutions and mixtures were
obtained by dilution of the above ones to the appropriate concentrations.

Acetonitrile and methanol, both MS grade, were from Carlo Erba (Milan, Italy). Formic
acid puriss. p.a. was purchased from Sigma-Aldrich. Deionized water was obtained from
a Milli-Q Plus system (Millipore, Bedford, MA, USA).

2.2. Dried Blood Spot Sampling

Whole blood samples were collected from the ring fingers of volunteers by piercing
it with a lancing device; the spilled blood is drawn with a pipette (2 µL) and then loaded
onto a pre-cut cellulose filter paper (15 × 4 mm; weight 67 g m−2, thickness 0.13 mm) from
Biosigma s.r.l. (Venice, Italy). Figure 1 visually summarizes these first steps.

Samples were allowed to dry for 10 min raised off the bench by means of a home-
made support (see Figure 2). During first stage of method development and validation
venous blood was used; it was stored inside under-vacuum heparin tubes (BD Vacutainer®,
BD s.r.l., Milan, Italy) and kept for less than 2 weeks refrigerated at −18 ◦C.
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dorf vials simply by using the clips as a handle. 

2.3. Dilute and Shoot Procedure 

Filter paper, loaded with blood, was cut from the homemade support in order to 

obtain a sample as small as possible and placed into a 2 mL Eppendorf safe lock tube 

(Eppendorf s.r.l., Milan, Italy). Fifty µL of distilled water was added and sonicated for 5 

min; then 50 µL of acetonitrile, containing a suitable amount of ISs solution, was added 

Figure 1. Three pictures that summarize the whole blood sampling procedure. Blood was taken with
a lancing device (Panel (a)) and 2 µL were collected with a pipette (Panel (b)); finally, it was loaded
on the paper support (Panel (c)). One of the authors has volunteered to carry out the sampling on
herself in order to show how easy it is to carry out the procedure alone if necessary.
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Figure 2. DBS homemade support; the wooden clothespin allows the blood deposited on the paper
to dry uniformly and avoid any contact with the bench. Samples can be cut and placed in Eppendorf
vials simply by using the clips as a handle.

2.3. Dilute and Shoot Procedure

Filter paper, loaded with blood, was cut from the homemade support in order to
obtain a sample as small as possible and placed into a 2 mL Eppendorf safe lock tube
(Eppendorf s.r.l., Milan, Italy). Fifty µL of distilled water was added and sonicated for
5 min; then 50 µL of acetonitrile, containing a suitable amount of ISs solution, was added
and the mixture was again sonicated for 5 min. The obtained mix was centrifuged on
an Eppendorf 5430R centrifuge (Eppendorf s.r.l.) for 8 min at 8000 rpm and 20 ◦C. This
solution, deprived of any corpuscles, was placed in a vial and a volume of 2 µL was directly
injected in the UPLC system without further treatment.
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2.4. Liquid Chromatography and Mass Spectrometry

Separation of the 15 analytes was obtained with a gradient elution on a Kinetex
Biphenyl column (100 × 2.1 mm and 2.6 µm particle size, Phenomenex Inc., Torrance, CA,
USA). The mobile phases used were acetonitrile (A) and water (B) both containing HCOOH
5 mM at the flow rate of 0.5 mL min−1. The flow profile was as follows: 0–4 min from 10%
A to 40% A; 4–6 min from 40% A to 100% A; 6–8 min 100% A.

Chromatographic runs were performed with an AcquityTM ultra-performance liq-
uid chromatography (autosampler and binary solvent management) system from Waters
(Milan, Italy). Mass spectrometric detection was accomplished on an API 4000 QTRAP®

hybrid triple quadrupole/ion trap mass spectrometer (AB Sciex, Concord, ON, Canada)
equipped with a Turbo V ion spray source.

Two fragments for each analyte were selected in order to work in multiple reaction
monitoring (MRM) mode. All the parameters relating to signal transmission inside the mass
spectrometer, from the source to the electron multiplier, were carefully optimized infusing
each single standard solution at a concentration ranging between 0.01 and 1 mg L−1 by a
syringe pump (flow rate 10 µL min−1). Nitrogen was used as curtain, nebulizer, drying and
collision gas (30, 60, 60 and ‘medium’, respectively, manufacturer’s units); the drying gas
temperature was set at 500 ◦C. All the analytes were detected in positive ionization mode.
Instrument calibration was periodically checked for each mass analyzer (Q1 and Q3) by the
infusion of a solution of polypropylene glycol at 10 µL min−1. Unit mass resolution was
established and retained in each mass resolving quadrupoles by maintaining a full width
at half-maximum of approximately 0.7 ± 0.1 Da. Data were acquired and processed with
the Analyst 1.5.1 software (AB Sciex). Names, structures, retention times and optimized
essential mass spectrometric parameters of the target compounds are shown in Table 1.
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Table 1. Names, structures, adverse effects on the ear and on the nervous system, retention times, optimized MRM transitions (Quantifier and Qualifier), and final MS/MS parameters of
the target analytes.

Name Structure Ear
Disorders Nervous System Disorders tr

(min)

MRM
Transition *

(m/z)

Declustering Potential
(V)

Collision Energy
(V)

Internal
Standard

Atenolol
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Table 1. Cont.

Name Structure Ear
Disorders Nervous System Disorders tr

(min)

MRM
Transition *

(m/z)

Declustering Potential
(V)

Collision Energy
(V)
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Table 1. Cont.

Name Structure Ear
Disorders Nervous System Disorders tr

(min)

MRM
Transition *

(m/z)

Declustering Potential
(V)

Collision Energy
(V)
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2.5. Method Validation

DBS is a peculiar sampling technique and, therefore, needs specific protocols to ensure
method performance. In this paper, validation was performed following the suggestions of
Capiau/Veenhof et al. [42], the European Medicines Agency and the U.S. Food and Drug
Administration guidelines [43,44].

It was unrealistic to use blood from a finger prick for validation method purposes and
for this reason, all the samples used were obtained from venipunctures. Blank samples,
treated with heparin, were divided into 2 mL portions and stored at −18 ◦C when unused.
For each step of the validation protocol, a suitable amount (in the minimum volume) of
analyte standard solutions were added to a 100 µL of sample and left to equilibrate at room
temperature for 30 min. The suitable amount of the internal standards solution was added
during dilution step and before the centrifugation.

Limits of detection and quantitation were calculated on the less intense MRM transi-
tions among the two selected for each analyte (qualifier) while all the other parameters were
determined on the most intense ones (quantifier). This approach guarantees three identifi-
cation points which, and in combination with the retention times, allow an unequivocal
identification of the analytes. Limits of Detection (LODs) and Limits of Quantitation (LOQs)
are experimentally estimated by gradually decreasing the spiked analyte concentration
until it reaches a signal equivalent to three (or 10, respectively) times the background noise.

Selectivity was verified on all the standard solutions and on the blank samples used for
the development protocol. Each standard and internal standard was injected in the LC-MS
system at 10 × LOQs and the absence of reciprocal interference was verified. Twenty blank
samples of whole blood were analyzed to check the absence of interferent peaks in the
retention time window of each target analyte.

The linear dynamic range for each analyte was evaluated in whole blood for at least
one order of magnitude starting from LOQ values to 10 × LOQs. For this purpose, a set of
five samples spiked at the end of the dilution procedure with both standards and internal
standards solutions was injected and a linear regression calculation was used to construct
the calibration curve. ISs concentrations were at the same concentration of the homologs at
the 5 × LOQs values. In this occasion matrix effect was carefully checked for each analyte
calculating the decrement of the angular coefficients of two calibration curves: one on
blood samples and one on standard solutions in methanol.

Absolute recoveries and precision were measured on three different levels of concen-
tration, six samples for each level, (low = LOQ; medium = 2.5 × LOQ and high = 5 × LOQ)
and precision was expressed as relative standard deviation. Absolute recoveries were
determined by comparing the chromatographic peak areas of the sample subjected to the
complete dilution procedure with the ones obtained from the extraction of a blank sample
spiked at the end of the procedure. Intra-day precision was estimated analyzing six spiked
samples for each level; the same set of analysis were repeated on three different days to
assess the inter-day precision.

Accuracy was expressed as a percentage of the real value of the measurand; therefore,
the three validation levels (six samples each) were analyzed against the calibration curve
to compare the obtained and the real values.

Stability protocol was established in order to understand how long the DBS can
be stored without having a significant drop in the analytes concentration. 20 samples
(10 Low and 10 High) were used for stability protocol. Samples were stored at −18 ◦C in
plastic boxes and the check points were 0, 7, 15, 30 and 90 days. All the calculations were
performed using analyte peak area vs IS peak area ratios.

3. Results and Discussion
3.1. Haematocrit (HCT) Management

Haematocrit is the most challenging issue in a DBS quantification method develop-
ment [45]. This parameter represents the ratio between the red blood cell volume and the
total blood volume, generally expressed as a percentage. In a certain way, HCT can be
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associated to blood density and viscosity, as mentioned in the Introduction section. For this
reason, it is associated to blood drop size and, therefore, to spot size and, as a consequence,
to the quantitation results [46]. It means that a high HCT level corresponds to a smaller spot
surface and to a higher analyte concentration in the DBS (and the other way round) [47].

The presented method adopted two approaches in order to reduce and control the
preponderant influence of HCT, thus allowing to perform a quantitative analysis: the use
of a re-cut support and a defined blood volume.

A PCDBS procedure means that the entire blood volume undergoes the analysis
protocol and therefore biases are not ascribable to hematocrit value [36,37]. This technique
allows an accurate and valid determination regardless of the HCT level and blood viscosity.
Moreover, by using a pre-cut carrier it is possible to avoid any carryover due to the use of a
manual or semi-automated puncher.

Since the goal of the project was a quantitative analysis, a measured volume of blood
is applied on the pre-cut filter paper by using a calibrated micropipette (2 µL), collecting
sample directly from the ring finger. However, the pipette tip should not touch the DBS
surface in order to avoid paper damage. Multiple layers should be avoided too, since they
could lead to a bigger spot and to an overload. The practice of sampling with a pipette
or a capillary tube is not new [48] and, in our opinion, not too difficult to practice also at
home [49]. Although the developed procedure is designed for worker investigations, in
fact, it can be easily used in home withdrawals, as illustrated in Figure 1.

Another source of bias related to HCT is due to intra- and inter-individual variability
and factors such as the age, sex and health of the donor [50]. The mean value is generally
among 40–54% and 36–46% for men and women, respectively. However, for newborns,
for instance, the values are between 53–69% like for people living at high altitudes, while
microcythemic subjects, even if not anemic, have a lower HCT level (smaller volume of red
blood cells).

The developed method was tested on different subjects and different types of blood
were analyzed in order to understand if individual variability could affect the results. The
samples were a small group of women and men of different ages and a young micro-
cythemic subject.

Differences between the samples were immediately clear from a preliminary exami-
nation as, for example, differences in color and opacity. However, the simple procedure
optimized for the analysis of the 15 substances seemed to be unaffected by these variables:
and no differences in matrix effect nor in extraction efficiency were recorded

3.2. Pre-Cut Spots, Support Materials and Dilution

Taking into account the authors’ previous experience with direct analysis methods,
support optimization was conducted choosing different suitable materials starting from
the hydrophobic ones. Substances were evaluated and compared in terms of recovery
percentage, blood diffusion and handling.

Knowing the chemical-physical characteristics of both matrix and analytes, the extrac-
tion solvents under consideration were reduced to three: water, methanol and acetonitrile.
All the supports were treated with a combination of them in order to confront extraction
efficiencies: H2O, H2O:CH3OH (50:50) and H2O:CH3CN (50:50). Further investigations
were carried out for the most promising combinations.

A PTFE filter (Merck Omnipore, 0.45 µm, 47 mm), acetate film and wax paper were
the first to be tested. The last two showed good results during spot deposition, associated
with recoveries between 41% and 95% (except for trazodone, fentanyl, cetirizine and
escitalopram that had lower values), but they were too lightweight and flexible. On these
materials, the dry drop breaks and detaches from the support since it is not equally flexible
becoming difficult to handle and to transport. The highly hydrophobic PTFE surface
showed an anomalous behaviour: the 2 µL blood drops stayed as perfect spheres on its
surface even when dry.
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Dry spheres (shown in Figure 3) remain firmly stuck to the surface allowing a good
handling, but the 3D structure compromises a simple storage and shipment. Moreover,
analytes showed a greater affinity for Teflon rather than for the dilution solvents and this
led to low recoveries.
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Hydrophilic supports, on the contrary, completely absorbed the drops spreading it
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in Figure 4.
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Figure 4. Comparison of the different behaviors of the same volume of whole blood (2 µL) on different surfaces. Substrate
(a,b) are acetate film and wax paper, respectively; (c,d) are cellulose mixed ester and bench paper respectively.

Filter paper showed the higher percentage of recoveries for all the analytes, especially
when processed with water and acetonitrile (R ≥ 60% except for atenolol and bromazepam).
When the two solvents were added in sequence instead of simultaneously, recoveries
increased to R ≥ 75% for all the analytes, as shown in Table 2.
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Table 2. Absolute recoveries, method precision (intra and inter-day precision) expressed as relative standard deviation
(RSD) and method accuracy expressed as trueness. For each validation level a number of 6 (n = 6) replicates were processed.

Analytes

Absolute Recoveries
(R %)

Intra-Day Precision
(RSD %)

Inter-Day Precision
(RSD %)

Trueness
(%)

Low
(n = 6)

Medium
(n = 6)

High
(n = 6)

Low
(n = 6)

Medium
(n = 6)

High
(n = 6)

Low
(n = 6)

Medium
(n = 6)

High
(n = 6)

Low
(n = 6)

Medium
(n = 6)

High
(n = 6)

Atenolol 81 85 84 6.1 7.2 9.1 14.2 13.5 14.9 103 91 94
Tramadol 95 91 97 9.8 5.7 10.6 9.8 6.6 6.6 93 92 103

Venlafaxine 75 76 73 8.3 10.0 8.8 10.1 9.6 13.6 78 90 98
Zolpidem 93 89 91 9.1 9.0 7.9 14.4 13.0 13.0 84 98 101

Triprolidine 107 101 100 9.0 10.2 6.2 10.9 6.8 6.8 102 93 100
Bromazepam 76 71 77 9.1 8.6 7.3 14.4 14.0 14.2 86 105 102

Trazodone 93 91 94 4.6 7.6 9.3 8.5 6.9 6.9 103 96 103
Fentanyl 89 95 90 8.1 9.9 6.7 6.3 3.8 3.8 98 101 101

Diphenhydramine 91 91 87 6.8 8.5 10.1 14.7 13.2 13.2 103 88 98
Escitalopram 90 84 88 7.7 10.1 9.6 14.6 14.8 13.8 105 97 98

Cetirizine 75 82 76 9.5 9.7 4.3 7.1 4.3 5.2 99 101 102
Cyproheptadine 85 88 89 6.0 6.7 8.3 9.5 8.8 7.8 105 105 103

Alprazolam 94 99 97 9.7 5.3 9.3 7.3 6.7 6.7 93 100 102
Delorazepam 99 103 106 7.6 2.5 3.4 8.1 6.5 7.2 92 90 101

Ebastine 99 105 100 7.7 7.2 7.8 8.4 6.9 7.3 101 102 98

The spreading issue was solved pre-cutting the filter paper in small stripes with a
width of 4 mm (PCDBS). Although the spot size is not particularly incisive on the analysis,
the pre-cut support was made as smaller as possible. The goal was both to contain the
drop and to minimize the elution volume and, therefore, the dilution factor. The use of
an ultra-sound device after each solvent addition improved the dry blood wettability and
helped to dilute the spot.

In order to prevent contact between humid samples and every surface, we developed
a homemade wooden device using a common clothespin. As can be seen in Figure 2,
the paper strips were firmly held between the two prongs and then spiked with blood.
This clothespin also helps to handle samples once they are dry, avoiding any risk of
cross contamination.

3.3. Dilute and Shoot and Chromatographic Separation

The final solubilisation procedure resulted very similar to the so called ‘dilute and
shoot’ technique, generally applied to urine analysis [51,52]. Therefore, it was decided to
deepen our study and evaluate its performance when applied to a different matrix such as
whole blood.

This technique is really simple, fast and reliable and, in fact, it is common among
doping and forensic analyses. However, in the recent years, due to a trend that led to a
more simplified sample pre-treatment, DS is finding new applications [53–56]; nevertheless,
it was rarely applied to whole blood or to DBS and only to human and animal plasma [57].
Clearly, the achievement of good results in terms of LODs and reproducibility is strongly
dependent on the affinity of the analytes for the ionization technique.

Chemical-physical properties of the target compounds favoured the application of
this fast sample treatment showing a great ionization efficiency. For instance, the easy
ionisable basic nitrogen groups on the hypnotic drugs had a high response to ESI voltage
and that was clear since MS/MS parameters optimization step in which a really high signal
was registered even during the initial Q1 scan. Bromazepam had a different behaviour,
maybe due to the presence of the halogen. In general, all the analytes had a good ability to
coordinate a proton and that meant higher performance of the DS-LC-MSMS analysis. With
a blood volume of only 2 µL deposited on the support, the final dilution factor was 1:50,
nevertheless good method limits were achieved as shown by the LOD values (Table 3).
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Table 3. Limits of Detection and Quantitation (calculated on the less intense MRM transitions) and
matrix effect expressed as decrement of the calibration curve slope. Values of LODs and LOQs were
evaluated in whole blood samples as a result of 6 replicates to confirm the value.

Analytes LODs
(pg µL−1)

LOQs
(pg µL−1)

Matrix Effect
(%)

Atenolol 0.8 2.4 14
Tramadol 0.1 0.3 13

Venlafaxine 0.7 2.1 9
Zolpidem 0.1 0.3 3

Triprolidine 0.4 1.2 13
Bromazepam 4.9 15 16

Trazodone 0.1 0.3 8
Fentanyl 0.5 1.5 20

Diphenhydramine 0.2 0.6 19
Escitalopram 0.9 2.7 23

Cetirizine 0.2 0.6 13
Cyproheptadine 0.1 0.3 29

Alprazolam 0.5 1.5 8
Delorazepam 0.6 1.8 8

Ebastine 1.4 4.2 16

A brief centrifugation step was added prior to the chromatographic separation in
order to prevent any sediment (from blood or paper) from entering the UPLC system and
possibly blocking it. Generally, only small amount of particles remains at the bottom of the
Eppendorf vials after this part of the procedure. At the same time, both the centrifugation
and the dilution factor help to avoid instrument contamination.

A constant monitoring of potential carry-over or cross contamination was sched-
uled by carrying out two solvent injections after the most concentrated points of the
calibration curves along all the analytical session. No memory or carry-over effects were
observed. Moreover, despite the simplicity of the procedure, the absolute recoveries proved
to be quantitative.

The 15 analytes selected for this project cover a vast range of chemical and physical
properties and, therefore, chromatographic separation was complicated by many factors.
Thus, several stationary phases have been tested in order to reach an acceptable separation
and a good peak shape.

C18s were the first to be evaluated, due to their great versatility and, among them,
different selectivity and polarity were tested maintaining the same mobile phases. Unex-
pectedly, neither the silica nor the hybrid particles showed acceptable results.

Waters Acquity UPLC® HSS T3 (100 × 2.1 mm, 1.8 µm), BEH C18 (50 × 2.1 mm,
1.7 µm) CSH™ C18 (100 × 2.1 mm, 1.7 µm) with silica-based end-capped particles showed
large peaks for venlafaxine, diphenhydramine and particularly for triprolidine. The low-
level surface charge of the CSH, in addition, split atenolol into two peaks at the beginning
of the chromatographic run.

Better results were obtained switching to an organo-silica ethane cross-linking core-
shell particle column (Kinetex® C18, 100 × 2.1 mm, 1.7 µm, from Phenomenex), while
the Kinetex® EVO C18 (100 × 2.1 mm, 1.7 µm) showed a similar behaviour to the Waters
columns. A visual summary of these results is shown in Figure 5.
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Moving to stationary phases with a combination of hydrophobic, aromatic, and polar
selectivity such as phenylhexyl, pentafluorophenyl and biphenyl, allowed us to achieve
better resolution and peak symmetry. The best compromise in terms of chromatographic
resolution, peaks shape and signal-to-noise (S/N) ratios was obtained with the Kinetex®

biphenyl column (100 × 2.1 mm, 2.6 µm) in combination with H2O and CH3CN as mo-
bile phases.

The mechanism that most likely underlies this improvement is the dipole moment
correlation; a smaller contribution is probably given by shape selectivity and polarizabil-
ity [58]. The aromatic ring of the biphenyl moiety has a net negative charge on both sides
of the ring itself, but it is not clear if the interaction with analytes is due to π-π, charge
transfer, or polarity interfering with stationary phase solvation.
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In order to obtain the highest performance from the Biphenyl column, mobile phases’
strength, pH and concentration of organic modifier have been finely tuned. The result
of the large amount of tests carried out to optimize gradient, flow rate and formic acid
concentration is shown by the final chromatogram, represented in Figure 6.
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3.4. Results of Method Validation

Selectivity studies were carried out both on matrix and standard solutions; greater
attention was paid to the internal standard solutions and to the potential presence of
the non-isotopic homologs. The absence of intrusive signals in any MRM chromatogram
highlighted that interference from the whole blood or from standard solutions themselves
were totally absent.

Since the method is multi-class, limit of detection and of quantitation were empirically
evaluated for every analyte on blank whole blood spiked samples. Results were noticeably
low, demonstrating a good method ‘sensitivity’ despite the 1:50 sample dilution. LODs, in
fact, were all below 1 pg µL−1 except for bromazepam and ebastine (4.9 and 1.4 pg µL−1,
respectively); LODs and LOQs values are reported in Table 3.

Linear regression calculation showed that ion signals were linearly correlated over
the selected concentration range with a coefficient of determination (R2) in matrix not less
than 0.998.

The developed DS procedure and a suitable gradient elution have proven to be
particularly effective in reducing matrix effect on the MS signal. The comparison between
solvent and matrix calibration curves displayed that the decrease in method sensitivity was
negligible for most of the analytes (less than 20%) except for cyproheptadine that showed a
higher suppression (29%). All the matrix effect values are reported in Table 3.

A possible side effect, due to the lack of an initial clean-up, could be a scarce repro-
ducibility of the retention times. For this reason, a set of 20 spiked samples (5 × LOQs)
were analyzed, in order to test a potential variability of each analyte’s tr. The obtained
values in term of relative standard deviations were less than 2.5%.

Absolute recoveries (R%) were calculated in order to evaluate the real amount that DS
procedure was able to extract from filter paper used as sample carrier. Outcomes showed
that all the drugs were recovered quantitatively and that the two-step procedure is effective,
leading to R% ≥ 75% (see Table 2).
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For method precision and accuracy evaluation, we decide to analyse three levels
instead of four as recommended by EMA and FDA [42–44]. The two organizations, actually,
suggest the use of a lower limit of quantitation (five times the S/N ratio) as one of the
validation levels. Nevertheless, it is our opinion that a more precautionary position of
the lowest limit at which a quantification is effective is a better choice; therefore, we
preferred not to drop below the LOQ (10 times the S/N). The use of LOQ-multiples of
LOQ interval is a well-established and accepted practice in validation of trace analysis
methods. For these reasons, we used LOQs as the lowest level and 5 × LOQ as the highest
(medium 2.5 × LOQ).

Intra-day precision, expressed as relative standard deviation (RSD %), was well below
the prescribed 15%; in fact, for all the validation levels values resulted between 2.5%
and 10.2%. Inter-day precision likewise met the acceptance criteria, showing all values
between 4.3% and 14.9%. Method accuracy was determined by comparing the measured
concentrations with the calibration curves and expressed as trueness. All the results
obtained from validation process are shown in Table 2.

3.5. DBS Stability

Due to a reduced enzymatic activity, DBS are less prone to analyte concentration fading.
Nonetheless, blood samples exhibit physiological aging and therefore a protocol has been
adopted to evaluate drugs blood concentration as a function of time and storage condition.
Less than 15% decrease from the nominal concentration was considered acceptable, as
recommended by Capiau/Veenhof et al., EMA and FDA [42–44].

Tests were scheduled over a period of 90 days; the T0 sample was left to dry at high
temperature and humidity (30 ◦C and 56%, respectively) for two hours. The goal was to
simulate a worst-case real condition for sampling: many workers and a humid and hot
workplace. For the remaining check points (7, 15, 30 and 90 days) samples were stored at
−18 ◦C.

Results showed that filter paper combined wit cold storage allowed us to maintain
almost unaltered analyte concentrations for up to 30 days. After this period a slow decre-
ment emerged for all the selected drugs. The triprolidine concentration trend for the lowest
concentration at the stability checkpoints is shown as an example in Figure 7.
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4. Conclusions

There are several statistics indicating that the use of ototoxic and narcoleptic drugs
poses a risk in the workplace. Current legislation does not consider it necessary to evaluate
these substances in biological fluids in order to control their use and to protect workers’
health. The presented project was intended as a first step to try to fill this gap, in an attempt
to promote and encourage possible control actions.

The goal was to develop and validate a simple, fast and effective method for the
analysis of 15 widely used drugs (i.e., benzodiazepines, opioids, antihistaminics, beta-
blockers) in whole blood using DBS. The compounds of interest were chosen due to their
ototoxic and/or narcoleptic side effects that, indeed, could affect workers’ safety.

The targets were all achieved since the method is low cost, free from any need of pre-
treatment, extremely easy to perform and user-friendly. The use of benchtop paper, that is
particularly low cost and easily available and avoids any possible interaction with analytes
was one of the undeniable benefits. The choice of a triple-quadrupole mass spectrometer
and the two MRM transitions for the detection allowed us to achieve a high-sensitivity and
an unambiguous identification. The simple ‘dilute and shoot” process is a key factor of the
simplicity and cheapness of the method as well as the use of an easy sampling system such
as the DBS. The LOQs, achieved applying the entire procedure, were consistent with the
therapeutic blood levels of the examined substances.

All these features were crucial in a method intended to encourage its diffusion as
a primary prevention intervention, even in small private workplaces. Moreover, unlike
the majority of other methods, the presented procedure is able to give a response on
15 substances (from nine different classes) in 36 total minutes from the blood sampling to
the results that is a very popular benefit nowadays.

The overall method consumes only a small quantity of dangerous solvents and poses
a low biological risk in sample handling. Our Institute, in fact, is at the forefront in
safeguarding the health of all workers including the ones working in house, and the
presented method is conceived from this perspective. The achieved validation results
also proved that the method described herein is suitable for use in different fields such as
forensic or clinical analysis.
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