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Feasibility-Driven Step Timing Adaptation
for Robust MPC-Based Gait Generation in Humanoids
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Abstract—The feasibility region of a Model Predictive Control
(MPC) algorithm is the subset of the state space in which
the constrained optimization problem to be solved is feasible.
In our recent Intrinsically Stable MPC (IS-MPC) method for
humanoid gait generation, feasibility means being able to satisfy
the dynamic balance condition, the kinematic constraints on
footsteps as well as an explicit stability condition. Here, we exploit
the feasibility concept to build a step timing adapter that, at each
control cycle, modifies the duration of the current step whenever
a feasibility loss is imminent due, e.g., to an external perturbation.
The proposed approach allows the IS-MPC algorithm to maintain
its linearity and adds a negligible computational burden to the
overall scheme. Simulations and experimental results where the
robot is pushed while walking showcase the performance of the
proposed approach.

Index Terms—Humanoids and Bipedal Locomotion, Ro-
bust/Adaptive Control, Optimization and Optimal Control

I. INTRODUCTION

ROBUST locomotion is a central issue of humanoid
robotics. Humans mostly use regular gaits with equal

steps, but can change step length and timing as necessary.
Current algorithms for gait generation are limited in this
respect, as they must deal with the complexity of the walking
dynamics while guaranteeing real-time performance: often,
step length can be adapted while step timings are predefined.

To avoid falling, balance must be guaranteed at all times.
This can be realized by keeping the Zero Moment Point (ZMP)
within the support polygon. To achieve real-time control, a
popular approach is to represent humanoid dynamics by the
Linear Inverted Pendulum (LIP) model, characterized by an
unstable mode often referred to as Divergent Component of
Motion (DCM) [1]. The linearity of the LIP allows track-
ing predefined ZMP trajectories with a preview-based ap-
proach [2], or encoding the ZMP balance requirement through
constraints, leading to an MPC formulation [3].

While early MPC algorithms only generated a suitable
Center of Mass (CoM) trajectory for a given set of footsteps,
later methods [4] were also able to plan footsteps while
maintaining the linearity of the constraints. When it comes
to adapting step timing, however, the extension in an MPC
framework is not trivial since it would invariably involve either
nonlinear constraints or discrete optimization.

A nonlinear MPC is presented in [5] for adapting step
timings via time scaling at each iteration. The MPC step of [6]
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works in two stages: CoM/swing foot paths are generated
by interpolation and then a suitable timing is computed by
optimization. Nonlinear optimization is also used in [7] for
generating footsteps and timings in response to perturbations.
An alternative [8], [9] is to use boolean variables in the MPC,
leading to Mixed-Integer Quadratic Programming (MIQP).
Both nonlinear and MIQP-based MPC are computationally
heavy and cannot guarantee convergence of the optimizer.

As for non-MPC approaches, a QP problem is formulated
in [10] for a point-foot LIP in terms of the DCM offset w.r.t.
the center of the current support foot, in order to adapt both
the position and timing of the next footstep. Other works such
as [11] and [12] have developed similar ideas, while the DCM-
based algorithm in [13] speeds up the step when the push
occurs in the direction of the motion.

In this paper, we build upon our Intrinsically Stable MPC
(IS-MPC) scheme, which guarantees recursive feasibility and
stable gait generation thanks to an explicit stability con-
straint [14]. That result hinged on the study of the feasibility
region of IS-MPC for the case of given footsteps. Here, we
first extend the feasibility analysis of IS-MPC to the case of
automatic footstep placement. Based on this, a Step Timing
Adaptation (STA) module is designed, which can modify
the current step duration to counteract an imminent loss of
feasibility due to a perturbation. Since the feasibility region
bounds are approximately linear in a suitable encoding of
the current step duration, STA can be efficiently formulated
and solved as a QP with a single variable. At every sampling
instant, the STA and IS-MPC modules are run sequentially
and the added computational load is negligible.

The paper is organized as follows. In Sect. II we give
an outline of the proposed approach, while in Sect. III we
review IS-MPC for gait generation. In Sect. IV we analyze the
feasibility region for the case of automatic footstep placement,
compute a linear conservative estimate of this region, and
use it to perform step timing adaptation. Section V presents
MATLAB simulations for the LIP, including a comparison
with an STA technique based on the DCM offset. Finally,
Sects. VI and VII show dynamic simulations in DART for an
HRP-4 humanoid and experimental results on a NAO.

II. THE PROPOSED APPROACH

Consider the problem of robust gait generation for a hu-
manoid in the presence of perturbations, e.g., a push. We
assume that the gait is generated in real time by MPC:
in particular, we adopt the IS-MPC framework [14], which
generates both CoM and ZMP trajectories so as to guarantee
dynamic balance and internal stability. At the k-th time instant
tk, IS-MPC solves a constrained QP problem over a control
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Fig. 1. A scheme of the proposed approach, with the step timing adaptation module acting before IS-MPC gait generation.

horizon, which is guaranteed to be solvable provided that the
state of the robot belongs to a certain feasibility region Fk.
As a result of a perturbation, the state may be pushed outside
such region, ultimately leading to a loss of balance. Since the
feasibility region depends among other things on the duration
of the steps, the basic idea of this paper is to adapt these
durations in order to enlarge Fk as much as needed to absorb
the effect of perturbations.

An overview of the proposed scheme is shown in Fig. 1.
At each tk, the input1 consists of a sequence of F candidate
footsteps in the x-y plane with the associated timing:

X̂k
f =(x̂1

f , . . . , x̂
F
f ), Ŷ kf =(ŷ1

f , . . . , ŷ
F
f ), τ̂ks =(t̂1s, . . . , t̂

F
s ).

Here, (x̂jf , ŷ
j
f ), j = 1, . . . , F , is the position of the j-th

candidate footstep and t̂js is the corresponding timestamp,
indicating the time instant at which the (swinging) foot should
land on (x̂jf , ŷ

j
f ), i.e., the beginning of double support. The

difference T̂ js = t̂j+1
s − t̂js is the duration of the j-th step,

divided according to a fixed ratio in double support and single
support, of duration T̂ jds and T̂ jss, respectively.

In general, the MPC control horizon Tc will contain the
remaining part of the current step (from tk to t̂1s); the first,
second, . . . , F -th subsequent steps; and the initial part of a
last step (from t̂Fs to tk+C); see Fig. 2. Since the duration of
steps is variable, the number F of footsteps falling within the
current MPC control horizon Tc may change with k. In the
following, we will need the last and the penultimate footsteps
before tk, denoted by (x0

f , y
0
f ) and (x−1

f , y−1
f ), respectively

(these are not candidates as they have already been realized);
the corresponding timestamps are t0s and t−1

s .
All footsteps have the same orientation with respect to the

x axis, chosen to be zero without loss of generality. This
simplifying assumption allows to decouple the gait generation
problem along the x (sagittal) and y (coronal) axes, and
facilitates the computation of the feasibility region of IS-MPC.
However, the proposed method can be extended in principle
to the case of footsteps with variable orientation.

While the candidate footstep positions are directly fed to
IS-MPC gait generation, the candidate timing goes through an
adaptation module. If the current CoM of the robot is such
that the next QP problem will be solvable, no modification
is necessary; whereas if we are outside the feasibility region

1This input data typically comes from a footstep planner, which is not
discussed in this paper. See [14] for a simple planner for flat ground that can
be used in conjunction with IS-MPC, and [15] for a 3D planner.

the timing will be changed so as to maintain feasibility. The
timing after adaptation is denoted as τks = (t1s, . . . , t

F
s ).

The actual inputs of IS-MPC gait generation will be the
candidate footsteps and the adapted step timing (see Fig. 1).

III. IS-MPC

Before presenting the design of the step timing adaptation
module, let us review the basics of gait generation based on
IS-MPC (see [14] for details). This algorithm operates over
sampling intervals of duration δ, with the generic time instant
denoted by tk = k δ. A k superscript indicates that the variable
is sampled at tk, e.g., x(tk) = xk. The MPC control horizon
Tc covers C sampling intervals, i.e., Tc = C δ.

Below we only consider gait generation for the x compo-
nent. Every equation will have an identical counterpart for y
component, except when explicitly stated.

IS-MPC uses a simplified model of the humanoid to charac-
terize the relationship between the CoM and the ZMP, whose
positions are respectively denoted by pc = (xc, yc, zc) and
pz = (xz, yz, 0). Assuming flat horizontal ground, constant
CoM height and constant angular momentum around the CoM
leads to the well-known LIP equation

ẍc = η2(xc − xz),

where η =
√
g/z̄c, being z̄c the constant CoM height. The

prediction model in IS-MPC is a dynamically extended LIPẋcẍc
ẋz
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Fig. 2. The timing within the MPC control horizon Tc. Each step duration
T j
s is divided into a double support (DS) and a single support (SS) phase.

The timestamp tjs associated to the j-th footstep indicates the start of the
double support phase. Also shown are symbols which will be later used to
exponentially encode the duration. Hats (̂ ) are omitted but the picture is valid
both for the candidate and the adapted step timing.
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with the ZMP velocity ẋz now acting as input. In particular, we
assume piecewise-constant inputs (and thus piecewise-linear
ZMP), i.e., ẋz(t) = ẋkz for t ∈ [tk, tk+1).

The first constraint in IS-MPC is that the ZMP should lie
inside the support polygon at all times. To express this as a
linear constraint of the footsteps throughout the j-th step, we
slide the footstep region during double support from the j-
th to the (j + 1)-th footstep. This allows to write the ZMP
constraint as follows∣∣∣xz − xj−1

f − (xjf − x
j−1
f )σ(t, tjs, t

j
s + T jds)

∣∣∣ ≤ 1

2
dz,x, (1)

for t ∈ [tjs, t
j+1
s ), having used for compactness the piecewise-

linear sigmoidal function

σ(t, ti, tf ) =
1

tf − ti
(ρ(t− ti)− ρ(t− tf )) , (2)

with ρ(t) = t δ−1(t) the unit ramp starting at 0.
The second constraint ensures that footsteps are placed so

as to be kinematically realizable by the robot. This means
enforcing a maximum step length along the x axis∣∣∣xjf − xj−1

f

∣∣∣ ≤ da,x
2
, (3)

with da,x the size of the admissible region along x, see Fig. 3.
The last constraint in IS-MPC is needed to guarantee that

the CoM remains bounded with respect to the ZMP. In fact,
definition of the new coordinate2 xu = xc + ẋc/η highlights
the unstable dynamics

ẋu = η (xu − xz).

Despite this instability, xc will remain bounded with respect
to xz provided that

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ (4)

and that ẋz is bounded. The integral in the right-hand side can
be split as the integral from tk to tk+Tc, which can be readily
expressed in terms of the ZMP velocity inputs ẋz within the
MPC control horizon, plus the integral from tk + Tc to ∞,
which depends on the inputs outside the control horizon and
therefore makes condition (4) non-causal. To obtain a causal
constraint, we compute an approximate value for the second
integral by using an anticipative tail, i.e., a ZMP trajectory
x̃z from tk + Tc to ∞ conjectured on the basis of short-term
information from the footstep plan. This leads to the following
stability constraint

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xku − c̃kx (5)

where
c̃kx = η

∫ ∞
tk+C

e−η(τ−tk)x̃z(τ)dτ.

Note that the integral in the left-hand side of (5) can be written
in closed form as a linear function of the ZMP velocity inputs
ẋkz , . . . , ẋ

k+C−1
z .

2The variable xu is also referred to as capture point [16] or divergent
component of motion [1].

Collecting the decision variables over Tc as

Ẋk
z = (ẋkz , . . . , ẋ

k+C−1
z ), Xk

f = (x1
f , . . . , x

F
f ),

the k-th iteration of IS-MPC solves the following QP problem,
called QP-MPC, for the x component:

min
Ẋk

z ,X
k
f

‖Ẋk
z ‖2 + µ‖Xk

f − X̂k
f ‖2

subject to:
• ZMP constraints (1), for j = 0, . . . , F
• kinematic constraints (3), for j = 1, . . . , F
• stability constraint (5)

and an analogous problem for the y component, the only
difference being that the kinematic constraint becomes∣∣∣yjf − yj−1

f ± `
∣∣∣ ≤ da,y

2
,

where ` is the central value of the distance between right and
left feet, and the plus (minus) sign should be used if yjf is a
footstep for the left (right) foot.

Once a solution is found, the first sample ẋkz , ẏ
k
z of the

optimal input sequence is used to integrate the LIP dynamics
along x. The first footstep position x1

f , y
1
f is instead used

as target landing position for the swing foot in the next
single support phase. This results in CoM and swing foot
trajectories to be tracked by the humanoid robot with a
kinematic controller.

IV. FEASIBILITY-DRIVEN STEP TIMING ADAPTATION

In [14] it was shown that IS-MPC is recursively feasible and
internally stable (i.e., the CoM trajectory does not diverge with
respect to the ZMP) provided that a sufficiently long preview
of the footsteps is available. This result was obtained for the
case in which the MPC does not modify the footsteps (µ =∞
in QP-MPC), based on a study of the feasibility region, i.e.,
the subset of states for which QP-MPC admits a solution.

In this section, we compute the feasibility region for the
general case in which the footstep positions are adapted by
the MPC, and propose a conservative estimate of such region.
Then, we exploit this analysis for step timing adaptation.

A. Feasibility Region

The following proposition characterizes the feasibility re-
gion of an IS-MPC iteration in terms of xu.

Proposition 1: QP-MPC is feasible at tk if and only if
(xku, y

k
u) ∈ Fk, with

Fk = {(xu, yu) : xk,mu ≤ xu ≤ xk,Mu , yk,mu ≤ yu ≤ yk,Mu }

with the following compact expression for xk,mu and xk,Mu

xk,m/Mu = η

∫ tk+C

tk

e−η(τ−tk)xm/Mz (τ)dτ + c̃kx (6)

yk,m/Mu = η

∫ tk+C

tk

e−η(τ−tk)ym/Mz (τ)dτ + c̃ky (7)
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where

xmz (t)=x−1
f + (x0

f − x−1
f )σ(t, t0s, t

0
s + T 0

ds) (8)

−dz,x
2
− da,x

2

F∑
j=1

σ(t, tjs, t
j
s+T

j
ds)

xMz (t)=x−1
f + (x0

f − x−1
f )σ(t, t0s, t

0
s + T 0

ds) (9)

+
dz,x

2
+
da,x

2

F∑
j=1

σ(t, tjs, t
j
s+T

j
ds)

ymz (t)= y−1
f + (y0

f − y−1
f )σ(t, t0s, t

0
s + T 0

ds) (10)

−dz,y
2
−

F∑
j=1

(
da,y

2
∓ `
)
σ(t, tjs, t

j
s+T

j
ds)

yMz (t)= y−1
f + (y0

f − y−1
f )σ(t, t0s, t

0
s + T 0

ds) (11)

+
dz,y

2
+

F∑
j=1

(
da,y

2
± `
)
σ(t, tjs, t

j
s+T

j
ds).

Proof. First consider the x coordinate. We start by noticing
that all ZMP trajectories produced by IS-MPC satisfy

xmz ≤ xz ≤ xMz , (12)

where xmz and xMz are given by (8) and (9), respectively. This
is easily shown by iterating the ZMP constraint (1) to write
an inequality on xz valid throughout the control horizon and
then using kinematic constraint (3) to eliminate the footstep
positions xjf for j = 1, . . . , F from this inequality. In this
way, xmz and xMz represent bounds on xz accounting for any
possible choice of the footstep location (see Fig. 3).

Now multiply each term of (12) by η eη(t−tk), integrate over
time from tk to tk+C , add c̃kx on each side, and note that the
middle term of the resulting inequality is equal to xku thanks
to (5), while the outer terms are xk,mu and xk,Mu as defined
in (6). This shows the necessity of the thesis.

To prove sufficiency, assume that (xku, y
k
u) ∈ Fk, so that xku

is a convex combination of the feasibility region bounds:

xku = axk,mu + (1− a)xk,Mu with a ∈ [0, 1] . (13)

Now consider the particular ZMP trajectory

x∗z(t) = axmz (t) + (1− a)xMz (t).

This trajectory satisfies the ZMP constraint in [tk, tk+C ] for
the kinematically admissible sequence of footsteps

xjf = xj−1
f + a

da,x
2
.

It also satisfies the stability constraint (5), since

xku = η

∫ tk+C

tk

e−η(τ−tk)x∗z(τ)dτ + c̃kx = axk,mu + (1− a)xk,Mu

is true thanks to (13). We have thus shown that there exists at
least one ZMP trajectory and a sequence of footsteps satisfying
all constraints.

The proof for y is identical except for the footstep position,
which must incorporate the lateral displacement

yjf = yj−1
f + a

da,y
2
± `. �

admissible region
for next footstep

current
footstep

allowed region for
ZMP trajectories

x

t

SS DS SS

x

y

x

y

t

SS DS SS

y

dax
2

`

day

2

Fig. 3. A visual representation of the kinematic constraint (left) and how it
translates to the bounds on the ZMP trajectory expressed by (8–11) (right). The
green footsteps stand at the extreme positions compatible with the kinematic
constraint (blue region).

The bounds (6–7) of the feasibility region Fk can be com-
puted in closed form. To this end, we replace step durations
with more convenient variables (see Fig. 2): the remaining
duration of the current step (called in the following time-to-
step) will be represented by

∆λ = e−η(t1s−tk),

whereas the duration of the subsequent steps will be encoded
in λ1-F = {λ1, . . . , λF }, where

λj = e−ηT
j
s .

Also, let ν = T jds/T
j
s be the ratio of the duration of double

support over that of the whole step, which in the prediction is
assumed constant for subsequent steps (j = 1, . . . , F ).

In the above variables, bounds (6–7) assume the following
expression for tk in a double support phase

xk,m/Mu =α
m/M
ds,x (λ1-F )∆λ+ β

m/M
ds,x log ∆λ+ γ

m/M
ds,x (14)

yk,m/Mu =α
m/M
ds,y (λ1-F )∆λ+ β

m/M
ds,y log ∆λ+ γ

m/M
ds,y (15)

while for tk in a single support phase we obtain

xk,m/Mu = αm/Mss,x (λ1-F )∆λ+ γm/Mss,x (16)

yk,m/Mu = αm/Mss,y (λ1-F )∆λ+ γm/Mss,y . (17)

The expressions of the α, β, γ coefficients in the above
formulas, as well as for the explicit computations leading to
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them, are omitted for lack of space. As an example, we provide
here the coefficients appearing in (14) for xk,mu :

αmds,x(λ1-F ) =
x−1
f − x0

f

ηT 0
ds

eηT
0
ss +

da,x
2

F∑
j=1

1− λνj
ν log λj

j−1∏
i=1

λi

βmds,x =
x0
f − x

−1
f

ηT 0
ds

γmds,x = (x0
f − x−1

f )
1 + ηT 0

s

ηT 0
ds

− dz,x
2

(1− e−ηTc)

+x−1
f − x

0
fe
−ηTc + F

da,x
2
e−ηTc + c̃kx.

B. Conservative Estimate of the Feasibility Region
Formulas (14–17) indicate that the bounds of the feasibility

region depend on the durations λ1, . . . λF of the subsequent
steps; this dependence, as shown by the above expressions of
the α coefficients, is actually nonlinear. Therefore, to make
the step timing adaptation problem viable, λ1, . . . λF will be
left unchanged, while the time-to-step ∆λ can take any value
within a suitable interval [∆λmin,∆λmax]. This simplification
is reasonable since the current step can be expected to be the
most critical for absorbing a perturbation.

To remove the nonlinearity in ∆λ from the double support
bounds (14–15), consider that log ∆λ in [∆λmin,∆λmax] can
be bounded above by the tangent computed at ∆λmid =
(∆λmin + ∆λmax)/2, and below by the chord joining
log ∆λmin and log ∆λmax. By doing so, one obtains the
following inequalities for the bounds of Fk in double support:

xk,mu ≤ ᾱmds,x∆λ+ γ̄mds,x = x̄k,mu

xk,Mu ≥ ᾱMds,x∆λ+ γ̄Mds,x = x̄k,Mu

yk,mu ≤ ᾱmds,y∆λ+ γ̄mds,y = ȳk,mu

yk,Mu ≥ ᾱMds,y∆λ+ γ̄Mds,y = yk,Mu ,

where

ᾱmds,x = αmds,x +
βmds,x

∆λmid

γ̄mds,x = γmds,x + βmds,x
(
log ∆λmid − 1

)
.

and similarly for the other coefficients. Based on this, we
define a conservative estimate of Fk as

Fkest = {(xu, yu) : x̄k,mu ≤ xu ≤ x̄k,Mu , ȳk,mu ≤ yu ≤ ȳk,Mu }.

Note that Fkest = Fk during the single support phase.
Figure 4 shows the evolution over time of the bounds of Fk

vs. those of Fkest over two steps of duration 0.5 s each, with
Tds = 0.2 s and Tds = 0.3 s, for the LIP model described
in Sect. V-A. As expected, Fkest accurately approximates Fk,
with which it coincides in single support.

Since Fk is a rectangular region of dimensions
xk,Mu − xk,mu and yk,Mu − yk,mu , Fig. 4 also implies that
its extension monotonically increases during single support,
consistently with the fact that the allowed ZMP region (the
yellow area in Fig. 3) grows over time, and abruptly decreases
at the start of double support, due to the reset of the ZMP
trajectory bounds to the boundaries of the (new) support foot.
See also the animation of the feasibility region in Simulation
1 of the accompanying video.

Fig. 4. Time evolution of the bounds of Fk (solid) vs. Fk
est (dashed).

C. Step Timing Adaptation (STA)

In principle, the STA stage should intervene whenever
(xku, y

k
u) moves outside of the feasibility region Fk due to

a perturbation, such as a push on the robot. In practice,
leveraging the results of Sect. IV-B, we replace Fk with Fkest

to take advantage of the linearity of its bounds in ∆λ.
At each iteration the following QP problem, called QP-STA,

is solved to compute the adapted duration of the current step
before sending the timing vector to IS-MPC (see Fig. 1):

min
∆λ

(∆λ− ∆̂λ)2

subject to:
• feasibility constraints for xu and yu

x̄k,mu + εx ≤ xku ≤ x̄k,Mu − εx
ȳk,mu + εy ≤ yku ≤ ȳk,Mu − εy

• timing constraints

e−η(t0s+Tmax
s −tk) ≤ ∆λ ≤ e−η(t0s+Tmin

s −tk)

∆λ ≤ e−ηεt

in which:

• ∆̂λ = e−η(t̂1s−tk) is the time-to-step (in exponential
encoding) according to the current candidate timing;

• εx and εy are (positive) safety margins for the feasibility
constraints, introduced to push solutions inside Fkest;

• εt =

T̂
0
ss+max

(
|ζkx−x0

f |, |ζky−y0
f |
)
/vmax
z (DS)

max
(
|xksw−x

1|k−1
f |, |yksw−y

1|k−1
f |

)
/vmax

sw (SS)

where T̂ 0
ss is the candidate duration of single support in

the current step, (ζkx , ζ
k
y ) is the center of the moving

ZMP region in (1) at tk, (x
1|k−1
f , y

1|k−1
f ) is the next

footstep as generated by the previous IS-MPC iteration,
and (xksw, y

k
sw) is the swing foot position at tk.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on February 18,2021 at 08:59:30 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3059627, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

The first timing constraint of QP-STA means that any step
duration should be within Tmin

s and Tmax
s , limit values that

typically depend on the robot. The second constraint reflects
the fact that only the duration of the current phase (SS or DS)
is adapted, so that in double support the time-to-step cannot
be reduced below the candidate duration of single support; it
also guarantees that the robot has enough time to complete the
current phase (similarly to [4]) given the bounds vmax

z on the
ZMP velocity (DS) and vmax

sw on the swinging foot velocity
(SS), assumed to be the same over x and y.

Since QP-STA is formulated as a least squares problem, the
current step timing will indeed be modified only if (xku, y

k
u)

is outside Fkest. In this case, denoting by ∆λ 6= ∆̂λ the
solution of QP-STA, the adapted timestamp of the next step
is computed as t1s = tk + log(1/∆λ)/η.

To get an intuitive understanding of how step timing adapta-
tion works, look at Fig. 5, which shows the effects on Fkest of
both a reduction and an extension of the current step duration
at a certain time t̄. For example, assume that a push in the
x direction (positive or negative) occurs at t̄, so that xu will
experience a displacement in the same direction; in this case,
QP-STA will reduce the current step duration so as to enlarge
Fkest along x. The same kind of adaptation will work for a
lateral push directed from the support towards the swing leg
(positive y), because Fkest will be shifted up in y.

The situation changes for a lateral push from the swing
towards the support leg (negative y). In this case, Fig. 5
indicates that step duration should be extended, as this will
shift Fkest down in y. We will come back on this in Sect. V-C.

V. SIMULATIONS ON THE LIP

We now showcase the performance of our STA method by
means of some simulations for the LIP.

A. Push Recovery

The benefit of STA in conjunction with IS-MPC can be
appreciated in a push recovery scenario on the LIP. We use
the following parameters: m = 39 kg, z̄c = 0.75 m, dz,x =
dz,y = 0.08 m, da,x = 0.5 m, da,y = 0.16 m, ` = 0.2 m for the
robot (corresponding to the HRP-4 humanoid), and Tc = 1 s,
δ = 0.01 s, Tmin

s = 0.2 s, Tmax
s = 0.65 s, εx = εy = 0.005 m,

vmax
z = 1.5 m/s, vmax

sw = 1 m/s for the QP problems. In the
candidate timing, all steps have duration T̂s = 0.5 s with DS
phase lasting T̂ds = 0.2 s. The simulation is run in MATLAB
using quadprog as QP solver.

The robot is walking under the action of IS-MPC when
at t = 2.7 s (i.e., at the start of single support of the sixth
step) it receives a diagonal push Fext = (97.5,−136.5, 0) [N]
lasting 0.1 s. Figure 6 shows the situation at the end of the
push: without STA, the current value of (xu, yu) would be
outside the feasibility region, leading to internal instability
and failure, whereas STA modifies the feasibility region of
IS-MPC in such a way to contain (xu, yu). In particular,
this is obtained by reducing the duration of the current step
by 0.13 s. To fully absorb the effect of the push, it is also
necessary to reduce the next double support by 0.14 s. In fact,
although step timing adaptation allows to maintain feasibility

Fig. 5. Effect of step timing adaptation on feasibility: modification of the
bounds of Fk

est. Here, the robot is walking in the positive x direction when
at time t̄ = 0.6 s, with the left foot swinging, the duration of the current step
is reduced/ extended by 0.1 s.

until the end of the push, adaptation at successive instants is
still required because QP-STA sees in this case a violation of
the conservative estimate Fest. See the accompanying video
for a complete clip of this simulation.

We repeated this simulation for different pushing forces,
without changing the instant of application. IS-MPC with
STA withstands x-forces in [−260, 304.2] N and y-forces in
[−273, 124.8] N. Without STA, these ranges are reduced to
[−136.5, 144.2] N and [−93.6, 97.5] N, respectively.

B. Comparison with DCM-Based Method

The next simulation compares the proposed approach with
DCM-based step timing adaptation, identified as the state of
the art in the field. In particular, we selected the technique
presented in [10], which uses ∞-step capturability bounds to
formulate a QP with footstep positions and timing as decision
variables; futhermore, the ZMP is assumed to be always at the
center of the support foot (i.e., the robot has point feet), and
double support is instantaneous. The parameters used for the
comparison are the same as the previous simulation, with the
exception of the dz,x and dz,y which were reduced to 0.01 m
for IS-MPC, to mimic a point-foot situation.

The robot is walking when, at the start of a single support,
it receives a lateral push Fext = (0, 226.2, 0)T [N] for 0.1 s.
The results of the comparison are shown in Fig. 7. While
IS-MPC with STA absorbs the push and quickly resume
forward walking, the DCM-based method fails due to a loss
of feasibility, which leads to divergence between the CoM
and the ZMP (see the video). With the reduced footprint of
this simulation, IS-MPC with STA can withstand x-forces in
[−288.6, 290] N and y-forces in [−46.8, 245.7] N. Again, this
is better than the DCM-based method, for which the ranges
are [−265.2, 265.2] N and [−31.2, 222.3] N.
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Fig. 6. LIP simulation 1: Push recovery while walking. Feasibility region of
IS-MPC at the end of the push (t = 2.8 s) with STA (top) and without STA
(bottom). Footsteps are shown in magenta. Note how STA allows to enlarge
the feasibility region so as to keep the current (xu, yu) inside it.

The reason for the superior performance of IS-MPC with
STA over the DCM-based method is twofold. First, it appears
that our method can take full advantage of finite-size feet, al-
beit small, and of the non-instantaneous double support. Even
more importantly, while our stability constraint is the correct
condition for avoiding CoM/ZMP divergence at any time, the
∞-step capturability constraint of [10] is only appropriate at
the start of each step3, so that its use at intermediate instants
may lead to failure in critical cases.

C. Discussion

The results of this section show that modifying step timings
is an effective way to counteract an imminent loss of feasibil-
ity. With respect to other techniques for time adaptation, our
approach is designed to work in conjunction with IS-MPC,
and thus inherits the favorable properties guaranteed by the
use of preview information in the stability constraint [14].

The analytical expressions (14–17) of the feasibility region
bounds can in principle be used to set up a nonlinear optimiza-
tion problem to adapt multiple steps in the control horizon, as
opposed to the current step only. Due to the exponentially
diminishing effect of future steps in eqs. (6-7), however, the
benefit of such strategy is bound to be limited.

There is, however, at least one case in which adapting a
future step is a sensible option. As discussed at the end of
Sect. IV-C, if a lateral push is directed from the swing towards
the support leg, QP-STA reacts by increasing the duration of
the current step (see Fig. 5). This is somewhat counterintuitive,

3It is possible to prove (details are omitted) that the feasibility region Fk of
IS-MPC at the start of a step tends to coincide with the ∞-step capturability
region of [10] if, in addition to point feet and instantaneous double support,
we also assume that the control horizon approaches infinity.

Fig. 7. LIP simulation 2: Push recovery while walking. IS-MPC with STA
(top) vs. DCM-based method [10] (bottom). IS-MPC with STA withstands
the push while the DCM-based technique exhibits an unstable behavior.

as the appropriate reaction would be to displace the footstep
in the same direction to keep the (perturbed) ZMP within
the support polygon. However, IS-MPC does not contemplate
such a possibility, because the kinematic constraint prevents
placing one foot in front of the other, and this is reflected
in Fk; therefore, QP-STA will extend as much as possible
the duration of the current single support, as putting the foot
down will necessarily displace the support polygon in the
wrong direction. However, in the case of very strong swing-to-
support pushes, QP-STA may be unable to maintain feasibility
by extending the duration of the current step. In this case, a
better strategy would be to put down the swinging foot as
soon as possible and recover by adapting the next step. This
can be enforced as a rule-based behavior whenever QP-STA
is unfeasible. See the accompanying video for a simulation.

VI. DYNAMIC SIMULATIONS

The proposed approach has been validated for the HRP-4
humanoid through dynamic simulations in the DART envi-
ronment, using the same parameters of the LIP simulations.
Both QP-MPC and QP-STA are solved using HPIPM [17]. In
particular, setting up and solving QP-STA takes about 60 µs,
which is more than appropriate for real-time implementation.

Three different scenarios are considered: forward walking,
backward diagonal walking and walking on the spot. In each
simulation, IS-MPC with STA is shown to withstand pushes
that would cause the robot to fall without STA. Figure 8 shows
snapshots of the forward walking simulation. Clips of all
dynamic simulations are included in the accompanying video.

VII. EXPERIMENTS

Experiments on a NAO were performed to validate the pro-
posed approach on a physical platform. We used the following
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Fig. 8. HRP-4 dynamic simulation 1: Push recovery while walking forward.
IS-MPC with STA (top row) and without STA (bottom row). In the presence
of a push from the back, HRP-4 falls if no timing adaptation is performed.

parameters: m = 5.3 kg, z̄c = 0.245 m, dz,x = dz,y = 0.05 m,
da,x = 0.16 m, da,y = 0.05 m, ` = 0.1 m, δ = 0.05 s,
Tmin
s = 0.3 s All other parameters are the same of the previous

simulation. The pendulum structure of Fig. 9 was set up for
applying a replicable push to the robot.

The accompanying video shows NAO receiving a frontal
push when walking. Consistently with the simulations, use
of IS-MPC with STA allows the robot to withstand the
perturbation, whereas a fall occurs when step timings are not
adapted. Over a campaign of 10 experiments, IS-MPC with
STA had a 90% success rate, whereas IS-MPC without STA
recovered in only 20% of cases.

VIII. CONCLUSIONS

Step time adaptation is a way for achieving robust loco-
motion in humanoids. Based on a feasibility analysis of our
IS-MPC method for stable gait generation, we have designed
a step timing adapter that modifies the duration of the current
step whenever a loss of feasibility is imminent due to a per-
turbation. The proposed approach, which allows the IS-MPC
algorithm to maintain its linearity, has been validated by both
simulations and experiments. We are now working on a robust
framework that uses STA in conjunction with disturbance
observation [18] and ZMP constraint restriction [19].

At the same time this paper was submitted, a preprint ap-
peared where feasibility is used for robust gait generation [20];
in particular, unfeasible states are artificially projected inside
the feasibility region before using them in the MPC. This is
conceptually very different from our approach, where the step
timing is adapted so as to maintain feasibility of the current
state, which is never modified.
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