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Abstract

Quantile regression provides a detailed and robust picture of the distribution of a response variable,

conditional on a set of observed covariates. Recently, it has be been extended to the analysis of

longitudinal continuous outcomes using either time-constant or time-varying random parameters.

However, in real-life data, we frequently observe both temporal shocks in the overall trend and

individual-specific heterogeneity in model parameters. A benchmark dataset on HIV progression

gives a clear example. Here, the evolution of the CD4 log counts exhibits both sudden temporal

changes in the overall trend and heterogeneity in the effect of the time since seroconversion on

the response dynamics. To accommodate such situations, we propose a quantile regression model

where time-varying and time-constant random coefficients are jointly considered. Since observed

data may be incomplete due to early drop-out, we also extend the proposed model in a pattern

mixture perspective. We assess the performance of the proposals via a large scale simulation study

and the analysis of the CD4 count data.
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1 Introduction

In longitudinal studies, measurements recorded on the same individual are likely correlated. In
the “standard” (mean) regression context, within-individual dependence is often accommodated by
postulating a conditional model augmented by individual-specific sources of unobserved heterogeneity.
Marginal dependence is obtained since the measures from the same individual share common values
for the latent variables. In a similar fashion, in the quantile regression setting, Geraci and Bottai2

proposed a linear quantile mixed model (lqmm) with time-constant, individual-specific, random effects.
Extensions of this model are discussed by Liu and Bottai3, Geraci and Bottai4, Tzavidis et al.5 and,
in a Bayesian framework, by Reich et al.6 and Yuan and Yin7. When the assumption of time-constant
random coefficients does not hold, adopting the above model specifications may lead to biased parameter
estimates13. To solve this issue, Farcomeni14 proposed a linear quantile hidden Markov model
(lqHMM) where time-varying (discrete) random intercepts capture unobserved dynamics15. Other
references on quantile regression in the longitudinal data framework include conditional fixed effect
models8–11 and the proposal by Liu et al.12 for handling (short) longitudinal sequences of Gaussian
responses subject to (possibly) non-ignorable missingness. For a general review, see Marino and
Farcomeni16. In this paper, we will focus on random coefficients models.

We start by noticing that, in real data applications, unobserved heterogeneity may both evolve and/or
stay constant over time. An interesting empirical example is given by the CD4 data17;18. Observed
individual trajectories are characterised by temporal shocks and individual heterogeneity in the declining
path of the (log) CD4 counts. The former may be modelled by individual-specific intercepts evolving
over time with a Markovian structure; the latter may be described by a time-constant, individual-specific,
slope for the time since seroconversion. For handling such a complex data structure, we propose a linear
quantile model where time-constant and time-varying random coefficients are jointly considered.

Frequently, individuals participating in longitudinal studies may not be available at all the measurement
occasions for reasons that may be related to the (unobserved) outcome of interest. In the CD4 data, only
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Marino et al. 3

2.7% of the individuals is observed until the last measurement occasion. A key question is whether
individuals who stay longer into the study are similar (conditional on the observed data) to those who
have incomplete information, as missing data may potentially bias parameter estimates. In the context
of quantile regression for longitudinal data, few proposals do exist to handle potentially non-ignorable
missingness. Yuan7 introduced a shared parameter model, while Farcomeni and Viviani19 considered
a joint model for quantile regression. A pattern mixture representation was introduced by Marino and
Alfó20 and by Liu et al.12. Similarly, we extend the proposed linear quantile model via a latent drop-
out (LDO) class representation21;22. The dependence between the observed longitudinal responses and
the missing data process is described by a discrete latent variable capturing (unobserved) propensity to
participate in the study. This leads to groups characterised by common departures from the homogeneous
linear quantile model and to a simple, albeit general, approach for modelling conditional quantiles in the
presence of monotone missingness.

The paper is structured as follows: in Section 2, we introduce the proposed linear quantile mixed
hidden Markov model (lqmHMM). In Section 3, we show how this model can be modified in a pattern
mixture perspective, by adopting a suitable LDO representation. Section 4 describes maximum likelihood
estimation via the EM algorithm. Results from the analysis of the CD4 data are illustrated in Section 5.
The last section provides concluding remarks. The results from a large scale simulation study are reported
in the Supplementary Material.

2 The linear quantile mixed hidden Markov model

Quantile regression extends standard regression analysis to the quantiles of a conditional distribution.
In the presence of longitudinal observations, the dependence between measurements from the same
individual must be taken into account. A frequent solution is to introduce within-individual dependence
by considering unobserved heterogeneity in the model parameters via individual-specific random
coefficients. These may be either time-constant2–4, or time-varying14. We propose a quantile regression
model that allows to jointly consider both sources of unobserved heterogeneity.

Let Yit be a continuous response variable and xit a set of covariates recorded for individual i =
1, ..., n at occasion t = 1, . . . , T . Here, we assume that, T measurements are available for all
individuals in the sample. However, the model directly generalises to unbalanced designs (Ti, i =
1, . . . , n), with some individuals dropping out before the end of the study. For a given quantile
τ ∈ (0, 1), let {Sit(τ)} be a homogeneous, first order, hidden Markov chain defined on the state space
S (τ) = {1, . . . ,m(τ)}, with initial and transition probabilities denoted by δh(τ) = Pr(Sit(τ) = h) and
qkh(τ) = Pr(Sit(τ) = h | Sit−1(τ) = k), h, k = 1, . . . ,m(τ). Last, let bi(τ) = (bi1(τ), . . . , biq(τ)) be
a q-dimensional vector of individual-specific random coefficients with density fb(· | D, τ), where D =
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D(τ) is a (possibly quantile-dependent) covariance matrix. A linear quantile mixed hidden Markov model
(lqmHMM) is defined by the following assumptions. The vector of random coefficients, bi(τ), and
the hidden Markov chain, {Sit(τ)}, are independent as they capture different sources of unobserved
heterogeneity. Conditional on the hidden state occupied at t and on the individual-specific random
coefficients, observations from the same individual are independent (local independence assumption),
and the following equality holds

fy|s,b(yi | si,bi,ψ, τ) =
T∏
t=1

fy|s,b(yit | yi1:t−1, si1:t,bi,ψ, τ) =
T∏
t=1

fy|s,b(yit | sit,bi,ψ, τ). (1)

Here, yi1:t−1 denotes the response history for the i-th individual up to occasion t− 1, si1:t is the sequence
of hidden states up to t, and ψ = ψ(τ) is a vector of model parameters.

Maximum likelihood estimation can be pursued using an asymmetric Laplace distribution (ALD24)
for the longitudinal responses2. That is, for a given quantile τ , we assume that the conditional density in
(1) is

fy|s,b(yi | si,bi,ψ, τ) =
[
τ(1− τ)
σ[τ ]

]T
exp

{
−

T∑
t=1

ρτ

[
yit − µit[sit,bi, τ ]

σ[τ ]

]}
,

where ρτ (·) denotes the quantile asymmetric loss function25. The location parameter µit is defined by
the linear model

µit[sit,bi, τ ] = x′itβ(τ) + z′itbi(τ) + w′itαsit(τ), (2)

with zit being a subset of xit and wit being a further set of covariates whose effects are assumed to vary
over time. Random coefficients bi(τ) identify time-constant random deviations from the corresponding
fixed parameters in β(τ), where E(bi(τ)) = 0 is used for parameter identifiability. On the other hand,
αsit(τ) evolves over time according to the hidden Markov chain described above and takes one of the
values in the set {α1(τ), . . . ,αm(τ)}. It is worth noticing that, when a single hidden state (m = 1)
is considered, µit[sit,bi, τ ] = µit[bi, τ ] and the model reduces to the lqmm3 with unspecified random
coefficient distribution. Also, when wit = wit = 1 and bi = 0,∀i = 1, . . . , n, t = 1, . . . , T , the location
parameter µit[sit,bi, τ ] simplifies to µit[sit, τ ] and model (2) reduces to the lqHMM 14.

As it is clear, all model parameters may depend on τ . In what follows, we simplify the notation
by dropping this index. Let Φ = (ψ, δ,Q,D), with ψ = (β,α1, . . . ,αm), denote the vector of model
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parameters; the observed data likelihood is defined by

L(Φ | y, τ) =
n∏
i=1

∫ {∑
si

[
T∏
t=1

fy|s,b(yit | sit,bi,ψ, τ)

]
fs (si | δ,Q, τ)

}
fb(bi | D, τ)dbi, (3)

where, due to the Markov property, fs (si | δ,Q, τ) = δsi1
∏T
t=2 qsit−1sit .

2.1 Specification of the random coefficient distribution

With a parametric distribution for the random coefficients, one may use either a Monte Carlo EM
algorithm for parameter estimation2;3 or a direct ML approach via Gaussian quadrature4;26. Both
approaches should be appropriately extended to deal with the hidden Markov chain. Here, we propose an
alternative solution where the unobserved, unknown, distribution of bi is approximated by a discrete
distribution defined on G(τ) ≤ n support points, ζg(τ), with masses πg(τ) = Pr(ζg(τ)), πg(τ) ≥
0,
∑
g πg(τ) = 1, g = 1, . . . , G(τ). That is,

bi(τ) ∼
G(τ)∑
g=1

πg(τ)δ(ζg(τ)),

where δ(θ) is the one-point distribution putting unit mass on θ. This approach connects to the
nonparametric maximum likelihood (NPML) estimate of the mixing distributionfb(· | D, τ)27 and leads
to a model where support points refer to components and the distribution is defined by a (finite) mixture
of such components.

As before, all parameters depend on the chosen quantile τ , but we drop this index to simplify the
notation. For a generic quantile level τ ∈ (0, 1), let ci = (ci1, . . . , ciG) denote a discrete latent variable
indicating component membership; that is, cig = 1 if the i-th individual belongs to the g-th component
and zero otherwise. The observed data likelihood in (3) becomes

L(Φ | y, τ) =
n∏
i=1

G∑
g=1

{∑
si

[
T∏
t=1

fy|s,c(yit | sit, cig = 1,ψ, τ)

]
fs (si | δ,Q, τ)

}
πg, (4)

where Φ = (ψ, δ,Q,π), ψ = (β,α1, . . . ,αm, ζ1, . . . , ζG) and π = (π1, . . . , πG). In the above
expression, fy|s,c(yit | sit, cig = 1,ψ, τ) denotes the AL density with location parameter

µit[sit, cig = 1, τ ] = x′itβ(τ) + z′itζg(τ) + w′itαsit(τ).
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It is worth noticing that the computational complexity of the proposed approach is linear with the
integral dimension in (3); therefore, it always remains under control, even for large q. Also, since
locations in the finite mixture are completely free to vary over the corresponding support, extreme and/or
asymmetric departures from the homogeneous model can be easily accommodated. Direct maximisation
of the likelihood (4), although possible, is challenging. A generalisation of the EM algorithm28 for finite
mixtures is a simpler alternative29 . In Section 4, we outline its structure.

3 A pattern mixture specification for non-random drop-outs

Drop-out is a common problem in longitudinal data analysis since individuals may leave the study before
its end. The question is whether fitting a model to the observed data only may lead to biased estimates
due to the implicit assumption that the same model is valid also for non observed responses30. Let
Ri = (Ri1, ..., RiT ) denote the missing data indicator vector for the i-th individual, where Rit = 1 if
yit has not been observed at occasion t = 1, ..., T , Rit = 0 otherwise. Since we are considering drop-
out, that is irretrievable exit from the study, Rit = 1 =⇒ Rit′ = 1, t′ > t = 1, ..., T .

Let Φ and ξ denote the parameter sets for the longitudinal and the missing data process, respectively.
Two broad classes of models to handle (potentially non-ignorable) missing data may be identified31. In
the selection model (SM) formulation32, the joint distribution of yi and ri is factorised as

fy,r(ri, yi | Φ, ξ) = fr|y(ri | yi, ξ)fy(yi | Φ), i = 1, ..., n,

where the conditional density fr|y(ri | yi, ξ) defines the selection mechanism in terms of propensity, for
a generic unit, to continue participating in the study. In the pattern mixture model (PMM) formulation33,
the following factorisation holds:

fy,r(ri, yi | Φ, ξ) = fy|r(yi | ri,Φ)fr(ri | ξ), i = 1, ..., n.

The rationale for PMMs is that each individual has its own propensity to drop-out from the study.
Individuals dropping-out closer in time likely share similar (unobserved) features. The model for the
whole population is given by a mixture over these patterns. Further modelling alternatives are available
in the literature, such as shared parameter models34 and joint models35. See e.g. Little36 and Rizopoulos
and Lesaffre37 for a general review. In the hidden Markov framework, Bartolucci et. al.38 discussed a
model for multivariate longitudinal responses and a (discrete) time to event considering discrete (time-
varying and time-constant) random intercepts shared by the longitudinal response and the missingness
indicator. A pattern mixture approach for HMMs, where the transition matrix may vary across individuals
as a function of the number of individual measurements, is also available in the literature20;39. Since the
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corresponding model is often heavily parametrised, one may wonder whether a simpler approach may be
defined to study the (potential) dependence between the primary response and the drop-out mechanism.
For this purpose, we notice that, by slightly modifying its formulation, the model introduced in section 2
can be easily interpreted in a pattern mixture perspective. In particular, to overcome weak identifiability
which is typical to PMMs due to a possibly large number of patterns33, we consider a reduced number of
latent classes representing ordered levels of the unobserved propensity to drop-out from the study21. We
will refer to such classes as latent drop-out (LDO) classes.

Let Ti = T −
∑T
t=1Rit indicate the number of measurements available for the i-th individual. Also,

for a generic quantile level τ ∈ (0, 1), let ci = (ci1, . . . , ciG) denote a latent variable identifying the
membership to a specific LDO class for individual i = 1, . . . , n. We assume that individuals with a higher
propensity to remain into the study have a higher chance to present complete sequences21;22. According to
this guiding principle, the probability of being in one of the first LDO classes is described by a monotone
function of the number of available measurements Ti. That is, the following ordinal regression model is
defined

Pr

( g∑
l=1

cil = 1 | Ti, τ
)

=
exp {λ0g + λ1Ti}

1 + exp {λ0g + λ1Ti}
,

where λ01 ≤ · · · ≤ λ0G−1 holds. As for the lqmHMM specification, all model parameters depend on the
analysed quantile τ ; for ease of notation we decided to drop this index. As it is clear, this latter model
specification extends the lqmHMM since the latent variable ci is now ordinal and the corresponding
masses are defined to be a function of Ti.

We assume that, conditional on Sit = sit and cig = 1, longitudinal observations from the same
individual are independent. Furthermore, conditional on ci, the longitudinal response and the missing
data mechanism are independent; that is, the latent variable ci captures entirely the dependence.
The assumption of conditional independence may not always be appropriate and should be properly
tested22;40. We may also notice that λ1 = 0 implies independence of the longitudinal and the missing
data mechanism and, therefore, this parameter could be considered as an ignorability parameter41. As
before, we formulate the model starting from the working assumption of a (conditional) asymmetric
Laplace distribution for the longitudinal response. We will refer to this pattern mixture formulation as the
lqHMM+LDO. Denoting by yoi and ymi the observed and the missing part of the individual sequence yi,
the individual observed data likelihood is given by

Li(Φ, ξ | yoi , Ti, τ) =
∑

si

G∑
g=1

∫
fy|s,c(yi | si, cig = 1,ψ, τ)×

× fs(si | δ,Q, τ)πig(Ti | λ, τ)fT (Ti | ξ, τ)dymi , i = 1, . . . , n, (5)
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where πig(Ti | λ, τ) = fc|T (cig = 1 | Ti,λ, τ) is the conditional probability for the i-th individual to
belong to the g-th LDO class, g = 1, ..., G. This is obtained as the difference of two adjacent cumulative
probabilities42. Due to the local independence assumption between yi and Ti, missing data can be directly
integrated out from expression (5). Also, as Ti is observed and the corresponding parameter set, ξ, is
separate from Φ = (ψ, δ,Q,π,λ), inference can be based on the (individual) conditional observed data
likelihood

Li(Φ | yoi , Ti, τ) =
∑

si

G∑
g=1

fy|s,c(yoi | si, cig = 1,ψ, τ)fs(si | δ,Q, τ)πig(Ti | λ, τ), i = 1, . . . , n.

We should point out that using the lqmHMM specification, we assume that [yoi | bi, si] and [ymi | bi, si]
have the same distribution. A whole branch of research is focused on studying the effects of potential
departures from this assumption, in a global sensitivity perspective. Our concern here is, rather, to define
a flexible model which could be used to suggest potential counterpart scenarios for a global sensitivity
study.

4 Maximum likelihood estimation and inference

Parameter estimates for the lqmHMM and the lqHMM+LDO are obtained by using a modified Baum-
Welch algorithm43;44. As before, we suppress the τ indexing of model parameters to simplify the
notation. We will refer to LDO classes with the generic term “components”, using πig = πg and
πig = πig(Ti | λ, τ) when referring to the lqmHMM and the lqHMM+LDO formulation, respectively.

Let ui(h) = I [Sit = h] denote the indicator variable for the i-th individual in the h-th state at occasion
t and let uit(k, h) = I [Sit−1 = k, Sit = h] indicate whether an individual moves from the k-th state at
occasion t− 1 to the h-th one at t. As before, cig denote the indicator variable for the i-th individual in
the g-th component. The (conditional) complete data log-likelihood can be written as

`c(Φ | y,T, s, c, τ) =
n∑
i=1

{ m∑
h=1

ui1(h) log δh +

Ti∑
t=2

m∑
h=1

m∑
k=1

uit(k, h) log qkh +

G∑
g=1

cig log πig+

− Ti log(σ)−
Ti∑
t=1

m∑
h=1

G∑
g=1

uit(h)cigρτ

[
yit − µit[Sit = h, cig = 1]

σ

]}
. (6)

Parameter estimates are derived by alternating two steps. In the E-step, we compute he expected value of
the complete data log-likelihood (6), conditional on the observed data and the current parameter estimates
Φ(r−1), that isQ(Φ | Φ(r−1), τ). This corresponds to the computation of the posterior probabilities of the
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indicator variables in equation (6); in the following, a “hat” sign will be used to identify such quantities.
To simplify the procedure, we can rely on the recursions which are typically used in the hidden Markov
model framework43;44. See the Supplementary Material for computational details.

In the M-step, model parameter estimates are derived by maximising Q(Φ | Φ(r−1)) with respect to
Φ. Based on the modelling assumptions we introduced so far, the maximisation can be partitioned into
(orthogonal) sub-problems. Standard estimates are available for the initial and the transition probabilities

δ̂h =

∑n
i=1 ûi1(h | τ)

n
, q̂kh =

∑n
i=1

∑Ti

t=2 ûit(k, h | τ)∑n
i=1

∑Ti

t=2

∑m
h=1 ûit(h, k | τ)

, h, k = 1, . . . ,m.

Longitudinal model parameters, ψ, are estimated by solving weighted estimating equations with weights
given by the posterior probabilities of the hidden Markov process and the finite mixture. That is, model
parameters are estimated as follows:

ψ̂ = argmin
ψ

n∑
i=1

Ti∑
t=1

m∑
h=1

G∑
g=1

ĉig(τ)ûit(h | g, τ)ρτ
[
yit − µit[Sit = h, cig = 1]

σ

]
.

To solve this problem, we alternate three different steps, where one parameter out of (β,α, ζ) is
maximised over with the other two kept fixed. Since Sit = h implies αsit = αh, fixed parameters β
are estimated by solving

β̂ = argmin
β

n∑
i=1

Ti∑
t=1

m∑
h=1

G∑
g=1

ĉig(τ)ûit(h | g, τ)ρτ [ỹit − x′itβ] ,

where ỹit = [yit − z′itζ̂g − w′itα̂h].

State-dependent parameters αh are updated via

α̂h = argmin
αh

n∑
i=1

Ti∑
t=1

m∑
h=1

G∑
g=1

ĉig(τ)ûit(h | g, τ)ρτ [ỹit −αh] , h = 1, ...,m,

with ỹit = [yit − x′itβ̂ − z′itζ̂g].

The locations ζg are computed by solving

ζ̂g = argmin
ζg

n∑
i=1

Ti∑
t=1

m∑
h=1

G∑
g=1

ĉig(τ)ûit(h | g, τ)ρτ [ỹit − z′itbg] , g = 1, . . . , G,
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with ỹit = [yit − x′itβ̂ − w′itα̂h].

In the lqmHMM formulation, closed form expressions are available for the mixture components
probabilities

π̂g =
1

n

n∑
i=1

ζ̂ig(τ).

For the lqHMM+LDO specification, the parameters in the ordinal logit model are estimated via the
following constrained optimisation:

λ̂ =argmax
λ

G∑
g=2

ĉig(τ) log

{[
exp(λ0g + λ1Ti)

1 + exp(λ0g + λ1Ti)

]
−
[

exp(λ0g−1 + λ1Ti)

1 + exp(λ0g−1 + λ1Ti)

]}
,

subject to λ0g ≤ . . . ,≤ λ0G−1.

For a given quantile τ , the scale parameter is estimated by

σ̂ =
1∑n
i=1 Ti

n∑
i=1

Ti∑
t=1

m∑
h=1

G∑
g=1

ĉi(g | τ)ûit(h | g, τ)ρτ [yit − µit[Sit = h, cig = 1]] .

The E- and the M-steps of the algorithm are iterated until convergence, that is until the (relative)
difference between subsequent likelihood values is lower than an arbitrary small quantity ε > 0.
Penalised likelihood criteria, such as the AIC45 or the BIC46 can be used to identify the best number
of components and hidden states. In particular, the simulation study reported in the Supplementary
Material shows that the BIC should be preferred for a better identification of optimal m and G

values. As regards the penalisation term for the BIC computation, different choices are available in
the longitudinal data literature47. Here, we decided to consider the number of observed individuals
n and compute the BIC as follows:

BIC = −2`+ ln(n)× (number of estimated parameters),

Although it is known that using ln(n) to penalise the likelihood function is quite a conservative
choice47, this represents a reasonable choice, in our perspective, when a clear interpretation of the
states and of the mixture components/LDO classes is a crucial matter.

As it is common in the quantile regression literature, standard errors for parameter estimates are derived
by nonparametric block bootstrap. That is, by resampling individuals and retaining the corresponding
sequence of measurements to preserve within individual dependence48. Let Φ̂(b), b = 1, . . . , B, denote
the vector of parameter estimates for the b-th bootstrap sample. Standard error estimates for Φ̂
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correspond to the diagonal elements of the matrix

V̂(Φ̂) =

√√√√ 1

B − 1

B∑
b=1

(
Φ̂(b) − Φ̂

)(
Φ̂(b) − Φ̂1

)′
.

Computation of the (1− κ)% confidence interval is obtained via a direct percentile method, that
is by fixing the lower and the upper bound of each confidence interval to the [B(κ/2)] and the
[B(1− κ/2)] order statistics, respectively. See e.g. Buchinsky49 for a discussion of the topic.

5 Application: re-analysing the CD4 cell count data

5.1 Data Description

The proposed models are illustrated by re-analysing the CD4 dataset17;18. Data come from the
Multicenter AIDS Cohort Study (MACS) which involved, since 1984, more than 5000 volunteered
homosexual and bisexual men from Baltimore, Pittsburgh, Chicago and Los Angeles. The HIV virus is
known to destroy the T-lymphocytes (CD4 cells) which play a vital role in immune functioning; for this
reason, virus progression is often monitored by measuring the number of CD4 cells which, on average,
tend to decrease throughout the incubation period. Among the volunteers participating in the study, 371
(7%) seroconverted during the analysed time window. Two patients were excluded from the analysis
due to some missing covariates18. The analysed (369) sample was observed from a minimum of 3 years
before to a maximum of 6 years after the seroconversion with a total of 2376 measurements. For each
individual, the number of available measurements ranges from a minimum of 1 to a maximum of 12.
While the time occasions are not exactly equally spaced, the distribution of the time elapsed between two
consecutive visits is strongly concentrated around 0.50 (that is half a year); therefore, we may treat the
analysed data as if they were equally spaced and this greatly simplifies notation and estimation.

The interest is in determining the effect of covariates on the dynamics of the CD4 cell counts
while controlling for unobserved heterogeneity. We are also interested in studying whether the
covariates’impact varies with the analysed quantiles. Covariates include: years since seroconversion
(negative values indicate that the CD4 measurement was taken before the seroconversion), age at
seroconversion (centred at 30), smoking (packs per day), recreational drug use (yes or no), number of
sexual partners, and depression symptoms measured by the CES-D scale50. The latter ranges from 0 to 60,
with larger values indicating more severe symptoms. The analysis was conducted on the log transformed
CD4 count, log(1 + CD4 count).

To choose the model that best describes the evolution of the data over time, we started with a
graphical analysis of the individual trajectories. Figure 1 shows the evolution of the response for
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a random subset of subjects under observation. The local polynomial estimate (dotted line) and
the 95% confidence intervals (gray bands) are also reported to highlight the general trend. When

Figure 1. CD4 data - Individual trajectories for a random subset of individuals in the sample.
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looking at the figure, differences between units are immediately evident. In particular, longitudinal
trajectories seem to be characterised by high variability in the baseline CD4 count levels and in
the evolution of the disease over time. Based on these findings, we first fitted a lqmm4 with time-
constant (discrete) random intercepts and time-constant (discrete) random slopes for the time since
seroconversion, which is clearly a proxy of the time. The former allow us to account for “persistent”
differences in the CD4 count levels, while the latter describe differences in the effect of Timesero on
the longitudinal evolution of the (conditional) quantiles of interest.

We then fitted a lqmHMM to capture the sudden shocks around the individual trends that can
be observed in Figure 1. More complex model structures have also been considered but, on the
basis of penalised likelihood values, we did not adopt them. Last, we considered the lqHMM+LDO
specification to account for potentially non-ignorable missingness. A comparison of these results
with those from the corresponding MAR specification (lqmHMM) provides further insight on the
CD4 data.

5.2 MAR data: the lqmm with discrete random parameters

To analyse the effect of the observed covariates on the dynamics of the log CD4 count and
account for sources of unobserved heterogeneity, we started the analysis by fitting a lqmm with
time-constant random coefficients only. To ensure model flexibility we adopted a nonparametric
specification for the random coefficient distribution. As we highlighted before, this model
corresponds to a lqmHMM with m = 1 hidden states. In particular, we focused on the following
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parametrisation:

µit[sit, cig = 1, τ ] = µit[cig = 1, τ ] = x′itβ(τ) + z′itζg(τ),

where xit includes a continuous covariate (age), the dummy variable drug (baseline: no) and three
discrete variables (packs of cigarette per day, number of sexual partners and CES-D score). On the
other hand, zit includes a column of ones, corresponding to a time-constant random intercept, and
the time since serconversion, corresponding to a time-constant random slope.
We fitted a lqmm with a varying number of components (G = 1, . . . , 15) for τ = {0.25, 0.50, 0.75}.
To avoid local maxima, for each value of G, we considered 30 different starting points and retained
the solution corresponding to the maximum likelihood value. The optimal model was selected
based on the BIC values reported in the Supplementary Material (Table 1). In particular, we chose
G = 12, 6, 10 components for τ = 0.25, 0.50, 0.75, respectively. Estimates for the fixed parameters
and for the variance components in the longitudinal data process, and the corresponding 95%

confidence intervals based on B = 1000 bootstrap re-samples, are reported in Table 1. When

Table 1. CD4 data - lqmm: parameter estimates for the longitudinal model and from variance components at
different quantiles. 95% bootstrap confidence intervals are reported in brackets.

τ = 0.25 τ = 0.50 τ = 0.75
[G = 12] [G = 6] [G = 10]

Intercept 6.275 (6.165; 6.386) 6.519 (6.431; 6.647) 6.744 (6.716; 6.915)

Age 0.003 (−0.001; 0.005) 0.004 (−0.002; 0.006) 0.004 (−0.002; 0.007)
Drugs 0.108 (0.073; 0.151) 0.074 (0.024; 0.138) 0.043 (0.005; 0.091)
Packs 0.050 (0.036; 0.063) 0.047 (0.033; 0.061) 0.039 (0.013; 0.048)
Partners 0.005 (0.001; 0.008) 0.004 (0.004; 0.011) 0.013 (0.007; 0.015)
CES-D −0.002 (−0.005;−0.001) −0.004 (−0.005;−0.001) −0.004 (−0.004;−0.002)
Timesero −0.162 (−0.375;−0.145) −0.157 (−0.298;−0.131) −0.142 (−0.255;−0.108)
σIntercept 0.285 (0.265; 0.312) 0.273 (0.252; 0.293) 0.296 (0.277; 0.327)
σTimesero 0.154 (0.144; 0.289) 0.120 (0.090; 0.193) 0.091 (0.089; 0.159)

looking at the results, we may firstly observe that the baseline CD4 levels (intercept estimates)
increase when moving from τ = 0.25 to τ = 0.75, and this is coherent with the standard quantile
regression theory. When focusing on the fixed parameter estimates, we may notice that age plays a
minor role, while using drugs, smoking more cigarettes, and having more sexual partners have
a positive and significant effect on the log CD4 count. The positive association of these “risk”
factors with the quantiles of the response variable may reflect a selection bias mechanism: healthier
men that stay longer into the study may choose to continue their usual practices18. More severe
depression symptoms, indicated by higher values of the CES-D score, lead to a slight, though
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significant, decrease in the number of T-lymphocytes. Last, the number of CD4 cells decreases
with increasing time since seroconversion; this effect reduces when we move to higher quantiles,
that is, the progression of the virus seems slower for healthier men.

The estimated variance of the random coefficients reported in Table 1, as well as the number
of mixture components that we selected based on the BIC values, confirm the presence of quite a
high individual-specific heterogeneity. In particular, as highlighted in the previous section, we may
observe differences between units both in terms of the baseline CD4 count levels and in terms of a
different effect of the time since seroconversion on the dynamics of the responses.

Therefore, we may wonder whether time-constant random coefficients only may not be able to
properly model the sudden “jumps” of the response that can be evinced from Figure 1. Indeed,
although the random slope for the time since seroconversion allows to describe an individual-
specific evolution of the disease over time, only monotonic effects can be captured under this model
specification. For this purpose, in the next section, we will describe the results obtained from a
lqmHMM specification.

5.3 MAR data: the lqmHMM

In this section, we extend the lqmm discussed before, by considering a time-varying random intercept.
That is, we consider the following parametrisation:

µit[sit, cig = 1, τ ] = x′itβ(τ) + z′itζg(τ) + w′itαsit(τ),

where the vector of covariates associated to the fixed parameters, xit, is defined as before. For the other
subsets of covariates, zit include the time since seroconversion observed for individual i at occasion t and
corresponds to a time-constant random slope, while wit = wi = 1 and corresponds to the time-varying
random intercept.

We fitted a lqmHMM with a varying number of hidden states (m = 1, . . . , 5) and of mixture
components (G = 1, . . . , 6) for τ = {0.25, 0.50, 0.75}. As for the lqmm, to reduce the chance of local
maxima solutions, we adopted a multi-start strategy. For each combination [m,G], we considered 30

different starting points and retained the best solution according to the BIC index (see the Supplementary
Material, Table 2). In particular, we selected a model with m = 4 hidden states at all the analysed
quantiles, with a fairly strong time-varying unobserved heterogeneity. For the distribution of the
individual-specific slope associated with Timesero, we selected a number of mixture components that
decreases as we move from the left to the right tail of the response distribution. In detail, we chose
G = 5, 4, 3 components for τ = 0.25, 0.50, 0.75, respectively. For all the analysed quantiles, the BIC
values obtained under the lqmHMM specification are much lower than those for the lqmm, thus
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highlighting a better fit of the model to the observed data. Also, we may observe that a lower
number of components is required to describe the data when fitting lqmHMM. This is directly
related to the presence of the Markovian structure in the model which allows to describe individual
dynamics in a more synthetic manner (by means of the transitions probability matrix).

In Table 2, we report parameter estimates for the longitudinal data model, with 95% confidence
intervals (in brackets) based on B = 1000 bootstrap re-samples. By looking at the estimates of fixed

Table 2. CD4 data - lqmHMM: parameter estimates for the longitudinal model at different quantiles. 95%
bootstrap confidence intervals are reported in brackets.

τ = 0.25 τ = 0.50 τ = 0.75
[m = 4, G = 5] [m = 4, G = 4] [m = 4, G = 3]

α1 5.593 (5.403; 5.677) 6.054 (5.994; 6.133) 6.203 (6.071; 6.273)
α2 6.124 (6.066; 6.166) 6.432 (6.368; 6.530) 6.580 (6.517; 6.628)
α3 6.540 (6.489; 6.587) 6.750 (6.689; 6.837) 6.876 (6.804; 6.934)
α4 6.915 (6.847; 6.995) 7.055 (7.023; 7.231) 7.256 (7.168; 7.373)

Age 0.000 (−0.004; 0.002) 0.004 (−0.001; 0.008) 0.000 (−0.005; 0.005)
Drugs 0.044 (0.000; 0.092) 0.057 (−0.014; 0.110) 0.061 (0.003; 0.113)
Packs 0.056 (0.041; 0.071) 0.043 (0.015; 0.054) 0.044 (0.015; 0.062)
Partners 0.006 (0.001; 0.012) 0.005 (0.001; 0.012) 0.011 (0.003; 0.016)
CES-D −0.004 (−0.005;−0.001) −0.004 (−0.006;−0.002) −0.004 (−0.006;−0.002)
Timesero −0.175 (−0.206;−0.150) −0.140 (−0.164;−0.114) −0.123 (−0.145;−0.102)
σTimesero 0.219 (0.200; 0.360) 0.134 (0.105; 0.165) 0.102 (0.088; 0.133)

ζ1 -0.849 (−1.568;−0.802) -0.502 (−0.617;−0.370) -0.328 (−0.423;−0.297)
ζ2 -0.434 -(0.447;−0.401) -0.175 (−0.204;−0.158) -0.114 (−0.130;−0.093)
ζ3 -0.220 (−0.245;−0.203) -0.071 (−0.104;−0.061) -0.001 (−0.020; 0.020)
ζ4 -0.123 (−0.141;−0.099) 0.026 (−0.027; 0.037)
ζ5 -0.020 (−0.041;−0.004)

model parameters, we may notice slight differences with respect to the results discussed for the lqmm.
In particular, if we look at significance levels, these generally agree but for Drugs; the estimate at
τ = 0.25 for lqmm is not included in the confidence interval for the same parameter under the lqmHMM

specification. This may be due to some form of aliasing between the categorical covariate and the
time-constant locations. Further differences are observed for the marginal estimate of Timesero and the
corresponding standard deviation. In particular, for τ = 0.25, the effect of the time since seroconversion
is slightly higher under lqmHMM with respect to lqmm, while this effect is attenuated for τ = 0.50, 0.75.
On the other hand, estimates of σTimesero are globally higher (for all analysed quantiles) when considering
the lqmHMM specification. As regards the estimated random intercepts (αh), we notice that the estimates
tend to increase with τ and this is consistent with increasing values of the baseline (log) CD4 levels.
Table 3 reports the estimates for the initial and the transition probabilities of the hidden Markov chain.
The combination of these results with the intercept values reported in Table 2 give some hints on the
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dynamics of the response variable. The estimated initial probabilities suggest that most of the individuals

Table 3. CD4 data - lqmHMM: initial and transition probability estimates at different quantiles. 95% bootstrap
confidence intervals are reported in brackets.

1 2 3 4

τ = 0.25
δ 0.083 (0.036; 0.134) 0.408 (0.316; 0.512) 0.411 (0.304; 0.501) 0.098 (0.055; 0.157)
1 0.284 (0.116; 0.466) 0.700 (0.510; 0.860) 0.000 (0.000; 0.025) 0.016 (0.000; 0.069)
2 0.083 (0.034; 0.125) 0.675 (0.574; 0.754) 0.232 (0.153; 0.334) 0.010 (0.000; 0.032)
3 0.031 (0.008; 0.062) 0.126 (0.077; 0.179) 0.787 (0.705; 0.844) 0.055 (0.019; 0.119)
4 0.011 (0.000; 0.033) 0.044 (0.000; 0.090) 0.015 (0.000; 0.095) 0.930 (0.854; 0.977)

τ = 0.50
δ 0.120 (0.059; 0.242) 0.434 (0.306; 0.543) 0.326 (0.213; 0.449) 0.120 (0.059; 0.162)
1 0.927 (0.775; 1.000) 0.073 (0.000; 0.216) 0.000 (0.000; 0.034) 0.000 (0.000; 0.016)
2 0.107 (0.052; 0.174) 0.830 (0.734; 0.925) 0.063 (0.000; 0.144) 0.000 (0.000; 0.016)
3 0.013 (0.000; 0.062) 0.055 (0.000; 0.108) 0.898 (0.838; 0.961) 0.034 (0.000; 0.071)
4 0.043 (0.000; 0.079) 0.000 (0.000; 0.041) 0.019 (0.000; 0.092) 0.938 (0.866; 0.994)

τ = 0.75
δ 0.119 (0.041; 0.192) 0.359 (0.224; 0.497) 0.367 (0.232; 0.488) 0.155 (0.098; 0.217)
1 0.861 (0.757; 0.958) 0.139 (0.041; 0.243) 0.000 (0.000; 0.000) 0.000 (0.000; 0.000)
2 0.125 (0.069; 0.194) 0.810 (0.701; 0.885) 0.065 (0.000; 0.171) 0.000 (0.000; 0.022)
3 0.021 (0.000; 0.062) 0.094 (0.031; 0.184) 0.858 (0.770; 0.921) 0.026 (0.000; 0.063)
4 0.019 (0.000; 0.048) 0.000 (0.000; 0.044) 0.088 (0.007; 0.192) 0.894 (0.782; 0.965)

in the sample starts the study with intermediate levels of CD4 counts (δ2 + δ3 > 0.70), and only few of
them shows more extreme (lower or higher) levels. For τ = 0.50, 0.75, transitions across hidden states
are quite unlikely (qhh > 0.8, h = 1, . . . ,m) and, if any transition is observed, subjects tend to move
towards states with a lower intercept value, with a moderate reduction in the CD4 counts. For τ = 0.25,
we observe a slightly different evolution of the response. Estimated transition probabilities highlight that,
for less healthy men, the log-count of CD4 cells in the blood tends to repeatedly increase and decrease
over the time, particularly for hidden states with lower intercept values. Transitions towards the first
state (with the lowest CD4 log count) are unlikely (

∑m
k=1 qk1 < 0.15) and, if any transition is observed,

in the next occasion individuals move towards states characterised by higher levels (q11 = 0.284). This
indicates that the sudden transition to the fist hidden state is just temporary, with subsequent up and down
jumps that render the left tail of the (conditional) response distribution quite unstable. In the last panel of
Table 2, we report the estimated values of the slope for the covariate Timesero. As it is clear, increasing
values of this covariate correspond to a substantial decrease of the response. This effect progressively
reduces when moving across components: individuals belonging to the former classes show a steeper
reduction in the (log) CD4 as the time since seroconversion increases. Also, when moving from τ = 0.25

to τ = 0.75, the effect of Timesero becomes less evident.
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5.4 Looking at drop-out patterns: the lqHMM+LDO

As previously stated, individuals were observed up to 12 occasions and only few of them have complete
data records. Figure 2 shows the mean response distribution at each visit stratified by whether subjects
drop-out from the study between the current and the next occasion. As it can be seen, CD4 levels for

Figure 2. CD4 data - Distribution of the response variable at each time occasion.
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individuals dropping-out prematurely are much lower than those observed for individuals that remain
under observation. This is particularly evident when the subject is lost at the beginning of the study.
Therefore, we may expect that healthier individuals stay longer into the study; the selective participation
in the study may question the reliability of the results discussed in the previous sections. For this purpose,
we estimated the following lqHMM+LDO

µit[sit, cig = 1, τ ] = x′itβ + z′itζg + w′itαsit ,

Pr

( g∑
l=1

cil = 1 | Ti, τ
)

=
exp (λ0g + λ1Ti)

1 + exp (λ0g + λ1Ti)
,

and compared the results with those we obtained from the lqmHMM model in Section 5.3. The vectors
xit, zit and wit are defined as in the last section and parameters have all the same interpretation apart
from the random slope for Timesero, which is now assumed to vary with LDO classes. We estimated
the proposed model for τ = {0.25, 0.50, 0.75} and for a varying number of states and LDO classes
(m,G = 1, . . . ,6). To avoid local maxima, model parameters were initialised via the same multi-start
strategy used for lqmHMM. For each [m,G]-combination, we considered 30 starting points and retained
the solution with the lowest BIC value. According to results reported in the Supplementary Material,
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we selected the model with m = 5 hidden states and G = 5 LDO classes for τ = 0.25; for the median
and the third quartile the solution with m = 4 and G = 4 provides the lowest BIC value. Examining the
parameter estimates for the LDO class model at τ = 0.75, we noticed that two λ0g did not significantly
differ from zero and the corresponding confidence intervals substantially overlapped. Therefore, for this
quantile, to avoid spurious solutions, we performed the search for the optimal number of classes in the
set G ≤ 3. As a result, the best fit corresponds to m = 4 hidden states and G = 3 LDO classes.

In Table 4, we report the parameter estimates for the longitudinal and the missing data models with the
corresponding 95% confidence intervals (in brackets), based on B = 1000 block bootstrap re-samples.
Comparing the estimates for the fixed parameters to those we obtained by fitting the lqmHMM (see Table

Table 4. CD4 data - lqHMM+LDO: parameter estimates for the longitudinal and the LDO class model at
different quantiles. 95% bootstrap confidence intervals are reported in brackets.

τ = 0.25 τ = 0.50 τ = 0.75
[m = 5, G = 5] [m = 4, G = 4] [m = 4, G = 3]

α1 5.046 (3.937; 5.286) 6.043 (5.931; 6.114) 6.198 (6.069; 6.282)
α2 5.880 (5.730; 5.918) 6.416 (6.323; 6.502) 6.579 (6.512; 6.628)
α3 6.193 (6.126; 6.256) 6.719 (6.647; 6.825) 6.872 (6.801; 6.934)
α4 6.582 (6.508; 6.634) 7.040 (6.973; 7.215) 7.243 (7.167; 7.370)
α5 6.936 (6.846; 7.026)

Age −0.004 (−0.007; 0.000) 0.004 (−0.001; 0.007) 0.000 (−0.004; 0.005)
Drugs 0.048 (−0.013; 0.124) 0.072 (−0.006; 0.145) 0.064 (0.007; 0.115)
Packs 0.032 (0.024; 0.051) 0.042 (0.014; 0.054) 0.044 (0.018; 0.064)
Partners 0.011 (0.005; 0.016) 0.005 (0.000; 0.012) 0.011 (0.002; 0.016)
CES-D −0.003 (−0.006;−0.001) −0.004 (−0.006;−0.002) −0.004 (−0.006;−0.002)
Timesero −0.157 (−0.187;−0.127) −0.146 (−0.175;−0.119) −0.131 (−0.155;−0.108)
ζ1 -0.740 (−1.079;−0.662) -0.497 (−0.667;−0.452) -0.327 (−0.414;−0.287)
ζ2 -0.300 (−0.324;−0.256) -0.176 (−0.200;−0.155) -0.113 (−0.131;−0.093)
ζ3 -0.164 (−0.181;−0.133) -0.070 (−0.098;−0.056) 0.003 (−0.023; 0.019)
ζ4 -0.053 (−0.095;−0.035) 0.033 (−0.023; 0.047)
ζ5 0.026 (−0.011; 0.045)
λ01 −2.385 (−3.583;−1.383) −1.062 (−2.112;−0.241) −0.374 (−1.388; 0.615)
λ02 −0.082 (−1.159; 0.993) 1.113 (0.013; 2.102) 2.739 (1.295; 4.379)
λ03 1.555 (0.514; 2.627) 4.089 (2.002; 5.299)
λ04 3.116 (1.926; 4.388)
λ1 −0.174 (−0.290;−0.059) −0.193 (−0.318;−0.065) −0.184 (−0.324;−0.066)

2), we may observe only slight differences. As before, state-dependent intercepts increase when moving
from the left to the right tail of the response distribution. By combining these results with the estimated
initial and transition probabilities reported in Table 5, we draw conclusions that are similar to those for
the lqmHMM specification. Only for τ = 0.25 we observe a further state with a lower intercept that
seems to be linked to the highly variable dynamics for units dropping-out very early. The differences in
the Markovian estimates appear to be negligible for τ = 0.50 and τ = 0.75.
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Table 5. CD4 data - lqHMM+LDO: initial and transition probability estimates at different quantiles. 95%
bootstrap confidence intervals are reported in brackets.

1 2 3 4 5

τ = 0.25
δ 0.010 (0.000; 0.026) 0.125 (0.054; 0.187) 0.365 (0.254; 0.477) 0.358 (0.263; 0.470) 0.142 (0.073; 0.212)
1 0.264 (0.000; 0.610) 0.588 (0.000; 0.855) 0.092 (0.000; 0.616) 0.000 (0.000; 0.427) 0.056 (0.000; 0.285)
2 0.049 (0.000; 0.115) 0.471 (0.167; 0.791) 0.480 (0.143; 0.797) 0.000 (0.000; 0.000) 0.000 (0.000; 0.000)
3 0.027 (0.000; 0.050) 0.139 (0.052; 0.212) 0.592 (0.430; 0.706) 0.225 (0.130; 0.376) 0.017 (0.000; 0.049)
4 0.006 (0.000; 0.022) 0.030 (0.000; 0.077) 0.165 (0.103; 0.229) 0.737 (0.640; 0.815) 0.062 (0.013; 0.128)
5 0.004 (0.000; 0.015) 0.008 (0.000; 0.030) 0.047 (0.000; 0.096) 0.095 (0.000; 0.180) 0.845 (0.764; 0.947)

τ = 0.50
δ 0.118 (0.048; 0.215) 0.411 (0.295; 0.544) 0.341 (0.221; 0.454) 0.130 (0.066; 0.180)
1 0.939 (0.753; 1.000) 0.061 (0.000; 0.246) 0.000 (0.000; 0.000) 0.000 (0.000; 0.010)
2 0.104 (0.060; 0.193) 0.846 (0.711; 0.912) 0.050 (0.000; 0.155) 0.000 (0.000; 0.020)
3 0.015 (0.000; 0.053) 0.049 (0.004; 0.101) 0.901 (0.836; 0.955) 0.036 (0.000; 0.084)
4 0.041 (0.000; 0.082) 0.000 (0.000; 0.036) 0.045 (0.000; 0.126) 0.914 (0.835; 0.981)

τ = 0.75
δ 0.122 (0.040; 0.205) 0.361 (0.219; 0.510) 0.360 (0.221; 0.488) 0.157 (0.094; 0.225)
1 0.866 (0.749; 0.973) 0.134 (0.027; 0.251) 0.000 (0.000; 0.000) 0.000 (0.000; 0.000)
2 0.122 (0.065; 0.199) 0.813 (0.695; 0.894) 0.065 (0.000; 0.168) 0.000 (0.000; 0.023)
3 0.020 (0.000; 0.055) 0.099 (0.039; 0.194) 0.854 (0.758; 0.916) 0.027 (0.000; 0.064)
4 0.018 (0.000; 0.045) 0.000 (0.000; 0.045) 0.091 (0.012; 0.207) 0.891 (0.765; 0.960)

LDO-dependent parameters (third panel in Table 4) do not substantially differ from those described
for the lqmHMM specification. Units belonging to the first LDO classes experience a steeper decline in
the (log) CD4 count as the time since seroconversion increases. This effect is more evident in the left tail
of the distribution, while it progressively reduces when moving from the first to the last latent category.
The results from the lqHMM+LDO can be further explored by looking at the λ estimates reported in the
last panel of Table 4. For all quantiles, the negative and significant effect of the time to drop-out (λ1 < 0)
suggests that the probability of belonging to one of the first g classes reduces with increasing number
of available measures. That is, units in the latter classes present longer longitudinal sequences. Based on
this finding, we will refer to “lower” and “higher” LDO classes in what follows.

Table 6 compares the classifications obtained under the lqHMM+LDO and the lqmHMM. In particular,
it shows the adjusted RAND index51 for τ = {0.25, 0.50, 0.75} and the row percentage of individuals
classified within different components under the two model specifications.

By looking at the table, it is clear that, generally, the two models lead to similar classifications
for τ = 0.50 and τ = 0.75, which may suggest a reduced impact of the missing data process on the
longitudinal responses for individuals in better health conditions. On the other hand, for the first quartile,
that is for less healthy individuals, the classification supplied by the two models appears to be quite
different, with an adjusted RAND index equal to 0.138. In particular, when adopting the lqHMM+LDO

in place of the lqmHMM formulation, we may notice that individuals tend to be shifted towards “lower”
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Table 6. CD4 data - Row percentages of individuals classified across components under lqmHMM and
lqHMM+LDO at different quantiles.

lqmHMM
τ = 0.25 τ = 0.50 τ = 0.75

RAND 0.138 0.544 0.653
G 1 2 3 4 5 1 2 3 4 1 2 3

lq
H

M
M

+
LD

O 1 0.700 0.300 0.000 0.000 0.000 0.865 0.108 0.027 0.000 0.679 0.321 0.000
2 0.013 0.211 0.539 0.224 0.013 0.000 0.707 0.293 0.000 0.015 0.945 0.040
3 0.007 0.040 0.427 0.480 0.047 0.000 0.051 0.943 0.006 0.000 0.143 0.857
4 0.000 0.010 0.157 0.441 0.392 0.000 0.000 0.000 1.000
5 0.000 0.000 0.065 0.290 0.645

components. As discussed before, these are characterised by shorter longitudinal sequences and by a
stronger impact (especially in the last occasions) of Timesero on the CD4 count levels.

5.5 Sensitivity analysis

The results reported in the previous sections, together with the lower BIC values for lqHMM+LDO when
compared to those observed for lqmm and lqmHMM (see Tables 1-3 in the Supplementary Material),
suggest a better fit of the former model to the observed data. Under this model specification, the strength
of dependence between the longitudinal process and the missing data mechanism, is assessed via the
non-ignorability parameter λ1 and the corresponding confidence interval. As highlighted before, results
reported in Table 4 highlights quite a strong association between the two processes. However, when
dealing with missingness, we should consider that the observed data contain only limited information
on the missing data mechanism, and sensitivity analysis represents a crucial matter. In this perspective,
the comparison between the fixed parameter estimates in the longitudinal data model obtained under the
lqmHMM (Table 2) and the lqHMM+LDO formulation (Table 4), is of major interest. As we may notice
by looking at the tables, estimates are quite similar, thus suggesting a certain degree of robustness of the
proposed models with respect to possible misspecification of the missing data mechanism.

Also, a key assumption of the lqHMM+LDO is the conditional independence between the longitudinal
and the missing data process, given the LDO class membership. This assumption may be questionable and
may be appropriate for the observed data only. We may follow an approach similar to Roy and Daniels22

and Dantan et. al.40 to formally test this hypothesis, at least for the observed data. For each quantile
and for the chosen [G,m] combination, we estimated a lqHMM+LDO adding in the linear predictor the
time to drop-out (we will refer to this model specification as MTi

(τ)) and its logarithm (we will refer
to this model specification as MlogTi

(τ)), while keeping fixed the ML estimates for the LDO classes, as
well as the corresponding posterior probabilities. It is worth noticing that the logarithmic transform was
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considered to make more evident potentially non linear effects of the drop-out time on the longitudinal
response. The likelihood values we obtained using MTi(τ) and MlogTi(τ) were compared to those of
the estimated lqHMM+LDO via a likelihood ratio test (LRT). Under the hypothesis of a null effect for
Ti after controlling for the LDO membership, the LRT would follow an approximate χ2 distribution
with ν = 1 degrees of freedom. The p-values obtained for MTi

(0.25),MTi
(0.50) and MTi

(0.75)

are {0.24, 0.02, 0.00}, respectively, while for MlogTi
(τ) we obtained {0.72, 0.45, 0.71}. These results

highlight the presence of a residual dependence between the missingness and the longitudinal process for
τ = 0.50 and τ = 0.75 when fitting MTi

(τ). However, the only substantial change with respect to the
chosen model was found for the Markov-dependent intercepts. To further investigate the conditional
independence assumption, we computed the confidence intervals based on B = 1000 bootstrap re-
samples for the parameters in MTi

(τ). Results are reported in Table 7. As it is clear, no substantial

Table 7. CD4 data - Conditional independence: Bootstrap confidence intervals for fixed parameters in the
longitudinal model at different quantiles.

τ = 0.25 τ = 0.25 τ = 0.25

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
Age -0.006 0.000 0.001 0.006 -0.003 0.004
Drugs 0.001 0.117 -0.016 0.150 0.017 0.099
Packs 0.022 0.047 0.015 0.054 0.021 0.062
Partners 0.006 0.017 0.002 0.013 0.004 0.018
CES-D -0.006 -0.001 -0.006 -0.003 -0.006 -0.002
Ti -0.015 0.005 -0.018 0.002 -0.022 0.003

changes in the significance of the parameters of interest are present and, above all, when conditioning on
the LDO class membership, the effect of the time to drop-out on the log CD4 count seems negligible for
all the analysed quantiles. Thus, the local independence assumption seems to be quite appropriate.

6 Concluding remarks

We discuss a class of mixed hidden Markov quantile regression models for longitudinal continuous
responses. A general dependence structure is considered by allowing the measurements from each
individual to share time-varying and time constant random coefficients, extending the lqmm2–4 and the
lqHMM 14 specifications. Both sources of unobserved heterogeneity are modelled via non-parametric
distributions which offer a robust alternative to (possibly unverifiable) parametric assumptions.

The model is further extended to handle non-ignorable drop-out via a pattern mixture representation.
We assume that the time-constant random coefficients depend on the observed number of measurements
for each individual through an ordered latent class approach. The re-analysis of a well known benchmark
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dataset, the CD4 cell count data17;18, reveals the potential impact of drop-out on the lower quantiles of
the response variable (conditional) distribution.

7 Supplementary Material

The Supplementary Material includes the computational details for the posterior expectation of the
complete data log-likelihood. Also, the results from a large scale simulation study and the tables
describing model selection for the CD4 data are reported.
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