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A Lexicographic Approach to Constrained MDP Admission Control 

This paper proposes a reinforcement learning-based lexicographic approach to 

the call admission control problem in communication networks. The admission 

control problem is modeled as a multi-constrained Markov decision process. To 

overcome the problems of the standard approaches to the solution of constrained 

Markov decision processes, based on the linear programming formulation or on a 

Lagrangian approach, a multi-constraint lexicographic approach is defined, and 

an on-line implementation based on reinforcement learning techniques is 

proposed. Simulations validate the proposed approach. 

Keywords: Stochastic control, Markov decision processes, Reinforcement 

learning, Communication networks, Call admission control 

1 Introduction 

In recent years, the application of control-based techniques to resource 

management in communication networks enabled the evolution from heuristic 

implementations (F. Delli Priscoli, 1999) to more sophisticated approaches, e.g., just to 

name a few, (De Cicco, Mascolo, & Niculescu, 2011; Francesco Delli Priscoli & 

Pietrabissa, 2004; Manfredi, 2012). Among the resource management procedures, call 

admission control (CAC) is in charge of deciding upon the admission or blocking of the 

calls which request for transmission capacity: if the CAC algorithm blocks too many 

calls, the network utilization is poor as well as the revenue for the operator; if, on the 

contrary, the CAC algorithm admits too many calls, the quality of the call experienced 

by the users becomes unsatisfactory. In current communication networks, Classes of 

Service (CoS) are defined to differentiate the calls based on their different call priorities 

and characteristics. An additional task for the CAC algorithms is then the one of 

guaranteeing CoS-level requirements, generally expressed in terms of maximum 

thresholds for call blocking probabilities (Kalyanasundaram, Chong, & Shroff, 2001). 

 

Traditionally, he CAC problem is crucial in networks characterized by a limited 

amount of capacity shared among the users, such as terrestrial wireless networks, e.g., 

3G, 4G networks ad-hoc networks (see (Khoukhi, Badis, Merghem-Boulahia, & 

Esseghir, 2013) and the references therein), and satellite networks (Pillai, Hu, & 

Halliwell, 2013; Zhou, Sun, Liu, Zhang, & Xiao, 2014). However, it is a fundamental 

task also in emerging scenarios, such as cloud networks (Oddi, Panfili, Pietrabissa, 

Zuccaro, & Suraci, 2013), where economics considerations are becoming more and 

more relevant and, therefore, CoS differentiation is one of the key topics for telco 

operators. 

In the literature, several methodologies have been used to cope with the CAC 

problem, such as queueing theory (Klessig, Fehske, & Fettweis, 2014), game theory 

(Altman, Boulogne, El-Azouzi, Jiménez, & Wynter, 2006), statistical approaches (Jiao, 

Sheng, Lui, & Shi, 2014) and so on. The CAC problem has been successfully modelled 

also as a Markov Decision Process (MDP) (Choi, Kwon, Choi, & Naghshineh, 2000). 

Among the cited approaches, the MDP formulation is the only one that is able to 

analytically enforce constraints on call blocking probabilities, since the class constraints 



can be formulated within the model itself. The cost function of the MDP formulation of 

the CAC problem is then aimed at minimizing the blocking probability, subject to 

constraints on the maximum blocking probability tolerated by each CoS.  

 

MDPs are stochastic control processes, used for optimization problems 

involving random event and decision makers (Altman, 2002). To solve an unconstrained 

MDP, Dynamic Programming (DP) or Linear Programming (LP) algorithms can be 

used to compute the optimal policy (e.g., (Bertsekas, 2005; Puterman, 1994)). Beside 

standard DP and LP approaches, Reinforcement Learning (RL) algorithms can also be 

used to solve unconstrained MDPs (Sutton & Barto, 1998); even if RL approaches 

converge to the optimal solution only under given conditions, such as infinite number of 

visits of each state, in practice they achieve approximate solutions to problems which 

are intractable for other methods, as DP and LP  approaches, that are more subject to the 

scalability problems of MDPs. In fact, RL is a model-free approach and it does not 

require a priori knowledge of traffic statistics, since it relies on measured statistics. 

Likewise, the solution of constrained MDPs can be sought by several 

approaches, as discussed in (Geibel, 2007): the LP formulation (Hillier & Lieberman, 

2001; Pietrabissa, 2008b, 2009b), the weighted or Lagrangian approach – also based on 

a LP formulation (Pietrabissa, 2011), and the lexicographic approach (Gábor, Kalmár, 

& Szepesvári, 1998), based on DP methods: 

• In the LP formulation, CoS-level control in terms of blocking probabilities can 

be enforced by means of inequality constraints. The LP approach is then capable 

of explicitly controlling the blocking probabilities by computing an optimal 

admission policy which minimizes the global blocking probability subject to 

constraints on the maximum tolerated blocking probability of each CoS 

(Pietrabissa, 2008a, 2008b). 

• The Lagrangian or weighted approach uses the Lagrangian relaxation of the LP 

problem to define an unconstrained problem, where the inequality constraints 

are substituted by additional cost terms in the cost function, weighted by the so-

called Lagrange multipliers, and which penalize the violations of the constraints. 

• Lexicographic approaches define additional cost functions to model the problem 

constraints; these functions are optimized along with the primary cost function 

with a prioritization technique. 

The main drawbacks of the LP-based approaches is that they are not suitable for 

implementation in real network equipment, due to the scalability problem of the MDP 

algorithms – the so-called “curse of dimensionality”, i.e., the state space explosion as 

the link capacity and the number of supported classes increases (Bertsekas & Tsitsiklis, 

1989). The Lagrangian approach, however, thanks to the lack of constraints in the 

formulation, has the advantage that it can be used to develop RL admission control 

algorithms: the overall cost function (global blocking probabilities plus the terms 

weighted by the Lagrange multipliers) are directly used to build the (action,state)-

dependent cost function needed by the RL algorithms. The drawback is that, unless the 

multipliers are obtained by solving the Lagrangian (constrained) dual problem, this 



method is only able to achieve a suboptimal solution: in particular, considering the CAC 

problem, the actual performance of these algorithms heavily depends on the choice of 

the multipliers, as discussed in (Pietrabissa, 2011). Finally, the lexicographic approach 

is used in DP algorithm, thanks to the fact that it does not require constraints; as 

explained in the following, also the lexicographic approach achieves suboptimal 

policies. 

The main innovation is that this paper proposes a CAC algorithm based on 

lexicographic approach. We consider the Lexicographic Approach to develop a RL-

based CAC algorithm which counteracts the drawbacks of the other two approaches, 

i.e., the scalability problem of the LP- and DP-based ones, and the difficulty in 

enforcing the constraints (i.e., in the tuning the Lagrange multipliers) of the RL 

algorithm based on the Lagrangian approach. In a nutshell, the proposed approach finds 

a lexicographically sub-optimal solution of the CAC problem with class constraints by 

learning on-line the policy via RL-based update rules1. 

 

The paper is organized as follows: in Section 2 the CAC problem is defined as a 

stochastic control problem; Section 3 defines the constrained MDP formulation and 

introduces RL; in Section 4, the proposed solution approach is described; Section 5 

shows some simulation results; finally, Section 6 draws the conclusions. 

 

The notation is the following: vectors are denoted in boldface letters, matrices in 

capital boldface, and  𝛅𝑐 denotes a C-vector of zeros but the c-th element equal to 1. 

2 Problem statement 

We consider a generic link characterized by its available capacity, denoted with 𝜂𝑙𝑖𝑛𝑘, 

which supports 𝐶 CoSs, each one characterized by a transmission bitrate 

𝑏𝑐, 𝑐 =  1,… ,  𝐶. Let 𝒔(𝑡) be the state of the system, represented in Figure 1 as a 

discrete-time control system. The state 𝐬(𝑡) represents the vector of on-going calls, 

defined by the number 𝑠𝑐(𝑡) of calls of each class 𝑐 on-going at time 𝑡: 

 𝒔(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝐶(𝑡)), 𝑠𝑐 ∈ ℕ≥0, 𝑐 = 1,… , 𝐶. (1) 

 

1 A preliminary version of the algorithm was presented in (Panfili & Pietrabissa, 2013); in 

the present paper, the algorithm is further detailed and comprehensively evaluated against 

the optimal DP solutions and the Lagrangian RL approach. 
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Figure 1. Discrete-time model of the system and the admission controller. 

The link throughput of the system associated to s(t) is then 𝜂(𝐬(𝑡)) =

∑ 𝑏𝑐𝑠𝑐(𝑡)𝑐=1,…𝐶 . 

At time 𝑡, for each class 𝑐 =  1, … ,  𝐶, two types of events may occur: a call 

request or a call termination. Let the disturbance  (𝑡) represent the call attempts and 

terminations events, and let  (𝑡) be the control action, relevant at a call attempt at time 

𝑡;  (𝑡) is the admission decision: 

  (𝑡) =  (𝑢1(𝑡), … , 𝑢𝐶(𝑡)), 𝑢𝑐  {0,1}, 𝑐 =  1,… , 𝐶, (2) 

whose element 𝑢𝑐(𝑡), 𝑐 = 1, … , 𝐶, is equal to 1 if the decision is to accept the event, to 

0 if it is to reject it. 

In general, the system dynamics is function of the state 𝒔(𝑡), of the control 

action  (𝑡) and of the disturbance  (𝑡): 

 𝒔(𝑡 + 1) = 𝑓(𝒔(𝑡),  (𝑡),  (𝑡)). (3) 

The controller task is then to decide the control action  (𝑡) based on the current 

state 𝒔(𝑡); the control action is a map from the state space to the action space:  (𝑡) =

𝜋[𝒔(𝑡)]. The control objective is to minimize average blocking probability, or, 

equivalently, to maximize the acceptance probability, while enforcing constraints on the 

blocking probabilities of the different Classes of Service. 

3 Discrete-time MDP formulation and RL 

The algorithm is conceived as a statistical-based call control, where call attempts and 

terminations are characterized as follows: for each class 𝑐, call attempts are distributed 

according to a Poisson process with mean arrival frequency 𝜆𝑐; the call holding time of 

class 𝑐 is distributed according to an exponential distribution, and the mean termination 

frequency is 𝜇𝑐
(2). 

 

2 Poisson call attempts and exponential call holding time are widely used in the literature 

and are adequate at least for voice users, but further research is needed in the area of 

Markov regenerative decision processes to justify it for the new traffic services 

(Kalyanasundaram, Chong, & Shroff, 2002; Krishnamurthy & Leung, 2006). However, 



We are interested in minimizing the average blocking probability while keeping 

the blocking probabilities of each CoS below a given threshold. The constrained MDP 

with multiple constraints is then defined by the tuple {𝑆, 𝐴, 𝐓, 𝜌, 𝒅,𝑲}, where 𝑆 is the 

finite state space, 𝐴 is the action space, 𝐓 is the transition probability matrix, 𝜌 is the 

one-step cost function which accounts for the blocking probability, 𝒅 is a set of cost 

functions 𝑑𝑐, which are the one-step cost functions which account for the blocking 

probability of class 𝑐, and 𝑲 is a vector of 𝐶 constants 𝐾𝑐, which are the threshold 

which limits the average costs of class, 𝑐 =  1,… , 𝐶. The tuple elements will be 

described in the following Sections 3.1-3.5; in section 3.6 RL is introduced. 

3.1 State space 

The finite state space 𝑆 is the set of the feasible on-going call vectors, defined by 

equation (1), i.e., the vectors 𝐬 = (𝑠1, … ,  𝑠𝐶) ∈ 𝑆 whose throughput 𝜂(𝐬) =
∑ 𝑏𝑐𝑠𝑐𝑐=1,…𝐶  is less than the link capacity: 

 𝑆 = {𝐬 = (𝑠1, … , 𝑠𝐶)|𝜂(𝐬) ≤ 𝜂𝑙𝑖𝑛𝑘} (4) 

3.2 Action space 

In the generic state 𝒔 = (𝑠1, … ,  𝑠𝐶) ∈ 𝑆, the controller might decide to accept or reject a 

new call request. The decision is expressed by the vector  , defined by equation (2). 

Note that, in the state 𝒔, a new call request of class 𝑐 may be accepted only if the state 

𝒔′ = 𝒔 + 𝜹𝑐 ∈ 𝑆 (i.e., if the state 𝒔′ = (𝑠1, … , 𝑠𝑐+1, … , 𝑠𝐶) exists). The action space of an 

available state is defined as follows: 

𝐴(𝒔) = { = (𝑢1, … , 𝑢𝐶) |𝑢𝑐 ∈ {
{0,1}, if 𝒔′ = 𝒔 + 𝜹𝑐 ∈ 𝑆
{0}, otherwise

, 𝑐 = 1,… , 𝐶} , 𝒔 ∈ 𝑆. (5) 

If, every time the system is in state 𝒔, the controller chooses the control action 

 ∈ 𝐴(𝒔) with the same probability, for all the states 𝒔 ∈ 𝑆, then the controller is said to 

operate under a stochastic stationary policy. A stochastic policy 𝜋 defines a probability 

distribution on the action space, and the probability that decision   is taken in state 𝒔 is 

denoted as 𝜋(𝒔,  ). 

Policies can also be deterministic if, in each state 𝒔 ∈ 𝑆, one of the actions is 

choosen with probability 1; therefore, a deterministic policy associates a unique action 

 ′ ∈ 𝐴(𝒔) to each state 𝒔 ∈ 𝑆: 𝜋(𝒔,  ) = {
1, if  =  ′

0, otherwise
. For the sake of simplicity, the 

selected action  ′ in state 𝒔 of a deterministic policy 𝜋 will be denoted as 𝜋(𝒔) =  ′. 

3.3 Transition matrix 

The elements of the transition matrix 𝐓 are the probabilities of the transitions between 

 

note that traffic statistics are necessary to develop the MDP framework but are not 

required by the RL approach – see for example (Lilith & Dogancay, 2005), whose RL-

based admission control succeeded in controlling traffic characterized by a self-similar 

distribution. 



state couples; the transition probabilities are inferred from the above-stated assumptions 

on call birth frequencies and holding times, and from the above-defined action space. 

Moreover, to define a discrete-time MDP, an uniformization procedure is 

considered (Pietrabissa, 2009b): all the transition frequencies are divided by a constant 

𝜈, and a self-transition is added to each state to let the total state outgoing probability 

equal to 1. It can be demonstrated that, if 𝜈 is larger than the maximum output 

frequency among the ones of all the states, the obtained discrete-time MDP is 

statistically equivalent to the continuous-time MDP generated by the transition 

frequencies. Considering a generic state 𝒔 = (𝑠1, … , 𝑠𝐶) ∈ 𝑆 and the policy 𝜋, the 

transition probabilities are then: 

𝑝𝜋(𝒔, 𝒔′) =

{
 
 

 
 
𝜆𝑐

𝜈
𝜋(𝒔, 𝑢𝑐), if 𝒔

′ = 𝒔 + 𝜹𝑐
𝜇𝑐

𝜈
𝑠𝑐, if 𝒔

′ = 𝒔 − 𝜹𝑐

1 − ∑ 𝑝𝜋(𝒔, 𝒔′), if 𝒔′ = 𝒔𝒔′≠𝒔

0, otherwise

, 𝒔, 𝒔′ ∈ 𝑆 (6) 

3.4 Cost function 

The main control objective is to drive the evolution of the discrete-time Markov process 

{𝒔𝑘}𝑘 = 1,2,…, where 𝒔𝑘 is the state visited at time step 𝑘, to minimize the blocking 

probability. Let the c-th (action,state)-dependent cost function be defined as: 

𝜌𝑐(𝒔,  , 𝒔
′) = {

1 − 𝑢𝑐, if 𝒔
′ = 𝒔 + 𝜹𝑐

0, otherwise
,  = (𝑢1, … , 𝑢𝐶) ∈ 𝐴(𝒔), 𝒔, 𝒔′ ∈ 𝑆, 𝑐 = 1, … , 𝐶;

  (7) 

The cost function is then: 

 𝜌(𝒔,  , 𝒔′) = ∑ 𝜌𝑐(𝒔,  , 𝒔
′)𝑐=1,…,𝐶 ,  ∈ 𝐴(𝒔), 𝒔, 𝒔′ ∈ 𝑆 (8) 

Therefore, to minimize the blocking probability, we should minimize the 

expected per-stage cost of the system, computed as lim
𝑇→∞

1

𝑇
∑ 𝜌(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=1,…,𝑇 , 

where 𝜌𝑘 is the cost observed at step 𝑘. However, to make use of standard RL 

algorithms (see Section 4), we approximate the above limit, by using the Tauberian 

approximation, with the expected discounted total cost (Gábor et al., 1998), defined as: 

𝐽𝜌
𝜋,𝓧 = 𝐸𝜋,𝒳{∑ 𝛾𝑘𝜌(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=0,1,…,∞ } = ∑ 𝒳(𝒔0)𝐸𝜋[𝜌(𝒔0,  0, 𝒔1) +𝒔0∈𝑆

∑ 𝛾𝑘𝜌(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=1,2,…,∞ ],  (9) 

where 𝛾 ∈ (0,1) is the discount factor, which weights immediate costs versus delayed 

costs, 𝒳 ∈ Χ is the probability distribution of the initial state 𝒔0 over the state set 𝑆, Χ is 

the set of feasible initial probability distributions, the operators 𝐸𝜋{⋅}  and 𝐸𝜋,𝒳{⋅} are 

the expected value when the system operates under policy 𝜋 and the expected value 

when the system operates under policy 𝜋 and the initial state distribution is 𝒳, 

respectively. 

3.5 Value functions, cost constraints and lexicographic approach 

In unconstrained MDPs, state-value functions are used to evaluate the policies. The 



state-value function 𝑉𝜌
𝜋(𝒔) is the expected cost when starting in 𝒔 and following policy 

𝜋: 

𝑉𝜌
𝜋(𝐬) = 𝐸𝜋[∑ 𝛾𝑘𝜌(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=0,1,…,∞ |𝒔0 = 𝒔], 𝒔 ∈ 𝑆. (10) 

By comparing equations (9) and (10), it follows that the expected discounted 

total cost is the expected value of the value functions 𝑉𝜌
𝜋, over the initial distribution 𝜒 

of the starting state: 

 𝐽𝜌
𝜋,𝒳 = 𝐸𝜒[𝑉𝜌

𝜋(𝒔)] = ∑ 𝜒(𝒔)𝑉𝜌
𝜋(𝒔)𝒔∈𝑆  (11) 

In constrained MDPs, additional cost functions are defined to enforce the 

constraints (to avoid confusion, hereafter the cost (8) will be referred to as primary 

cost). In our problem, we have C constraints on the C CoS blocking probabilities. 

Considering the per-class costs (7), the c-th (action,state)-dependent cost function is 

then defined as: 

 𝑑𝑐(𝒔,  , 𝒔′) = 𝜌𝑐(𝒔,  , 𝒔′),  ∈ 𝐴(𝒔), 𝒔, 𝒔′ ∈ 𝑆, 𝑐 = 1,… , 𝐶, (12) 

Likewise, the value functions are: 

 𝑉𝑐
𝜋(𝐬0) = 𝐸𝜋[∑ 𝛾𝑘𝑑𝑐(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=0,1,…,∞ ], 𝑐 = 1,… , 𝐶, (13) 

We are interested in controlling the CoS blocking probabilities 𝑃𝑐, in such a way 

that their values remains below the given maximum blocking probabilities 𝑃𝑐
𝑚𝑎𝑥 , 𝑐 =

1, … , 𝐶. The blocking probabilities can be computed by using equation (12) as the 

expected per-stage costs of the system: 𝑃𝑐 = lim
𝑇→∞

1

𝑇
∑ 𝑑𝑐(𝒔𝑘 ,  𝑘, 𝒔𝑘+1)𝑘=1,…,𝑇 . Similarly 

to the primary cost, we approximate the blocking probability computation by using the 

expected discounted total costs, obtaining the following constraints: 

𝐽𝑐
𝜋,𝒳 = 𝐸𝜋 { ∑ 𝛾𝑘𝑑𝑐(𝒔𝑘,  𝑘, 𝒔𝑘+1)

𝑘=0,1,…,∞

} = 𝐸𝜒[𝑉𝑐
𝜋(𝒔)] 

= ∑ 𝜒(𝒔)𝑉𝑐
𝜋(𝒔)𝒔∈𝑆 ≤ 𝐾𝑐, 𝑐 = 1,… , 𝐶, (14) 

where 𝐾𝑐 =
𝑃𝑐
𝑚𝑎𝑥

1−𝛾
 (3). 

 

The constrained MDP is then formulated as the following optimization problem: 

 
min
𝜋

𝐽𝜌
𝜋,𝒳

𝑠. 𝑡.  𝐽𝑐
𝜋,𝒳 ≤ 𝐾𝑐, 𝑐 = 1, … , 𝐶,

 (15) 

which is written in terms of value-functions as follows (see equations (11) and (14)): 

 

3 In fact, by choosing a discount factor close enough to 1, it holds that 

𝐸𝜋
{∑ 𝛾𝑘𝑑𝑐(𝒔𝑘, 𝑘)𝑘=0,1,…,∞ }≈ ∑ 𝛾𝑘𝑘=0,1,…,∞ 𝑃𝑐 = (1−𝛾)𝑃𝑐 (Gábor et al., 1998). 



 
min
𝜋

∑ 𝜒(𝒔)𝑉𝜌
𝜋(𝒔)𝒔∈𝑆

𝑠. 𝑡.  ∑ 𝜒(𝒔)𝑉𝑐
𝜋(𝒔)𝒔∈𝑆 ≤ 𝐾𝑐, 𝑐 = 1,… , 𝐶,

 (16) 

In (Gábor et al., 1998), a single constraint in the form 𝑉𝑐
𝜋(𝒔) ≤  𝐾𝑐 is enforced 

by defining a lower-bounded value function: 

 𝑽𝜋(𝒔) = (
max(𝐾𝑐, 𝑉𝑐

𝜋(𝒔))

𝑉𝜌
𝜋(𝒔)

). (17) 

The lexicographic approach has the following goals: if 𝑉𝑐
𝜋(𝒔) > 𝐾𝑐 (i.e, the 

constraint is not met), the objective is to minimize 𝑉𝑐
𝜋(𝒔); otherwise, the objective is to 

minimize the primary cost value function 𝑉𝜌
𝜋(𝒔). According the lexicographic approach, 

two policies 𝜋 and 𝜋′ can be compared. The policy 𝜋′  is better than 𝜋, i.e., 𝜋 > 𝜋′, if 

either 𝑉𝑐
𝜋(𝒔) > 𝐾𝑐 and 𝑉𝑐

𝜋′
(𝒔) < 𝑉𝑐

𝜋(𝒔) or 𝑉𝑐
𝜋(𝒔) < 𝐾𝑐, 𝑉𝑐

𝜋′
(𝒔) < 𝐾𝑐 and 𝑉𝜌

𝜋′(𝒔) <

𝑉𝜌
𝜋(𝒔). 

Note that the lexicographic approach is conservative, since it checks the 

constraint on each state, actually solving the following problem: 

 
min
𝜋

∑ 𝜒(𝒔)𝑉𝜌
𝜋(𝒔)𝒔∈𝑆

𝑠. 𝑡.  𝑉𝑐
𝜋(𝒔) ≤ 𝐾𝑐, 𝑐 = 1,… , 𝐶, 𝒔 ∈ 𝑆.

 (18) 

In fact, if 𝑉𝑐
𝜋(𝒔) ≤ 𝐾𝑐, 𝒔 ∈ 𝑆, then it holds that 𝐽𝑐

𝜋,𝒳 = ∑ 𝜒(𝒔)𝑉𝑐
𝜋(𝒔)𝒔∈𝑆 ≤

𝐾𝑐, 𝒳 ∈ Χ, but the opposite implication is not true: hence solving (18) leads to a 

conservative sub-optimal solution of problem (15). Therefore, by using the 

lexicographic approach within DP algorithms, a stationary deterministic policy is found, 

which is lexicographically optimal with respect to (𝑉𝜌
𝜋(𝒔), 𝑉𝑐

𝜋(𝒔)) in every state 𝒔; the 

stationary policy is also a suboptimal feasible solution of the problem (15) (Geibel, 

2007). 

In our multi-constraint problem, in Section 4 we will define a vector of (𝐶 +  1) 

(action,value)-functions. 

3.6 Reinforcement learning 

Unconstrained MDPs can be solved on-line by RL algorithms. In particular, the 

common Q-learning approach (Sutton & Barto, 1998) considered in this paper computes 

the control policy on-line by estimating the (action,state)-value functions. The 

(state,action)-value function 𝑄𝜋 (𝒔) is the expected cost starting from 𝒔, taking action  , 

and thereafter following policy 𝜋: 

𝑄𝜋 (𝒔,  ) = 𝐸𝜋[∑ 𝛾𝑘𝜌(𝒔𝑘,  𝑘, 𝒔𝑘+1)𝑘=0,1,…,∞ |𝒔0 = 𝒔,  0 =  ], 𝒔 ∈ 𝑆,  ∈ 𝐴(𝒔). (19) 

The Q-learning iteratively estimates the (action,state)-value functions on-line, 

exploiting the Bellman equations: 

𝑄𝜋 (𝒔,  ) = ∑ 𝑝𝝅(𝒔, 𝒔′)[𝜌(𝒔,  , 𝒔′) + 𝛾𝑄𝜋 (𝒔′, 𝜋(𝒔′))]𝒔′∈𝑆 , 𝒔 ∈ 𝑆,  ∈ 𝐴(𝒔). (20) 

The algorithm is outlined hereafter. 



 

STEP 0. Extract an initial state 𝒔 ∈ 𝑆 from the distribution 𝒳, an initial policy 𝜋, and 

initial estimates for the (action,state)-value functions 𝑄(𝒔,  ),  ∈ 𝐴(𝒔), 𝒔 ∈ 𝑆.  

STEP 1. Choose an action  ∈ 𝐴(𝒔) according to 𝜋, following the so-called the 𝜀-

greedy policy approach: 

  = {
𝜋(𝒔),with probability (1 − 𝜀)

a random action in the set 𝐴(𝒔),with probability 𝜀
, (21) 

with 𝜀 ∈ (0,1). The parameter 𝜀 addresses the trade-off between the need of exploring 

the state-space, i.e., to discover new policies, and to exploit the current estimates of the 

(action,state)-values.  

STEP 2. Observe the new state 𝒔′ and the cost 𝜌(𝒔,  , 𝒔′). 

STEP 3. Update the estimates the (action,state)-value functions by the following update 

rule: 

𝑄𝜌(𝐬, 𝐮) ← (1 − 𝛼)𝑄𝜌(𝐬, 𝐮) + 𝛼 [𝑟(𝒔,  , 𝒔′) + 𝛾 min
 ′∈𝐴(𝒔′)

𝑄𝜌(𝒔
′,  ′)], (22) 

where the learning rate 𝛼 ∈ (0,1) determine the convergence speed and accuracy. Note 

that 𝛼 can also be dependent on the state and on the stage. 

STEP 4. Update the policy with the so-called policy-improvement step: 

 𝜋(𝒔) ← 𝑎𝑟𝑔𝑚𝑖𝑛 ∈𝐴(𝒔)𝑄𝜌(𝒔,  ). (23) 

STEP 5. Set (𝐬, 𝐮) ← (𝐬′, 𝐮′) and return to STEP 1.  

 

If the learning rate 𝛼 is chosen appropriately, the Q-learning algorithm is shown 

to converge to a stationary deterministic optimal policy in the long run (for a detailed 

analysis, see (Sutton & Barto, 1998)). Assumptions on the learning rate are loose – it 

suffices that ∑ 𝛼𝑘 = ∞𝑘=0,1,…,∞  and  ∑ 𝛼𝑘
2 < ∞𝑘=0,1,…,∞ , where 𝑘 is the stage index – 

but, obviously, the infinite visits assumption is impractical. In many practical cases, 

however, it was observed that it rapidly achieves effective (even if suboptimal) policies 

in a reasonable amount of time. 

4 Lexicographic Q-Learning 

We consider the approach developed in (Gábor et al., 1998) and  (Geibel, 2007) to find 

a lexicographically sub-optimal solution for the above described constrained MDP by 

RL methods. Recalling that 𝑉𝜋(𝒔) = 𝑄𝜋(𝒔, 𝜋(𝒔)) (as it results by comparing equations 

(10) and (19)), problem (15) can be written in terms of (action,value)-functions as 

follows: 

min
𝜋

𝐸𝜒[𝑄𝜌
𝜋(𝒔, 𝜋(𝒔))]

𝑠. 𝑡.  𝐸𝜒[𝑄𝑐
𝜋(𝒔, 𝜋(𝒔))] ≤ 𝐾𝑐, 𝑐 = 1,… , 𝐶.

 (24) 



As in (Gábor et al., 1998), the constraints are enforced in a lexicographic fashion 

(see equation (17)); in our case, multiple constraints are represented as follows: 

𝑸𝜋(𝒔,  ) =

(

 
 
max(𝐾1, 𝑄1

𝜋(𝒔,  ))

⋮
max(𝐾𝐶 , 𝑄𝐶

𝜋(𝒔,  ))

𝑄𝜌
𝜋(𝒔,  )

)

 
 

 (25) 

where the first 𝐶 elements of (25) are lower-bounded (action,value)-functions. As 

analyzed in Section 3.5, the lexicographic approach is conservative since it solves the 

following problem (the counterpart of problem 14b): 

 
min
𝜋

𝐸𝜒[𝑄𝜌
𝜋(𝒔, 𝜋(𝒔))]

𝑠. 𝑡.  𝑄𝑐
𝜋(𝒔, 𝜋(𝒔)) ≤ 𝐾𝑐, 𝑐 = 1,… , 𝐶, 𝒔 ∈ 𝑆.

 (26) 

The lexicographic approach relies on the ordering of the value functions in 

equation (25), which defines the priority of the objectives. Without loss of generality, 

we assume that the constraints are ordered in descending order of priority; then the 

lexicographic approach has the following goals: 

(1) if 𝑄1
𝜋(𝒔,  ) > 𝐾1 (i.e, the first constraint is not met), the objective is to minimize 

the first cost (action,value)-function 𝑄1
𝜋(𝒔); 

(2) if 𝑄𝑐
𝜋(𝒔,  ) ≤ 𝐾𝑐, 𝑐 = 1,2, … , 𝑔 − 1, with 𝑔 = 2,… , 𝐶, and 𝑄𝑔

𝜋(𝒔,  ) > 𝐾𝑔 (i.e, 

the first 𝑔 − 1 constraints are met and the 𝑔-th constraint is not met), the 

objective is to minimize the 𝑔-th (action,value)-function 𝑄𝑔
𝜋(𝒔,  ); 

(3) if 𝑄𝑐
𝜋(𝒔,  ) ≤ 𝐾𝑐, 𝑐 = 1,2, … , 𝐶, (i.e., all the constraints are met) the objective is 

to minimize the cost (action,value)-function 𝑄𝜌
𝜋(𝒔,  ). 

In brief, the objective is to minimize the primary cost only when the blocking 

probabilities of all CoSs do not exceed the maximum thresholds; if the constraint if not 

met by one or more CoSs, the objective is to minimize the value function of the CoS 

with the highest priority. 

According the lexicographic approach, two policies 𝜋 and 𝜋′ can be compared. 

The policy 𝜋′  is better than 𝜋, i.e., 𝜋 > 𝜋′, if one of the following conditions hold: 

(1) 𝑄1
𝜋(𝒔,  ) > 𝐾1 and 𝑄1

𝜋′
(𝒔,  ) < 𝑄1

𝜋(𝒔,  ); 

(2) min (𝑄𝑐
𝜋(𝒔,  ), 𝐾𝑐) = min (𝑄𝑐

𝜋′
(𝒔,  ), 𝐾𝑐) = 𝐾𝑐, 𝑐 = 1,… , 𝑔 − 1, and 

𝑄𝑔
𝜋′
(𝒔,  ) < 𝑄𝑔

𝜋(𝒔,  ), 𝑔 = 2,3, … , 𝐶; 

(3) min (𝑄𝑐
𝜋(𝒔,  ), 𝐾𝑐) = min (𝑄𝑐

𝜋′
(𝒔,  ), 𝐾𝑐) = 𝐾𝑐, 𝑐 = 1,2, … , 𝐶, and 𝑄𝜌

𝜋′
(𝒔,  ) <

𝑄𝜌
𝜋(𝒔,  ). 

In words, the policy 𝜋′ improves the policy 𝜋 if: i) policy 𝜋 does not meet 

constraint 1 and the first cost function is decreased by 𝜋′; ii) the first 𝑐 − 1 constraints 

are met by both policies and the 𝑐-th cost function is decreased by 𝜋′; iii) all the 

constraints are met by both policies and the expected cost is decreased by 𝜋′. Note that 

only one of the above-stated conditions holds at a time. 



 

The idea is the integration of a RL algorithm – namely, in this case, the Q-

learning one – into the lexicographic approach: in other terms, the proposed approach 

finds a lexicographically optimal solution of the constrained MDP by on-line estimating 

the (action,value)-functions generated by the primary cost function and by the cost 

functions. 

The standard Q-learning update rule (22) is applied: 

 {
𝑄𝑐(𝒔,  ) ← (1 − 𝛼)𝑄𝑐(𝒔,  ) + 𝛼 (𝑑𝑐(𝒔,  ) + 𝛾 𝑚𝑖𝑛

 ′∈𝐴(𝒔′)
𝑄𝑐(𝒔

′,  ′)) , 𝑐 = 1,… , 𝐶

𝑄𝜌(𝒔,  ) ← (1 − 𝛼)𝑄𝜌(𝒔,  ) + 𝛼 (𝑑𝑟(𝒔,  ) + 𝛾 𝑚𝑖𝑛
 ′∈𝐴(𝒔′)

𝑄𝜌(𝒔
′,  ′))

. 

 (27) 

Note that, in (27), every (action,value)-function is updated at every step.  

To describe the policy improvement step, we define the restricted action sets 

𝐴̃𝑐(𝐬) ⊆ 𝐴(𝒔), 𝒔 ∈ 𝑆, as follows: 

 𝐴̃𝑐(𝒔) = { ∈ 𝐴(𝒔)|𝑄𝑔(𝒔,  ) ≤ 𝐾𝑔, 𝑔 = 1,… , 𝑐}, 𝒔 ∈ 𝑆. (28) 

𝐴̃𝑐(𝐬) is then the set of the actions which meet the constraints 1,… , 𝑐. 

Considering the restricted action sets 𝐴̃𝑐, the standard Q-learning update rule (23) and 

the definition (25) of the  vector 𝑸𝜋(𝒔,  ), the proposed update rule is defined as 

follow: 

 𝜋(𝒔) ←

{
 
 

 
 
argmin
 ∈𝐴̃(𝒔)

{𝑄1(𝒔,  )} , if  𝐴̃1(𝒔) = ∅;

argmin
 ∈𝐴̃(𝒔)

{𝑄𝑐(𝒔,  )} , if 𝐴̃𝑐−1(𝒔) ≠ ∅ and 𝐴̃𝑐(𝒔) = ∅, 𝑐 = 2,… , 𝐶 − 1;

argmin
 ∈𝐴̃(𝒔)

{𝑄𝜌(𝒔,  )} , if 𝐴̃𝐶(𝒔) ≠ ∅.

 

 (29) 

In words, the policy improvement works as follows: 

(1) if no action exists such that the first constraint is met (in the sense that 

𝑄1(𝒔,  ) > 𝐾1, ∀ ∈ 𝐴(𝒔)), pick the action  ∈ 𝐴(𝒔) which minimizes the first 

cost 𝑄1(𝒔,  ); 

(2) if no action exists such that the first 𝑐 constraints are met but there exists a non-

empty set of actions 𝐴̃𝑐−1(𝒔) such that the first 𝑐 − 1 constraints are met, pick 

the action  ∈ 𝐴̃𝑐−1(𝒔) which minimizes the 𝑐-th cost 𝑄𝑐(𝒔,  ); 

(3) if there exists a non-empty set of actions 𝐴̃𝐶(𝒔) such that all the constraints are 

met, pick the action  ∈ 𝐴̃𝐶(𝒔) which minimizes the cost 𝑄𝜌(𝒔,  ). 

 

The proposed lexicographic Q-learning algorithm is summarized below: 

STEP 0. Extract an initial state 𝒔 ∈ 𝑆 from the distribution 𝒳, an initial policy 𝜋 (e.g., 

the greedy policy which accepts all the calls whenever possible) and an initial estimates 



for the (action,state)-value functions 𝑄𝑐(𝒔,  ), 𝒄 = 1,… , 𝐶, and 𝑄𝜌(𝒔,  ),  ∈ 𝐴(𝒔), 𝒔 ∈

𝑆 (e.g., 𝑄𝑐(𝒔,  ) = 0 and 𝑄𝜌(𝒔,  ) = 0,  ∈ 𝐴(𝒔), 𝒔 ∈ 𝑆).  

STEP 1. Choose  ∈ 𝐴(𝒔) according to 𝜋, with the 𝜀-greedy policy (21). 

STEP 2. Observe the new state 𝒔′, the cost 𝜌(𝒔,  , 𝒔′) and the costs 𝑑𝑐(𝒔,  , 𝒔′), 𝑐 =

1, … , 𝐶. 

STEP 3. Update the estimates of the (action,state)-value functions with the update rule 

(27). 

STEP 4. Update the policy with the policy-improvement step (29). 

STEP 5. Set (𝐬, 𝐮) ← (𝐬′, 𝐮′) and return to STEP1.  

 

For each (action,value)-function of the algorithm, the convergence properties are 

the same as the ones of the Q-learning. Therefore, by appropriately choosing the 

learning rate 𝛼, the algorithm converges, in the long run (the same observations for the 

standard Q-learning algorithm hold, see Section 3.6), to a stationary deterministic 

policy, which is a suboptimal solution of the constrained problem (15). It is interesting 

to note that, in case no feasible policies exist, i.e., no policies exist which satisfy all the 

CoS blocking probability constraints, no solution is returned by the LP method, whereas 

the lexicographic RL approach converges to a policy which satisfies the maximum 

number of ordered constraints. 

The effectiveness of the proposed lexicographic RL approach is evaluate din the 

following Section by simulations. 

5 Simulations 

Numerical simulations have been performed with the aim of evaluating the 

effectiveness of the proposed approach. The simulated link supports 𝐶 = 3 different 

CoSs, characterized by a set of parameters: transmission bitrates bc, arrival rates λc and 

termination rates μc, c = 1, 2, 3. The classes are numbered in descending order of 

priority.  

 

The first simulations aim at evaluating the policy obtained by proposed 

lexicographic RL algorithm. Five scenarios were setup, characterized by different 

values of offered traffic load, computed as: 

 𝜂𝑜𝑓𝑓 = ∑
𝜆𝑐

𝜇𝑐
𝑏𝑐𝑐=1,…,𝐶  (30) 

For each scenario, 10 runs were executed, each one 24 ⋅ 7 hours long. In each 

run, class parameters were used to generate an event list (call births/terminations); at 

each call birth event, the admission controller uses an admission policy to decide 

whether to accept or not the call. Each simulation run was executed four times: the first 

time, a heuristic policy was implemented, referred to as Greedy, which, in a greedy 

fashion, always accepts the calls whenever enough capacity is available; the second 



time, the optimal policy computed off-line by means of the LP approach (Pietrabissa, 

2008b), referred to as LP, was implemented; the third time, the sub-optimal policy 

computed on-line by means of the proposed approach, referred to as RL-lex, was 

implemented; the fourth time, the sub-optimal policy computed on-line by means of the 

RL approach using the optimal Lagrange multipliers (computed off-line by solving the 

Lagrangian dual problem of each LP), referred to as RL-lag, was implemented. 

Since the LP and the RL-lag require to solve a LP problem, they are subject to 

the mentioned scalability problem; in practice, we had to execute the simulations in 

‘small’ scenarios, characterized by a link capacity 𝜂𝑙𝑖𝑛𝑘 = 3 Mbps, leading to a state 

space dimension |𝑆| =  5.3 ⋅ 103. The following values of the offered traffic load were 

considered: 𝜂𝑜𝑓𝑓 = {1.98, 2.01, 2.04, 2.07, 2.1} Mbps. For the sake of convenience, the 

scenarios will be denoted as Very Low , Low, Medium, High and Very High load 

scenarios. 

Table 1 collects the simulations parameters, whereas  

Table 2 collects the RL parameters used in the RL-based algorithms. For each 

run of the RL-based algorithms, a training interval has been considered, during which 

the exploration rate 𝜀 was kept much higher than in the rest of the simulation. The initial 

policies of all RL algorithms were set equal to the greedy policy. 

 

Table 1. Simulations parameters (σ is a parameter such that, for each scenario, the 

desired value of the offered load ηoff is obtained by means of equation (30)). 

Parameter Value 

𝜂𝑙𝑖𝑛𝑘 [Mbps] 3 

Simulation length [h] 724 

𝜂𝑜𝑓𝑓   [Mbps] {1.98, 2.01, 2.04, 2.07, 2.1} 

C 3 

bc [kbps], c =1,2,3 {330, 156, 64} 

λc [min-1] , c =1,2,3 {0.5σ, 1.25σ, 1.125σ} 

μc [min-1] , c =1,2,3 {0.2, 0.2, 0.333} 

 



Table 2. RL algorithms parameters. 

Parameter Value 

Training interval [hours] 6 

𝐾𝑐, 𝑐 = 1,2,3  {0.075, 0.075, 0.075} 

𝜀  
0.1 during the training interval 

10-4 otherwise 

𝛾  0.9 

𝛼 
0.005

algorithm iteration
  

 

Figure 2 shows the average results of the simulations sets in terms of average 

blocking probability for each service class. The figure shows that, as the offered traffic 

increases, i) the Greedy policy cannot control the blocking probabilities, and the Class 3 

blocking probability exceeds the maximum threshold, ii) the optimal LP policy strictly 

enforces the blocking probability constraints, iii) the sub-optimal RL-lex and RL-lag 

policies effectively control the blocking probabilities – the average Class 3 blocking 

probability is negligibly over the threshold in the Medium, High and Very High 

scenarios. 
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Figure 2. Blocking probabilities the Very Low (a), Low (b), Medium (c), High (d) and 

Very High (e) traffic load scenarios. 
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Figure 3. Average percentage of blocked calls per traffic scenario. 
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Figure 4. Average results of the RL-lag algorithm with different Lagrange multiplier 

 

The total blocking probabilities of the simulation sets are shown in Figure 3. The 

results show that the Greedy policy has the lowest average total blocking probability (as 

it should be, since no blocking constraints are enforced by the greedy heuristic), 

followed by the LP algorithm and by the RL-lex and RL-lag ones, which achieve similar 

blocking probabilities. 

Simulations show that the performances of the proposed RL-lex approach are 

similar to the ones of the RL-lag approach. However, the RL-lag policies were obtained 

by computing off-line the optimal values of the Lagrange multipliers. To evaluate how 

the RL-lag performance changes with Lagrange multiplier variations, we considered the  

medium traffic scenario. 20 simulation runs, each one 24 ⋅ 7 hours long, were executed 

4 times: the first time, the optimal Lagrange multipliers were used; in the second, third 

and fourth times, the Lagrange multipliers were selected randomly, using a normal 

distribution, with mean equal to optimal Lagrange values and standard deviation equal 

to 1%, 5% and 10%, respectively. 

Figure 4 shows the average results of the simulations runs in terms of average 

blocking probabilities: it is evident that the RL-lag approach is effective only if the 

Lagrange multipliers are accurately computed. Also the primary cost worsen if  the 

multipliers are not exact; the obtained average total blocking probabilities are 5.80%, 

5.82%, 6.25% and 6.56% for standard deviations of 0%, 1%, 2%, 5% and 10%, 

respectively. 

 



 

Figure 5. NMSEs RL-lex and RL-lag value functions with respect to the optimal value 

function. 

 

Figure 6 shows, for one of the high-load simulation runs, the Normalized Mean Squared 

Error (NMSE) of the RL approaches, normalized with respect to the optimal value 

function (computed by solving the DP problem), calculated as 𝑁𝑀𝑆𝐸𝑅𝐿−𝑙𝑒𝑥 ≔

1

|𝑆|
∑ (

𝑉𝜌
𝑅𝐿−𝑙𝑒𝑥(𝐬)−𝑉∗(𝐬)

𝑉∗(𝐬)
)
2

𝐬∈𝑆  and 𝑁𝑀𝑆𝐸𝑅𝐿−𝑙𝑎𝑔 ≔
1

|𝑆|
∑ (

𝑉𝑅𝐿−𝑙𝑎𝑔(𝐬)−𝑉∗(𝐬)

𝑉∗(𝐬)
)
2

𝐬∈𝑆 , respectively, 

where 𝑉∗(𝐬) is the optimal value function in state 𝐬, 𝑉𝜌
𝑅𝐿−𝑙𝑒𝑥(𝐬) is the last cost value 

function computed by the lexicographic algorithm in state 𝐬, and 𝑉𝑅𝐿−𝑙𝑎𝑔(𝐬) is the last 

value function computed by the Lagrangian algorithm in state 𝐬. The figure shows that 

the proposed lexicographic RL approach has similar convergence dynamics with respect 

to the Lagrangian RL approach. The convergence velocity of the RL approaches is one 

of the key points in their effectiveness, and is tightly linked to the scalability (larger 

state and action spaces need more time for the exploration phase); a brief discussion of 

possible methods to improve scalability is provided in Section 6.  

The second simulation is aimed at testing the proposed approach in a larger 

scenario, where the LP and RL-lag methods cannot be used due to the scalability issue 

(of the LP problem itself and of the Lagrangian dual problem, respectively). The RL-lex 

policy is then compared to the Greedy heuristic. The scenario parameters are the same 

as the ones shown in Table 1, but the link  capacity 𝜂𝑙𝑖𝑛𝑘 = 10 Mbps, which leads to a 

state space dimension |𝑆| = 1.65 ⋅ 105, and the offered load 𝜂𝑜𝑓𝑓 = 9 Mbps. Figure 5 

shows the results in terms of blocking probability for each CoS, averaged over 10 

simulation runs, each one 24 ⋅ 7 hours long. The figure shows that the proposed RL-lex 

approach is effective in controlling the blocking probabilities, whereas, with the Greedy 

heuristic, CoS 1 blocking probability grows almost to 10%, well above the threshold 

7.5%. The price of this control effort is paid by the average total blocking probability, 

which increases from 3.6% of the Greedy policy to 5.3%.  
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Figure 6. Average blocking probabilities in the second simulation 

 

6 Conclusions 

This paper proposes a novel proposed approach to the CAC problem modeled as a 

multi-constrained MDP. The proposed algorithm finds a lexicographically sub-optimal 

solution of the constrained MDP by on-line estimating the (action,value)-functions 

generated by the primary cost function, aimed at minimizing the total admission 

probability, and by the cost functions, aimed at controlling the blocking probabilities of 

each class of service. 

The proposed approach lightens the scalability problems of the standard LP 

approach used to solve constrained MDP, and has the advantage over the Lagrangian 

approach that it does not require a preliminary estimate of the values of the Lagrangian 

multipliers. 

The main aspects of the proposed algorithm that need further research in order to 

render it suitable for the implementation in real networks are the scalability and the fact 

that an effective CAC algorithm must be adaptive with respect to time-varying traffic 

statistics. In this last scenario, where the LP method is obviously not applicable, the RL 

algorithm is no more aimed at converging to a stationary optimal policy, but it must be 

able to continuously compute a (sub-optimal) policy which ‘follows’ the variations of 

the statistical characteristics. Effective methodologies exist in the literature for 

improving the RL scalability, such as using functional approximation of the 

(state,action)-value function and/or of the mapping 𝜋 (see (Busoniu, Babuska, De 

Schutter, & Ernst, 2010; Xu, Zuo, & Huang, 2014) and references therein), or 

implementing state-space and policy-space approximation techniques (as in the CAC 

algorithms in (Pietrabissa, 2008a, 2009a)). Also, we are considering recent advances in 

sampling theory and in model-based RL ((Gheshlaghi Azar, Munos, & Kappen, 2013; 

Szita & Szepesvári, 2010)). Model-based RL relies on a generating model of the 

environment, that is continuously used to sample different paths with respect to the one 

actually explored on-line. In this framework, for the sake of the scalability, we are 

considering local generating models. To obtain an adaptive approach, the CAC 

algorithm must compute estimates of the current traffic characteristics, in terms of 

arrival rate, duration, bitrate; the generating model itself is then updated on-line (e.g., as 

in (Adam, Buşoniu, & Babuška, 2012; Grondman, Vaandrager, Busoniu, Babuska, & 

Schuitema, 2012)), based on the most recent estimates. 
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