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ABSTRACT 

This work studies numerically the flow around an electrically insulated heating cylinder, bounded by 

walls of non-uniform electrical conductivity and subjected to a transversal magnetic field, with non-null 

components in the toroidal and poloidal directions. The configuration is representative of a typical 

breeding blanket segment in tokamak fusion reactors: to minimize magnetohydrodynamic (MHD) 

pressure drops, the liquid metal can be employed just as tritium breeder, whereas a non-conductive 

secondary fluid is used as coolant. The coolant is carried in the breeding zone by pipes that, being 

transversal to the stream-wise direction, affect the flow features and heat transfer. The flow is 

investigated by simulations performed in a 3D domain for Reynolds number 20 and 40, 0 ≤ M ≤ 50 

for the Hartmann number and 0° ≤ α ≤ 32° for the magnetic field inclination on the toroidal axis. The 

transition to the MHD regime causes the suppression of the cylinder wake and the disappearance of the 

steady vortex structures. Electromagnetic coupling balances the flow rates between the top and bottom 

sub-channels, individuated by the cylinder. The flow pattern modifications affect the heat transfer, which 

is found to increase with both M and α in the considered range, albeit for the latter in a non-monotonic 

trend. The pressure drop in the channel exhibits a similar behaviour. Moreover, the channel pressure 

drop is dominated by the fully developed component due to the 2D currents, whereas the local one, due 

to the cylinder presence, decreases steadily with the intensity of the applied magnetic field. The 

simulations were performed with ANSYS CFX-15. 
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Nomenclature 

 

1. INTRODUCTION 

Magnetohydrodynamic (MHD) flows are employed in a wide range of industrial applications, among 

which the most important are metallurgy, power generation, materials science, electromagnetic pumps 

and flow meters [1]. In nuclear fusion applications, a blanket is used to remove the heat deposited by the 

fusion neutrons, the plasma-facing first wall refrigeration, the breeding of the tritium required for the 

reactor operation and the radiation shielding for sensible components (i.e. superconducting coils) and 

personnel. Due to the extreme thermal loads involved in the reactor operation (several MW/m2), liquid 

metals (LM) are considered as ideal blanket working fluids due to their excellent thermal properties and 

the possibility to being used as tritium breeder and neutron multiplier for alloys containing Li [2,3]. 

However, significant unresolved technological issues are connected to the use of these fluids, one of the 

most important being the interaction with the plasma confinement magnetic field, which results to the 

transition to a magnetohydrodynamic (MHD) flow regime. 

A Cylinder area [m2] ν Kinematic viscosity [m2 s−1] 

B Magnetic induction (intensity) [T]  σ Electrical conductivity [S m−1] 

cp Specific heat capacity [J kg-1 K-1]  ϕ Electric potential [V] 

d Cylinder diameter [m]  

F Stream-wise length [m]  Dimensionless groups 

G Distance between cylinder bottom and lower wall [m]  c Wall conductance ratio 

H Poloidal half-length [m]  M Hartmann number 

J Current density [A m−2]  N Stuart number 

k Thermal conductivity [W m-1 K-1]  Pe Peclet number 

L Toroidal half-length [m]  Pr Prandtl number 

p Pressure [Pa]  Re Reynolds number 

r, θ, z Cylindrical coordinates [m, rad, m] 

x, y, z Cartesian coordinates [m]  Subscripts 

T Temperature [K]  b Bottom wall, bulk 

u0 Inlet mean velocity [m s−1]  d Downstream 

  H Hartmann layer 

Greek symbols  m Magnetic 

α Magnetic field inclination [°] s Side walls 

β Blockage ratio [-] t Top wall 

δ Thickness [m]  u Upstream 

μ Magnetic permeability [H m−1]  w Wall 
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Typically, the flow of the LM in a fusion blanket can be reduced to a rectangular duct flow in the presence 

of a strong, transverse, external magnetic field. The fluid motion induces the formation of electric 

currents which, in turn, interact with the magnetic field to generate Lorentz forces. These exert a retarding 

action, which can be considered as an additional electromagnetic “drag” term, and modify the flow 

features, interfering with the heat and mass transport mechanisms [4]. Enhanced corrosion rates of 

structural materials, turbulence suppression and pressure drops increased by orders of magnitude 

compared with the hydrodynamic case are among the most important challenges faced by the fusion 

blanket design [5–9]. 

To counter this last issue, a common strategy is to minimize the LM velocity, therefore delegating the 

blanket cooling to a secondary, non-conductive, fluid as water or helium. This solution leads to the 

necessity to devise a coolant system layout that can efficiently refrigerate the LM that, in this 

configuration, is considered just as tritium breeder. Most often encountered solutions employ cooling 

plates or pipes that tailor the LM flow or are immersed in it, both in the stream wise and transverse 

direction [10–12]. 

The bounded pressure-driven flow past a circular cylinder is a classic case studied in hydrodynamics and 

recently it has been investigated in a MHD perspective. The blockage ratio (β) and the offset from the 

duct centreline (G/d) are the most important geometric parameters and, together with the dimensionless 

Reynolds number (Re), Hartmann number (M, ratio between electromagnetic and viscous forces) and 

wall conductance ratio (c, ratio between duct wall and fluid electrical conductivity), define the flow 

features. The case of a magnetic field transverse to the flow and aligned with the cylinder axis is 

particularly important for fusion blankets applications and has been studied in the past both 

experimentally and numerically. The magnetic field is found to retard the transition to unsteady and 

turbulent regimes, suppress the cylinder wake and, in general, stabilize the flow compared with the 

hydrodynamic case [13–16]. 

The aim of this study is to extend the knowledge available for this class of flows by investigating the 

effect of features that, although commonly encountered in blanket design, have been not sufficiently 

investigated in the literature such as skewed magnetic field, bounding duct walls of non-uniform 

thickness and finite conductivity obstacles. The dynamics and heat transfer characteristics of a 3D MHD 

flow past a confined cylinder in a strong magnetic field were studied for Re = 20 and 40, Hartmann 

number in the range 0 ≤ M ≤ 50 and 0° ≤ α ≤ 32° for the magnetic field inclination on the toroidal 

axis. 
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2. FORMULATION 

The problem geometry is shown in Fig. 1. A rectangular duct with toroidal half-length L and poloidal 

half-length H confines a circular cylinder of diameter d. The coordinate system (x, y, z) identifies the 

radial (streamwise), poloidal and toroidal directions and has its origin in the obstacle centre.  

A local cylindrical coordinate system with the same origin (r, θ, z) is also defined, with the z-axis 

being shared with the global one. The blockage ratio of the obstacle is defined as β = d/2H. The 

offset of the cylinder from the duct centreline is obtained from the parameter G/d where G is the 

distance from the bottom of the cylinder to the nearby wall. The fluid enters the inlet with a constant 

velocity u0 in the x-direction. The magnetic field is constant, uniform and transversal to the stream 

direction with an angle α on the toroidal coordinate axis. The duct walls are assumed as electrically 

conductive, whereas the cylinder surface is electrically insulated and uniformly heated at a constant 

wall temperature Tw = 573 K. A fixed temperature difference with the fluid at the channel inlet is 

considered such that ΔT = Tw − Tin = 30 K. Finally, the walls are assumed adiabatic and initially at 

Tin = 543 K. Main geometrical parameters are available in Table 1. 

 

 

a) 

 

b) 

Fig. 1.  Test case geometry: a) radial-poloidal cross-section, the inlet is located at the left of the 

cylinder (x-direction); b) toroidal-poloidal cross-section (view from the inlet) 
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Table 1 

Test case main parameters 

Duct [mm] Cylinder [mm] Wall thick. [mm] 
Conductance ratio   

c × 102 

L 117.00 d 13.500 δT 1.00 cT 1.25 

H 30.25 di 8.000 δB 6.00 cB 7.50 

Fu 74.25 G d⁄  0.500 δS 10.00 cS 10.00 

Fd 202.50 β 0.223 δO 2.75 cO 0 

 

The MHD governing equations are obtained by the combination of the Navier-Stokes’ set and the 

Maxwell’s equations. For the parameters usually involved in liquid metal flows, it is possible to 

simplify the MHD equations employing the induction-less approximation. The influence of the 

induced magnetic field on the external one is measured by the magnetic Reynolds number Rem 

 

Rem = μσu0L (1) 

 

where μ and σ are the magnetic permeability and electric conductivity of the fluid. If Rem ≪ 1, the 

magnetic field is determined just by the boundary conditions, i.e. the induced field is neglected [17]. 

Since this condition is satisfied in the present work, the dimensionless MHD equations for an 

incompressible, laminar flow can be expressed with the ϕ-(electric potential) formulation as follows 

[4] 

 

∇ ⋅ 𝐮 = 0 (2) 

(𝐮 ⋅ ∇)𝐮 + ∇p −
1

Re
∇2𝐮 −

M2

Re
(𝐉 × 𝐁) = 0 (3) 

1

Pe
∇2T − (𝐮 ⋅ ∇)T = 0 (4) 

∇2ϕ − ∇ ⋅ (𝐮 × 𝐁) = 0 (5) 

 

Eqs. (2), (3) and (4) are similar to those employed for an ordinary hydrodynamic flow with the only 

addition of the source term M
2

Re⁄ (𝐉 ×  𝐁) to represent the Lorentz force acting on the fluid. A term 

to represent the power generation due to the Joule effect should be included in (4) but it can be 

demonstrated how it is negligible for liquid metal flows [15]. Eq. (5) is used to determine the J field 

for a given velocity field at a certain time step through the Ohm’s law 𝐉 = σ(−∇ϕ + 𝐮 × 𝐁). The 

variables of the equations system (2-5) u, p, B, J and ϕ are the velocity, pressure, magnetic induction, 
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current density and electric potential. These variables are scaled by u0, ρu0
2, B0, σu0B0 and Lu0B0 

where u0, B0, ρ are the inlet velocity, the intensity of the applied magnetic field and the density of 

the fluid considered. A normalized scaled pressure P̅ is defined, assuming u0 = 0.345 mm/s, to 

compare the pressure profiles among cases with different velocities. If not stated otherwise, lengths 

are scaled by the cylinder diameter d, whereas the dimensionless temperature T is defined as the 

difference between the local temperature and the inlet temperature Tin divided by ΔT. 

The dimensionless parameters Reynolds, Prandtl, Peclét, Hartmann and Stuart number are defined as 

 

Re =
u0d

ν
 (6) 

Pr =
cpρν

k
 (7) 

Pe =  Re ⋅ Pr (8) 

M = B0d√σ
ρν⁄  (9) 

N =  
M2

Re
 (10) 

 

where k, ν and cp are the thermal conductivity, kinematic viscosity and specific heat capacity of the 

fluid at constant pressure. 

The Hartmann number, Eq. (9), is a measure of the intensity of the applied magnetic field and, 

therefore, of the flow deviation from the hydrodynamic behavior. It is related to the ratio between the 

electromagnetic and viscous forces and therefore to the intensity of the magnetic field. Thin boundary 

layers appear close to the walls perpendicular (Hartmann layers, δH ∝ M−1) and parallel (Shercliff 

layers, δS ∝ M−1 2⁄ ) to the magnetic field. For M ≫ 1, the viscous forces are confined to the boundary 

layers and the flow is inviscid. In the case of skewed magnetic field with α ≫ M−1 2⁄ , the Hartmann 

layer behavior is observed for each wall with a non-null normal component of the magnetic field 

[4,18]. 

Eq. (10) introduces the Stuart number, or interaction parameter, that expresses a balance between the 

electromagnetic and inertial forces. If N ≫ 1, the inertia effects are negligible and the flow can be 

considered laminar and inertia-less. Another dimensionless parameter is needed to describe the 

influence of the wall conductivity on the flow features, which is called wall conductance ratio 

 

c =  
σw

σ

δw

L
 (11) 
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where σw and δw are the electrical conductivity and thickness of the wall, respectively. As shown in 

Fig. 1, the thickness of the walls bounding the flow is non-uniform, therefore the wall conductance 

ratio for the top (ct), bottom (cb) and side (cs) walls would be different (Table 1). Since the obstacle 

is assumed as electrically insulating, it is obvious that co =  0. 

The local Nusselt number on the cylinder surface A is defined as 

 

Nuw(θ, z) =  
d

Tw − Tb

∂T

∂r
|

w
 (12) 

 

where the temperature gradient is evaluated in the direction normal to the surface. The parameter Tb 

is the bulk fluid temperature that is determined from the velocity and temperature distribution on a 

cylindrical surface S fixed at a distance r = d from the centre of the obstacle 

 

Tb =  
∬ uT dθdz

S

∬ u dθdz
S

 (13) 

 

To quantify the total heat transfer from the obstacle to the wall, an average Nusselt number on A is 

defined as 

 

Nu =  
1

A
∬ Nuw(θ, z) dA

A

 (14) 

 

where A = 4πdL is the area of the wetted cylinder surface. The value of the Reynolds number was 

chosen well below the critical value reported by Frank et al. [13] to focus the analysis on steady-state 

flow. The increase in the pressure drop compared with the empty duct due to the obstacle presence 

can be defined as the normalized difference between the calculated drop and the one for the 

unperturbed channel (Δp2D), calculated considering the fully developed pressure gradient at the 

channel outlet 

 

Δp2D = (Fu + Fd) ⋅
∂p

∂x
|

outlet
 (15) 

pO =
Δp − Δp2D

Δp2D
 (16) 
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3. NUMERICAL STRATEGY 

3.1 Test case setup 

The commercial CFD code ANSYS CFX 15 was used to perform the present study. The MHD model 

implemented in the code relies on the inductionless approximation [19] and, therefore, solves the 

equations (2-5) outlined in the previous section. In recent years, this code has been employed to 

perform many numerical studies of incompressible MHD flows , while being validated against 

analytical solutions and experimental data for both pressure-driven and natural convection 

benchmarks [20–23]. 

The walls bounding the flow have a finite electrical conductivity; therefore Eq. (5) must be solved to 

determine the electric potential distribution therein. A computational domain composed by a solid 

(i.e. walls) and a fluid region is established with the electric potential and the normal component of 

the current density being conserved at the interface. Moreover, a zero-flux boundary condition is 

imposed for the current density at the solid domain external surfaces, on the cylinder, at channel inlet 

and outlet. 

The RAMS Eurofer 97 steel composes the solid domain, which is a common structural material 

employed in fusion reactor blanket designs. The lithium-lead eutectic alloy (LiPb) is the fluid selected 

for the fluid domain. The physical properties of these materials are assumed as constant in the 

temperature range of the simulation and they are evaluated at a reference temperature Tref = 558 K., 

The correlations from Mergia and Boukos [24] were employed to determine the Eurofer properties, 

whereas the database realized by Jauch [25] was used for the liquid metal (Table 2). In the adopted 

conditions, the Prandtl number for the LiPb at the reference temperature is equal to 3.4 ⋅ 10−2. 

 

Table 2 

Material properties 

 Lithium-Lead [25] Eurofer97 [24] 

ρ [kg m−3] 9.856 ⋅ 103 7.695 ⋅ 103 

σ [S m−1] 7.932 ⋅ 105 1.259 ⋅ 106 

κ [W m−1K−1] 12.831 30.060 

ν [m2s−1] 2.332 ⋅ 10−7 - 

αt [m2s−1] 6.885 ⋅ 10−6 7.193 ⋅ 10−6 

 

Typical velocities in the breeding zone for separate cooling fusion blanket ranges from 0.1 mm/s to 

5 mm/s and this, accounting for the stabilizing effect of the magnetic field, ensures the maintenance 

of a steady and laminar regime [5,11]. The simulations conducted focused on low Re, steady-state, 
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flow (Re = 20 and Re = 40) with inlet velocity in the range 0.345 mm s−1  ≤ u0 ≤ 1.38 mm s−1. 

Therefore, from Eq. (8), Péclet number is 0.68 ≤ Pe ≤ 2.72. A uniform velocity profile was 

assumed at the inlet, whereas at the outlet a zero pressure was specified. The calculated magnetic 

Reynolds number is O(10-6), which widely satisfies the condition for the induction-less approximation 

employed by the code. 

For an operative fusion blanket, the magnetic induction intensity leads to M = O(103). Since no 

computational MHD code available can perform 3D calculations for this value [26], the Hartmann 

number considered for the study was 10 ≤ M ≤ 50. For any M value, an angle α = 16° of the 

magnetic field on the toroidal coordinate axis was considered. Since the poloidal component can 

change up to ± 50% during the blanket operation, additional simulations were performed for M =

10 to assess the influence of the magnetic field orientation on heat transfer and pressure drops [27]. 

Calculations for purely toroidal magnetic field (α = 0°) and hydrodynamic flow were performed to 

provide reference cases. Only steady-state cases were considered. A full overview of the test matrix 

is available in Table 3. 

 

Table 3 

Test matrix parameters 

M Re Pe N α (°) 

10 
20 0.68 5 0, 8, 16, 24, 32 

40 1.36 2.5 0, 8, 16, 24, 32 

30 
20 0.68 45 16 

40 1.36 22.5 16 

50 
20 0.68 125 16 

40 1.36 62.5 16 

 

All the simulations were performed with the “high resolution” advection scheme that is a local- 

weighted version of the upwind discretization scheme. CFX employs a coupled solver, which 

calculates simultaneously Eqs. (2-5). The steady-state algorithm uses a virtual time step to under-

relax the equations and improve numerical stability. For the analysis, the Local Timescale option was 

selected for the calculation of the time step, which enables the code to weigh the value with the local 

velocity field. The value calculated is then adjusted by the application of a reduction factor [28]. A 

factor between 0.5 and 4 was enough to achieve reasonable convergence speed for all the simulations. 
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3.2 Domain discretization 

This class of problems is usually modelled employing the quasi-2D approximation developed by 

Sommeria and Moreau [29], e.g [15,30], etc. In this study, a full 3D computational domain was 

required due to the complex magnetic field topology and non-uniform wall conductivity. A critical 

aspect for the mesh of a MHD flow is to provide enough nodes (~10) in the thin boundary layers. 

This condition is necessary to follow the steep velocity gradient present therein and can lead to 

excessive computational costs for high M values. A conformal mesh for the solid and fluid domain is 

required to calculate the electric potential distribution in the walls. If this condition is not met, 

numerical errors are introduced due to the imperfect coupling between the domains. An example of 

the non-uniform mesh employed is available in Fig. 2. 

 

 

a) 

 

  

b) c) 

 

Fig. 2.  a) Example of the mesh employed in the study, b) detail of the grid refinement around the 

obstacle, c) Hartmann layer resolution close to the cylinder surface (i.e. δH~1.35 mm) 

 

3.3 Mesh sensitivity 

A study was carried over to ensure the independence of the results obtained from the grid resolution. 

Five mesh with increasing refinement (number of nodes) on the cylinder circumference (N∅), the 

upstream (NU) and downstream (ND) direction (Table 4) were considered for flow with Re = 20 and 

M = 10. The dimensionless parameters monitored were the average temperature of the fluid at the 

outlet (Tout), the average Nusselt number on the cylinder surface (Nu) and the pressure drop in the 
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channel (Δp). An error of less than 2% compared with the result of the most refined mesh (Grd5) was 

found for all the parameters (see Table 4). The mesh Grd3 was chosen as the reference for the study 

and was employed for all the simulations, slightly changing the element grading toward the wall to 

account for the shrinking of the Hartmann layer. 

 

Table 4 

Mesh sensitivity results 

 Grd1 Grd2 Grd3 Grd4 Grd5 

N∅ 100 120 160 200 240 

NU 24 29 39 49 59 

ND 48 58 77 97 115 

N° cells 4.56 ⋅ 105 6.79 ⋅ 105 1.42 ⋅ 106 2.49 ⋅ 106 3.96 ⋅ 106 

Tout 0.682 0.669 0.675 0.679 0.678 

Nu 2.585 2.551 2.567 2.572 2.571 

Δp 76.628 76.605 76.580 76.574 76.575 

 

4. RESULTS AND DISCUSSION 

4.1 Fluid flow field and pressure drop 

The flow velocities considered are low enough that the flow maintains the laminar and steady state 

throughout the analysis. This circumstance is desired, since the LiPb is not expected to make the 

transition to the turbulent regime in separate cooling blanket design [12,10]. 

Simulations were performed with no magnetic field applied to provide reference for the MHD results. 

At Re = 20, the flow around the cylinder is almost symmetric with a perfect wetting of the heated 

surface and indistinct wake (Fig. 3). The proximity with the duct bottom wall reduces the cross-

section available for the flow in the sub-channel below the cylinder, which carries only 6% of the 

total mass flow rate. For Re = 40, a more consistent wake develops with the appearance of steady 

vortex structures. However, the wake is far from symmetric due to the wall effect and the high 

velocities in the sub-channel above the cylinder. The main flow stretches the top vortex, whereas the 

bottom one retains its original structure. The obstacle has a significant effect on the pressure drop in 

the cross-section, as reported in Table 5, with an increase between the 193% and 451% compared 

with the unperturbed flow. 
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Table 5 

Pressure drop and flow rate distribution in the channel 

M 0 10 30 50 

Re 20 40 20 40 20 40 20 40 

Δp  (Pa⋅ 103) 2.28 6.28 9.66 18.95 94.90 187.28 269.61 498.30 

dP̅ dx⁄
†
 0.032 0.048 0.339 0.540 3.505 6.956 10.165 18.277 

Δp3D (%) 193§ 451§ 18.38 45.84 12.26 11.63 10.28 13.36 

ṁ (%) y > 0 94.0 90.8 90.6 88.5 73.7 78.25 71.8 70.4 

ṁ (%) y < 0 6.0 9.2 9.4 11.5 26.3 21.85 28.2 29.6 

§Unperturbed pressure drop in the channel compared with flow far from the cylinder 

.†Normalized pressure gradient (− dp dx⁄ ) ⋅ d/(ρu0
2), where u0 = 0.345 mm s−1 

 

In Fig. 4, the transition of the flow from the hydrodynamic to the MHD regime is presented. In the 

former, the fully developed flow downstream the cylinder assumes the typical parabolic Poiseuille 

profile for every radial-poloidal plane. This is no longer the case for the MHD flow where, even for 

M = 10, the boundary layers shrink noticeably assuming the thickness δH ∝ 1 M⁄ , characteristic of 

the Hartmann layers [4]. The Hartmann layer behaviour dominates in the test section since the 

magnetic field has a non-null normal component for every wall. For a purely toroidal magnetic field, 

boundary layers of thickness O(M-1/2) would appear alongside the top and bottom wall, which would 

be aligned with the magnetic field [31]. These are called Shercliff layers and, for c ≠ 0 walls, are 

characterized by jets. Since α >  M−1 2⁄ , the boundary layer detaches from the wall and the jet is 

smeared over the core region creating an internal layer that follows the magnetic field lines and 

connects two opposite duct corners. A free shear layer of thickness O(M-1/2) is observed perpendicular 

to the field direction, which bridges the gap between the Hartmann layer and the internal one. 

Moreover, the top wall, which has relatively low conductivity compared with the bottom one, 

promotes the flow in the surrounding area, whereas the opposite effect is observed close to the thicker, 

thus more conductive, bottom wall. 

Downstream from the obstacle, the magnetic field restores more quickly the fully developed state 

compared with the hydrodynamic case. At M = 10 and Re = 40, the wake vortices which were 

stretched by the flow in the M = 0 simulation are regularized and the top structure retains its 

symmetry to the bottom one (see Fig. 3). However, the wake length is shortened with the separation 

points moving downstream. This trend is confirmed with increasing M. At M = 50, the wake is 
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completely suppressed and the fluid wets uniformly the cylinder surface for any value of Re 

considered (Fig. 3). The front stagnation point shows a similar behaviour, being gradually shifted 

toward the top of the cylinder due to the increase of the flow rate in the bottom sub-channel. 

 

 Re = 20 Re = 40 

M = 0 

  

M = 10 

  

M = 30 

  

M = 50 

  

Fig. 3.  Velocity streamlines around the cylinder for the radial-poloidal plane at z = 0. Left images 

show the results for Re = 20, right for Re = 40. Magnetic field inclination α = 16° 
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a) M = 0 b) M = 10 c) M = 50 

Fig. 4.  Velocity contour comparison for M = 0, 10, 50 at Re = 20. Top row: toroidal-poloidal view 

at cylinder centre (x d⁄ = 0); middle row: toroidal-poloidal view at x d⁄ = 10; bottom row: radial-

poloidal view at z L⁄ = 0. Numbers in middle row refers to 1) internal layer, 2) Hartmann boundary 

layer, 3) free shear layer. Note that the velocity scale for column c) covers a different range 

 

In Table 5, the mass flow rate ṁ calculated at x d⁄ = 0 in the sub-channels, which are identified above 

(y > 0) and below (y < 0) the cylinder, is shown. For M > 0, flow rate in the bottom sub-channel 

increases steadily with M, reaching up to 5 times the amount found for the hydrodynamic case. The 

electromagnetic coupling between the two sub-channels causes this phenomenon. Since the lateral 

walls are conductive and are in common between the sub-channels (see Fig. 1), an induced current 

generated in the top can close its path through the walls of the bottom one. Therefore, the sub-channels 

are coupled and their flow rate tends to equalize: this phenomenon is known as Madarame effect [5]. 

The electric potential profile in the duct is asymmetric with a higher positive peak localized close to 

the top-wall. The presence of the obstacle perturbs the profile, as shown in Fig. 5a and 5b. In Fig. 6a 

and 6b, current streamlines for the fully developed flow and the area surrounding the cylinder are 

available. For the fully developed state, the currents are confined to the cross-section (i.e. toroidal-

poloidal) and for this reason it is labelled as a 2D flow. Since the condition c ≫ M−1 is valid for the 

duct, the current paths close through the walls and avoid the boundary layers. Close to the obstacle 

the flow is far from the fully developed state and a gradient of velocity exists between front and rear 

part of the cylinder. This generates an electric potential difference, which in turn creates currents with 

a non-null component in the stream wise direction (see Fig. 6b). These axial currents cause an 

additional pressure drop term, called three-dimensional, which adds to the electromagnetic drag 
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characteristic of the planar currents [5]. An overview of the 3D pressure drop incidence on the total 

is available in Table 4. A useful insight on this behaviour can be deduced by Fig. 7a and 7b. 

 

a) b) 

  

 

Fig. 5.  Electric potential contour at M = 10 and Re = 20 for the toroidal-poloidal cross-section at 

a) x d⁄ = 0 and b) x d⁄ = 10 

 

a) b) 

  

Fig. 6.  Current streamlines at M = 10 and Re = 20. a) Fully developed flow at x d⁄ = 10, toroidal-

poloidal cross-section; b) detail of the obstacle at z = 0, radial-poloidal cross-section. The grey 

shade identifies the duct walls, the red line the cylinder surface 

 

Since the duct walls are conductive, the pressure gradient in the channel due to the planar currents 

can be expressed as 

 

dp

dx
|

2D
~

σwu0B2δw

L
 (17) 

 

No simple expression can be formulated for the 3D term, since the flow geometry strongly affects it. 

For low intensity of the magnetic field, the pressure gradient due to the 2D flow is relatively small 

and, therefore, the 3D term governs the channel pressure drop. When M increases the 2D pressure 

gradient rises and the influence of the axial currents on the flow features is reduced. This is 

understandable because according to Eq. (17) it is proportional to B2, whereas the latter have in 

general a weaker dependence on the induction intensity [5]. The 3D term weight decreases with the 

intensity of the magnetic field, falling from ~18% to ~10% for Re = 20 in the range considered for 
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this study. Enhancing the fluid mean velocity partially reverts this trend, as it is possible to see 

observing the M = 30 plots in Fig. 7b. It should be noted that this behaviour is typical of MHD flows 

in electroconductive channels (c ≫ M−1). For an insulating duct, the 3D term would be dominant, 

whereas for highly conductive walls (c ≫ 1) the pressure gradient from the planar currents is so 

intense that the 3D contribute is negligible [32]. 

The inclination of the magnetic field plays an important role in the definition of the flow features and, 

consequently, the channel pressure profile. For a case with walls of non-uniform conductivity (Hunt 

flow), Alty [33] found that an increasing inclination of the magnetic field causes the detachment of 

the jets from the side walls and, for the limiting case of α = 45°, the coalescence in a single, diagonal 

jet in the core region. This same phenomenon is observed in the present work. In Fig. 8 the velocity 

contours for various inclinations of the applied field are shown. For a purely toroidal field (Fig. 8a), 

the reduced electromagnetic drag in the area close to the thin wall at y H⁄ = +1 causes the formation 

of a single jet that occupies most of the cross-section and coalesces with the suppressed one at the 

opposing thicker wall. Increasing the inclination, the internal layer previously described is first 

formed and then separates in two layers that gradually moves toward the left and right walls at z L⁄ =

 ±1. For α = 90° (non-simulated), the magnetic field is only poloidal and the classic M-shaped flow 

is recovered with the formation of jets close to these walls. 

 

a) b) 

  
 

Fig. 7.  Normalized pressure profile in the duct: a) plots for M = 10 and b) for M = 50. The dotted 

lines mark the region occupied by the cylinder 

 

 

Numerical results by Kirillov et al. [9] and Hua and Walker [32] have shown that varying the 

inclination of the magnetic field is accompanied by a general increase of the pressure gradient. The 

existence of a non-monotonic behaviour was also highlighted. Although the magnetic field inclination 
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considered in this work was limited to α ≤ 32°, the results obtained are in overall agreement with 

the literature. An overview of the behaviour of the channel pressure drop and fully developed flow 

pressure gradient is available in Fig. 9. The variation compared with the pressure drop for α = 16° is 

included in the range 0.9 ≤
Δp(α)

Δp(16°)
≤ 1.25. 

 

a) α = 0° b) α = 16° 

  

c) α = 32° d) α =  48° 

  

 

Fig. 8.  Fully developed flow velocity contours for various inclinations of the magnetic field at M =

10 and Re = 20 

 

a) b) 

  

Fig. 9.  Influence of magnetic field inclination for M = 10 on a) channel pressure drop and b) fully 

developed flow pressure gradient. The dotted lines identify the range of magnetic field inclination 

for an operative blanket [27] 
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4.2 Heat transfer 

Since the Joule heating is negligible, no additional source of power is present within the flow except 

the cylinder surface. Therefore, the magnetic field can enact its influence on the heat transfer 

mechanisms just by modifying the flow pattern. In Fig. 10, dimensionless temperature contours at 

Re = 20 are presented. Since Pe = 0.68, the advection transport is just slightly higher than the 

conduction, which is demonstrated by the shape of the isotherms upstream from the cylinder. 

Downstream, the isotherms are shifted gradually streamwise and toward the duct centreline with M, 

due to the stabilizing effect of the magnetic field on the flow imbalance between the top and bottom 

sub-channels (see Table 4). 

In particular, the fluid in the latter reaches velocity much higher compared with the flow observed in 

the hydrodynamic case (see Fig. 4). This phenomenon increases the power removed by the flow in 

the cylinder bottom half and, since the peak velocity is proportional to M, the local Nusselt number 

is found to rise steadily along the surface. To a lesser degree, the insulating cylinder promotes the 

fluid velocity also in the top sub-channel. These phenomena of course affect the heat transfer. 

 

  

a) b) 

 

Fig. 10.  Dimensionless temperature contours for the radial-poloidal cross-section at the centre of 

the duct for Re = 20 a) M = 10 and b) M = 30 

 

No variation was found for the average Nusselt number calculated on the obstacle surface between 

the reference case and the M = 10 one. This result agrees with Chatterjee and Chatterjee [30], which 

for a similar simulation setup found a constant value for the flow of a liquid metal (Pr = 10−2) in the 

range M = [0, 10]. However, for fluids characterized by higher Prandtl numbers Chatterjee 

established that the initial plateau was followed by a regime where the Nusselt numer increased with 

the intensity of the magnetic field. Indeed, the simulations for M > 10 carried over by the present 

work show that this behaviour extends to liquid metals, as it is possible to see in Fig. 11. An higher 

Nu is found for Re = 40 due to the increase in the efficiency of the convective transport mechanism 

for the enhanced fluid velocity. An explanation for this increment can be found in the enhancement 
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of the local fluid velocity around the cylinder due to the insulating surface and the improvement of 

the power extraction in the bottom sub-channel. Since the two plots converge at M = 50 for 

Nu ~ 2.95, it seems unlikely that this trend could be maintained for higher M: the mean flow 

suppression should eventually compensate the positive contribution to the heat transfer due to the 

increased flow rate in the bottom sub-channel. Further investigations are needed to assess if this trend 

can be expected also for a conductive cylinder surface. 

The influence of the magnetic field inclination on Nu is more complex, as shown in Fig. 11b. For 

α = 0°, the magnetic field is purely toroidal and, due to the low local conductivity, the flow is mostly 

centred in a jet close to the top wall. Alongside the wall, the side layer shows a velocity parabolic 

profile, which connects the peak with the Hartmann layers. When α increases, the side layer detaches 

from the wall and most of the flow is carried over by the internal layer. This condition is more 

favourable for the heat transfer since the average velocity of the fluid hitting the obstacle increases. 

An increment of ~6% was found for the average Nusselt number between the purely toroidal case 

and α = 32°. 

 

a) b) 

  

Fig. 11.  Average Nusselt number on the cylinder surface; a) dependence on the Hartmann number 

(M) at α = 16°and b) magnetic field inclination (α) for M = 10. The dotted lines identify the range 

of magnetic field inclination for an operative blanket [27] 

 

The local Nusselt number (Nuw) was plotted along the circumference of the cylinder at the centre of 

the duct. The results are presented in Fig. 12. The sharp increase for π 2⁄ ≤ θ ≤ π can be explained 

as the combined result of the shifting toward the top of the cylinder of the front stagnation point and 

of the higher flow rate in the bottom sub-channel, which is evident comparing these plots with the 

velocity streamlines available in Fig. 3. Moreover, the suppression of the wake for Re = 40 causes 

the drop of local Nusselt number for the rear stagnation point (θ =  3π 2⁄ ) at M = 50. 
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a) b) 

  

Fig. 12.  Local Nusselt number on the cylinder circumference at z = 0; a) plot for Re = 20 and b) 

for Re = 40 

 

Finally, the local Nusselt number was plotted alongside the toroidal direction for four relevant 

azimuthal (θ) coordinates at Re = 20 in Fig. 13. It is interesting to note how the Nuw peak for the 

cylinder front is shifted from the centreline, following the velocity peak, whereas the highest heat 

transfer for the back part is verified in the hydrodynamic case due to the wake presence. Conversely, 

the Nuw in the bottom part of the cylinder increases steadily with M due to the enhanced flow rate. 

In Fig. 12a and 12b, it is evident also the strong action of the magnetic field that strongly suppress 

the flow close to the walls at z/L =  ±1, where the Nuw is lower than the hydrodynamic case. 
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a) θ = 0 c) θ = π 

  

b) θ = π 2⁄  d) θ =  3π 2⁄  

  

Fig. 13.  Local Nusselt number on the obstacle surface at the cylinder: a) top, b) front, c) bottom 

and d) back point 

 

5. CONCLUSIONS 

In the present study, the MHD flow of a liquid metal past an electrically insulated circular cylinder 

and bounded by walls of non-uniform conductivity was investigated. The applied magnetic field was 

transversal to the flow and coaxial with the obstacle, featuring non-null components in both the 

toroidal and poloidal direction. Moreover, the cylinder was displaced by the duct centreline toward 

the bottom wall and its surface was kept at a fixed temperature, so that a ΔT was present between the 

obstacle and the fluid at the inlet. 

The flow features and heat transfer for this case were investigated for low Reynolds number (Re =

20, 40), Hartmann number 0 ≤ M ≤ 50 and magnetic field inclination relative to the toroidal axis 

0° ≤ α ≤ 32°. The main results outlined were: 

• The mass flow rate carried by the sub-channel below the obstacle increases linearly with the 

magnetic field intensity. For M = 50, an increment between 3 and 5 times compared with the 

hydrodynamic reference case was found. This phenomenon is caused by the electromagnetic 
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coupling (Madarame effect) of the sub-channels, which share the lateral conductive duct 

walls. 

• The pressure drop in the channel can be modelled as the fully developed term (Δp2D), 

following the scaling law for MHD flows in rectangular ducts with electroconductive walls 

(∝ B2), plus an additional term due to the obstacle presence (Δp3D) with a weaker dependence 

on magnetic field intensity. Thus for M → ∞ and low Reynolds number flows, the pressure 

penalty due to the obstacle transverse to the streamwise direction becomes negligible 

compared with the fully developed term. 

• The magnetic field inclination α influences the flow features and, in turn, the pressure 

gradient. A non-monotonic behaviour was found for the latter, with a local minimum for α =

8°, and a steady increase for α ≥ 16°, which are in overall agreement with similar results 

available in the literature. In the range considered for the tokamak operation (8° ≤ α ≤ 24°), 

it was found a pressure drop deviation with respect to the design inclination (α = 16°) equal 

to 0.9 ≤
Δp(α)

Δp(16°)
≤ 1.25. 

• Due to the enhanced mass flow rate with the magnetic field intensity, the average Nusselt 

number is found to increase with the Hartmann number (≃ 20% for M = 50). It is unclear if 

this trend would be maintained for stronger magnetic fields, but it is probable that the mean 

flow velocity suppression will eventually overcome the positive contribution to the heat 

transfer from the bottom sub-channel. A reduction in the increase rate of the Nusselt number 

between M = 30 and M = 50 can be already observed in Fig. 11. 

• The field inclination α influence on the heat transfer is found to be limited. The average 

Nusselt number is found to slightly increase with the inclination. In the range considered for 

the tokamak operation (8° ≤ α ≤ 24°), the deviation with respect to the design inclination 

(α = 16°) is found to be ±2%. 

 

Further study is required to investigate the phenomena presented in this paper for a magnetic field 

intensity closer to the operative fusion reactor blanket value M = O(103). Among the topics 

neglected by the present study, the influence of the obstacle conductivity and buoyancy forces on the 

flow features are considered the most important to be addressed. 

Conversely to the obstacle modelled in the present study, the cooling pipe in the blanket is electrically 

conductive and in direct contact with the molten metal. By providing an additional path for the closure 

of induced currents, the obstacle conductivity could affect the Lorentz force distribution on the cross-

section which, in turn, will modify the local flow structure and heat transfer mechanisms. A follow-
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up activity has been planned to investigate this phenomenon considering both an ideal perfectly 

conducting (co = ∞) cylinder and a “realistic” obstacle, composed of Eurofer [10]. 

A significative temperature gradient is expected between a fusion reactor blanket first wall and the 

back-supporting structure (Gr ≃ 109 − 1012) which will modify the flow velocity field, causing the 

onset of a mixed convection regime. Hydrodynamic simulations have shown the potential for relevant 

heat transfer improvement compared with the forced convection case. However, these results must 

still be confirmed by accompanying MHD analyses [12]. 
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