
 1 

  

Abstract—This paper presents an original discrete-time, 

distributed, non-cooperative load balancing algorithm, based on 

mean field game theory, which does not require explicit 

communications. The algorithm is proved to converge to an 

arbitrarily small neighborhood of a specific equilibrium among 

the loads of the providers, known as Wardrop equilibrium. 

Thanks to its characteristics, the algorithm is suitable for the 

Software Defined Networking (SDN) scenario, where service 

requests coming from the network nodes, i.e., the switches, are 

managed by the so-called SDN Controllers, playing the role of 

providers. The proposed approach is aimed at dynamically 

balancing the requests of the switches among the SDN Controllers 

to avoid congestion. The paper also suggests the adoption of SDN 

Proxies to improve the scalability of the overall SDN paradigm and 

presents an implementation of the algorithm in a proof-of-concept 

SDN scenario, which shows the effectiveness of the proposed 

solution with respect to the current approaches. 

 
Index Terms—Load balancing, Lyapunov design, Wardrop 

equilibrium, Software Defined Networks.  

 

NOMENCLATURE 

 
𝐶 = {1,2, … , 𝑐}  Set of commodities 

𝑙𝑝(𝑥𝑝)  Latency of provider 𝑝 with load 𝑥𝑝 

ℒ(𝒙)  Candidate Lyapunov function 

𝑟𝑝𝑞[𝑘]  Migration rate from provider 𝑝 to 

provider 𝑞 at time 𝑘 

𝑉  Set of providers 

𝑥𝑝
𝑖 , 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑉  Load of commodity 𝑖 relying on 

provider 𝑝 

𝒙 = (𝑥𝑝
𝑖 ), 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑉  Flow vector 

𝒳  Feasible state space 

𝒳𝒲  Wardrop equilibrium set 

𝒳𝒲,𝜀  𝜀-Wardrop equilibrium set 

𝜆𝑖 , 𝑖 = 1, … , 𝑐  Per-commodity flow demand 

𝜇𝑝𝑞(𝑙𝑝, 𝑙𝑞)  Migration policy from provider 𝑝 to 

provider 𝑞 

Φ(𝒙)  Beckmann, McGuire and Winsten 

potential 

 
This work is supported by the European Commission in the framework of 

the FP7 projects T-NOVA (Network Functions as-a-Service over Virtualised 

Infrastructures, www.t-nova.eu/) under Grant Agreement no. 619520, and FI-
Core (Future Internet - Core) under Grant Agreement no. 632893. 

A. Pietrabissa, L. Ricciardi Celsi, F. Cimorelli, F. Delli Priscoli, A. Di 

Giorgio, A. Giuseppi, and S. Monaco are with the Department of Computer, 
Control, and Management Engineering Antonio Ruberti, University of Rome 

La Sapienza, via Ariosto 25, 00162, Rome, Italy (email:{pietrabissa, 

I. INTRODUCTION 

ith the advent of cloud services, enterprises and carriers 

have found themselves in need of evolving their network 

infrastructures to satisfy new requirements, such as 

managing a higher demand for bandwidth and for 

responsiveness to new data patterns (including machine-to-

machine, data-center and mobility traffic), scaling IT resources, 

sharing the same infrastructure among different logically 

isolated networks, and applying network-wide policies.  

In order to face these new challenges, the current research is 

focused on the virtualization and elastic provisioning of the 

network resources within the Software Defined Networking 

(SDN) paradigm [1]. Such innovation is carried out by different 

public/private initiatives: among others, the FP7 T-NOVA and 

FI-Core research projects.  

As defined by the Open Network Foundation (ONF), “SDN 

is a network architecture where network control is decoupled 

from forwarding and is directly programmable.” While the so-

called forwarding plane (in charge of physically routing the 

data packets) resides in the network nodes, i.e., in the switches, 

all the intelligence related to network control is logically 

centralized into a single software entity called SDN Controller, 

responsible for the control of the network behavior. In short, the 

SDN Controller is in charge of managing all network 

information, thus making, and enforcing into the underlying 

nodes, suitable forwarding decisions.  

Since the network intelligence is shifted from the switches to 

the SDN Controller, each switch sends to the SDN Controller 

requests for forwarding decisions, each of which constitutes a 

unit of workload, or job. Although the SDN Controller can be 

vertically scaled, it can still saturate, thus becoming a relevant 

bottleneck for the network plant in terms of throughput and 

latency. 

To overcome this scalability issue, a pool of SDN Controllers 

can be arranged in a cluster to form a physically distributed but 

logically centralized Control Plane sharing the overall network 

ricciardicelsi, cimorelli, dellipriscoli, digiorgio, giuseppi, 

monaco}@diag.uniroma1.it). 

V. Suraci is with the SMART Engineering Solutions & Technologies 
(SMARTEST) Research Center, eCampus University, Via Isimbardi 10, 22060, 

Novedrate (CO), Italy (e-mail: vincenzo.suraci@uniecampus.it). 
 A. Pietrabissa and L. Ricciardi Celsi are joint first authors. 

 

Lyapunov-based design of a distributed Wardrop 

load balancing algorithm with application to 

Software Defined Networking 

Antonio Pietrabissa, Lorenzo Ricciardi Celsi, Federico Cimorelli, Vincenzo Suraci,  

Francesco Delli Priscoli, Alessandro Di Giorgio, Alessandro Giuseppi, and Salvatore Monaco 

W 



 2 

information, workload and control effort. Up to the authors’ 

knowledge, a drawback of such an approach resides in the fact 

that, in the currently adopted proximity-based approaches, each 

switch (and, consequently, its workload) is statically associated 

with the closest SDN Controller. However, this static approach 

is not effective, especially when the workload is not evenly 

spatially distributed and/or is dynamic (which is always true in 

communication networks). 

Therefore, load balancing mechanisms and algorithms are 

required to dynamically allocate the workload among all the 

available SDN Controller instances with the overall aim of 

optimizing the network performances. In [2], a switch 

migration protocol was devised for this purpose, yet such an 

approach requires an advanced load estimation mechanism for 

both SDN Controllers and switches, and an intra-controller 

protocol to guarantee liveness and safety features. 

In this paper, the performance of the SDN Controllers is 

defined by a latency function, which describes how the 

response time of the SDN Controller grows with its workload. 

The objective of the load balancing algorithm is then to direct 

the requests of the switches to the SDN Controllers in such a 

way that the values of the latency functions of the SDN 

Controllers are equalized. The two main problems in the 

algorithm development are: 

• the fact that the latency functions are not known (e.g., the 

load/delay curve of an SDN Controller depends on its 

specific hardware and software implementation); 

• a distributed approach is needed since a centralized 

approach would require too much control traffic to 

exchange information among the SDN Controllers and 

potentially thousands of switches. 

In this paper, a distributed, non-cooperative and dynamic 

load balancing algorithm is consequently developed on the 

ground of mean field game theory; specifically, the algorithm 

considers each request from a switch as an agent (whose 

decision is to determine the SDN Controller such a request has 

to be routed to), and is based on the measured response time of 

the SDN Controllers themselves: the algorithm is such that the 

agent decisions lead to an equilibrium, known in mean field 

game theory as Wardrop equilibrium, where the values of the 

latency functions of the SDN Controllers are equalized. 

The main motivations behind this work are then (i) to prove, 

using Lyapunov arguments, how the difference equation 

governing the global state of the system (and macroscopically 

abstracting the microscopic evolution of the single agents 

involved) converges to an arbitrarily small neighborhood of a 

Wardrop equilibrium, and (ii) to show the effectiveness of such 

an approach through its application to a real SDN scenario. 

The work presented in this paper was carried out within the 

FP7 T-NOVA project (www.t-nova.eu), aimed at extending the 

emerging concept of SDN to the efficient reconfiguration and 

elastic scaling of virtualized network functionalities (see 

Section II.B). Indeed, the proposed algorithm is embedded in 

the T-NOVA SDN Control Plane, allowing the management of 

virtual networks over data-center physical infrastructures. 

However, we further note that, since the algorithm is developed 

within the research framework of Wardrop load balancing and 

selfish routing (see Section II.A), it can be applied to several 

problems and scenarios other than the one considered here. 

The paper is organized as follows: Section II presents the 

state of the art on Wardrop load balancing and on SDN 

networks, as well as the proposed novelties; Section III presents 

the algorithm and the convergence proof; Section IV shows 

some results of an SDN implementation; Section V draws the 

conclusions.  

II. STATE OF THE ART AND PROPOSED INNOVATIONS 

A. Wardrop Load Balancing 

Several load balancing approaches have been proposed in the 

literature: namely, in [3] it is suggested to classify load 

balancing algorithms as based on global, cooperative or non-

cooperative approaches. Global algorithms require that each 

node, by means of an extensive interconnected system, 

transmits its current state to a centralized load balancer, which 

judiciously assigns a job to each resource, while simultaneously 

optimizing a specific objective (e.g., the response time of the 

entire system over all jobs). This is a classical approach that has 

been studied extensively using different techniques (e.g., 

nonlinear optimization) until it has been outperformed by the 

other two above-mentioned approaches. In cooperative 

algorithms, several decision makers agree upon making a 

coordinated decision so that each one of them operates at its 

own optimum. Instead, non-cooperative algorithms entail the 

presence of several decision makers which optimize their own 

response time independently of the others, since cooperation is 

not allowed. In such a case, a Nash equilibrium condition is 

reached where no decision maker can receive any further 

benefit by changing its own decision unilaterally. In other 

words, the stability of the network under said algorithms is 

analysed in terms of reaching a load distribution in which no 

single job can move to any other node with a lesser number of 

jobs.  

Furthermore, load balancing algorithms can be classified as 

either static or dynamic. Static load balancing relies on the 

available knowledge of the application load, whereas dynamic 

load balancing algorithms are required for settings where the 

load distribution is not known a priori and succeed in 

performing their decision-making process based on the current 

state of the system, which is generally made available via 

feedback. 

From the large body of literature on load balancing, we recall 

[4] and [5] as examples of centralized static cooperative load 

balancing, [6] and [7] as examples of centralized static non-

cooperative load balancing, [8] and [9] as examples of 

centralized dynamic load balancing, and we also recall [10], 

which, instead, addresses the problem of distributed dynamic 

load balancing relying upon local cooperation among 

neighboring network nodes. 

The scenario considered in this paper requires a non-

cooperative dynamic load balancing approach. This kind of 

algorithms are widely investigated in game-theoretic 

frameworks, where the problem can be described as a dynamic 

load balancing game, in which users distribute their loads in a 

non-cooperative and selfish fashion [11] (in some applications, 

these algorithms are also referred to as selfish routing ones). 

Moreover, in this paper we consider a renowned game-theoretic 

traffic model due to Wardrop [12], introduced to represent road 

traffic with an infinite number of agents, each being responsible 



 3 

for an infinitesimal amount of traffic. Within this framework, a 

certain amount of traffic, or flow demand, has to be routed from 

a given source to a given destination via a collection of paths. 

Each agent has the possibility to distribute its own flow among 

a set of admissible paths. The network is characterized by non-

decreasing latency functions depending on the flows on the 

edges. A combination of flows such that the latencies of all the 

employed paths are minimal is called a Wardrop equilibrium 

for the network. Indeed, a Nash equilibrium is said to become a 

Wardrop equilibrium whenever the number of decision makers 

is assumed to be infinite [13]. 

Distributed algorithms designed to make concurrent users 

converge to some game-theoretical equilibrium conditions 

often rely on re-allocating resources in a round-based fashion 

(see, for instance, [11], [14], [15], and [16]). Some of these 

algorithms, in particular, are based on the concept of sampling 

the different strategies at each round, in order to guarantee a 

certain degree of exploration of the surrounding environment 

and, at the same time, to favor the use of the best strategies 

(exploitation). This last approach is used in several learning 

techniques (see, for instance the reinforcement learning 

approach in [17]), thus leading the algorithm to eventually 

converge to the optimal solution while providing acceptable 

solutions in the transitory phase. However, in communication 

networks it is preferred to distribute the flows more regularly 

by splitting the transmission flows associated with each user 

into smaller flows, each one directed to one of the available 

providers, in a rate-based load balancing fashion. On the other 

hand, such approaches are usually presented as continuous-time 

algorithms which cannot be seamlessly implemented in a real 

communication network and whose advantages are highlighted 

only from a methodological point of view (e.g., [14]). 

In Section III, a discrete-time rate-based load balancing 

algorithm is designed, which retains the advantages of the rate-

based approaches while being actually implementable. In 

particular, the algorithm is designed so as to dynamically learn 

a Wardrop equilibrium efficiently and in a distributed fashion; 

it can be regarded as a discrete-time version of the algorithm 

presented in [14] and, in Section III.B, is proven to converge to 

an equilibrium where all the latencies are equalized up to a 

given tolerance 𝜀.  

 

 
Fig. 1.  SDN architectures: a. centralized static mapping, b. distributed static mapping and c. distributed dynamic mapping. 

 

B. Software Defined Networks 

The main SDN technology is defined by the OpenFlow 

standard [18], which is an open protocol of communication 

between the forwarding plane (i.e., the switches) and the control 

plane (i.e., the SDN Controller). The task of a switch is simply 

to interpret the forwarding rules sent by the SDN Controller, 

store them as forwarding tables and match incoming packets 

with the table entries. 

The logical network architecture is shown in Fig. 1.a, where 

a single (logical) SDN Controller manages 𝑁 switches. Since 

the logic is shifted from the switches to the SDN Controller, any 

forwarding decision consists of a unit of workload for the SDN 

Controller. For instance, according to [19], in large-scale 

scenarios (e.g., in a server cluster of 1.5 ⋅ 103 machines) the 

SDN workload has a mean arrival rate of about 105 OpenFlow 

messages per second. Therefore, an architectural improvement 

(Fig. 1.b) consists in physically distributing the SDN Control 



 4 

Plane among 𝐾 SDN Controllers, arranged to form a cluster, 

with a node playing the role of cluster coordinator [20].  

A drawback of current Software Defined Networks resides in 

the fact that the mapping between the forwarding plane and the 

control plane, i.e., the association of each switch to a given SDN 

Controller, is static. In fact, in the literature, the problem of 

associating switches and SDN Controllers is known as “SDN 

Controller placement problem,” and the proposed algorithms 

are mostly based on the location of the SDN Controllers with 

respect to the switches – see, e.g., [21] presenting a comparison 

between brute-force and greedy algorithm solutions, [22] 

presenting a heuristic approach, and [23] solving the problem 

by adopting operational research theory. Since, in real 

networks, the network workload varies in time, the main 

drawback of static mapping is the necessity to find a new 

solution to the controller placement problem whenever some 

SDN Controller workload exceeds its processing power 

(congestion occurrence). 

To overcome this problem, a dynamic approach was 

preliminarily defined in [24], where each switch dynamically 

decides the SDN Controller to be associated with, based on the 

response time of the SDN Controllers. This suggested approach 

is however not compliant with the standard SDN protocols and 

is not scalable, since each switch is required to explicitly 

receive information about the current response time of all the 

SDN Controllers (instead, each switch is able to measure the 

response time only of the SDN Controller it is associated with). 

Therefore, in this paper, a new entity is introduced, named 

SDN Proxy (see Fig. 1.c). The switches are statically connected 

to the nearest SDN Proxy. Each SDN Proxy receives the 

requests of its switches and has the task of forwarding them to 

one of the available SDN Controllers, based on a load balancing 

algorithm as the one proposed in this paper. The introduction of 

the SDN Proxies is transparent to the OpenFlow standard, as 

described in Section IV, and improves the SDN scalability since 

their tasks are quite simpler with respect to the ones of the SDN 

Controllers.  

Hence, in order to manage the SDN Control Plane traffic in 

large-scale networks, by contrast with the currently adopted 

solutions relying on a logically centralized but physically 

distributed SDN Control Plane, the model proposed here 

considers the Control Plane as distributed across a cluster of 

multiple SDN Controller instances which are in charge of 

processing the network information and of enforcing suitable 

traffic control actions. 

From a technological point of view, the OpenDaylight SDN 

Controller [25], an open-source project sponsored by the Linux 

Foundation and a large consortium of networking companies, 

has introduced a cluster-based implementation: it runs on a 

cluster of machines sharing a distributed data store to maintain 

the global view of the network. At the same time, the OpenFlow 

protocol, since version 1.3, has dictated the corresponding 

architectural model by introducing the concept of Controller for 

a switch, namely with a Master, Slave or Equal role. This 

enables two modes of operation when multiple SDN 

Controllers exist in a network: Master/Slave Interaction and 

Equal Interaction between the switch nodes and the cluster of 

SDN Controllers. In Master/Slave Interaction, each switch can 

be associated with multiple SDN Controllers but is managed by 

only one (the Master), being responsible for all the control 

actions for that switch, whereas the others (the Slaves) are used 

as backup controllers. In Equal Interaction, each switch can be 

associated with more than one SDN Controller instance, and 

have more than one Master association, that is, several Equal 

associations managing the switch. 

III. PROPOSED WARDROP LOAD BALANCING ALGORITHM 

Section III.A describes the basic definitions needed for the 

algorithm analysis; Section III.B presents the load balancing 

algorithm and the convergence proof; Section III.C considers 

some implementation issues. 

A. Preliminaries on Wardrop Equilibrium and on Set Stability 

As anticipated in Section II, this paper further develops a 

well-known model for selfish routing [14], where an infinite 

population of agents carries an infinitesimal amount of load 

each, following the previous works [24] and [26] concerning 

distributed load balancing algorithms. 

Let 𝐶 = {1,2, … 𝑐} denote a set of commodities with flow 

demands, or rates, 𝜆𝑖 > 0, 𝑖 ∈ 𝐶, generally expressed in jobs per 

unit of time. For the sake of simplicity, each commodity 𝑖 ∈ 𝐶  

is associated with a (source, destination) couple of nodes, 

denoted with (𝑠𝑖 , 𝑑𝑖). The 𝜆𝑖’s are also such that ∑ 𝜆𝑖 = 𝜆𝑐
𝑖=1 . 

Let 𝑉 denote a set of providers, which are used to transmit the 

flows for every commodity  𝑖 ∈ 𝐶. All source nodes are 

connected by the network to the available providers, which, in 

turn, connect them to the destination nodes. As an example, we 

may think of the considered model as a description of a network 

consisting of a set of edges, over which the controllers arrange 

proper paths to connect source and destination nodes. In the 

considered scenario, the SDN Controllers are the providers, the 

SDN Proxies identify the commodities, and the 𝜆𝑖’s are their 

request loads, expressed in requests per unit of time. 

The definition of agent is also required. As defined, for 

instance, in [15], each agent is an infinitesimal portion of a 

specified commodity, whose objective is to minimize the cost 

sustained to reach its destination by a proper flow assignment. 

In the considered scenario, a single request of the flow is 

approximately considered as an agent: in fact, even if the 

number of requests is finite, if the flow rates are sufficiently 

high, the population acceptably approximates the infinite 

population constraint required by Wardrop theory (see [14]). 

Let 𝑥𝑝
𝑖  be the volume of the agents, or bandwidth, of 

commodity 𝑖 relying on a provider 𝑝 ∈ 𝑉. The vector 𝒙 =

(𝑥𝑝
𝑖 )

𝑝∈𝑉,𝑖∈𝐶
 is the flow vector (in the literature also referred to 

as population share or job vector), describing the overall 

amount of jobs per unit or time of commodity 𝑖.  
 

Definition 1 (Feasible states). The feasible state space, i.e., the 

closed set of feasible job vectors, is 

 

𝒳 ≔ {𝒙 ∈ ℝ|𝑉|×|𝐶| | 𝑥𝑝
𝑖 ≥ 0, ∀𝑝 ∈ 𝑉, ∑ 𝑥𝑝

𝑖
𝑝∈𝑉 = 𝜆𝑖 , ∀𝑖 ∈ 𝐶},

 (1) 

 

where the 𝜆𝑖’s are the transmission rates required by each 

commodity 𝑖.  ■ 

 

Let 𝑥𝑝 ≔ ∑ 𝑥𝑝
𝑖

𝑖∈𝐶  denote the load of provider 𝑝 ∈ 𝑉, and let 



 5 

each provider be characterized by a continuous cost function, 

referred to as latency function and denoted with 𝑙𝑝(⋅): [0, 𝜆] →

ℝ+. The latency of a provider 𝑝 is a function of its load 𝑥𝑝, i.e., 

𝑙𝑝(𝑥𝑝) is the latency of controller 𝑝 with load 𝑥𝑝. 

 

An instance of the load balancing game is then 

 

Γ = {𝑉, (𝑙𝑝)
𝑝∈𝑉

, (𝑠𝑖 , 𝑑𝑖 , 𝜆𝑖)𝑖∈𝐶}. (2) 

 

The load balancing problem is formulated below as the 

problem of determining the strategies which will lead the flow 

vector to reach an arbitrarily small neighborhood of a Wardrop 

equilibrium. In Wardrop theory, stable flow assignments are the 

ones in which no agent (i.e., no “small” portion of a commodity 

directed from a source to a destination) can improve its situation 

by changing its strategy (i.e., the set of used providers) 

unilaterally. This objective is achieved if all agents reach a 

Wardrop equilibrium. 

 

Definition 2 (Wardrop equilibrium, [14]). A feasible flow 

vector 𝒙 is at a Wardrop equilibrium for the instance Γ of the 

load balancing game if, for each provider 𝑝 ∈ 𝑉 such that 𝑥𝑝 >

0, the following relation holds: 𝑙𝑝(𝑥𝑝) ≤ 𝑙𝑞(𝑥𝑞), ∀𝑞 ∈ 𝑉. The 

set of all Wardrop equilibria is the following subset of 𝒳:  

 

𝒳𝒲 ≔ {𝒙 ∈ 𝒳 | 𝑙𝑝(𝑥𝑝) − 𝑙𝑞(𝑥𝑞) ≤ 0, 𝑥𝑝 > 0, ∀𝑝, 𝑞 ∈ 𝑉 }. (3) 

 ■ 

 

In practice, at the Wardrop equilibrium, the latencies of all the 

loaded providers have the same value: therefore, provided that 

the latency functions properly represent the provider 

performances, a fair exploitation of the resources is achieved by 

driving the flows towards a Wardrop equilibrium. 

In the framework of researches on Wardrop equilibria , a key 

role is played by the Beckmann, McGuire, and Winsten 

potential [27], given by: 

 

Φ(𝒙) ≔ ∑ ∫ 𝑙𝑝(𝑠)𝑑𝑠
𝑥𝑝

0𝑝∈𝑉 , (4) 

 

whose properties are summarised in Property 1 below, under 

mild assumptions on the 𝑙𝑝’s. 

 

Assumption 1 (Latency functions). The latency function 𝑙𝑝 

exhibits the following properties, ∀𝑝 ∈ 𝑉: 

a) 𝑙𝑝(𝑥) is positive and non-decreasing for 𝑥 ∈ [0, 𝜆]; 

b) 𝑙𝑝(𝑥) is Lipschitz continuous for 𝑥 ∈ [0, 𝜆]. ■ 

 

Property 1 ([28], [29]). Under Assumption 1, the potential (4) 

is continuous and has the following properties: 

a) a flow minimizes Φ if and only if no agent can improve its 

own latency, implying that the set of Wardrop equilibria 

coincides with the set of flows minimizing Φ; 

b) at least one positive minimum Φ𝑚𝑖𝑛  of Φ over the set of 

feasible flows (and thus at least one Wardrop equilibrium) 

exists; 

c) if the latency functions are strictly increasing, the 

minimizing flow is unique; 

d) if the latency functions are strictly increasing and 𝑙𝑝(0) =

𝑙𝑞(0), ∀𝑝, 𝑞 ∈ 𝑉, the unique minimum of Φ is achieved 

when the latencies of all the providers are equalized. ∎ 

 

The following definition and theorem on set stability (i.e., on 

the stability of a set of points in the state space) are also recalled 

with respect to the nonlinear discrete-time dynamics 

 

𝒙[𝑘 + 1] = 𝑓(𝒙[𝑘]),     𝒙(0) ∈ 𝒳. (5) 

 

Definition 3 (Positive definiteness, [30]). Let 𝒳 be an invariant 

set for system (5), let 𝒜 be a closed subset of 𝒳 and let 

𝑑(𝒙, 𝒜) ≔ inf
𝒚∈𝒜

|𝒙 − 𝒚| be the distance from a point 𝒙 ∈ 𝒳 ∖ 𝒜 

to 𝒜. The function ℒ(𝒙): 𝒳 → ℝ+ is positive definite with 

respect to the set 𝒜 ⊂ 𝒳 if there exists an increasing 

continuous function 𝜓: ℝ+ → ℝ+ such that 𝜓(0) = 𝜓𝑚𝑖𝑛  and  

𝜓(𝑑(𝒙, 𝒜)) ≤ ℒ(𝒙), ∀𝒙 ∈ 𝒳 ∖ 𝒜. ∎ 

 

Let Δℒ(𝒙[𝑘]) ≔ ℒ(𝒙[𝑘 + 1]) − ℒ(𝒙[𝑘]) denote the 

difference of a Lyapunov function ℒ(𝒙) along the solutions of 

system (5). Lyapunov’s second method can be applied to verify 

if a set is a Globally Asymptotically Stable Set (GASS) as 

follows [30]. 

 

Theorem 1 (Globally Asymptotically Stable Set). Given a closed 

subset 𝒜 ⊂ 𝒳 and a Lyapunov function ℒ(𝒙) in 𝒳 ∖ 𝒜, if 

ℒ(𝒙) and −Δℒ(𝒙[𝑘]) are positive definite with respect to 𝒜, 

then 𝒜 is a GASS for system (5). ∎ 

 

B. Load Balancing Algorithm and Convergence Proof 

 

1) Load Balancing Algorithm 

Let the system dynamics (5) be expressed component-wise 

by  

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝛿(∑ 𝑟𝑞𝑝
𝑖 [𝑘]𝑞∈𝑉 − ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝑉 ),   

∀𝑝 ∈ 𝑉, ∀𝑖 ∈ 𝐶, 𝑘 = 0,1, …, (6) 

 

where 𝛿 is the sampling period and 𝑟𝑝𝑞
𝑖 [𝑘] is the so-called 

migration rate from provider 𝑝 to provider 𝑞. Inspired by the 

continuous-time algorithm in [14], the migration rate is defined 

as: 

 

𝑟𝑝𝑞
𝑖 [𝑘] = 𝑥𝑝

𝑖 [𝑘]𝜎𝑝𝑞
𝑖 [𝑘]𝜇𝑝𝑞

𝑖 (𝑙𝑝(𝑥𝑝[𝑘]), 𝑙𝑞(𝑥𝑞([𝑘])),   

∀𝑝, 𝑞 ∈ 𝑉, ∀𝑖 ∈ 𝐶, 𝑘 = 0,1, …, (7) 

 

where 𝜎𝑝𝑞
𝑖 [𝑘] is the control gain, which sets the rate with which 

the population share of provider 𝑝 migrates to provider 𝑞, and 

𝜇𝑝𝑞(𝑙𝑝, 𝑙𝑞) is the so-called migration policy, representing the 

decision whether (and in which percentage) the population 

share assigned to provider 𝑝 migrates to provider 𝑞. 

The proposed migration policy has the following property: 

 

{
𝜇𝑝𝑞

𝑖 (𝑙𝑝, 𝑙𝑞) = 0,                                           if 𝑙𝑝 ≤ 𝑙𝑞 + 𝜀,

𝜇𝑝𝑞
𝑖 (𝑙𝑝, 𝑙𝑞) ∈ [𝜇, 𝜇̅] , 0 < 𝜇 < 𝜇̅ < +∞,      otherwise,

 



 6 

∀𝑝, 𝑞 ∈ 𝑉, ∀𝑖 ∈ 𝐶, 𝜀 > 0, (8) 

 

where 𝜀 is a tolerance on the maximum acceptable mismatch 

between the couples of latency values and 𝜇 and 𝜇̅ are positive 

lower- and upper-bounds, respectively. As shown in the 

following, the tolerance 𝜀 is introduced since the usual 

migration policies adopted in the continuous-time algorithms 

(obtained from (8) by setting 𝜀 = 0) cannot guarantee 

convergence in the discrete-time case, however small the 

sampling period (see, e.g., [29]).  

Let the total migration rate from provider 𝑝 to provider 𝑞 be 

defined as 𝑟𝑝𝑞[𝑘] ≔ ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑖∈𝐶 . For notational simplicity, 

whenever unambiguous, 𝜇𝑝𝑞
𝑖 [𝑘] will be used in place of 

𝜇𝑝𝑞
𝑖 (𝑙𝑝(𝑥𝑝[𝑘]), 𝑙𝑞(𝑥𝑞([𝑘])). 

 

2) Convergence Proof 

Before analysing the algorithm convergence, the following 

definition of 𝜀-Wardrop equilibrium is introduced. 

 

Definition 4 (𝜀-Wardrop equilibrium). A feasible flow vector 

𝒙 = (𝑥𝑝
𝑖 )

𝑝∈𝑉,𝑖∈𝐶
 is defined to be at an 𝜀-Wardrop equilibrium 

for the instance Γ of the load balancing game if, for each 

provider 𝑝 ∈ 𝑉 such that 𝑥𝑝 > 0, the following relation holds: 

𝑙𝑝(𝑥𝑝) ≤ 𝑙𝑢(𝑥𝑢) + 𝜀, ∀𝑢 ∈ 𝑉, for 0 < 𝜀 < 𝑙 ̅ − 𝑙, where 𝑙 ̅ ≔

max
𝑝∈𝑉

𝑙𝑝(𝜆) and 𝑙 ≔ min
𝑝∈𝑉

𝑙𝑝(0) are the maximum and minimum 

latency values, respectively. The set of all 𝜀-Wardrop equilibria 

is the following closed subset of 𝒳:  

 

𝒳𝒲,𝜀 ≔ 

{𝒙 ∈ 𝒳, 𝜀 > 0 | 𝑙𝑝(𝑥𝑝) ≤ 𝑙𝑗(𝑥𝑗) + 𝜀, 𝑥𝑝 > 0, ∀𝑗 ∈ 𝑉, ∀𝑝 ∈ 𝑉,

0 < 𝜀 < 𝑙 ̅ − 𝑙 }. (9) 

∎ 

 

In practice, at an 𝜀-Wardrop equilibrium, the latencies of all the 

loaded providers have the same value up to the tolerance 𝜀. 

Hereafter, the following assumptions on the latency 

functions and on the migration policy (8) will be considered. 

 

Assumption 2. The latency functions, the migration policy (8) 

and the control gain exhibit the following properties: 

a) 𝑙𝑝(𝑥) is increasing with 𝑥, for 𝑥 ∈ [0, 𝜆], ∀𝑝 ∈ 𝑉; 

b) 𝑙𝑝(𝑥) is locally Lipschitz continuous, ∀𝑝 ∈ 𝑉, ∀𝑥 ∈ [0, 𝜆]; 

with Lipschitz constant 𝜂𝑝(𝑥); let the maximum Lipschitz 

constant be defined as 𝜂̅  ≔ max
𝑝∈𝑉,   𝑥 ∈ [0,𝜆]

𝜂𝑝(𝑥); 

c) 𝜇𝑝𝑞
𝑖 (𝑙𝑝 , 𝑙𝑞) is Lipschitz-continuous, ∀𝑙𝑝, 𝑙𝑞 ∈ [𝑙, 𝑙]̅ , ∀𝑖 ∈ 𝐶; 

d) 𝜎𝑝𝑞
𝑖 [𝑘] is constant and equal to 𝜎 =

𝜀

|𝑉|𝜆𝜂̅𝜇̅𝛿
, where 𝜆̅ is a 

flow rate upper bound; 

e) 𝜀 < 𝑙 ̅ − 𝑙. ■ 

 

Assumptions 2.a) and 2.b) are slightly more restrictive than 

Assumption 1. Assumption 2.a), introduced for the sake of 

simplicity in the system analysis, yields that, by Property 1, the 

Wardrop equilibrium and the corresponding flow vector, 

denoted with 𝑙𝒲 and 𝒙𝒲, respectively, are unique. Assumption 

2.b) states that limited population differences lead to limited 

differences in the latency values. 

 

Definition 5 (distance). Let the norm of a state be defined as 

‖𝒙‖ ≔ max
𝑝∈𝑉|𝑥𝑝>0

(𝑙𝑝(𝑥𝑝) − 𝑙𝒲), and let the distance between a 

state 𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀 and the set 𝒳𝒲,𝜀 be defined as 

𝑑(𝒙, 𝒳𝒲,𝜀) ≔ ‖𝒙‖ − max
𝒚∈𝒳𝒲,𝜀

‖𝒚‖ > 0.  ■ 

 

Under Assumption 2, the set of Wardrop and 𝜀-Wardrop 

equilibria can be written as: 

 

𝒳𝒲 ≔ {𝒙 ∈ 𝒳 | ‖𝒙‖ = 0 } = {𝒙𝒲}; (10) 

 

𝒳𝒲,𝜀 ≔ {𝒙 ∈ 𝒳, 𝜀 > 0 | ‖𝒙‖ ≤ 𝜀 }. (11) 

 

and the following properties hold. 

 

Property 2. The feasible set 𝒳, and the set of the 𝜀-Wardrop 

equilibria 𝒳𝒲,𝜀 are such that: 

 

(P1) 𝒳𝒲,𝜀 = 𝒳 if 𝜀 ≥ 𝑙 ̅ − 𝑙; 

(P2) 𝒳 ⊃ 𝒳𝒲,𝜀2
⊃ 𝒳𝒲,𝜀1

⊃ {𝒙𝒲}, ∀𝜀1, 𝜀2 | 0 < 𝜀1 < 𝜀2 <

𝑙 ̅ − 𝑙; 

(P3) 𝒳𝒲,𝜀 → {𝒙𝒲} as 𝜀 → 0.  ■ 

 

The set convergence to an arbitrarily small neighborhood of the 

Wardrop equilibrium is proven by using the Beckmann, 

McGuire, and Winsten potential (4) to build a candidate 

Lyapunov function. The following lemma demonstrates some 

properties of the potential which will be used in the 

convergence proof of the subsequent Theorem 2. 

 

Lemma 1 (Properties of the potential). Under Assumption 2, the 

following properties hold for the nonlinear discrete-time system 

(3), (6), (7), (8), with total flow rate 𝜆 > 0: 

 

(L1) Φ(𝒙) > Φ𝑚𝑖𝑛 , ∀𝒙 ∈ 𝒳 ∖ {𝒙𝒲}, Φ(𝒙𝒲) = Φ𝑚𝑖𝑛; 

(L2) Φ(𝒙[𝑘 + 1]) − Φ(𝒙[𝑘]) < 0, ∀𝒙[𝑘] ∈ 𝒳 ∖ 𝒳𝒲,𝜀; 

(L3) Φ(𝒙[𝑘 + 1]) − Φ(𝒙[𝑘]) = 0, ∀𝒙[𝑘] ∈ 𝒳𝒲,𝜀.  ■ 

 

Proof. Conditions (L1) hold thanks to Property 1. 

To verify condition (L2), the variation of the Lyapunov 

function along any trajectory of the considered system is written 

as follows: 

 

ΔΦ(𝒙[𝑘]) = Φ(𝒙[𝑘 + 1]) − Φ(𝒙[𝑘]) =

∑ ∫ 𝑙𝑝(𝑠)𝑑𝑠
𝑥𝑝[𝑘+1]

𝑥𝑝[𝑘]𝑝∈𝑉   

≤ ∑ (𝑥𝑝[𝑘 + 1] − 𝑥𝑝[𝑘])𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝑉   

= ∑ (𝛿 ∑ 𝑟𝑞𝑝[𝑘]𝑞 − 𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑞 )𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝑉   

= 𝛿(∑ ∑ 𝑟𝑞𝑝[𝑘]𝑞∈𝑉 𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝑉 −

∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝑉 )  

= 𝛿(∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 𝑙𝑞(𝑥𝑞[𝑘 + 1])𝑝∈𝑉 −

∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝑉 )  

= 𝛿 (∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 (𝑙𝑞(𝑥𝑞[𝑘 + 1]) − 𝑙𝑝(𝑥𝑝[𝑘 + 1]))𝑝∈𝑉 ), (12) 

 



 7 

where the inequality holds from geometrical considerations (see 

Appendix A).  

The following shows that (i), if 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, 

with 𝑥𝑝[𝑘] > 0, the corresponding term of the summation in the 

last row of (12) is negative, whereas (ii), if 𝑙𝑝(𝑥𝑝[𝑘]) −

𝑙𝑞(𝑥𝑞[𝑘]) ≤ 𝜀 or 𝑥𝑝[𝑘] = 0, the term is null. 

 

(i) If 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, with 𝑥𝑝[𝑘] > 0, from 

Assumptions 2.a)-2.b) it follows that 𝑙𝑝(𝑥𝑝[𝑘]) > 0. 

Moreover, 𝜇𝑝𝑞
𝑖 [𝑘] > 0 from equation (8) and, thus, 

𝑟𝑝𝑞
𝑖 [𝑘] > 0, ∀𝑖 ∈ 𝐶. Now we need to show that 𝑙𝑝(𝑥𝑝[𝑘 +

1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1]) > 0. From equation (6) the following 

inequality holds: 

 

𝑙𝑝(𝑥𝑝[𝑘 + 1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1]) ≥ 𝑙𝑝(𝑥𝑝[𝑘] −

𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 ) − 𝑙𝑞(𝑥𝑞[𝑘] + 𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑝∈𝑉 ), ∀𝑝, 𝑞 ∈ 𝑉, 𝑘 =

0,1, …. (13) 

 

In equation (13), the worst-case system dynamics over 𝛿 is 

considered, in which no commodities migrate part of their 

population to provider 𝑝 and from provider 𝑞. From 

Assumption 2.b), it holds that 

 

{
𝑙𝑝(𝑥𝑝[𝑘] − 𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 ) ≥ 𝑙𝑝(𝑥𝑝[𝑘]) − 𝜂̅𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉

𝑙𝑞(𝑥𝑞[𝑘] + 𝛿 ∑ 𝑟𝑝𝑞[𝑘]𝑝∈𝑉 ) ≤ 𝑙𝑞(𝑥𝑞[𝑘]) + 𝜂̅𝛿 ∑ 𝑟𝑝𝑞[𝑘].𝑝∈𝑉

 

 (14) 

 

Since we are analysing the case 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, 

the following inequality holds: 

 

𝑙𝑝(𝑥𝑝[𝑘 + 1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1]) ≥ 𝜀 − 𝜂̅𝛿(∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 +

∑ 𝑟𝑝𝑞[𝑘]𝑝∈𝑉 ). (15) 

 

From equation (7) and Assumption 2.a), and considering 

that 𝑥𝑝
𝑖 [𝑘] ≤ 𝜆𝑖 , ∀𝑖 ∈ 𝐶, the following upper-bound holds: 

 

𝑟𝑝𝑞
𝑖 [𝑘] = 𝑥𝑝

𝑖 [𝑘]𝜎𝑝𝑞
𝑖 [𝑘]𝜇𝑝𝑞

𝑖 [𝑘] ≤ λ𝑖𝜎𝜇̅, ∀𝑝, 𝑞 ∈ 𝑉, ∀𝑖 ∈ 𝐶. (16) 

 

Then, considering that there are at most (|𝑉| − 1) terms in 

the first summation of the second term of equation (15), the 

summation is upper-bounded by 

 

∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝑉 = ∑ ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑞∈𝑉𝑖∈𝐶 ≤ 𝜎𝜇̅(|𝑉| − 1)𝜆. (17) 

 

The second summation of the second term of (15) is upper-

bounded by: 

 

∑ 𝑟𝑝𝑞[𝑘]𝑝∈𝑉 = ∑ ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑝∈𝑉𝑖∈𝐶 ≤ 𝜎𝜇̅ ∑ ∑ 𝑥𝑝

𝑖 [𝑘]𝑝∈𝑉𝑖∈𝐶 =

𝜎𝜇̅𝜆. (18) 

 

From equations (17) and (18), we obtain that a sufficient 

condition for the right-hand side of equation (15) to be non-

negative is the following: 

 

ε ≥ |𝑉|𝜎𝜆𝜇̅𝜂̅𝛿,  (19) 

 

which holds by Assumption 2.e). 

 

(ii) If 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) ≤ 𝜀 or 𝑥𝑝[𝑘] = 0, 𝑟𝑝𝑞[𝑘] = 0 by 

equations (7) and (8), and the corresponding term of the 

summation in the last row of (12) is null. 

 

From (i) and (ii) it follows that property (L2) holds since, if 

𝒙[𝑘] ∉ 𝒳𝒲,𝜀 (i.e., there exists at least one couple (𝑝, 𝑞) ∈ 𝑉2 

such that 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, with 𝑥𝑝[𝑘] > 0), at least 

one term of equation (12) is negative; property (L3) holds since, 

if 𝒙[𝑘] ∈ 𝒳𝒲,𝜀 (i.e., for all couples (𝑝, 𝑞) ∈ 𝑉2 with 𝑥𝑝[𝑘] > 0 

we have that 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) ≤ 𝜀), all the terms of 

equation (12) are null.  ■ 

 

Theorem 2 (𝜀-Wardrop equilibrium set as a GASS). Under 

Assumption 2, 𝒳𝒲,𝜀 is a GASS for the nonlinear discrete-time 

system (3), (6), (7), (8), with total flow rate 𝜆 > 0.  ■ 

 

Proof. The proof is structured as follows: first, it is shown that 

the feasible state space is a positively invariant set (A); 

secondly, the asymptotic set stability is proven (B). 

 

(A) Feasibility. 

It is shown in the following that, since the initial job vector 

is feasible (i.e., from Definition 1, ∑ 𝑥𝑝
𝑖 [0]𝑝∈𝑉 = 𝜆𝑖  and 

𝑥𝑝
𝑖 [0] ≥ 0, ∀𝑝 ∈ 𝑉, ∀𝑖 ∈ 𝐶), the job vector is feasible during 

the entire system dynamics. In fact, it follows from equation (6) 

that: 

 

∑ (𝑥𝑝
𝑖 [𝑘 + 1] − 𝑥𝑝

𝑖 [𝑘])𝑝∈𝑉 = ∑ ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝛿𝑞∈𝑉𝑝∈𝑉 =

∑ ∑ 𝑟𝑞𝑝
𝑖 [𝑘] ⋅ 𝛿𝑞∈𝑉𝑝∈𝑉 − ∑ ∑ 𝑟𝑞𝑝

𝑖 [𝑘]𝛿𝑝∈𝑉𝑞∈𝑉 = 0, (20) 

 

and, therefore, that ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝑉 = ∑ 𝑥𝑝

𝑖 [0]𝑝∈𝑉 = 𝜆𝑖 , ∀𝑘 ≥ 0.  

By induction, since 𝑥𝑝
𝑖 [0] ≥ 0, ∀𝑝 ∈ 𝑉, and given equation 

(6), in order to prove that 𝑥𝑝
𝑖 [𝑘] ≥ 0, ∀𝑘 ≥ 0, it is sufficient to 

assume that 𝑥𝑝
𝑖 [𝑘] ≥ 0, ∀𝑝 ∈ 𝑉, ∀𝑖 ∈ 𝐶, for a given 𝑘, and to 

prove that  

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝛿 ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝑉 ≥ 0, ∀𝑝 ∈

𝑉, ∀𝑖 ∈ 𝐶. (21) 

 

In this respect, it can be observed that the following inequality 

holds (considering that, in the worst-case, no commodities 

migrate part of their population to provider 𝑝): 

 

𝑥𝑝
𝑖 [𝑘 + 1] ≥ 𝑥𝑝

𝑖 [𝑘] − 𝛿 ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑞∈𝑉 , ∀𝑝 ∈ 𝑉, ∀𝑖 ∈ 𝐶. (22) 

 

From definition (8) it follows that 𝑟𝑝𝑝
𝑖 [𝑘] = 0, so there are at 

most (|𝑉| − 1) terms in the summation of equation (22). Thus, 

considering that 𝑟𝑝𝑞
𝑖 [𝑘] ≤ 𝑥𝑝

𝑖 [𝑘]𝜎𝜇̅, the condition in (22) is met 

if the following inequality holds: 

 

𝑥𝑝
𝑖 [𝑘] − 𝑥𝑝

𝑖 [𝑘](|𝑉| − 1)𝜎𝜇̅𝛿 ≥ 0, ∀𝑝 ∈ 𝑉, ∀𝑖 ∈ 𝐶.  (23) 

 

If 𝑥𝑝[𝑘] = 0, inequality (23) is verified. If 𝑥𝑝[𝑘] > 0, 

inequality (23) is verified provided that: 



 8 

 

𝜎 ≤
1

(|𝑉|−1)𝛿𝜇̅
, (24) 

 

which holds by Assumption 2.e), considering that 
𝜀

𝜂̅𝜆
< 1 (in 

fact, by the definitions of 𝜂̅ and 𝑙,̅ it holds that 𝜂̅𝜆̅ ≥ 𝑙,̅ and, by 

Assumption 2.f), it holds that 𝑙 ̅ > 𝜀). 

 

(B) Global asymptotic set stability. 

Let ℒ(𝒙) ≔ Φ(𝒙) − Φ𝑚𝑖𝑛 be the candidate Lyapunov 

function, where Φ(𝒙) is the potential (4) and Φ𝑚𝑖𝑛  is its 

minimum value, which is unique thanks to Assumption 2. 

If 𝒙 ∈ 𝒳𝒲,𝜀, from Lemma 1 it follows that ℒ(𝒙) is positive 

definite and that Δℒ(𝒙[𝑘]) = 0. If 𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀, it is shown 

below that ℒ(𝒙) and −Δℒ(𝒙[𝑘]) are positive definite with 

respect to the closed set 𝒳𝒲,𝜀. 

 

B1. ℒ(𝒙) is positive definite with respect to 𝒳𝒲,𝜀 

Let 𝜓: ℝ+ → ℝ+ be defined as follows: 𝜓(𝑑(𝒙, 𝒳𝒲,𝜀)) ≔

𝛾1𝑑(𝒙, 𝒳𝒲,𝜀), with γ1 > 0. By definition, we have that 𝜓(0) =

0 and that 𝜓(𝑑(𝒙, 𝒳𝒲,𝜀)) is increasing with 𝑑(𝒙, 𝒳𝒲,𝜀). We 

have to show that 𝜓(𝑑(𝒙, 𝒳𝒲,𝜀)) = 𝛾1𝑑(𝒙, 𝒳𝒲,𝜀) ≤ ℒ(𝒙) =

Φ(𝒙) − Φ𝑚𝑖𝑛 , ∀𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀, i.e., that a value for 𝛾1 exists 

such that the following inequality holds: 

 

𝛾1 ≤
Φ(𝒙[𝑘])−Φ𝑚𝑖𝑛

𝑑(𝒙[𝑘],𝒳𝒲,𝜀)
, ∀𝑘 = 0,1,2, …  

 

Since 𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀, by definition it holds that 𝑑(𝒙, 𝒳𝒲,𝜀) >

0. By Assumption 2.d), 𝑑(𝒙, 𝒳𝒲,𝜀) is upper-bounded by (𝑙 ̅ −

𝑙). From geometrical considerations (see Appendix B), it turns 

out that Φ(𝒙) − Φ𝑚𝑖𝑛 >
𝜀2

4𝜂̅
> 0, ∀𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀. Therefore, a 

suitable choice for 𝛾1 is 𝛾1 =
𝜀2

4𝜂̅(𝑙−̅𝑙)
. 

 

B2. −Δℒ(𝒙[𝑘]) is positive definite with respect to 𝒳𝒲,𝜀 

Let 𝜓: ℝ+ → ℝ+ be defined as 𝜓(𝑑(𝒙, 𝒳𝒲,𝜀)) ≔

γ2 𝑑(𝒙, 𝒳𝒲,𝜀), with γ2 > 0. Also, consider that Δℒ(𝒙[𝑘]) =

ΔΦ(𝒙[𝑘]) and that, from Lemma 1, ΔΦ(𝒙[𝑘]) < 0, ∀𝒙[𝑘] ∈
𝒳 ∖ 𝒙𝒲. 

We have to show that 𝜓(𝑑(𝒙[𝑘], 𝒳𝒲,𝜀)) = γ2 𝑑(𝒙, 𝒳𝒲,𝜀) ≤

−Δℒ(𝒙[𝑘]) = −ΔΦ(𝒙[𝑘]), ∀𝒙[𝑘] ∈ 𝒳 ∖ 𝒳𝒲,𝜀, i.e., that there 

exists a value for 𝛾2 such that the following inequality holds: 

 

𝛾2 ≤
−ΔΦ(𝒙[𝑘])

𝑑(𝒙[𝑘],𝒳𝒲,𝜀)
, ∀𝑘 = 0,1,2, …  (25) 

 

For the numerator of equation (25), the following inequality 

holds (see Lemma 1, equation (12)): 

 

−ΔΦ(𝒙[𝑘]) = − ∑ ∫ 𝑙𝑝(𝑠)𝑑𝑠
𝑥𝑝[𝑘+1]

𝑥𝑝[𝑘]𝑝∈𝑉 ≥

𝛿 ∑ ∑ 𝑟𝑝𝑞[𝑘] (𝑙𝑝(𝑥𝑝[𝑘 + 1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1]))𝑞∈𝑉𝑝∈𝑉 , ∀𝑘 =

 
1 In this way, Assumption 2.b) does not hold for 𝑥 ≥ 𝑥̅, where 𝑥̅ is such that 

𝑙(𝑥̅) = 𝑙,̅ and, according to Property 1, there could be non-unique Wardrop 

equilibria with 𝑙𝑝(𝑥𝒲,𝑝) = 𝑙 ̅for at least one provider 𝑝 ∈ 𝑉. However, this case 

1,2, …  (26) 

 

where the terms of the last summation are either null or positive. 

From equations (15) and (19) it follows that 𝑙𝑝(𝑥𝑝[𝑘 + 1]) −

𝑙𝑞(𝑥𝑞[𝑘 + 1]) ≥ 0. Let us consider the loaded provider 𝑝∗ 

which has the maximum latency value at time 𝑘, i.e., 𝑝∗ =

argmax𝑝∈𝑉| 𝑥𝑝[𝑘]>0𝑙𝑝(𝑥𝑝[𝑘]). We thus write from equations 

(26), (7) and (8): 

 

−ΔΦ(𝒙[𝑘]) ≥ 𝛿𝑥𝑝∗[𝑘]𝜎𝜇.  (27) 

 

Since 𝒙[𝑘] ∈ 𝒳 ∖ 𝒳𝒲,𝜀, we know that 𝑙𝑝∗(𝑥𝑝∗[𝑘]) −

𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, for at least one 𝑞 ∈ 𝑉, yielding 𝑙𝑝∗(𝑥𝑝∗[𝑘]) >

𝜀. Assumption 2.b) yields that 𝑥𝑝∗[𝑘] ≥
𝑙𝑝∗(𝑥𝑝∗[𝑘])

𝜂̅
>

𝜀

𝜂̅
. Thus, 

recalling that 𝑑(𝒙, 𝒳𝒲,𝜀) ≤ (𝑙 ̅ − 𝑙), the following choice for 𝛾2 

lets inequality (25) hold for all 𝑘 = 0,1, …: 𝛾2 =
𝛿𝜀𝜎𝜇⋅

𝜂̅(𝑙−̅𝑙)
.  ■ 

 

Remark 1. In the control law (7), 𝜎𝑝𝑞
𝑖 [𝑘] can be interpreted as 

the control gain, and the interpretation of Theorem 2 is that it 

sets an upper-bound 𝜎 on the control gain, with the twofold 

objective of keeping the dynamics feasible and of driving the 

system trajectories towards a neighborhood of 𝒙𝒲. ■ 

C. Implementation Considerations 

If the selected latency functions are increasing with limited 

slope (see Assumption 2), the implementation of the control law 

(7)-(8) requires the determination of the parameters appearing 

in Assumption 2.e): the number of providers |𝑉| is a scenario 

parameter; the parameter 𝜆̅ can be set by practical knowledge 

either of the maximum offered load in the considered use case 

or of the maximum load which can be managed by the set of 

available providers; the sampling period 𝛿 and the maximum 

tolerated latency mismatch 𝜀 are set according to a practical 

trade-off between tight control (small values of 𝛿 and 𝜀) and 

traffic overhead/convergence time (small values of 𝛿 imply 

more latency measures, whereas the maximum control gain 𝜎 

increases with 𝜀); the determination of the maximum latency 

value 𝑙 ̅ and of the maximum Lipschitz constant 𝜂̅ is less 

straightforward and is explained in the following. 

In practice, it is usually simple to find a suitable latency 

function representing the provider performances, since they 

typically degrade with the load (in fact, the typical load-

response time curve 𝑓(𝑥) is often modelled in the theory of 

M/M/1 queues by monotonically increasing functions such as 

as 𝑓(𝑥) =
1

𝜆−𝑥
 or 𝑓(𝑥) =

𝑥

𝜆−𝑥
). In most cases, the latency values 

represent an actual measure of the performance of the providers 

and can be upper-bounded by a value 𝑙,̅ set according to realistic 

considerations. The latency value is then set equal to 𝑙 ̅whenever 

the value of the latency computed from the provider 

performance measures is larger than 𝑙1̅. For instance, in the 

scenario described in the following Section, the latency 

represents the controller response time; in practice, there are 

is not interesting since it corresponds to congestion scenarios, where the 

provider resources are not sufficient to handle the offered load. 



 9 

Quality-of-Service constraints which should be met by the 

provider, in terms of maximum response time, defining the 

upper-bound 𝑙.̅ 
The maximum Lipschitz constant 𝜂 ̅of the latency functions, 

instead, must be inferred from actual provider performance 

measures by estimating the maximum slope of the measured 

latency curves. We note that, by limiting the maximum value 𝑙 ̅
of the latency functions according to practical consideration (as 

described above), we also limit the Lipschitz constant 𝜂 ̅since, 

usually, the slope of the latency functions increases with the 

load, with beneficial effects on the control effectiveness since 

the gain 𝜎 is increased (see Assumption 2.e)). 

IV. PROOF-OF-CONCEPT APPLICATION TO SOFTWARE 

DEFINED NETWORKING 

In this section, we show how the presented algorithm has 

been applied to enforce the discussed load balancing 

mechanisms onto the distributed SDN Control Plane developed 

within the T-NOVA project. Focusing on the emulation of the 

OpenFlow control traffic rather than on the emulation of the 

data plane traffic, we present the results obtained from a proof-

of-concept experimental setup where the considered SDN 

works in Equal Interaction configuration across a cluster of 

three OpenDaylight SDN Controllers (Lithium release). 

 
TABLE I 

WARDROP ALGORITHM IMPLEMENTATION 

 

At the start of the control round 𝑘: 

• Each SDN Proxy 𝑖 = 1, … , |𝐶|: 

o For each SDN Controller 𝑝 = 1, … , |𝑉|: 

▪ It computes the measured latency 𝑙𝑝
𝑚𝑒𝑎𝑠[𝑘] by averaging, over the 

last period 𝛿, the measures of the delays between the transmission 

of a request to the SDN Controller 𝑝 and its response. If no request 

was sent to the SDN Controller 𝑝 in the last round, it sends a fake 

request to obtain the response time measure. 

▪ It updates the value of the latency functions by following a simple 

exponential averaging approach:  

𝑙𝑝[𝑘] ← 𝛼𝑙𝑝[𝑘 − 1] + (1 − 𝛼)𝑙𝑝
𝑚𝑒𝑎𝑠[𝑘], with 𝛼 ∈ (0,1).  

o It computes the migration rates 𝑟𝑝𝑞
𝑖 [𝑘], ∀𝑝, 𝑞, ∈ 𝑉 according to 

equation (7), with 𝜎𝑝𝑞
𝑖 [𝑘] = 𝜎 as defined in Assumption 2.e). 

o It computes the flow rates 𝑥𝑝
𝑖 [𝑘], ∀𝑝 ∈ 𝑉, according to equation (6). 

During the control round 𝑘 of duration 𝛿: 

• Each SDN Proxy 𝑖 = 1, … , |𝐶|: 

o It sends the requests received from its associated SDN Switches 

during round 𝑘 to the SDN Controllers according to a weighted 

round-robin scheduling, with weights proportional to the flow rates 

𝑥𝑝
𝑖 [𝑘], 𝑝 = 1, … , |𝑉|. 

 

To validate the effectiveness of the proposed algorithm, we 

performed several tests relying on the WCBench (Wrapped 

Collective Benchmark) tool [31], which works as a generator of 

OpenFlow control traffic by emulating OpenFlow switches. 

The requests were generated on the data plane and then sent to 

the SDN Proxies. Each implemented SDN Proxy, developed in 

Python, is a network proxy in charge of catching the generated 

OpenFlow traffic and embeds the proposed load balancing 

algorithm and two other ones for comparison purposes. 

 
Fig. 2.  Load vs. response time curves of the two considered configurations for 

the SDN Controller resources. 

Each SDN Proxy is connected to all the available SDN 

Controller instances and performs a per-request balancing 

policy. In this case study, the latency associated with an SDN 

Controller is its average response time. The response time 

grows with the controller load and thus (i) it is a reliable 

indicator of the controller congestion status, (ii) it is a non-

decreasing function of the request rate and therefore a suitable 

latency function, and (iii) it can be easily computed by the SDN 

Proxies, as explained below. 

The time-scale is divided into rounds of duration 𝛿. At every 

round, the latency is evaluated and the control actions are 

implemented as described in Table I. 

To simulate the SDN Controller load, OpenFlow control 

traffic was generated on the data plane side at different request 

rates. The three deployed SDN Controllers were assumed to 

have different processing capabilities. Two configurations are 

used for the SDN Controller resources, namely, the Small one 

with 2GB of RAM and 2 vCPUs, and the Big one with 4GB of 

RAM and 4 vCPUs. Consequently, as shown in Fig. 2, the load-

response time curves are different. The curves were obtained by 

measuring the average response time of the providers, denoted 

with 𝜏𝑝(𝑥𝑝), for different constant load values 𝑥𝑝[𝑘] = 𝑥𝑝. In 

detail, a constant rate of 𝑥𝑝 requests per second was sent for 

180s to the each controller 𝑝 ∈ 𝑉; the values of the 𝑥𝑝’s ranged 

from 𝑥 = 500 req/s to the maximum load value such that the 

response time exceeds 𝑙,̅ denoted with 𝑥̅𝑝, with granularity 

Δ𝑥 = 250 req/s. The measured response time variations were 

then interpreted as latency variations, and used to estimate the 

maximum latency slope as 𝜂̅ ≈

max
𝑝∈𝑉,𝑥𝑝∈{𝑥,𝑥+Δ𝑥,…,𝑥̅−Δ𝑥}

𝜏𝑝(𝑥𝑝+Δ𝑥)−𝜏𝑝(𝑥𝑝)

Δ𝑥
. From Fig. 2, we can 

empirically assess that the latency of the adopted SDN 

Controllers grows with the request rate, thus exhibiting a 

positive and non-decreasing behaviour that satisfies 

Assumption 2. 

In the implemented Wardrop load balancing algorithm, the 

migration policy (8) is defined as: 

 

𝜇𝑝𝑞
𝑖 (𝑙𝑝, 𝑙𝑞) = {

0,                         if 𝑙𝑝 ≤ 𝑙𝑞 + 𝜀,

min (
𝑙𝑝 − 𝑙𝑞

𝑙 ̅ − 𝑙
, 𝜇̅) ,   otherwise,

, ∀𝑝, 𝑞 ∈ 𝑉, ∀𝑖 ∈ 𝐶. 

 

The scenario and algorithm parameters are reported in Table II. 



 10 

TABLE II 
SCENARIO AND ALGORITHM PARAMETERS 

 

Number of SDN Controllers |𝑉| = 3 

Number of SDN Proxies |𝐶| = 2 

Maximum latency value 𝑙 ̅ = 10 [𝑚𝑠] 

Minimum latency value 𝑙 = 0 [𝑚𝑠] 

Maximum load 𝜆̅ = 104 [𝑟𝑒𝑞] 

Maximum Lipschitz constant of the latency 

functions 
𝜂̅ = 4 ⋅ 10−5  [

𝑚𝑠2

𝑟𝑒𝑞
] 

Latency tolerance 𝜀 = 0.3 [𝑚𝑠] 

Maximum value of the migration policy 𝜇̅ = 1 

Sampling time 𝛿 = 1 [𝑠] 

Latency averaging constant 𝛼 = 0.95 

 

We have compared the performance of the proposed per-

request Wardrop load balancing algorithm with two 

approaches: 

• a simple Least Latency (LL) load balancing algorithm, 

devised in a closed-loop fashion; 

• an open-loop Round Robin (RR) load balancing algorithm, 

as adopted by HAProxy2 (High Availability Proxy) [32].  

During the 𝑘-th control round, the SDN Proxies operating 

with the LL algorithm send the requests received from their 

associated SDN Switches to the SDN Controllers according to 

a weighted round-robin scheduling, with weights proportional 

to the inverse of the values of the latency functions at time 𝑘; 

the latency values are updated according to an exponential 

averaging approach (as with the Wardrop algorithm, see Table 

1). The RR algorithm, given the list of available SDN 

Controllers, forwards the control traffic to each SDN Controller 

in turn (i.e., it migrates a predefined amount of traffic to the first 

listed SDN Controller at time 𝑘, then to the second listed SDN 

Controller at time 𝑘 + 1, and so on). 

 

Figs. 3-6 show the test results, in terms of throughput, 

defined as the rate at which the incoming requests are processed 

by the SDN Control Plane, and latency (response time). The 

reported values are averaged over 20 simulation runs, each one 

with duration of 100𝑠. 

The test results show that the Wardrop load balancer 

outperforms the other two approaches, by yielding a 

performance improvement evaluated in terms of total 

throughput and average latency (Figs. 3 and 5) of 13% and 

18%, respectively, if compared with the LL algorithm, and of 

17% of and 31%, respectively, if compared with the RR one. 

 

 
Fig. 3.  Average throughput comparison among Wardrop, Least Latency and 

HAProxy Round Robin load balancing algorithms. 

 
Fig. 4.  Per SDN Controller throughput comparison among Wardrop, Least 

Latency and HAProxy Round Robin load balancing algorithms. 

 
2 HAProxy is a very popular open-source software, playing the role of a 

TCP/HTTP Load Balancer and proxying solution, whose common use in many 

high-profile context (e.g., GitHub, Instagram, and Twitter) is that of improving 

 

 
Fig. 5.  Response time (latency) comparison among Wardrop, Least Latency 

and HAProxy Round Robin load balancing algorithms.  

 
Fig. 6.  Per SDN Controller response time (latency) comparison among 

Wardrop, Least Latency and HAProxy Round Robin load balancing algorithms. 

the performance and reliability of a server environment by distributing the 
workload across multiple servers. 



 11 

 
Fig. 7.  Example of latency dynamics under a) Wardrop, b) Least Latency and 

c) HAProxy Round Robin load balancing algorithms. 

Fig. 6 shows that the 𝜀-Wardrop equilibrium is practically 

reached by the Wardrop algorithm, since the maximum 

difference between latencies is equal to 0.26ms; the difference 

grows with the LL and RR algorithms to 1.68ms and 0.96ms, 

respectively. 

Figs. 4 and 6 show the throughput and the latency values for 

the three SDN Controllers and for the three algorithms. The 

proposed algorithm sends a larger request rate to the third SDN 

Controller, which has more resources (Big configuration) with 

respect to the first and second ones (Small configurations), in 

such a way that the latencies are equalized. The LL algorithm 

operates in a similar way but it is less effective. The RR 

algorithm simply balances the request rate among the three 

SDN Controllers, causing the latencies of the first and second 

SDN Controllers to grow above the latency of the third one; in 

practice, the third SDN Controller ends up being used less than 

the other two. 

To make the behaviour of the algorithms clear, Fig. 7 shows 

examples of the transient behavior of the measured latency 

values under the three algorithms over a time horizon of 100𝑠. 

Figure 7.c) highlights that the open-loop RR algorithm 

distributes the requests in a static fashion, resulting in the larger 

average latencies with respect to the other closed-loop 

algorithms, which dynamically distribute the load based on the 

measured latencies. The LL algorithm (Fig. 7.b)) acts by 

distributing the requests proportionally to the inverse of the 

measured latencies, but this does not correspond to perfectly 

balanced latency values – in fact, the latency of the Big SDN 

controller is almost always lower than the ones of the Small 

SDN Controllers –. Moreover, the figure shows that the LL 

control law, being a heuristic one, causes oscillations in the 

latency values. Instead, Fig. 7.a) confirms that the Wardrop 

algorithm manages to let the latency values of the SDN 

Controllers converge and that it assures the lowest latencies 

among the three algorithms. 

V. CONCLUSIONS 

This paper proposes a Wardrop load balancing algorithm for 

SDN networks, and introduces two innovations. From the 

methodological viewpoint, a distributed, non-cooperative 

discrete-time load balancing algorithm, based on mean field 

game theory, is presented and is proved to converge to an 

arbitrarily small neighborhood of a Wardrop equilibrium. From 

an architectural point of view, SDN Proxies for the OpenFlow 

traffic are introduced to improve the scalability of SDN 

networks by dynamically dispatching the control workload 

across the available SDN Controllers. To evaluate the 

effectiveness of the proposed approach, a proof-of-concept 

implementation on a real Software Defined Network has been 

carried out and the related performance test results are reported. 

The proposed approach is scalable, since no communications 

among the switches is needed and no centralized load balancing 

algorithm must be executed by the SDN Controllers. 

Future work is aimed, on the one hand, at improving the 

convergence properties of the algorithm, e.g., by resorting to an 

exact convergence to the Wardrop equilibrium (instead of the 

here considered set convergence) and, on the other hand, at 

validating the algorithm on larger use cases. 

APPENDIX 

A. Geometrical Considerations Proving Inequality (12) 

𝑥1 𝑥2 𝑥𝜆

𝑙 𝑥

0

𝑥2 𝑥1

𝜂̅ ≔ max
𝑥∈[𝑥1,𝑥2]

𝑑𝑙 𝑥

𝑑𝑥
− 𝜂̅ ⋅ 𝑥2 − 𝑥1

− 𝑙 𝑥2 − 𝑙 𝑥1

𝑥𝜆

𝑙 𝑥

0

𝑥1 𝑥2

𝜂̅ ≔ max
𝑥∈[𝑥1,𝑥2]

𝑑𝑙 𝑥

𝑑𝑥
𝜂̅ ⋅ (𝑥2 − 𝑥1)

𝑙 𝑥2 − 𝑙(𝑥1)

𝑥𝜆

𝑙 𝑥

0

𝑙 𝑥2

𝑙 𝑥1

𝑥2 𝑥1 𝑥𝜆

𝑙 𝑥

0

𝑙 𝑥1

𝑙 𝑥2

(−)

𝑙 𝑥2

𝑙 𝑥1

 
Fig. 8.  Geometrical considerations proving inequality (12). 

The quantity (𝑥2 − 𝑥1)𝑙(𝑥2), represented by the area of the 

rectangle with bold lines in Fig. 8, is larger than the integral 

∫ 𝑙(𝑠)𝑑𝑠
𝑥2

𝑥1
, represented by the grey area. 

Considering the areas ℬ𝑞  and 𝒜𝑞  depicted in Fig. 9, we can 

write: 

 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

la
te

n
cy

 (m
s)

time (s)

a)  Wardrop

Serie1 Serie2 Serie3

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

la
te

n
cy

 (m
s)

time (s)

b)  Least Latency

Serie1 Serie2 Serie3

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

la
te

n
cy

 (m
s)

time (s)

c)  Round Robin

SDN Contr. 1 SDN Contr. 2 SDN Contr. 3



 12 

𝒜𝑝

𝑥𝑝,𝒲

𝜀𝑝 

𝑥𝑝 = 𝑥𝑝,𝒲 + Δ𝑥𝑝 𝑥𝑝 

𝑙𝑝(𝑥𝑝) 

𝑙𝑝(𝑥𝑝) 

𝑙𝒲

Δ
 𝑥

𝑝
𝑙 𝒲

𝑥𝑞 = 𝑥𝑞,𝒲 + Δ𝑥𝑞

𝜀𝑞 

𝑥𝑞,𝒲  

ℬ𝑞

𝑥𝑞 

𝑙𝑞(𝑥𝑞) 

𝑙𝑞(𝑥𝑞) 

𝑙𝒲

−Δ 𝑥𝑞𝑙𝒲

b) Δ𝑥𝑞 < 0

a) Δ𝑥𝑝 > 0

 
Fig. 9. Geometrical considerations proving argument B1 in Section III.B. 

Φ(𝒙) − Φ𝑚𝑖𝑛 = ∑ (Δ𝑥𝑝𝑙𝒲 + 𝒜𝑝)𝑝∈𝑉|Δ𝑥𝑝>0 −

∑ (Δ𝑥𝑞𝑙𝒲 − ℬ𝑞)𝑞∈𝑉|Δ𝑥𝑞<0 = ∑ 𝒜𝑝𝑝∈𝑉|Δ𝑥𝑝>0 +

∑ ℬ𝑞𝑞∈𝑉|Δ𝑥𝑞<0 ≥ ∑
𝜀𝑝

2

2𝜂̅𝑝∈𝑉|Δ𝑥𝑝>0 + ∑
𝜀𝑞

2

2𝜂̅𝑞∈𝑉|Δ𝑥𝑞<0  , 

 

where the last equality holds since 𝒜𝑝 ≥
𝜀𝑝

2

2𝜂̅
 and ℬ𝑞 ≥

𝜀𝑞
2

2𝜂̅
 and 

where 𝜀𝑝 ≔ 𝑙𝑝(𝑥𝑝) − 𝑙𝒲 and 𝜀𝑞 ≔ 𝑙𝒲 − 𝑙𝑞(𝑥𝑞). 

Since 𝒙 ∈ 𝒳 ∖ 𝒳𝒲,𝜀, there exists at least a couple 𝑝′, 𝑞′ ∈ 𝑉 

such that Δ𝑥𝑝′ > 0 Δ𝑥𝑞′ < 0 and 𝜀𝑝′ + 𝜀𝑞′ > 𝜀. It follows that: 

Φ(𝒙) − Φ𝑚𝑖𝑛 ≥
𝜀

𝑝′
2

2𝜂̅
+

𝜀
𝑞′
2

2𝜂̅
≥

(𝜀
𝑝′+𝜀

𝑞′)
2

4𝜂̅
>

𝜀2

4𝜂̅
. 

ACKNOWLEDGMENT 

The authors wish to thank Prof. R. Baldoni and all the 

members of the T-NOVA project. 

REFERENCES 

[1] “Software-defined networking: The new norm for networks,” Open 

Networking Foundation, 2012, https://www.opennetworking.org 
[2] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, R. Kompella, “Towards 

an Elastic Distributed SDN Controller,” ACM SIGCOMM Computer 

Communication Review, Volume 4, 2013. 
[3] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Cooperative load 

balancing in distributed systems,” Concurr. Comput. Pract. Exp., vol. 

20, no. 16, pp. 1953–1976, Nov. 2008. 
[4] S. U. Khan and I. Ahmad, “A Cooperative Game Theoretical Technique 

for Joint Optimization of Energy Consumption and Response Time in 

Computational Grids,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 
3, pp. 346–360, Mar. 2009. 

[5] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A Cooperative Game 

Framework for QoS Guided Job Allocation Schemes in Grids,” IEEE 
Trans. Comput., vol. 57, no. 10, pp. 1413–1422, Oct. 2008. 

[6] D. Grosu and A. T. Chronopoulos, “Noncooperative load balancing in 

distributed systems,” J. Parallel Distrib. Comput., vol. 65, no. 9, pp. 
1022–1034, Sep. 2005. 

[7] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game-Theoretic Approach 

for Load Balancing in Computational Grids,” IEEE Trans. Parallel 
Distrib. Syst., vol. 19, no. 1, pp. 66–76, Jan. 2008. 

[8] E. Even-Dar, A. Kesselman, and Y. Mansour, Convergence time to Nash 
equilibria. Springer-Verlag, Berlin Heidelberg, 2003. 

[9] E. Even-Dar and Y. Mansour, “Fast convergence of selfish rerouting,” 

in 16th annual ACM-SIAM symposium on Discrete algorithms, Society 
for Industrial and Applied Mathematics, 2005, pp. 772–781. 

[10] S. Shah and R. Kothari, “Convergence of the dynamic load balancing 

problem to Nash equilibrium using distributed local interactions,” Inf. 
Sci. (Ny)., vol. 221, pp. 297–305, Feb. 2013. 

[11] H. Ackermann, S. Fischer, M. Hoefer, and M. Schöngens, “Distributed 

algorithms for QoS load balancing,” Distrib. Comput., vol. 23, no. 5–6, 
pp. 321–330, Dec. 2010. 

[12] J. G. Wardrop, “Some Theoretical Aspects of Road Traffic Research,” 

ICE Proc. Eng. Div., vol. 1, no. 3, pp. 325–362, Jan. 1952. 
[13] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal Load Balancing in 

Distributed Computer Systems. London: Springer London, 1997. 

[14] S. Fischer, H. Räcke, and B. Vöcking, “Fast Convergence to Wardrop 
Equilibria by Adaptive Sampling Methods,” SIAM J. Comput., vol. 39, 

no. 8, pp. 3700–3735, Jan. 2010. 

[15] D. Barth, O. Bournez, O. Boussaton, and J. Cohen, “Distributed learning 
of Wardrop equilibria,” in Lecture Notes in Computer Science, vol. 5204, 

2008, pp. 19–32. 

[16] G. Oddi and A. Pietrabissa, “A distributed multi-path algorithm for 

wireless ad-hoc networks based on Wardrop routing,” in 21st 

Mediterranean Conference on Control and Automation, 2013, pp. 930–

935. 
[17] S. Battilotti, F. Delli Priscoli, C. Gori Giorgi, M. Panfili, A. Pietrabissa, 

L. Ricciardi Celsi, and V. Suraci, “A Multi-Agent Reinforcement 
Learning Based Approach to Quality of Experience Control in Future 

Internet Networks,” in 34th IEEE Chinese Control Conference 

(CCC2015), 2015, pp. 6495–6500. 
[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, 

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation 

in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp. 
69-74, Mar. 2008. 

[19] Kandula et al., “The nature of data center traffic: measurements & 

analysis,” in Proceedings of IMC 2009, ACM, pp. 202-208, 2009. 
[20] L. Zuccaro, F. Cimorelli, F. Delli Priscoli, C. Gori Giorgi, S. Monaco, 

V. Suraci, “Distributed Control in Virtualized Networks,” in Proc. Of the 

10th International Conference on Future Networks and Communications 
(FNC 2015), pp. 276-283, 2015. 

[21] Y.-N. Hu, W.-D. Wang, X.-Y. Gong, X.-R. Que, and S.-D. Cheng, “On 

the placement of controllers in software-defined networks,” J. China 
Univ. Posts Telecommun., vol. 19, no. S2, pp. 92–171, Oct. 2012. 

[22] S. Lange et al. “Heuristic Approaches to the Controller Placement 

Problem in Large Scale SDN Networks”, IEEE Transactions on Network 
and Service Management, Year: 2015, Volume: 12, Issue: 1 Pages: 4 - 

17, DOI: 10.1109/TNSM.2015.2402432. 

[23] A. Sallahi, M. St-Hilaire, “Optimal Model for the Controller Placement 
Problem in Software Defined Networks”, IEEE Communications letters, 

vol. 19, no. 1, january 2015. DOI: 10.1109/LCOMM.2014.2371014. 

[24] F. Cimorelli, F. Delli Priscoli, A. Pietrabissa, L. Ricciardi Celsi, V. 
Suraci, and L. Zuccaro, “A Distributed Load Balancing Algorithm for 

the Control Plane in Software Defined Networking,” in Proceedings of 

the 24th Mediterranean Conference on Control and Automation (MED 
2016), pp. 1033-1040, June 21-24, 2016, Athens, Greece, DOI: 

10.1109/MED.2016.7535946. 

[25] J. Medved et al., “OpenDaylight: Towards a model-driven SDN 
controller architecture,” in 2014 IEEE 15th International Symposium on 

a World of Wireless, Mobile and Multimedia Networks, 2014. 

[26] G. Oddi, A. Pietrabissa, F. Delli Priscoli, F. Facchinei, L. Palagi, A. 
Lanna, “A QoE-aware dynamic bandwidth allocation algorithm based on 

game theory,” in Proceedings of the 23rd Mediterranean Conference on 

Control and Automation (MED 2015), 2015, pp. 979-985. 
[27] M. Beckmann, C.B. McGuire, C.B. Winsten, Studies in the Economics 

of Transportation. Yale University Press, New Haven, CT, 1956. 

[28] T. Roughgarden and E. Tardos, “How bad is selfish routing?,” J. ACM, 
49(2): 236–259, 2002. 

[29] S. Fischer, B. Vöcking, “Adaptive routing with stale information,” 

Theoretical Computer Science, vol. 410, no. 36, 2009, pp. 3357-3371. 
[30] G. A. Shanholt, “Set stability for difference equations,” International 

Journal of Control, vol. 19, no. 2, pp. 309-314, 1974. 

[31] https://github.com/dfarrell07/wcbench 

[32] http://www.haproxy.org/ 



 13 

Antonio Pietrabissa is Assistant Professor at 

the Department of Computer, Control, and 

Management Engineering “Antonio Ruberti” 

(DIAG) of the University of Rome “La 

Sapienza,” where he received his degree in 

Electronics Engineering and his Ph.D. degree 

in Systems Engineering in 2000 and 2004, respectively, and 

where, since 2010, he has been teaching “Automatic Control” 

and “Process Automation”. Since 2000, he has participated 

(either as scientific responsible or as technical coordinator) in 

about 20 EU and National research projects. His main research 

focus is on the application of systems and control theory 

methodologies to the analysis and control of communication 

networks, with specific interest to the design of resource 

management protocols. He is author of about 40 journal papers 

and 80 conference papers and book chapters on these topics. 

 

Lorenzo Ricciardi Celsi was born in Rome, 

Italy, in 1990. He received the B.Sc. degree 

in Electronics Engineering in 2011 and the 

M.Sc. degree in Control Engineering in 

2014, both summa cum laude from the 

University of Rome “La Sapienza.” He also 

received the PhD degree in Automatica, 

Bioengineering and Operations Research 

from the same university and the PhD degree in Sciences et 

Technologies de l’Information et de la Communication, 

Specialité Automatique, from Université Paris-Saclay in 

2018, both cum laude. He is currently a Postdoctoral 

Research Fellow at the Department of Computer, Control, 

and Management Engineering Antonio Ruberti (DIAG) of 

the University of Rome La Sapienza. He has been working 

on reinforcement learning algorithms within the framework 

of the FP7 project T-NOVA and the MIUR project 

PLATINO. He is also taking part in the H2020 projects 

BONVOYAGE and ATENA. His main research interests 

are: nonlinear networked systems and control in general, 

cooperative control methodologies for multi-agent systems, 

and cyber-physical security of critical infrastructures. 

 

Federico Cimorelli was born in 1989, in 

Venafro, Italy. He received the degree in 

Engineering in Computer Science in 2014 

from the University of Rome “La Sapienza.” 

He also received, in 2018, the PhD degree in 

Automatica, Bioengineering and Operations 

Research from the same university, where he is 

now a Postdoctoral Research Fellow. Since 

2014, he has been also with the Consortium for Research in 

Automation and Telecommunications (CRAT), involved in 

both Italian and European Research Programs in the ICT field. 

His main research topics include the application of systems 

theory to recent problems in the fields of Software Defined 

Networking (SDN) and Network Function Virtualization 

(NFV). 

 

Vincenzo Suraci was born in Rome, Italy, in 1978. He 

graduated in Computer Engineering summa cum laude in 2004 

at the University of Rome “La Sapienza.” In 2008 he pursued a 

Ph.D. degree in Systems Engineering at the 

Department Computer, Control, and 

Management Engineering “Antonio Ruberti” 

(DIAG) of the same university. Currently, he 

is an Associate Professor at eCampus 

University and Project Manager at CRAT. His 

main research interest is to develop and adapt 

advanced control and operations research methodologies (such 

as reinforcement learning, column generation, hybrid automata, 

and discrete event systems) for the solution of challenging and 

emerging engineering problems: e.g., connection admission 

control, access technologies selection, QoE/QoS cognitive 

control, resource management over heterogeneous 

technologies, convergence of heterogeneous networks. He has 

achieved a wide experience in the field of applied research and 

project management. Since 2011, he has been managing the 

EU-funded Future Internet Core Platform research project FI-

WARE. In 2012, he also applied for a EU Patent request on 

DVB as a result of his profitable research in the framework of 

EU research projects. 

Francesco Delli Priscoli was born in Rome, 

Italy, in 1962. He received the degree in 

Electronics Engineering (summa cum laude) 

and the Ph.D. in Systems Engineering from 

the University of Rome “La Sapienza” in 1986 

and 1991, respectively. From 1986 to 1991 he 

worked in Telespazio. Since 1991, he has been 

working at the University of Rome “La Sapienza,” where, at 

present, he is Full Professor of “Automatic Control,” “Control 

of Autonomous Multi-Agent Systems,” and “Control of 

Communication and Energy Networks”. In the framework of 

his academic activity, he has mainly researched on 

resource/service/content management procedures and on 

cognitive techniques for telecommunication and energy 

networks, by largely adopting control-based methodologies. He 

is the author of about 180 papers appeared in major 

international journals (about 60), on books (about 10) and in 

conference proceedings (about 110). He also holds four patents. 

He is an associate editor of Control Engineering Practice and a 

member of the IFAC Technical Committee on “Networked 

Systems”. He was/is the scientific responsible, at the University 

of Rome “La Sapienza”, for 31 projects financed by the 

European Union (Fourth, Fifth, Sixth, Seventh and Eighth 

Framework Programmes) and by the European Space Agency 

(ESA). His present research interests concern closed-loop 

multi-agent learning techniques for Quality of Experience 

evaluation and control in advanced communication and energy 

networks, as well as all the related networking algorithms. 

 

Alessandro Di Giorgio was born in Rome, 

Italy, in 1980. He received the degree (cum 

laude) in Physics in 2005, and the Ph.D. 

degree in Systems Engineering from the 

University of Rome “La Sapienza,” in 2010. 

He is currently a Research Fellow in 

Automatic Control, working on original applications of control 

systems theory to the resource management problem in the field 

of power systems and telecommunication networks; he is 



 14 

author of about 40 papers and book chapters on these topics, 

mainly produced in the context of national and European 

research projects. 

 

Alessandro Giuseppi was born in Rome, 

Italy, in 1992. He received from the University 

of Rome “La Sapienza” his B.Sc. degree in 

Computer and Automation Engineering in 

2014 and his M.Sc. degree in Control 

Engineering in 2016, both summa cum laude. 

Currently, he is a PhD Candidate in 

Automatica, Bioengineering and Operations 

Research at the same university. He started his research 

activities in the FP7 project T-NOVA, where he studied 

Reinforcement Learning applications to Software Defined 

Networks. He is currently working as a researcher in the H2020 

project ATENA, dealing with Critical Infrastructure Security. 

His other research activities and interests are Model Predictive 

Control, Neural Networks and their applications to security-

related issues in cyber-physical systems. 

Salvatore Monaco was born in 1951 and he has 

been a Full Professor of Systems Theory at the 

University of Rome “La Sapienza” since 1986. 

He was a member of the ASI (Italian Space 

Agency) Scientific Committee from 1989 to 

1995, of the Executive Council of the EUCA 

(European Union Control Association) from 

1990 (foundation year) to 1997, and of the ASI Working Group 

on Evaluation from 1999 to 2001. He has also been a member 

of the ASI Technological Committee since 1997. He has 

promoted technological transfer in the area of Automation. In 

1995, he served as scientific advisor for the Director of the Joint 

Research Center of the European Union. Since 2001, he has 

been president of the council for the degree of Systems and 

Control Engineering at the University of Rome “La Sapienza” 

and also president of the Scientific Committee of the 

“Université Franco-Italienne,” an inter-governmental 

institution for coordinating research and didactics. His research 

activity is in the field of Systems and Control Theory and 

applied research in spacecraft control, mobile robot control and 

control of telecommunication networks.

 


