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HIV infection control: a constructive algorithm for a state-based
switching control
Paolo Di Giamberardino* and Daniela Iacoviello

Abstract: The control of the HIV infection is considered in the framework of the optimal control theory within
the problem of resource allocation. A control action, changing the intervention strategy on the basis of the updated
situations, is proposed. The switching instants are not fixed in advance but are determined along with the final
control time. A constructive algorithm to compute iteratively the switching control is outlined. The solutions
obtained provide interesting and promising results.
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1. INTRODUCTION

In this paper the control of an epidemic disease is faced
in the framework of optimal control theory: a cost index
weighting differently the control depending on the varied
conditions is introduced, thus changing the intervention
strategy on the basis of the updated situations. The switch-
ing instants between such different strategies are not fixed
in advance, but are determined on the basis of the dy-
namics evolution and on the optimization process. The
epidemic disease here considered is the human immun-
odeficiency virus (HIV). One kind of approach considers
the dynamics among categories of populations (subjects
in the susceptible or infected status, patients in the pre-
AIDS or the AIDS one are the most common), as in [1,2].
Differently, the point of view here assumed refers to the
dynamics of the infection at a cellular level. In an HIV
positive subject the virus infects the CD4 T-cells in the
blood; when the number of these cells is below 200 in each
mm3 the HIV patient has AIDS. Many different models
have been proposed to describe the HIV/AIDS infection.
In [3], the model includes the uninfected and the infected
CD4 T-cells, the concentration of helper-independent and
of the helper-dependent and the concentration of the pre-
cursors. This model has two equilibrium points, one cor-
responding to the AIDS status and the other to the Long-
Term nonprogressor (LTNP) one. In [4], this model is sim-
plified, considering only the dynamics of the uninfected
and the infected CD4 T-cells but taking into account the
effects of cytotoxic T lymphocyte, in order to drive the
HIV patient state into the LTNP region of attraction, in-
stead to progress to the AIDS one. In [5], the variables

introduced are the uninfected CD4 T-cells, the infected
CD4 T-cells, the infectious virus, the noninfectious virus
and the immune effectors, aiming at determining an op-
timal feedback control to drive the system to a stationary
state with low viral load and strong immune response. A
simple model considering only the concentration of CD4
T-cells and the concentration of the HIV particles is pre-
sented in [6]; two different treatment strategies are intro-
duced: one aiming at delaying the virus progression and
the other at boosting the immune system. Among all the
proposed strategies, the policy using two drug controls ap-
peared to be the best one, since it reduced the number of
virus particles, beyond the increase of the number of un-
infected CD4 T-cells, [7]. Also the problem of the HIV
mutation is considered in [8, 9]; this could cause resis-
tance to specific drug therapies. In [8], it is shown that the
model predictive control has the best performance among
the ones based on the use of a switched linear system for
a nonlinear mutation model. In [9], the introduction of a
suitable observer for the parameter estimation is proposed
for a better behaviour of the control action. In [10], it is
suggested the use of the fractional-order HIV model as a
more realistic description than the traditional ones, thus
obtaining very low levels dosage of the anti-HIV drugs.
As well known, in optimal control the central aspect, be-
yond the choice of the model, is the definition of the cost
index, i.e. what is required to be minimized: the control
effort and/or the number of infected subjects, for exam-
ple. Another aspect to be considered is the problem of re-
sources allocation, especially when they are limited. For
example, in [11] the problem of optimal resource alloca-
tion is faced when a limited quantity of vaccine has to be
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distributed between two non-interactive populations, as-
suming a stochastic epidemic model. The minimization
of the control effort, i.e. the input amplitude, is also con-
sidered in [12]. In this paper, the HIV model proposed in
[4] is adopted. The problem of controlling the HIV epi-
demic spread is faced in Section 2, starting from a cost in-
dex in which the control effort is weighted taking into ac-
count the number of infected cells; the weight coefficient
is therefore state dependent. A constructive algorithm is
proposed to provide an efficient resource allocation, by
solving iteratively optimal control problems. In Section
3 the numerical results obtained for the case study here
considered are presented and discussed. Conclusions and
future work are outlined in Section 4.

2. THE CONSIDERED HIV MODEL AND THE
PROPOSED CONTROL

In this paper, the model adopted in [4] is considered; the
state variables are the uninfected CD4 T-cells, denoted by
x, and the infected CD4 T-cells, denoted by y. The equa-
tions describing the relationships among these variables
are:

ẋ(t) = γ−dx(t)−β (1−u(t))x(t)y(t) (1)

ẏ(t) = −βx(t)y(t)u(t)+π(y(t)) (2)

with π(y(t)) = a+By(t)+Cy2(t)+Dy3(t) and initial con-
ditions x(t0) = x0, y(t0) = y0. The meaning of the real pa-
rameters γ , d, β , α , B and C is illustrated in [3, 4]. The
control u is assumed bounded by U .

In a classical optimal control design approach, the prob-
lem is to determine the control able to minimize the num-
ber of infected cells keeping the control effort within ac-
ceptable values. This goal is obtained defining a cost func-
tion in which the designer fixes the weights on the differ-
ent terms, for example the errors, the state variables and
the inputs. In this case, the cost function

J(u(t),T ) =
∫ T

t0
[K1 +K2x(t)y(t)u(t)+K3y(t)+

+Pu2(t)
]

dt, K1,K2,K3,P ∈ℜ+ (3)

could be defined, where the time, the number of infected
and non-infected cells, and the control are considered. Un-
der these considerations, the optimal control problem can
be formulated and solved. The choice of the weights is
guided by considerations on the conditions under which
the system evolves.

The idea here proposed is to define the cost index with
one or more weights state dependent, so that different val-
ues can be assumed.

The presence of state functions as weights increases the
complexity of the procedure for the optimal control prob-
lem solution. In order to overcome such a problem still

maintaining the state dependency, the solution here pro-
posed makes use of a state space partition into regions
with consequent piecewise constant functions assumed for
the weights, constant when the state belongs to each re-
gion. Without loss of generality, the partition of the state
space considered hereafter is referred to only one compo-
nent; specifically, the number of infected cells y(t), the
ones that, according to their number, can be associated
to different levels of critical issues. Moreover, only the
weight P of the control term is defined as a function of the
state, P(x(t),y(t)) = P(y(t)). So, be y f ≥ 0 the minimum
threshold under which the control action is assumed not
necessary; then, the interval

[
y f ,+∞

)
is divided into N

subintervals Ii =
[
ξ i,ξ i+1

)
, i = 1,2, . . . ,N, with ξ 1 = y f ,

once ξ N+1 =+∞ is set for uniformity of notation. Conse-
quently, the weight P(y(t)) can be rewritten as

P(y(t)) = αi for y(t) ∈ Ii, αi ∈ℜ+ (4)

Under the assumption that a low cost for the control must
be assumed if a strong action is wanted, that is for high
values of infected CD4 T-cells y(t), the relationship αh ≤
αk for h > k will be chosen. The consequence of these
choices is the definition of N optimal control problems,
in which the cost function is of the form of (3) with the
weight of the control term as in (4). The control u is in the
class of bounded functions continuous almost everywhere
satisfying

qi(t) =−u(t)≤ 0, q2(t) = u(t)−U ≤ 0, U > 0 (5)

The solution of the optimal control problem for sys-
tem (1)-(2), under conditions (5) on the input and
χ(y(T ),T ) = y(T )−y f = 0 on the final state, are the con-
trol u(t) and the time T > 0,along with the corresponding
state evolution, which minimize the cost index (3) with
(4). To avoid the trivial case, it will be assumed that
y(t0) = y0 > y f , so that y0 ∈ Ii for some i. The constructive
algorithm proposed requires to solve, iteratively, such an
optimal control problem in each subinterval, according to
the actual state evolution. More precisely, for the interval
Ii, the Hamiltonian is

Hαi (x(t),y(t),λ1(t),λ2(t),u(t)) =

= K1 +αiu2(t)+K2x(t)y(t)u(t)+K3y(t)+

+λ1 (γ−dx(t)−β (1−u(t))x(t)y(t))+

+λ2 (−βx(t)y(t)u(t)+π(y(t))) (6)

and the necessary optimality conditions are [13]

λ̇1(t) =−
∂Hαi

∂x
=−K2y(t)u(t)+dλ1(t)+

+β (1−u(t))y(t)λ1(t)+βy(t)λ2(t)u(t) (7)

λ̇2(t) =−
∂Hαi

∂y
=−K2x(t)u(t)−K3 +

+β (i−u(t))x(t)λ1(t)+βx(t)λ2(t)u(t)+

−λ2(t)
[
B+2Cy(t)+3Dy2(t)

]
(8)
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0 =
∂Hαi

∂u
+

∂q1

∂u
η1 +

∂q2

∂u
η2 = 2αiu(t)+

+K2x(t)y(t)+βx(t)y(t)λ1(t)−βx(t)y(t)λ2(t)+

+η1(t)+η2(t) (9)

ηi(t)qi(t) = 0, ηi(t)≥ 0, i = 1,2 (10)

Hαi |T = 0, λ1(T ) = 0, λ2(T ) =−ζ , ζ ∈ℜ (11)

Be
(
T 1,x1(t),y1(t),u1(t)

)
the solution, if it exists, over

the interval
[
t0,T 1

)
obtained at the first step. If y1(t) ∈ Ii

∀t ∈
[
t0,T 1

)
, then the algorithm stops.

Otherwise, it happens that, during the evolution, there
exists a time instant t1 such that y1(t1) ∈ Ii and y1(t+1 ) /∈ Ii,
say, for example, y1(t+1 ) ∈ Ii−1: then t1 is the first switch-
ing instant. So, the solution of the switching problem for
t ∈ [t0, t1) is given by

(
T 1,x1(t),y1(t),u1(t)

)
and a new

cycle starts with a new optimization problem under initial
condition y1(t1) = ξ i−1, with the same cost index where
t0 is replaced by t1, and with the weight P(y(t)) = αi−1,
according to (4).

At the generic j–th step, introducing the quantity

Wj(t) = x(t)y(t)(−K2−βλ1(t)+βλ2(t)) (12)

the optimal solution in the time interval
[
t j−1,T j

)
is

u j(t) =


0 if −Wj(t)> 0

Wj(t)
2αi

if 0 <
Wj(t)
2αi

<U

U if Wj(t)
2αi

>U
(13)

In the solution (13), λ1(t) and λ2(t), along with the state
x(t) and y(t), appear explicitly; they can be determined by
considering the dynamics (1)-(2) together with the con-
ditions (7)-(11). In each region, the solution obtained is
optimal with the specific boundary conditions.

The final solution provided by the algorithm is then
computed as the composition of the M partial solutions
obtained at each step according to the expression

u0(t) = u1(t)
∣∣
[t0,t1]
◦ u2(t)

∣∣
(t1,t2]
◦· · ·◦ uM(t)

∣∣
(tM−1,tM ]

(14)

where M is the number of cycles involved.
It is worth to note that in the solution, the control is not

impulsive and the dynamics of the system is not a discon-
tinuous one. The switching in the control occurs since the
weight in the cost index changes depending on the deci-
sions of the control designer. This is the main difference
with respect to the approach used for multi-agent systems
in [14], where the Razumikhin technique is adopted, and
to switching systems, as in [15], where the stability anal-
ysis is addressed by the Lyapunov functions theory.

3. NUMERICAL RESULTS AND DISCUSSION

In this Section the behaviour of the considered HIV sys-
tem with the proposed control approach is studied to put in

evidence the differences and the advantages with respect
to a traditional optimal control formulation with constant
weights.

In all the simulations performed, the following param-
eters, taken from [3, 4], have been used for the model (1)-
(2): γ = 1, d = 0.1, β = 1, α = 0.0668, B = −3.1540,
C = 2.9402, D =−0.6; as in [4], the initial conditions are
set as x0 = 0.2 and y0 = 3. For all the simulations, the co-
efficients K1 = 10, K2 = 1 , K3 = 20 in the cost function
have been chosen, of almost the same order of magnitude,
with the exception of K2 since it weights a cubic term; the
upper bound U = 0.9 for the control has been fixed.

An optimal control approach demands to the cost func-
tion the ability to modulate the control according to all the
variables involved. For a choice of the cost index as in (3),
the solution depends on the values given to the weights
assigned to each term. In fact, consider, for example, the
choice P = 1, i.e. a fixed constant value.

In Figure 1 the corresponding control action uα(t) is
depicted, whereas in Figure 2 the time histories of the un-
infected xα(t) and the infected yα(t) cells are presented.

Fig. 1. Time history of the drug therapy uα(t) for P = 1.

Fig. 2. Time histories of infected yα(t) and uninfected
xα(t) cells for P = 1.

The control uα(t) is up to its maximum value for a cer-
tain time and then, since its effectiveness starts to be much
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lower than its cost, goes rapidly to zero.
The result of this test looks like the therapy-based

choice, as also found in [4], with a limited time assump-
tion of the drug; the main difference is that the duration is
not fixed in advance but it is given as part of the solution of
the optimal control problem, depending on the evolution
of the dynamics and the associated cost.

For the solution proposed in this paper, the interval[
ξ 1,+∞

)
, with ξ 1 = y f = 0.03, has been divided into

N = 2 subintervals, I1
y =

[
ξ 1,ξ 2

)
and I2

y =
[
ξ 2,ξ 3

)
, with

ξ 2 = 2 and ξ 3 = +∞, aiming at associating a dangerous
and critical level for the infection to the interval I2

y and a
lower level of severity to I1

y .
Intuitively, one imagines the necessity of a stronger

control action in the first case than in the second one. On
the basis of the previous considerations, this result can be
obtained associating a low control cost when a higher con-
trol seems to be required and a high control cost in the
other case. Then, α1 = 100 and α2 = 1 are set in (4) and
the solution obtained yields the results depicted in Figures
3 and 4.

Fig. 3. The proposed switching control action u0(t).

Fig. 4. Time history of the infected y0(t) and uninfected
x0(t) cells.

Figure 3 shows the control action u0(t)for the switching
case and in Figure 4 the time histories of the uninfected

CD4 T-cells x0(t) and the infected ones y0(t) are reported.
In order to put in evidence the relationships between the

results of the two approaches, the one in Figure 1, with
constant weight P = 1, and the switching control of Fig-
ure 3, it may be useful to plot them together in Figure 5, as
well as the corresponding evolutions of the number of in-
fected cells in Figure 6. The two figures well describe and
support the contribution of the proposed approach: thanks
to the fact that the number of infected cells reaches the
limit value ξ 2 = 2 at time t1 = 1.39, the change of the
control weight in the cost function produces a new be-
haviour. It is characterized by a shorted saturated action
and a smoother decreasing shape, with the state still reach-
ing the final condition, despite the global lower effort of
the control, as can be noted in Figure 6.

Fig. 5. Control effort: comparison between classical
(P = 1) and switching cases

Fig. 6. Infected cells: comparison between classical
(P = 1) and switching cases.

The only disadvantage is, obviously, a slight increment
of the final control time T 0 = T 2. Nevertheless, this appar-
ent drawback is fully compensated by the fact that the con-
trol, over the whole time interval during which the drug is
provided, requires a lower effort. This can be shown com-
puting and plotting the function

∫ t
0 u(τ)dτ , that is propor-

tional to the global control effort required, i.e. a form of
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energy.
Figure 7 is then obtained, showing that until both so-

lutions require the full control action, the functions are
obviously coincident; then, the decrement of the control
amplitude in the switching case, starting when the classi-
cal one is still at maximum, produces a reduction of the
total amount of energy related to the therapy cost.

Clearly, changing the values for the αi, the solution
changes and different behaviours are obtained.

Fig. 7. Control effort: comparison between classical and
switching cases.

4. CONCLUSIONS

A model of the HIV is considered, proposing an action
in which the control effort takes into account the num-
ber of infected cells, giving higher attention when they are
dangerously over a fixed critical value and considering the
infection not much severe below. This goal is obtained
proposing a constructive iterative algorithm in the frame-
work of optimal control theory. Obviously, the result can
be easily generalized to the case of more than one criti-
cal value and with a more complex decomposition of the
state space. The results obtained show that this approach
provides an efficient resource allocation, so being more
efficient, for example from an economical point of view,
than the one from classical theory where constant weights
are chosen. The idea here proposed for the specific exam-
ple of the HIV will be developed in a forthcoming work,
within a methodological framework, in which all the dy-
namic characteristics will be formally investigated.
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