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 Nomenclature 

×,⋅,⊗ Vector, scalar and cross products 

𝐶 Control horizons of Model Predictive Control 

𝑰𝒏 (𝑛 × 𝑛) identity matrix 

𝑱𝑩 Moment of Inertia (MOI) tensor  

𝐼𝑥 , 𝐼𝑦, 𝐼𝑧 Principal MOIs 

𝐾 Gain for momentum unloading 

𝑳𝒘, 𝑳𝒘𝒏 Angular momentum of the reaction wheels for the 

satellite and the life-support system 

𝐿𝑓ℎ(𝑥) Lie derivative of ℎ(𝑥) along 𝑓 

𝑚1, 𝑙1, 𝑱
𝟏 Mass, edge length and MOI tensor for the satellite 

𝑚2, 𝑙2, 𝑱
𝟐 Mass, edge length and MOI tensor for the life-

support system 

𝑃 Prediction horizon of Model Predictive Control 

𝒒, 𝒒𝟏𝟑, 𝑞4 Quaternion representation of the attitude, vector 

and scalar components of the quaternion 

𝒒𝒓𝒆𝒇 Reference quaternion 

𝑸 Error weight matrix of the controller 

𝑹 Control weight matrix of the controller 

𝑇 Time constant of the reference  

𝒙 = [𝒒 𝝎]𝑇 State vector  

𝜹 Error quaternion representation of the attitude 

𝝉 External torques 

𝝉𝒘, 𝝉𝒘𝒏 Torques applied by the reaction wheels of the 

satellite and of the life-support system 

𝝎 Angular velocity of the inertial reference frame 

relative to the satellite measured in its coordinates 

1 Introduction 

Prolonging the satellite operation life is becoming a 

crucial topic in spacecraft research, as it is related to 

the reduction of space debris, which is one of the main 

issues that modern space systems is facing (Liou, 

2006). In fact, modern satellite mission planning 

should take into account not only orbital and attitude 
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control, but also the disposal of the device once its 

operation life is elapsed. For this reason, this paper 

envisages the development of a control strategy for the 

operation of a “life-support” system that can be 

attached to an orbiting satellite to either extend its 

operational life once its propellant, or in general the 

lifetime of some of its components, has been depleted 

or to provide the satellite with new, updated, 

equipment, with immediate economic benefits for the 

spacecraft operator. 

The considered life-support system is equipped with 

a set of reaction wheels, the typical actuator in attitude 

control problems, and a set of thrusters that may 

replace the depleted ones of the satellite for the 

required procedure of angular momentum unloading 

(Ismail & Varatharajoo, 2010). The paper develops an 

attitude control law for the life-support satellite, based 

on feedback linearization, and tests it by implementing 

mission controllers based on both Linear Quadratic 

Regulator (LQR) and Model Predictive Control 

(MPC), controlling the coupled system composed by 

the original and the life-support satellites.  

It will be shown that the proposed control strategy 

does not require communication between the life-

support system and the satellite, with clear advantages 

in terms of dedicated interfaces and energy efficiency. 

The paper is organized as follows: Section 2 

contains a brief review of the state of the art on attitude 

control related problems and highlights the main paper 

contributions; Section 3 discusses the preliminary 

notions necessary to introduce the problem of attitude 

control; Section 4 introduces the problem of feedback 

linearization, as it is the theoretical backbone of the 
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paper; Section 5 formulates the attitude control 

problem for the joint satellite and life-support system, 

highlighting the control scheme for a typical satellite 

mission and proposing a nested control strategy that 

utilizes feedback linearization and LQR or MPC; 

Section 6 shows the results of numerical simulations, 

based on a real case study, to validate the proposed 

approach in various operative scenarios; finally, 

Section 7 draws the conclusions and outlines some 

future researches. 

2 State-of-the-Art Review and Paper 

Contribution 

The problem of attitude control has always been 

considered one of the most crucial fields of research in 

space engineering for its relation to satellite operations 

(Kaplan, 1976). Several types of attitude controllers 

have been proposed, ranging from sliding-mode ones 

(Lo & Chen, 1995) to robust PID (Long-Life Show, 

Jyh-Ching Juang, Chen-Tsung Lin, & Ying-Wen Jan, 

2002) and passivity-based ones (Lizarralde & Wen, 

1996). In most of the works reported in this review, the 

satellite has been modeled as a rigid body and, 

consequently, the differential equations describing the 

attitude evolution have been derived from basic 

kinematics and dynamics rules. Starting from a rigid-

body model, one of the most used control techniques 

in satellite attitude control is feedback linearization, as, 

e.g., in (Bang, Lee, & Eun, 2004a), and (Navabi & 

Hosseini, 2017). In both papers, the authors consider 

the satellite system model described in the Byrnes-

Isidori normal form (Isidori, 1995), derived by the 

measurement of the so-called “vector components” of 

the quaternion representation of the satellite attitude 

(see Section 3). 

Several other papers, as (Wie & Barba, 1985) and 

(Ghiglino, Forshaw, & Lappas, 2015), utilize the 

quaternion representation to develop their control 

strategy discussing, respectively, stability related 

results for large angle maneuvers, derived from 

Lyapunov’s theory, and optimal LQR-based control 

results. Regarding stability, a significant contribution 

was given by (Wen & Kreutz-Delgado, 1991), 

discussing the global properties of several control laws 

for quaternion represented attitude problems.  

The advantages and shortcomings of the quaternion 

representation have been discussed extensively in 

(Markley & Crassidis, 2014), (Kaplan, 1976) and 

(Zipfel, 2007), and such representation is commonly 

found also in attitude control problem even outside the 

field of space systems, as in (Fresk & Nikolakopoulos, 

2013) and (Reyes-Valeria, Enriquez-Caldera, 

Camacho-Lara, & Guichard, 2013). In this paper, the 

so-called error quaternions (see Section 5.3) are used, 

which, for example, were also considered in (Wang, 

Yuan, & Zhu, 2005) to tackle the earth observation 

problem by means of a PID control. 

Few papers in the literature deal with the operational 

life extension of a satellite by means of an external 

support system, and instead typically focus on fault-

tolerant control solutions, as (Byrnes & Isidori, 1991; 

Xiao, Hu, & Zhang, 2012; Zou & Kumar, 2011). In 

(Byrnes & Isidori, 1991), a smooth state-feedback 

control is developed to asymptotically stabilize a 

satellite, whose operation was compromised by a 

faulty thruster, around the desired attitude. In (Xiao et 

al., 2012), a sliding mode control is proposed, taking 

into account the limitation on the maximum torque and 

momentum of the reaction wheels available on the 

satellite. In (Zou & Kumar, 2011), the authors 

presented an adaptive controller based on fuzzy logic 

and backstepping to obtain robust performances with 

respect to uncertainties in inertia estimation, actuator 

faults and external disturbances. 

Finally, several moment unloading techniques have 

been studied in order to desaturate the reaction wheels 

– that are the main control actuators in most of the 

works presented so far – using either magnetorquers or 

thrusters to get the external torque required to perform 

the task while maintaining the desired attitude, as in 

(Tregouet, Arzelier, Peaucelle, Pittet, & Zaccarian, 

2015) and (Yang, 2017).  

With respect to the mentioned literature, the main 

contributions of this work are the following ones: 

- the modelling and control of a two-body satellite 

system, formed by the composition of the original 

satellite and a life-support device able to extend its 

operational life, and the definition of a control 

scheme able to assure the feedback linearization of 

the whole system, not relying on information 

exchanges between the original satellite and the 

support system; 

- the development of a control law, not reliant on 

information exchanges between the original 

satellite and the support system, based on feedback 

linearization, able to assure asymptotic 

convergence to the desired attitude, even if the 

actuators of the original satellite are out-of-order; 

- the formulation of the attitude tracking problem for 

the two-body system in terms of LQR and MPC 

control, by means of error quaternion modelling; 

- the integration of a reaction wheel moment 

unloading control to assure the stability of the 

system and the feasibility of the control. 

3 Preliminaries on Satellite Attitude Control 

Quaternions are a convenient way to model the 

attitude of a rigid body, as they are not affected by 

singularities such as Euler angles. A unitary quaternion 

is defined as a 4 × 1 unitary vector 𝒒: 
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𝒒 = [
𝒒𝟏𝟑
𝑞4
] ∈ ℝ4, 

 

where 𝒒𝟏𝟑 ∈ ℝ
3 takes the name of “vector component” 

of the quaternion 𝒒 and 𝑞4 ∈ ℝ is its “scalar 

component”. 

Some useful operators are defined as follows: 

- the cross product between two quaternions 𝒒𝟏, 𝒒𝟐, 

defined as 

 

𝒒𝟏⊗𝒒𝟐 = [
𝑞4
2𝒒𝟏𝟑
𝟏 + 𝑞4

1𝒒𝟏𝟑
𝟐 − 𝒒𝟏𝟑

𝟏 × 𝒒𝟏𝟑
𝟐

𝑞4
1𝑞4
2 − 𝒒𝟏𝟑

𝟏 ⋅ 𝐪𝟏𝟑
𝟐

]; (1) 

 

- the cross product between a (3 × 1)-vector 𝒙 and 

a quaternion 𝒒  

 

𝒙⊗ 𝒒 = [
𝒙
0
] ⊗ 𝒒 = [𝒙⊗]𝒒; 

 

- the operator 

 

[𝒒⊗] = [
𝑞4𝑰𝟑 − [𝒒𝟏𝟑 ×]  𝒒𝟏𝟑

−𝒒𝟏𝟑
𝑇 𝑞4

], 

 

where 𝑰𝒏 denotes the (𝑛 × 𝑛) identity matrix and 

 

[𝒒 ×] = [

0 −𝑞3 𝑞2
𝑞3 0 −𝑞1
−𝑞2 𝑞1 0

]; (2) 

 

- the operator 

 

𝚵(𝒒) = [
𝑞4𝑰𝟑 + [𝒒𝟏𝟑 ×]

−𝒒𝟏𝟑
𝑇 ] = [

𝑞4 −𝑞3 𝑞2
𝑞3 𝑞4 −𝑞1
−𝑞2 𝑞1 𝑞4
−𝑞1 −𝑞2 −𝑞3

]. 

 

Finally, the model of the rigid spacecraft with state 

vector 𝒙 = [𝒒 𝝎]𝑇 is derived, as customary in the 

literature (Markley & Crassidis, 2014), as 

 

{

𝒒̇ =
1

2
 [𝝎⊗]𝒒                                        

𝝎̇ = 𝑱𝑩
−1[𝝉 − 𝝉𝒘 −𝝎× (𝑱𝑩𝝎+ 𝑳𝒘)]

𝑳̇𝒘 = 𝝉𝒘                                                 

 (3) 

 

in which: 𝝎 is the angular velocity vector, that 

represents the rotational velocity of the inertial 

reference frame with respect to the body frame in the 

latter coordinates; 𝒒 is the satellite attitude expressed 

in quaternions; 𝝉𝒘 and 𝑳𝒘 are the torques applied by 

the reaction wheels and by their angular momentum, 

respectively; the disturbance 𝝉 models external forces, 

including the ones provided by the thrusters of the 

satellite; 𝑱𝑩 is the Moment of Inertia (MOI) tensor, 

expressed in the rigid body reference frame. 

Note that, other than the kinematic equation of 𝒒, the 

model (3) includes the dynamical description of 𝝎, 

which is governed by 𝝉𝒘 and 𝑳𝒘. 

4 Preliminaries on Feedback Linearization 

In the Multi Input Multi Output (MIMO) case, the 

problem of feedback linearization consists in finding a 

control law 𝒖 such that the nonlinear system 

 

{
𝒙̇ = 𝒇(𝒙) + ∑ 𝑔𝑖(𝒙)𝑢𝑖

𝑚
𝑖=1

𝒚 = 𝒉(𝒙)
 , (4) 

 

with 𝑚 inputs and 𝑐 outputs and where  

 

𝒙(𝑡) =∈ ℝ𝑛, 

𝒖(𝑡) =∈ ℝ𝑚, 

𝒚(𝑡) =∈ ℝ𝑐, 
𝒇(𝒙) = [𝑓1(𝒙),… , 𝑓𝑛(𝒙)],  
𝒉(𝒙) = [ℎ1(𝒙),… , ℎ𝑐(𝒙)], 

 

is reduced, around the origin 𝒙𝟎, to a system with a 

linear input-output map.  

For square MIMO systems, the problem of feedback 

linearization around 𝒙𝟎 has a solution if and only if the 

system has a vector of relative degree [𝑟1…𝑟𝑚] in 𝒙𝟎, 

with ∑ 𝑟𝑖𝑖=1,…,𝑚 ≤ 𝑛 (Isidori, 1995) and the decoupling 

matrix 

 

𝚫(𝒙) = [

𝐿𝑔1𝐿𝒇
𝑟1−1ℎ1(𝒙) … 𝐿𝑔𝑚𝐿𝒇

𝑟1−1ℎ1(𝒙)

⋮ ⋱ ⋮

𝐿𝑔1𝐿𝒇
𝑟𝑚−1ℎ𝑚(𝒙) … 𝐿𝑔𝑚𝐿𝒇

𝑟𝑚−1ℎ𝑚(𝒙)

]  (5) 

 

is nonsingular in 𝒙𝟎. 

The control input that realizes the feedback 

linearization assumes the form 

 

𝒖 = 𝚫(𝒙)−1(𝝂 − 𝒂(𝒙)),  (6) 

 

with 

 

𝒂(𝒙) = [

𝐿𝒇
𝑟1ℎ1(𝒙)

⋮
𝐿𝒇
𝑟𝑚ℎ𝑚(𝒙)

] (7) 

 

and 𝜈 being the control signal that governs the 

linearized system. 

The resulting feedback-linearized system (4) in 

normal form is then 

 

{
𝝃̇ = 𝑨𝝃 + 𝑩𝒗

𝜼̇ = 𝒛(𝝃, 𝜼)

𝒚 = 𝑪𝝃

, (8) 
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where 𝒛(𝝃, 𝜼) is a smooth function, 𝑨 =
𝑑𝑖𝑎𝑔(𝑨𝟏, 𝑨𝟐, 𝑨𝟑), 𝑩 = 𝑑𝑖𝑎𝑔(𝑩𝟏, 𝑩𝟐, 𝑩𝟑), and 𝑪 =
𝑑𝑖𝑎𝑔(𝑪𝟏, 𝑪𝟐, 𝑪𝟑), are block-diagonal matrices with  

 

𝑨𝒊 = [
0 1
0 0
] , 𝑩𝒊 = [

0
1
] , 𝑪𝒊 = [0 1], 𝑖 = 1,2,3. 

5 Problem Formulation and Control Design 

This section presents the feedback-linearized 

satellite model (section 5.1), the model of the overall 

satellite and life-support system (section 5.2) and the 

proposed controller (section 5.3). 

5.1 Feedback-Linearized Satellite Model 

Following (Bang, Lee, & Eun, 2004b), this paper 

considers 𝒙 = [𝒒,𝝎, 𝑳𝒘]
𝑇, 𝒚 = 𝒒𝟏𝟑 and 𝒖 = 𝝉𝒘 as 

state, output and input vectors of the system (3), 

respectively, and relies on the following assumption 

for the model: 

 

Assumption 1. In the derivation of the normal form, 

this paper will consider the model (3), neglecting the 

dynamics of 𝑳𝒘 (i.e., the third equation of (3)), and will 

assume 𝑳𝒘 to be a measured disturbance. 

 

Note that the measure of 𝑳𝒘 will be directly utilized 

(see Section 5.3) to compute dedicated control actions 

to assure the stability of the dynamics of 𝑳𝒘 – 

separating the problems of moment unloading and 

attitude control is a standard practice. In alternative to 

Assumption 1, the dynamics of 𝑳𝒘 could be considered 

as included in the zero dynamics and, as long as its 

stability is guaranteed by the mentioned dedicated 

controller, the results of the following sections would 

still hold. In this work, it was chosen to neglect the 

dynamics of 𝑳𝒘 for the sake of simplicity of the 

presentation. 

With the selected inputs and outputs, the vector of 

relative degree is 𝒓 = [2  2  2]𝑇 and, assuming, as 

customary, that the diagonal inertia tensor is 𝑱𝑩 =
diag(𝐼𝑥, 𝐼𝑦, 𝐼𝑧), the decoupling matrix (5) is written as 

𝚫(𝒙) = −

[
 
 
 
 
𝑞4

2𝐼𝑥
−
𝑞3

2𝐼𝑦

𝑞2

2𝐼𝑧
𝑞3

2𝐼𝑥

𝑞4

2𝐼𝑦
−
𝑞1

2𝐼𝑧

−
𝑞2

2𝐼𝑥

𝑞1

2𝐼𝑦

𝑞4

2𝐼𝑧 ]
 
 
 
 

, (9) 

 

whose determinant is 

 

det(𝚫(𝒙)) = −𝑞4
(𝑞1
2+𝑞2

2+𝑞3
2+𝑞4

2)

8𝐼𝑥𝐼𝑦𝐼𝑧
, (10) 

 

which annihilates for 𝑞4 = 0. It is then possible to 

feedback-linearize the system via the control (6) for 

𝑞4 ≠ 0, under the following transformation: 

 

[
𝝃
𝜂
] =

[
 
 
 
 
 
 
𝑞1
𝑞̇1
𝑞2
𝑞̇2
𝑞3
𝑞̇3
𝑞4]
 
 
 
 
 
 

=
1

2

[
 
 
 
 
 
 
 

𝑞1
(𝜔𝑥𝑞4 +𝜔𝑧𝑞2 −𝜔𝑦𝑞3)

𝑞2
(𝜔𝑦𝑞4 −𝜔𝑧𝑞1 + 𝜔𝑥𝑞3)

𝑞3
(𝜔𝑧𝑞4 + 𝜔𝑦𝑞1 − 𝜔𝑥𝑞2)

𝑞4 ]
 
 
 
 
 
 
 

,  (11) 

 

yielding to the normal form (8), from which it follows 

𝒒̈𝟏𝟑 = 𝒗. 

Noting that the unitary properties of the quaternions 

is preserved over the attitude dynamics, if 𝑞1, 𝑞2 and 

𝑞3 converge to appropriate values, 𝑞4, and hence the 

zero-dynamics, does not diverge. 

5.2 Satellite with Support System Model 

To control the system formed by the composition of 

the original satellite with the life-support system, it is 

needed to model the rigid body representing the overall 

system and to develop a suitable control scheme that 

should be deployed into the life-support device. 

 

 
Figure 1 Satellite and Life-Support device connected 

 

The system depicted in Figure 1 is considered, in 

which: 

- the coupling between the life-support device and 

the satellite is rigid and no joint motion is involved; 

- the support system is equipped with reaction wheels 

for the proper attitude control and with thrusters to 

perform moment unloading, whereas the satellite 

may have depleted the propellant and/or have out-

of-order actuators; 

- the Center Of Mass (COM) of the satellite is aligned 

with respect to the 𝑧-axis of the rigid body reference 

frame of the support device; the 𝑥 and 𝑦 axes of the 

two reference frames are assumed to be parallel. 

 

The original satellite and the support system are 

modelled as two cubes with mass 𝑚1 and 𝑚2 and edges 

of length 𝑙1 and 𝑙2, respectively. Let 𝑚 = 𝑚1 +𝑚2 
and let 𝑱𝟏 and 𝑱𝟐 be the MOI tensors of the two bodies, 

expressed in their rigid body reference frames. To 

characterize the dynamics of the composite system, it 

is needed to derive its inertia tensor utilizing the 

Huygens-Steiner – or parallel axis – theorem 

(Goldstein, Poole, Safko, & Addison, 2002): 
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𝑱𝒏 = 𝑱𝒄 +𝑚[(𝒓
𝑇𝒓)𝑰𝟑 − 𝒓𝒓

𝑇], (12) 

 

where 𝒓 is the displacement vector between the COM 

and the new point where the momentum 𝑱𝒏 is 

calculated, while 𝑱𝒄 is the momentum with respect to 

the COM. 

Let 𝑧2 be the 𝑧-coordinate of the COM of the support 

system in the reference frame of the satellite. In the 

composite body reference frame, the coordinates of the 

COMs of the two original systems are 

 

𝑪𝑶𝑴𝟏 = [

0
0

−
𝑚2𝑧2

𝑚

] , 𝑪𝑶𝑴𝟐 = [

0
0

𝑚1𝑧2

𝑚

],  

 

respectively. Thanks to (12), the inertia 𝑱𝑪𝑶𝑴𝟏
𝟐  of the 

support system evaluated in 𝑪𝑶𝑴𝟏 is derived as: 

 

𝑱𝑪𝑶𝑴𝟏
𝟐 = 𝑱𝟐 +𝑚2 [

𝑧2
2 0 0

0 𝑧2
2 0

0 0 0

].  

 

It is now possible to evaluate the inertia tensor 

𝑱𝑪𝑶𝑴𝟏
𝑻𝒐𝒕  of the composite body about 𝑪𝑶𝑴𝟏 as follows: 

 

𝑱𝑪𝑶𝑴𝟏
𝑻𝒐𝒕 = 𝑱𝟏 + 𝑱𝑪𝑶𝑴𝟏

𝟐 . 

 

Finally, the MOI of the composite body in its 

reference frame is  

 

𝑱𝑻𝒐𝒕 = 𝑱𝑪𝑶𝑴𝟏
𝑻𝒐𝒕 −𝑚

[
 
 
 
 (
𝑚2𝑧2

𝑚
)
2

0 0

0 (
𝑚2𝑧2

𝑚
)
2
0

0 0 0]
 
 
 
 

.  

 

Recalling that 𝑧2 =
𝑙1

2
+
𝑙2

2
, it follows: 

 

𝑱𝑻𝒐𝒕 = 𝑱𝟏 + 𝑱𝟐 +

[
 
 
 
 𝑚2 (

𝑙1+𝑙2

2
)
2
 0 0

0 𝑚2 (
𝑙1+𝑙2

2
)
2
0

0 0 0]
 
 
 
 

 +  

            −

[
 
 
 
𝑚2

2(𝑙1+𝑙2)
2

4𝑚
0 0

0
𝑚2

2(𝑙1+𝑙2)
2

4𝑚
0

0 0 0]
 
 
 
. (13) 

 

The system dynamics is then unchanged, save for 

the new value of the MOI and the presence of new 

reaction wheels, whose angular momentum, 𝑳𝒘𝒏, 

follows 𝑳̇𝒘𝐧 = 𝝉𝒘𝒏. 

5.3 Proposed Controllers 

Overall Control System 

Figure 2 reports a typical scheme for the satellite 

attitude control problem, applied to the composite 

system. An outer control loop, governed by a mission 

controller, is responsible for the tracking of the 

reference attitude trajectory, while an internal control 

loop is responsible for the feedback linearization – 

which simplifies the task of the mission controller. An 

additional controller is in charge of managing the 

momentum built up into the reaction wheels, typically 

by unloading it according to heuristic laws to avoid 

their saturation. 

 

Mission 
controller

Trajectory
tracking

Linearized
system dynamics

Momentum
control

Linearizing
controller

Composite 
system dynamics

 
Figure 2 Satellite attitude control via feedback linearization 

The following subsections are going to detail each 

one of the proposed controllers. 

Feedback Linearization of the composite system 

It is assumed that the original satellite is controlled 

by a scheme analogous to the one reported in Figure 2, 

i.e., the satellite is already equipped with a feedback-

linearizing controller, which, at the time of the 

connection, is still active. After the attachment, it 

follows that 

 

𝒒̈𝟏𝟑 = 𝒂(𝒒, 𝑳𝒘 + 𝑳𝒘𝒏, 𝝎, 𝑱
𝑻𝒐𝒕) + 𝚫(𝑱𝒕𝒐𝒕, 𝒒)𝒖, 

 

where 𝒂(⋅) and 𝚫(⋅) are, with a slight abuse of notation, 

as in (7), (9). 

To apply feedback linearization, the required input 

of the overall system, 𝒖𝒓𝒆𝒒 , would have to be set to  

 

𝒖𝒓𝒆𝒒 = 𝚫(𝑱
𝑻𝒐𝒕, 𝒒)

−1
[𝒗 − 𝒂(𝒒, 𝑳𝒘 + 𝑳𝒘𝒏, 𝝎, 𝑱

𝑻𝒐𝒕)], 

 (14) 

 

but this control law does not consider that the original 

satellite is already applying, unaware of the presence 

of the life-support device, its feedback linearization 

law: 

 

𝒖𝟏 = 𝚫(𝑱
𝟏, 𝒒)

−1
[𝒗 − 𝒂(𝒒, 𝑳𝒘, 𝝎, 𝑱

𝟏)]. (15) 

 

In order to provide a solution for the support of an 

operative satellite (e.g., in a mission that desires to 

update the scientific instruments of the satellite), one 

may think of cancelling the original linearizing 

controller, actuated by the sole satellite, and of 
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substituting it with a new linearizing controller for the 

overall system, as depicted in Figure 3. 
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Figure 3 Feedback-linearizing controller 
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Figure 4. Feedback-linearizing compensation controller 

This approach trivially requires the support device 

to compute a replica of 𝒖𝟏and subtract it from 𝒖𝒓𝒆𝒒 

before applying it to the system. With this solution, 

besides the mission control command 𝒗, the support 

system needs the sensor readings regarding 𝒒, 𝝎 and 

𝑳𝒘. Even if the former two signals, 𝒒 and 𝝎, are the 

same for the satellite and the support system, there is 

still the signal 𝑳𝒘 that must be communicated by the 

satellite to the support system. This need of 

communication affects the feasibility of the proposed 

scheme for all the satellites which are not already 

provided with an appropriate communication channel. 

To overcome this problem, it will be shown in the 

following that it is possible to design a compensation 

controller which directly computes an additive control 

action that compensates the presence of 𝒖𝟏 without 

having to explicitly compute 𝒖𝟏 on-line. In other 

words, to obtain the objective of not interfering with 

the control logic of the original satellite, the controller 

compensates the linearizing control 𝒖𝟏 with an 

additional action 𝒖𝒄𝒐𝒎𝒑 in such a way that 𝒖𝒓𝒆𝒒 is 

recovered as 𝒖𝒓𝒆𝒒 = 𝒖𝟏 + 𝒖𝒄𝒐𝒎𝒑 (see Figure 4). It will 

also be shown that the compensation control action will 

not require the measures of 𝑳𝒘.  

Let us consider the control scheme of Figure 4 and 

let the feedback-linearizing compensation torque be 

 

𝒖𝒄𝒐𝒎𝒑 = 𝒖𝒓𝒆𝒒 − 𝒖𝟏, (16) 

 

which, substituting (14) and (15), becomes: 

 

𝒖𝒄𝒐𝒎𝒑 = 𝚫(𝑱
𝑻𝒐𝒕, 𝒒)

−1
[−𝒂(𝒒, 𝑳𝒘 + 𝑳𝒘𝒏, 𝝎, 𝑱

𝑻𝒐𝒕] +

 − 𝚫(𝑱𝟏, 𝒒)
−1
[𝒗 − 𝒂(𝒒, 𝑳𝒘, 𝝎, 𝑱

𝟏)].   (17) 

 

Considering the model (3), with reaction wheels and 

without external forces applied, setting 

 

𝝉𝒘 = −𝑱
𝟏𝒖̃ − 𝝎 × (𝑱𝟏𝝎+ 𝑳𝒘), 

 

in which 𝒖̃ is a proxy control introduced in the 

following analysis, it follows 𝝎̇ = 𝒖̃. 

By defining 𝑸(𝒒) as the vector including the first 

three rows of the matrix 
1

2
𝚵(𝒒), one has that 

 

𝒒̈𝟏𝟑 = 𝐐(𝒒) 𝝎̇ + 𝐐(𝒒̇) 𝝎, 

 

Therefore, by setting  

 

𝒖̃ = 𝝎̇ =  𝑸(𝒒)−1(𝒗 − 𝑸(𝒒̇)𝝎),  
 

the feedback linearized system 𝒒̈𝟏𝟑 = 𝒗 is recovered. 

The feedback linearization torque is then 

 

𝒖𝟏 = 𝒕𝒘 =  

   = −𝑱𝟏𝑸(𝒒)−1(𝒗 − 𝑸(𝒒̇)𝝎) − 𝝎 × (𝑱𝟏𝝎+ 𝑳𝒘).
 (18) 

 

Substituting (18) and (14) into (16) gives us the final 

expression for the feedback-linearizing compensation 

torque: 

 

𝒖𝒄𝒐𝒎𝒑 = −(𝑱
𝒕𝒐𝒕 − 𝑱𝟏)𝑸(𝒒)−1[𝝂 − 𝑸(𝒒̇)𝝎] − 𝝎 ×

[(𝑱𝒕𝒐𝒕 − 𝑱𝟏)𝝎 + 𝑳𝒘𝒏],  (19) 

 

which has the same expression of 𝒖𝟏 in equation (18), 

with (𝑱𝒕𝒐𝒕 − 𝑱𝟏) as inertia term and 𝑳𝒘𝒏 as the 

momentum of the wheels. 

 

Remark 2. The control law (19) does not depend on 

𝑳𝒘: the support system does not require information 

regarding the momentum of the reaction wheels of the 

original satellite, and the only exogeneous signal it 

receives is 𝝂, which could even be obtained directly by 

the measurements of 𝒒 if the support is equipped with 

a replica of the outer loop controller. This 

independence is one of the most significant advantages 

of the proposed control scheme of Figure 4, as it does 

not require any communication interfaces between the 

two systems and can hence be deployed to satellites 

already in orbit. As a by-product, the communication-

less control scheme is valuable also from the energy-

saving viewpoint. 

 

Remark 3. The control law (19) considers that the 

satellite is still operating its reaction wheels, and, thus, 

its dynamics is already feedback-linearized. In this 

scenario, the support is needed, e.g., to provide new 

thrusters or scientific equipment. In case the life-

support system has been attached to a satellite that can 
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no longer operate its reaction wheels, the support 

system oversees the whole control actuation, including 

the feedback linearization of the complete system. To 

this end, if the reaction wheels of the satellite are no 

longer operative, the support system has to directly 

apply the control law (14) with null 𝑳𝒘. 

Mission Controller 

This section analyses the design of the outer loop 

controller, which operates on the linearized composite 

satellite system and whose task is to let the system 

track a reference trajectory. It is worth remarking that 

the proposed control scheme is, in general, 

independent of the implemented mission controller. In 

fact, any control law designed for a feedback linearized 

satellite is compatible with the proposed scheme, as the 

life-support compensates its effect on the system 

dynamics by providing an additional control action.  

To apply standard tracking control algorithms for 

linear systems, a change of the coordinates of the 

system (8) is needed, as the typical satellite mission 

does not require to drive the system to its origin but, 

instead, requires the tracking of a reference trajectory 

𝒒𝒓𝒆𝒇(𝑡). A trivial solution for the tracking problem 

would then be the annihilation of the error 𝒆(𝑡) =

𝒒𝟏𝟑
𝒓𝒆𝒇
(𝑡) − 𝒒𝟏𝟑(𝑡), which, under feedback linearization 

(14), would lead to  

 

𝒆̈(𝑡) = 𝒒̈𝟏𝟑
𝒓𝒆𝒇
(𝑡) − 𝝂(𝑡) = 𝝂̃(𝑡), 

 

where 𝝂̃(𝑡) is a proxy control that governs the error 

dynamics. The limit of this approach is that the system 

has no control over the convergence value of 𝑞4, 
meaning that, without proper considerations, the 

satellite may attain an attitude that is different from the 

desired one.  

It is then convenient to write the system in the so-

called error quaternions coordinates (Markley & 

Crassidis, 2014; Wang et al., 2005), defined as  

 

𝜹 = [
𝜹𝟏𝟑
𝛿4
] = 𝒒⊗ 𝒒𝟎

−1
, 

 

where 𝒒𝟎
−1

 is the inverse o the quaternion 𝒒𝟎, yielding 

 

𝜹𝟏𝟑 = Ξ(𝒒
𝟎)𝒒, 

δ4 = 𝒒
𝟎T𝒒. 

 

The error quaternion represents the rotational error 

between the quaternion 𝒒 and an arbitrary quaternion 

𝒒𝟎. By choosing a reference trajectory in the error 

quaternion coordinates 𝜹𝟏𝟑
𝒓𝒆𝒇(𝑡) that converges to 

[0 0 0]𝑇 (i.e., 𝒒𝒓𝒆𝒇(𝑡) → 𝒒𝟎), the tracking error is 

defined as 

 

𝜹𝒆(t) = 𝜹𝟏𝟑(t) − 𝜹𝟏𝟑
𝒓𝒆𝒇
(t).  (20) 

 

Due to the particular choice of 𝒒𝟎, annihilating this 

error asymptotically drives the system to either the 

identity quaternion 𝑰 = [0,0,0,1]𝑇 or to −𝑰, which 

represent the same attitude, avoiding then the 

ambiguity of a formulation based on the error 𝒆. For a 

fixed 𝒒𝟎, the dynamics of the system becomes 

 

𝜹̇ = 𝒒̇⊗ 𝒒𝟎
−1
=
1

2
[𝝎(𝑡) ⊗]𝒒(𝑡) ⊗ 𝒒𝟎

−1
=

1

2
[𝝎(𝑡) ⊗]𝜹, (21) 

 

i.e., the dynamics (21) of the system in the error 

quaternion coordinates is the same as in the original 

coordinates.  

 

Remark 4. Considering that the dynamics of 𝜹 and 𝒒 

are the same, all the results of Section 5.1 and Section 

5.3 still hold with a trivial coordinate substitution.  In 

particular, the feedback linearization feasibility 

condition, derived from the nonsingularity of (9), 

translates to 𝛿4(𝑡) ≠ 0. The boundness of 𝛿4(𝑡), yields 

that any controller that annihilates 𝜹𝒆 stabilizes the 

two-body systems and achieves tracking. 

Mission Controller based on Linear Quadratic 

Regulator (LQR) 

The LQR is one of the most used controllers for 

linear systems and relies on the definition of a 

quadratic cost function that summarizes the control 

objectives and that usually takes the form: 

 

𝐽 =
1

2
∫ [𝜹𝒆

𝑇𝑸(𝑡)𝜹𝒆 + 𝝂̃
𝑇𝑹(𝑡)𝝂̃]𝑑𝑡

∞

𝑡0
, (22) 

 

where 𝑸(𝑡) and 𝑹(𝑡) are positively definite matrices, 

representing, respectively, the weights assigned to the 

error values and to the control effort. 

In the standard LQR approach (Zhou, Doyle, & 

Glover, 1996), the control action minimizing (22) is 

available in closed-form: 

 

𝝂̃ = −𝑹−1𝑩𝑇𝑲𝜹𝒆, (23) 

 

where 𝑲 is the solution of the Riccati equation 

associated with the LQR problem. 

The control action to implement in (15) is then: 

 

𝝂 = 𝜹̈𝟏𝟑
𝒓𝒆𝒇
 + 𝑹−1𝑩𝑇𝑲𝜹𝒆. (24) 

 

The main limitation of LQR is that the optimization 

does not take into account the physical limitations of 

the system or any form of additional constraint. In 

particular, the LQR formulation cannot guarantee the 

feedback linearizing condition 𝛿4 ≠ 0 at all times, nor 
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the actuation of the control. A good candidate to 

address this limitation is then MPC, as described 

below. 

Mission Controller based on Model Predictive Control  

The underlying idea of classical MPC is to use a 

discretized dynamic model of the system, obtained by 

an exact state-space discretization of the linearized 

system (8), to predict the state trajectory under a given 

control action and optimize the system evolution over 

the so-called prediction horizon of length 𝑃. The 

optimization is performed every 𝑠 seconds and 

computes the control actions over the period 𝑃;  

subsequently, only the first control action is applied to 

the system, while the other computed ones are 

discarded. 

With a little abuse of notation, let 𝒗[𝑘|ℎ] denote the 

predicted control action value at time (ℎ + 𝑘)𝑠 
computed at time ℎ𝑠 (note that the same notation will 

be used hereinafter for other signals), and let the 

optimal control sequence be denoted by 𝒗∗. The 

proposed MPC formulation, which is explained in the 

remainder of the section, is the following: 

 

min
𝒗∈ℝ𝐶

𝐽(𝒗) (25) 

s.t. 
𝑇

2
(𝝎[𝑘|ℎ]𝑇𝜹𝟏𝟑[𝑘|ℎ]) − 𝛿4[𝑘|ℎ] ≤ 0, if 𝛿4[𝑘|ℎ] > 0,

𝑘 = 1,… , 𝑃, (26) 
𝑇

2
(𝝎[𝑘|ℎ]𝑇𝜹𝟏𝟑[𝑘|ℎ]) − 𝛿4[𝑘|ℎ] ≥ 0, if 𝛿4[𝑘|ℎ] < 0,

𝑘 = 1,… , 𝑃, (27) 

𝒂(𝒙[𝑘|ℎ]) + 𝚫(𝒙[𝑘|ℎ])𝒖𝒎𝒊𝒏 < 𝒗[𝑘|ℎ] < 𝒂(𝒙[𝑘|ℎ]) +

𝚫(𝒙[𝑘|ℎ])𝒖𝒎𝒂𝒙, 𝑘 = 0,… , 𝑃 − 1. (28) 

 

The cost function (25) has the same rationale of the 

cost function (22) and is of the form 

 

𝐽(𝒗) =
1

2
∑ (𝜹𝒆[𝑘|ℎ]

𝑇𝑸[𝑘]𝜹𝒆[𝑘|ℎ] + 𝒗[𝑘 −𝑘=1,…,𝑃

1|ℎ]𝑇𝑹[𝑘 − 1]𝒗[𝑘 − 1|ℎ]). (29) 

 

MPC provides a framework in which one can 

directly impose the constraint 𝛿4 ≠ 0 over the 

prediction window, driving the system to the desired 

attitude while avoiding the singularity points. In other 

words, MPC forces the system to follow safer, even if 

potentially sub-optimal, trajectories. 

Note that the feasible solutions are the ones which 

keep the feedback linearization always active, that is 

the constraint 𝛿4(𝑡) ≠ 0 must be met for all times 𝑡 ∈
[ℎ𝑇, (ℎ + 𝑃)𝑠) and not only for the instants (ℎ + 𝑘)𝑠, 
𝑘 = 1,… , 𝑃. A simple solution is to limit the evolution 

of 𝛿4 by constraining its discretized dynamics in a 

conservative way. From (3), it follows that 

 

𝛿4[𝑘 + 1|ℎ] − 𝛿4[𝑘|ℎ] −
𝑇

2
(𝝎[𝑘|ℎ]𝑇𝜹𝟏𝟑[𝑘|ℎ]), 

 

for 𝑘 = 1,… , 𝑃, meaning that the constraints (26), (27) 

guarantee that, in the interval [𝑘𝑠, (𝑘 + 1)𝑠), 𝛿4 does 

not reach the value 0, independently from its sign at 

time 𝑘. In other words, constraints (26), (27) constitute 

the conditions for the feasibility of the feedback 

linearization.  

Finally, the controller needs to guarantee also that 

the actuation is feasible, i.e., that the control action 

computed by the MPC does not saturate the reaction 

wheels, which, with little abuse of notation, translates 

into the set of component-wise constraints: 

 

𝒖𝒎𝒊𝒏 < 𝒖(𝑡) < 𝒖𝒎𝒂𝒙. 
 

A possible solution is to properly constrain the 

available control dedicated to the MPC, depending on 

the current effort demanded by the feedback 

linearizing control. From equation (6), it follows that 

the portion of the control available to the mission 

control 𝒗 is then 

 

𝒂(𝒙) + 𝚫(𝒙)𝒖𝒎𝒊𝒏 < 𝒗 < 𝒂(𝒙) + 𝚫(𝒙)𝒖𝒎𝒂𝒙, 
 

which translates into the set (28) of constraints for the 

MPC controller. In constraints (28), the predicted state 

𝒙[𝑘|ℎ] is firstly computed in the coordinates (𝝃, 𝜂) by 

using the candidate control sequence 𝒗 as input to the 

discretized version of system (8); then, the predicted 

state 𝒙[𝑘|ℎ] in the original coordinates of (3) (i.e., 

(𝒒,𝒘, 𝑳𝒘)) is retrieved using the inverse of the 

coordinate transformation (11) (which always exists 

since (11) is a diffeomorphism (Isidori, 1995)). 

For the sake of computational complexity reduction, 

the concept of control horizon is used: starting from 

time 𝐶 ≤ 𝑃, the controller holds the value 𝒗(𝐶) for all 

the remaining controls 𝒗[𝐶 + 1|ℎ],… , 𝒗[𝑃 − 1|ℎ] in 

the prediction window. Note that this simplification 

provides a sub-optimal solution, whose quality 

depends on the length of 𝐶. 

Momentum Unloading 

The problem of momentum unloading is commonly 

considered as disjoint from the attitude control. To add 

a momentum control, the dynamical equation of the 

angular momentum is modified to 

 

𝑳𝒘̇ = 𝝉𝒘 + 𝝉
𝒖, 

 

which is stabilized by the simple control law of the 

form 

 

𝝉𝒘 + 𝝉
𝒖 = −𝐾𝑳𝒘, 𝐾 > 0  (30) 

 



 

 

9 

 

One could choose to apply this type of control either 

during the periods in which no changes in attitude are 

envisaged and when momentum wheels are close to 

their saturation, or continuously during the system 

operation. Following the latter approach, it is possible 

to set 

𝐾 = 
𝜏𝑚𝑎𝑥 

𝐿𝑤
𝑠𝑎𝑡 , 

 

in which 𝜏𝑚𝑎𝑥 represents the maximum torque that the 

wheels are able to provide and 𝐿 
𝑠𝑎𝑡 is the saturation 

value of the angular momentum of the wheels. This 

choice of 𝐾 entails that the discharge increases when 

the momentum is close to its saturation and does not 

significantly affect the system otherwise.  

The control law (30) implies that 𝒖 (recall that 𝒖 =
𝒕𝒘) is conservatively bounded with respect to its 

nominal values, as the unloading torque absorbs a 

portion of the available effort. This physical limitation 

can be implemented as an additional constraint for the 

MPC controller, with some awareness, by adapting the 

values of 𝒖𝒎𝒊𝒏 and 𝒖𝒎𝒂𝒙 in (28) depending on the 

measured 𝑳𝒘. It is worth noting that the receding 

horizon procedure allows the controller to activate the 

unloading procedure arbitrarily (e.g., when 𝑳𝒘 exceeds 

a safety threshold) by adding the relative constraints in 

the optimization. Furthermore, note that to have the 

unloading torque decoupled from the attitude 

dynamics, the available thrusters must provide an 

external torque 𝝉 opposite to 𝝉𝒖, so that when (30) is 

applied into the second equation of (3) the original 

torque 𝝉𝒘 is recovered. 

6 Simulations 

Satellite Setup 

A medium size GEO telecommunication (TLC) 

satellite, 16 kW–2500 kg class, has been selected as a 

reference case to perform the simulation analyses. The 

life-support vehicle design has been based on a study 

case of Thales Alenia Space Italia and it has been 

modelled connected to the customer TLC satellite on 

its –𝑧 “separation” plane. Table 1 reports the main 

inertia for both the stand-alone satellite and the 

composed stack configurations. In the first two 

simulations, the satellite is still operative, and the life-

support system is needed to provide new equipment, 

whereas in the third simulation the satellite has 

deactivated its actuators and the life-support system is 

needed to prolong its operation. A fourth simulation 

assesses the performances of the proposed controller in 

scenarios characterized by external disturbances, 

parametric uncertainties and measurement noise. The 

fifth and final simulation reports a comparative 

simulation that shows how the proposed scheme can be 

adapted to scenarios in which the two spacecraft 

communicate and implements a fault-tolerant control 

law to renders a satellite with severe faults operative 

again.  

All the following simulations have been 

implemented in MATLAB® and Simulink®, using 

their MPC toolbox when relevant.  

 

Table 1 Parameters for the satellite model 

Parameter Value 

𝐼𝑥
1 20000 𝐾𝑔 ⋅ 𝑚2 
𝐼𝑦
1 3000 𝐾𝑔 ⋅ 𝑚2 

𝐼𝑧
1 17000 𝐾𝑔 ⋅ 𝑚2 

𝐼𝑥
𝑡 𝑡 34595 𝐾𝑔 ⋅ 𝑚2 

𝐼𝑦
𝑡 𝑡 5695 𝐾𝑔 ⋅ 𝑚2 

𝐼𝑧
𝑡 𝑡 28900  𝐾𝑔 ⋅ 𝑚2 

 

LQR-based Mission Controller 

In the following, an attitude tracking mission is 

proposed, within the scenario characterized by the 

quantities reported in Table 2. 

 

Table 2 Parameters for LQR simulations 

Parameter Value 

𝛿1(0) 0.5109 

𝛿2(0) 0.32 

𝛿3(0) 0.1411 

𝛵 1500s 

𝑸 𝑰𝟔 

𝑹 109 ⋅ 𝑰𝟑 

𝐾 0.03 

 

The reference trajectory for the mission was chosen 

as follows 

 

𝜹𝟏𝟑
𝒓𝒆𝒇
= 𝜹(0)𝑒−

𝑡

𝛵,  (31) 

 

i.e., the control should not only let the satellite 

converge to the reference attitude (that is, in the error 

quaternion representation, to 𝜹𝟏𝟑 = [0 0 0]
𝑇) but, for 

the success of the mission, it should approach that 

attitude with an exponential behavior. The time 

constant 𝛵 of (31) was set to a value which is realistic 

for the mission considered in the case study, which 

requires the control of a TLC satellite that points at a 

limited area of the earth while orbiting. The complete 

mission is planned over 104 seconds. 

Figure 5 shows that the implemented control 

successfully drives the error quaternion to the identity, 

i.e., the desired final attitude is reached. Figure 6 

reports how the satellite tracks the desired attitude 

trajectory, highlighting that, after about 1300s, the 

error annihilates. Figure 7 and Figure 8 report the 

profiles of the attitude control torques for the original 

satellite and the support system, respectively, 

highlighting their shared mathematical structure, in 

line with the compensator nature of (19). Finally, 



 

 

10 

 

Figure 9 reports that the moment unloading law 

proposed achieves its objective. 

Due to the fact that LQR does not guarantee the 

control feasibility, the weighting matrix 𝑹 in (22) was 

set to a high value (109 ⋅ 𝑰𝟑) to reduce the peak values 

of the control torques to approximately the typical 

physical limitations of reaction wheels (~0.1𝑁𝑚). 

 

 
Figure 5 Attitude evolution of satellite’s attitude, LQR case 

 
Figure 6 Tracking error evolution, LQR case 

 
Figure 7 Satellite torque profiles, LQR case 

 

Figure 8 Support torque profiles, LQR case 

 
Figure 9 Momentum of the wheels of the Satellite, LQR case 

Even with the selected value, Figure 6 shows that 

the requested control torques are not always within 

their feasibility margins. To successfully apply the 

LQR control scheme, during the mission design the 

control center should consider the expected peak 

values of the control torques, hence requiring an off-

line tuning that may be computationally demanding for 

missions in which the reference trajectory evolves 

rapidly. 

MPC-based mission controller 

The simulation setup is similar to the one of the 

previous case, with the differences reported in Table 3. 

The sampling time 𝑠 for the controller was set to 60s. 

 

Table 3 Parameters for MPC simulations 

Parameter Value 

𝑃 100 

𝐶 80 

𝑸 

𝑹 

𝑰𝟔×𝑷 

10−3 ⋅ 𝑰𝟑×𝑷 

 

By taking into account the input saturation directly 

into the problem formulation (25)-(28), the MPC 

controller is able to drive the attitude tracking error to 

zero significantly faster, as reported in Figure 10, since 

and the saturations do not cause the system to evolve 

in an unexpected way. Thanks to the assured feasibility 

of the control torques, the weighting matrix 𝑹 in (29) 

can be set to an arbitrarily small diagonal positive 

definite matrix, allowing the controller to focus on the 

error annihilation and obtain lower convergence times. 

A similar torque behavior is obtained, as before, for 

both the original satellite and the support system, so is 

reported only the one of the satellite in Figure 11.  

 

 
Figure 10 Tracking error evolution, MPC case 

 
Figure 11 Torque profile for the satellite, MPC case 

Since the MPC assures the feasibility of the control 

by means of singularity avoidance, as explained in 
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Section 5.3, the MPC controller is preferable overall 

not only in terms of performances and also flexibility. 

MPC mission controller in absence of original 

satellite control 

This simulation considers a scenario in which the 

original satellite cannot operate its reaction wheels any 

longer, and hence all the control torques are applied by 

the life-support device. In this case, the support device 

enforces the feedback linearizing action of equation 

(14) instead of the compensating control of equation 

(19) (see Remark 3). 

 

 
Figure 12 Tracking error evolution, MPC case with non-

operative reaction wheels on the satellite 

Figure 12 reports the simulation results considering 

the same scenario of the second simulation and shows 

that, even if tracking performances have worsened with 

respect to the previous case, the system is still able to 

converge to the desired attitude trajectory, successfully 

making an out-of-order satellite operational again, and 

still achieving superior performances with respect to 

the LQR applied to an operative satellite (see the first 

simulation results). 

MPC mission controller in presence of external 

disturbances, parametric uncertainties and Gaussian 

white noises 

So far, it was assumed that the controller was 

provided with exact state feedback, but in order to 

validate the proposed control scheme in a more 

representative scenario, this assumption may not be 

reasonable. In fact, even if both the satellite and the 

life-support are equipped with high-grade star trackers 

and gyroscopes, respectively for attitude and angular 

velocity measurements, the measurement noise that 

affects such sensors cannot be, in principle, neglected. 

Furthermore, in the previous simulations the MPC 

controller was provided with an exact evaluation of the 

MOIs, and no external disturbance was considered. 

In this simulation, those simplifications are 

removed, and, for the sake of comparison, it is assumed 

that the mission controller is still based on MPC, with 

the difference that its state feedback is provided by the 

state estimation obtained from an extended Kalman 

Filter. It is assumed that the sensors are subject to 

measurement white Gaussian noises, on attitude and 

velocity measurements, of zero mean and variances of 

10−8 and 10−6 𝑟𝑎𝑑/𝑠𝑒𝑐 respectively, in line with 

(Mehra, Seereeram, Bayard, & Hadaegh, 2002). For 

the sake of simplicity, the process noise is also 

assumed to be characterized by the same variances. 

The unmeasured and time-varying external 

disturbances are described by the torque vector 

 

𝝉 = [

0.03 sin(0.01𝑡)

0.02 sin(0.03𝑡)
0.025 sin (0.001𝑡)

]. 

 

Finally, the real MOI components of the two-body 

system are assumed to be 10% higher than the one 

provided to the controller and reported in Table 1. 

 

 
Figure 13 Tracking error evolution, MPC in a realistic scenario 

From the analysis of Figure 13, it is evident that the 

control performances degrade significantly, in both 

error amplitude and convergence time, but, 

considering that the controller was mainly designed for 

a nominal situation, its performances remain 

reasonable and the attitude tracking mission is still 

successfully completed.  

Using the life-support system to control the satellite 

in presence of communication 

For comparison purposes, this simulation discusses 

an alternative usage of the life-support system. In this 

mission, the life-support is used to take over the 

original satellite control logic and can directly operate 

the actuators of the satellite. This scenario requires 

real-time communication between the two systems to 

exchange measures and control commands, but enables 

the life-support to implement, in principle, any control 

logic developed for the problem of attitude tracking. 

For the sake of comparison, it is further assumed that 

faults of the actuators are unknown to both controllers, 

as with the proposed control scheme, and, therefore, a 

fault-tolerant scheme is considered. 

The domain of fault-tolerant control is a natural 

application of the life-support system: it is an industry 

standard to provide any satellite with at least four 

actuators, in order to preserve its operability even in 

presence of failures, and the life-support, in fact, 

delivers additional actuators to the orbiting satellite. To 

this end, the tested control law was derived from the 

one presented in (Jin, Ko, & Ryoo, 2008), based on 

Dynamic Inversion and Time-Delay Control. 

For this simulation it is assumed that both the 

satellite and the life-support system are equipped with 
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four reaction wheels. The nominal distribution matrix, 

that projects the torques provided by the reaction 

wheels over the principal axes of inertia, is assumed to 

be, for the two body-system, as follows: 

 

𝑳𝝉 = [
1 1 −1 −1 1 1 −1 −1
−1 1 1 −1 −1 1 1 −1

√2 √2 √2 √2 √2 √2 √2 √2
], 

 

in which the first four columns are relative to the 

original satellite actuators, as in (Jin, Ko, & Ryoo, 

2008), while the other ones are relative to the life-

support system. The distribution of the actuation 

torques follows 𝝉𝒘 = 𝑳𝝉 𝒖
𝒇𝒕, where the fault-tolerant 

control law 𝒖𝒇𝒕 is the vector containing the torques 

commanded to the actuators. 

Furthermore, the original satellite presents total 

faults on the first two of its actuators, so that the 

satellite system alone would fail to actuate the 

commanded torques: in fact, such faults translate into 

having the first two columns of the original 4 ×
4 distribution matrix substituted by zeros, causing its 

rank to be less than three and, consequently, the 

satellite is no longer able to attain arbitrary attitudes, 

even if controlled by fault-tolerant laws. Conversely, 

in the considered simulation set up, the distribution 

matrix of the two-body system remains of full rank and 

the law designed in (Jin, Ko, & Ryoo, 2008) is able to 

complete the attitude tracking mission. 

The two-body spacecraft parameters were the ones 

reported in Table 1, as in the previous simulations. The 

reader is referred to (Jin, Ko, & Ryoo, 2008) for details 

on the control law, which is characterized by the 

control gains 𝜏1 and 𝜏1,  set to 𝜏1 = 150, 𝜏2 = 135 to 

account for the considered spacecraft model.  

Figure 14 shows the attitude tracking error 

evolution1 and Figure 15 presents the actuated control 

torques. Note that, due to their alignment, the actuation 

profiles of the remaining reaction wheels of the 

original satellite coincide with the corresponding ones 

of the life-support system and are not visible in the 

figure. It is clear from the figures that the performances 

have significantly worsened, in particular in terms of 

error magnitude, but this was expected as the controller 

calculated the commanded actuation torques having 

knowledge only on the nominal distribution matrix. 

7 Conclusions 

This paper presented a control strategy to govern a 

life-support system that may be attached to a satellite 

to increase its operational lifespan. The proposed 

control scheme for the attitude control problem in the 

presence of such support system consists of two 

                                                      
1 Note that the control law in (Jin, Ko, & Ryoo, 2008) is designed to 

track a trajectory defined in terms of Modified Rodriguez Parameters 

controllers: the inner one is devoted to feedback 

linearizing the system, whereas the outer controller, 

which consequently operates on a linear system, 

oversees the attitude tracking. Two outer controllers 

were proposed, based on LQR and on MPC. Thanks to 

the developed control strategy, the life-support device 

is capable of performing the attitude control task for 

the two-body system also in case of non-operational 

actuators of the original satellites, without requiring 

communication exchange with the original satellite. 

Numerical simulations based on a real case study 

were reported to validate the results presented, in 

scenarios spacing from ideal to adverse situations. 

 

 
Figure 14 Tracking error evolution, fault-tolerant law 

 

 
Figure 15 Control torques, fault-tolerant law 

Future work is aimed at explicitly providing 

robustness to the overall scheme, to tackle model 

inaccuracies, model parameter variations (e.g., due to 

fuel consumption) and unknown or unmodeled 

disturbances (e.g., solar and magnetic torque effects), 

as well as considering flexible spacecrafts (Zhu, Guo, 

Qiao, & Li, 2019). 
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