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Abstract—The paper concerns the Linear Quadratic non-
Gaussian (LQnG) sub-optimal control problem when the input
signal travels through an unreliable network, namely a Gilbert-
Elliot channel. In particular, the control input packet losses are
modeled by a two-state Markov chain with known transition
probability matrix, and we assume that the moments of the non-
Gaussian noise sequences up to the fourth order are known. By
mean of a suitable rewriting of the system through an output
injection term, and by considering an augmented system with
the second-order Kronecker power of the measurements, a simple
solution is provided by substituting the Kalman predictor of the
LQG control law with a quadratic optimal predictor. Numerical
simulations show the effective ness of the proposed method.

Index Terms—Optimal Control, LQG Regulator, Kalman fil-
tering, Non-Gaussian Systems.

I. INTRODUCTION

IN recent years, an increasing attention has been given to
remote control of plants over unreliable networks, e.g. [25],

[3], [18], [23], [6], [22], [30]. In practical applications, tempo-
rary failures are an important issue, due to power constraints,
communication delay, multipath fading, data loss, background
noise time synchronization or external attacks. Besides, in
many relevant technical fields, the widely used Gaussian
assumption cannot be accepted as a realistic statistical descrip-
tion of the random quantities involved. Consequently, increas-
ing attention has been paid to non-Gaussian systems in control
engineering [17], [2], [27], [33], [5], [7], [9]. In particular,
non-Gaussian problems often arise in digital communications
when the noise interference includes noise components that are
essentially non-Gaussian [31], in problems concerning fault
estimation, sensor or actuator faults [26], multiplicative noises
and bilinear systems [12]. In monopulse radars, heavy tailed
non-Gaussian behavior is present in the angle tracking signals
because of target glint ([28], [8]), and an exploratory data
analysis on BQM-34A glint signature measurements verify
the non-Gaussian character of glint ([19]). Also, under some
conditions, Gaussian systems with nonlinear measurements
could be transformed, through a suitable rewriting of the
output map, into systems with linear measurements and non-
Gaussian output noise (see [14] and [13]), and thus, filtering
techniques that deal with non-Gaussian noise can be of help
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Fig. 1. Network & System diagram.

even in this context. In this non-Gaussian setting, approxi-
mate optimal estimation and control solutions usually have
high computational burden and are the results of infinite-
dimensional problems [34]. For these reasons, sub-optimal
estimation is usually essential to design practical computable
control law. Monte-Carlo methods [2], multivariate extremes
framework [15], sum of Gaussian densities [1], and weighted
sigma points [21] are some of the approaches employed to
approximate the conditional distribution of the underlying non-
Gaussian process, and they generally have high computational
cost.

In this paper we will focus on the Linear Quadratic non-
Gaussian (LQnG) sub-optimal control problem when the con-
trol input packets can be randomly lost according to a {0, 1}-
valued Markov chain. In this framework, the hypothesis of per-
fect acknowledgment of packet drops is done, i.e. the so called
TCP-like case, where the channel provides ordered and error-
checked delivery of a stream of packets [20]. Our aim is to
extend the work [29], where the TCP-like case is considered,
by removing the Gaussian assumption of the noise sequences.
In order to cope with these non-Gaussian noise sequences, an
effective alternative solution to the aforementioned methods,
in the minimum variance sense, is to look for predictors that
make use of quadratic (or generally polynomial) transforma-
tions of the measurements in order to enhance the estimation
accuracy, maintaining simple computability and recursion. We
note that the prediction provided by quadratic or polynomial
predictors has been exploited in the LQnG regulator problem
in [5] and [7] where, however, control input packet losses, that
cause a different design of the control law, are not included.
We finally remark that when either no acknowledgment or
only imperfect acknowledgment occurs, then the separation
principle does not hold true, and the joint design of estimator
and controller becomes a non-convex problem, as shown in
[32]. [24] investigates the latter case. Conversely, since we
assume that a perfect acknowledgment mechanism is available,
we shall see that the separation result, even in the non-
Gaussian framework, is still valid. The resulting quadratic



optimal controller yields better performance in terms of the
standard quadratic cost function with respect to the standard
linear optimal controller, namely the one of [29], and it is
simply obtained by replacing the linear optimal prediction
provided by the Kalman predictor, with the quadratic optimal
one, in virtue of the proved separation principle.

Notation. The Kronecker product of two matrices A ∈
Rn×m and B ∈ Rp×q is denoted by A⊗B. The i-th Kronecker
power of A is A[i], where A[i] = A⊗A[i−1], with A[1] = A.
The vectorization (or stack) function is denoted by st{A}, and
st−1{·} is its inverse function (we omit to specify the column
size when it is clear from the context). The trace of a square
matrix A is tr{A} and v = col(v1, . . . , vn) denotes the column
vector v = [v1, . . . , vn]>, where v1, . . . , vn are the entries of
the vector v. The Moore-Penrose pseudoinverse of a matrix
A is denoted by A†. Moreover, given a vector v ∈ Rn, then
v1:m, with m < n, denotes the vector of the first m entries of
v.

II. PROBLEM FORMULATION

The control problem we aim to solve concerns the class
of linear, detectable and stabilizable systems driven by non-
Gaussian additive noise described by the following equations:

xk+1 = Axk +Būk + fk, (1)
yk = Cxk + gk, (2)

with the associated cost functional

JN = E

[
x>NWNxN +

N−1∑
k=0

x>kWkxk + ū>k Ukūk

]
(3)

where N ∈ N is the time-horizon. For k ≥ 0, xk ∈ Rn
is the state, fk ∈ Rn and gk ∈ Rq are non-Gaussian noise
sequences with strictly positive covariances, ūk ∈ Rp is the
input signal, yk ∈ Rq is the measurement output and the
matrices A, B, C, Wk, Uk are of appropriate dimensions. As
usual, the matrices Wk, and Uk are symmetric non-negative
definite (strictly positive definite in the case of Uk).

Denoting x̄0 = E[x0], the initial state x0 and the random
sequences {fk} and {gk} satisfy the following conditions for
k ≥ 0 :

(i) {fk} and {gk} are a zero mean i.i.d. sequence;
(ii) {fk}, {gk} and x0 have uncorrelated moments up to the

fourth order;
(iii) for i = 1, 2, 3, 4 there exist finite and known vec-

tors Ψf,i
.
= E

[
f

[i]
k

]
, Ψg,i

.
= E

[
g

[i]
k

]
, and Ψx0,i

.
=

E
[
(x0 − x̄0)[i]

]
.

Clearly Ψx0,1 = 0 and (i) implies Ψf,1 = Ψg,1 = 0.
Note that, when the sequences {fk}, {gk} and x0 are mu-
tually independent, then assumption (ii) is satisfied. We set
Ψx0 = st−1{Ψx0,2}, Ψf = st−1{Ψf,2}, Ψg = st−1{Ψg,2}
the covariance matrices of the initial state, state noise and
output noise, respectively. It is clear that in the non-Gaussian
framework, the knowledge of the first four moments of the
state and output noise sequences is weaker than assuming the
knowledge of the whole probability distributions.

Furthermore, we consider the case when the control input
signal uk ∈ Rp is sent by the controller through an unreliable
channel, namely a Gilbert-Elliot channel model, which is
modeled by a two-state discrete Markov chain. Thus, let
{νk} be a Markov chain taking values in the set {0, 1},
and modeling the presence of packet losses in the actuators.
The sequence {νk} is characterized by the known probability
transition matrix

Π =

[
P(νk+1 = 0|νk = 0) P(νk+1 = 1|νk = 0)
P(νk+1 = 0|νk = 1) P(νk+1 = 1|νk = 1)

]
=

[
1− α α
β 1− β

]
(4)

We note that if νk = 1, then the actuators receive and apply the
input uk, namely no failure or attack have occurred, νk = 0
otherwise. For, we have

ūk = νk uk. (5)

Moreover, we assume the Markov chain described above is
independent of {fk}, {gk} and x0, and it is irreducible, i.e.
α, β ∈ (0, 1], and stationary, i.e. for all k ≥ 0, we have P(νk =
0) = P(νk = 1) + β−α

α+β = β
α+β . Finally, we shall consider

control sequences {ūk}k measurable with respect to the σ-
Algebra Fk = σ(yj , νj , j ≤ k − 1). Thus, we note that
the quantity νk−1 is available at time k ≥ 0, which means
that a reliable acknowledgment protocol is implemented (the
so-called TCP-like case [20]). As pointed out in [16], this
assumption is reasonable in several practical applications.

In this framework, we consider the finite-horizon sub-
optimal control problem for non-Gaussian discrete-time linear
systems with partial state information and Markovian packet
loss in the control. More precisely, our aim is to compute the
control law in the class of recursively computable quadratic
output feedback which minimizes (3).

We recall the important result of [29].
Proposition 1 ([29]): For the finite-horizon LQG regulator

problem with Markovian control packet loss (5), the Fk-
measurable optimal output feedback control uk is given by

uk = −Mkx̌k|k−1, (6)

with
Mk = (Uk +B>Rk+1B)−1B>Rk+1A, (7)

where Rk is the solution of the backward Riccati equations

Rk = Wk + βA>Sk+1A+ (1− β)A>Rk+1A− (1− β)·
·A>Rk+1B(Uk +B>Rk+1B)−1B>Rk+1A, (8)

Sk = Wk + (1− α)A>Sk+1A+ αA>Rk+1A+

− αA>Rk+1B(Uk +B>Rk+1B)−1B>Rk+1A (9)

with final conditions

RN = SN = WN, (10)

and x̌k|k−1 is the optimal prediction of xk provided by the
Kalman predictor (see [4]).

The next corollary is a straightforward consequence of the
separation principle proved by the previous theorem.



Corollary 1: For the finite-horizon LQ non-Gaussian regu-
lator problem (1)-(2)-(3) with Markovian control packet loss
(5), the Fk-measurable output feedback linear optimal control
uk is given by (6).

In other words, Corollary 1 states that the control input
provided by (6) remains optimal in the class of linear trans-
formations of the output: a direct consequence of the fact that,
if the state and output noise sequences are non-Gaussian, then
the KF (KP) is the optimal estimator (predictor) in the class
of linear transformations of the output.

III. QUADRATIC FILTERING AND PREDICTION

A. The Geometric Approach

In this section we shall briefly recall some notions about
quadratic filtering using the geometric approach (for a more
detailed treatment see [11]). Let (Ω,F ,P) be a probability
space, L2(F , n) the Hilbert space of the n-dimensional, F
measurable random variables with finite second order moment.
We write L2(X,n) to denote L2(σ(X), n). We recall that
Π [·| M] is the orthogonal projection onto a given Hilbert
space M. Let Yk = col(y0, y1, · · · , yk) be the aggregate
vector of the measurements until time k ≥ 0. The minimum
variance estimate of the state xk of system (1)–(2), can be
defined as the orthogonal projection of xk onto the Hilbert
space L2(Yk, n):

x̂k = E [xk |σ(Yk)] = Π
[
xk |L2(Yk, n)

]
.

Defining the auxiliary vector Y ′k = col(1, Yk) ∈ R`+1, with
` = (k + 1)q and the space of linear transformations of the
output

Lky = {z : Ω→ Rn : ∃T ∈ Rn×(`+1) : z = T Y ′k}, (11)

it is known that the KF recursively computes the projection
Π[xk|Lky ] which is the best linear estimate of xk in the
minimum variance sense. Let us define now the following
space of quadratic transformations of the output

Qky = {z : Ω→ Rn : ∃T ∈ Rn×¯̀
: z = T Y

(2)

k }, (12)

where Y
(2)

k = col(Y ′k, y
[2]
0 , . . . , y

[2]
k ) ∈ R¯̀, with ¯̀= 1+`+`q.

Note that Qky is not the space of all quadratic transformations
of the output since terms of the form yk1(i)yk2(j), with
i, j ≤ q and k1, k2 ≤ k, are missing. However, this is
essential to ensure that the proposed filter shall be recursively
implemented. Finally, since the inclusion Lky ⊂ Q

k

y holds true,
the estimate of the state obtained by projecting xk onto the
larger subspaceQky has smaller variance of the estimation error
than the one computed by the standard KF.

B. Output Injection

In this section we rewrite the system by mean of an output
injection term, which is crucial to ensure some important
properties of the quadratic predictor we shall see in Section

IV. As in [10], the state equation (1) is transformed using the
output equation (2):

xk+1 = Axk +Buk + fk

= Ak +Būk + fk + Lyk − LCxk − Lgk
= Ãxk +Būk + Lyk + hk

where Ã = A − LC, L ∈ Rn×q is chosen such that the
eigenvalues of Ã are in the unit circle, and hk = fk − Lgk.
Moreover, ψ(i)

h = E
[
h

[i]
k

]
, i = 2, 3, 4, can be computed as

functions of ψ(i)
f and ψ(i)

g , thus they are known. We split the
state process into two sequences: a predictable sequence {xpk}
and a stochastic sequence {xsk}. The predictable component
xpk satisfies

xpk+1 = Ãxpk +Būk + Lyk, xp0 = x̄0, (13)

while the stochastic component xsk is the solution of

xsk+1 = Ãxsk + hk, xs0 = x0 − x̄0, (14)

and therefore ψ(i)
xs
0

:= E
[
xs0

[i]
]

= ψ
(i)
x0 . From (13) and (14),

for any k ≥ 0, it follows xk = xpk+xsk. Moreover, note that at
time k ≥ 0, since the quantities yk−1 and ūk−1 are available,
the predictable component xpk is known. Subsequently, we can
define the output map of the stochastic component (14) as

ysk = yk − Cxdk = Cxsk + gk,

where ysk is an available quantity at time k ≥ 0.
By setting the corresponding sequence vector Ys,k :=

col(ys0, y
s
1, . . . , y

s
k and the auxiliary vector Y ′s,k = col(1, Ys,k),

it is possible to define according to (11)-(12) and the definition
of Y

(2)

k , the spaces Lkys and Qkys , and the vector Y
(2)

s,k by
using Y ′s,k instead of Y ′k . Since xpk is an affine transformation
of Yk−1 and the sequence {νk−1}, the projection of xpk onto
Qkys trivially corresponds to itself, and we refer to Π[xsk|Q

k

y ]

(respectively Π[xsk|Q
k−1

y ]) as the recursive quadratic estimate
(respectively prediction) of xsk.

Finally, we point out that in [10] it is proved that Ys,k is an
affine transformation of the original sequence vector Yk and
viceversa, thus Lky ≡ Lkys . However this is not true for the
recursive quadratic transformations, i.e. Qky 6≡ Q

k

ys . In other
words, the space Qkys depends on the choice of the output
injection gain L.

We shall see in the next section how to compute such
optimal recursive quadratic estimate x̂sk = Π[xsk|Q

k

ys ].

IV. SEPARATION PRINCIPLE AND OPTIMAL RECURSIVE
QUADRATIC CONTROL WITH PACKET LOSSES

We prove in this section that the structure of the opti-
mal recursive quadratic controller for the LQ non-Gaussian
regulator problem with packet losses in the input remains
unchanged, namely the gain (7) with the coupled backward
Riccati equations (8)–(9). For, we define the following vectors

Xk = col
(
xpk, x

s
k, x

s
k

[2]
)
, (15)

Yk = col
(
ysk, y

s
k

[2]
)
, (16)



where xpk and xsk are defined in (13)–(14).
Lemma 1: The augmented state and output sequences {Xk}

and {Yk} defined in (15)–(16) obey to the following equations

Xk+1 = AXk + Būk + φh + Vk (17)
Yk = CXk + ϕg + Gk, (18)

with

A =

A LC 0

0 Ã 0

0 0 Ã[2]

 B =

B0
0

 C =

[
0 C 0
0 0 C [2]

]
,

φh =

 0
0

ψ
(2)
h

 Vk =

Lgkhk
h

(2)
k

 ϕg =

[
0

ψ
(2)
g

]
Gk =

[
gk

g
(2)
k

]
,

where

h
(2)
k = Ãxsk ⊗ hk + hk ⊗ Ãxsk + h

[2]
k − ψ

(2)
h , (19)

g
(2)
k = Cxsk ⊗ gk + gk ⊗ Cxsk + g

[2]
k − ψ

(2)
g . (20)

Proof. By noticing that xsk
[2] and ysk

[2] satisfy

xsk+1
[2] = Ã[2]xsk

[2] + ψ
(2)
h + h

(2)
k ,

ysk
[2] = C [2]xsk

[2] + ψ(2)
g + g

(2)
k ,

where h
(2)
k and g

(2)
k are defined in (19)–(20), it is

straightforward to obtain (17)–(18). �

Remark 1: We note that the vector φh and ϕg are constant
and known, whilst the stochastic sequences {Vk} and {Gk} are
zero-mean, mutually correlated, white, and uncorrelated with
the initial state x0.

The following lemma provides the algorithm to compute the
recursive quadratic estimate and prediction.

Lemma 2: The recursive quadratic estimate x̂k = Π[xk|Q
k

ys ]

and the recursive quadratic prediction x̂k|k−1 = Π[xk|Q
k−1

ys ]
are given by the following algorithm

xp0 = x̄0, X̂ s0|−1 = col(Ψx0,1,Ψx0,2) (21)

P0|−1 =

[
st−1{Ψx0,2} st−1{Ψx0,3}

st−1{Ψx0,3}> st−1{Ψx0,4} −Ψx0,2Ψ>x0,2

]
x̂k|k−1 = xpk + x̂sk|k−1, x̂sk|k−1 = X̂ s,1:n

k|k−1 (22)

Kk = Pk|k−1C
> (CPk|k−1C

>
+ Ψk

)†
(23)

Pk = Pk|k−1 −KkCPk|k−1 (24)

X̂ sk = X̂ sk|k−1 +Kk

(
Yk − CX̂ sk|k−1 − ϕg

)
(25)

x̂k = xpk + x̂sk, x̂sk = X̂ s,1:n
k (26)

xpk+1 = Ãxpk +Būk + Lyk (27)

Γk = ΥkΨ†k (28)

X̂ sk+1|k = ĀX̂ sk + Γk

(
Yk − CX̂ sk

)
+ ϕh (29)

Pk+1|k =
(
Ā − ΓkC

)
Pk
(
Ā − ΓkC

)>
+ Ξk − ΓkΥk (30)

where X sk = col(xsk, x
s
k

[2]), ϕh = col(0, ψ
(2)
h ),

Ā =

[
Ã 0

0 Ã[2]

]
C =

[
C 0
0 C [2]

]
,

and the covariance matrices Ξk = E
[
HkH>k

]
with Hk =

col
(
hk, h

(2)
k

)
, Ψk = E

[
GkG>k

]
and Υk = E

[
HkG>k

]
.

Proof. By Lemma 1, it is possible to consider the stochastic
augmented sub-system

X sk+1 = ĀX sk + ϕh +Hk (31)

Yk = CX sk + ϕg + Gk. (32)

Note that the noise sequences {Hk} and {Gk} are zero-mean,
mutually correlated, white, and uncorrelated with the initial
state x0. Thus, the KF algorithm for mutually correlated
state and output noise sequences ([4]) provides the optimal
estimate and prediction in the class of linear functions of
{Yk}. Moreover, it is clear that the optimal filter in the class
of linear functions of {Yk} corresponds to the optimal filter
in the class Qkys , and the proof is completed. �

Remark 2: As pointed out in [10], we note that the choice
of the output injection gain L, such that the matrix Ã has
eigenvalues in the unit circle, renders the augmented sub-
system (31)–(32) detectable and stabilizable since the matrix
Ā is asymptotically stable.

We are now able to state the main theorem of this section.
Theorem 1: For the finite-horizon LQ non-Gaussian regula-

tor problem (1)-(2)-(3) with Markovian control packet loss (5),
the Fk-measurable output feedback quadratic optimal control
uk is given by

uk = −Mkx̂k|k−1, (33)

where Mk is defined in (7) with the coupled backward Riccati
equations (8)–(9), and x̂k|k−1 = xpk + x̂sk|k−1, with the

recursive quadratic prediction x̂sk|k−1 = Π[xsk|Q
k−1

ys ] given by
the algorithm (21)–(30).
Proof. Firstly, we can rewrite the cost index JN as follows

JN = E

[
X>N WNXN +

N−1∑
k=0

X>k WkXk + ū>k Ukūk

]
, (34)

where Xk is the extended state vector defined in (15) and

Wk :=

Wk Wk 0
Wk Wk 0
0 0 0

 .
By Corollary 1, the LQG solution applied to the extended
system (17)–(18) with the cost index (34), yields the opti-
mal linear controller, namely the optimal recursive quadratic
control of the original system. In particular, by noticing that
the contribute of the known forcing term φh in (17) vanishes
because of its zero-block structure, by Proposition 1, the above
sub-optimal control input is given by

uk = −MkX̂k|k−1, (35)

with

Mk = (Uk + B>Rk+1B)−1B>Rk+1A,



where Rk is the solution of the backward Riccati equations

Rk =Wk + βA>Sk+1A+ (1− β)A>Rk+1A− (1− β)·
· A>Rk+1B(Uk + B>Rk+1B)−1B>Rk+1A, (36)

Sk =Wk + (1− α)A>Sk+1A+ αA>Rk+1A+

− αA>Rk+1B(Uk + B>Rk+1B)−1B>Rk+1A (37)

with final conditions RN = SN = WN. It is easy to see that,
by backward induction, the matrices

Rk =

Rk Rk 0
Rk Rk 0
0 0 0

 Sk =

Sk Sk 0
Sk Sk 0
0 0 0

 , (38)

with Rk and Sk given by (8)–(9) with final conditions (10),
are the solutions to (36)–(37). Thus, by equations (38), the
control law (35) simplifies in

uk = −Mk

(
X̂ 1:n
k|k−1 + X̂ s,1:n

k|k−1

)
,

where Mk is defined in (7), X̂ 1:n
k|k−1 = xpk is known and, by

Lemma 2, X̂ s,1:n
k|k−1 = x̂sk|k−1 is the optimal recursive quadratic

prediction provided by (22). �

Remark 3: The above theorem shows that the optimal
controller in the class of quadratic transformation of the
output is a linear function of the quadratic prediction. Thus,
the separation principle continues to hold even in the non-
Gaussian case with measurable packet loss in the control input,
since estimation and control can be designed separately.

The following proposition is a direct consequence of The-
orem 1 of [29] and the Theorem 1 above.

Proposition 2: For the finite-horizon LQ non-Gaussian
regulator problem (1)-(2)-(3) with Markovian control packet
loss (5) and control input (33), the cost JN is given by1

JN =
1

α+ β
tr

{
βΨx0S0 + αΨx0R0 +

N−1∑
k=0

(
βSk+1Q+

+ αRk+1Q+ αA>Rk+1BMkP̄k|k−1

)}
, (39)

where Mk, Rk and Sk are defined in (7)-(8)-(9), and P̄k|k−1

is the first n × n block of the matrix Pk|k−1 given by (30),
namely the covariance of the prediction error.

Remark 4: As pointed out at the end of Section III-B, we
note that, since the projective subspace Qkys depends on L,
so it is for the matrix P̄k|k−1. Therefore, one can enhance
the performance by choosing the gain L stabilizing Ã and
minimizing (39), namely if the couple (A,C) is observable

Lopt = arg min
λ∈σ(Ã)
|λ|≤1

tr

{ N−1∑
k=0

(
A>Rk+1BMkP̄k|k−1

)}
. (40)

1in the case E[x0] = 0. Also, we note that a transpose on the matrix A is
missing in [29].

V. SIMULATION EXAMPLE

In this section we show the effectiveness of the proposed
approach. We compare the linear optimal solution of [29]
(Corollary 1), namely the control law (6) (we call Kalman
predictor (KP) controller), with the one proposed in this paper,
i.e. the control law (33) (we call Quadratic predictor (QP)
controller). We consider a planar positioning problem where
the system in the form (1)–(2) is characterized by

A =

[
1 δ
0 1

]
, B =

[
0
δ

]
, C =

[
1 0

]
,

with δ = 0.25 a discretization step, and x0 ∼ N (0, I2) with I2
the identity matrix of dimension 2. Moreover, the input signal
is transmitted through an unreliable channel characterized
by the transition probability matrix (4) with two different
scenarios: Π1 has P(νk+1 = 1|νk = 0) = α = 0.9 and
P(νk+1 = 0|νk = 1) = β = 0.2, whilst Π2 has P(νk+1 =
1|νk = 0) = α = 0.6 and P(νk+1 = 0|νk = 1) = β = 0.3,
namely

Π1 =

[
0.1 0.9
0.2 0.8

]
, Π2 =

[
0.4 0.6
0.3 0.7

]
.

The cost index (3) to be minimized is defined by Wk = I2,
and Uk = 1 for all k ≥ 0. Furthermore, the system is driven
by the zero-mean i.i.d. non-Gaussian noise sequences fk =
col(f1,k, f2,k) and gk, where for any k ≥ 0 we have P(f1,k =
0.05) = 1 − P(f1,k = −0.2) = 0.8, P(f2,k = −0.01) =
1 − P(f2,k = 0.09) = 0.9, and P(gk = 0.01) = 1 − P(gk =
0.0025) = 0.2. Finally, the output injection gain L is chosen
according to (40).

Figure 2 shows the empirical cost across 70 Monte Carlo
runs of the KP controller and QP controller, i.e. the cost
x>NWNxN +

∑N−1
k=0 x

>
kWkxk + ū>k Ukūk obtained for a single

realization. In particular the time horizon of each realization
is N = 103. In the scenario with Π2, we see that the
averaged cost J

KP
N of the KP controller of [29], i.e. the cost

obtained with the control law (6), is J
KP
N = 160, whilst the

averaged cost J
QP
N of the proposed QP controller, i.e. the

cost obtained with the control law (33), is J
QP
N = 114. We

define the performance index as the percentage improvement
of the proposed solution with respect to the KP controller,
namely αJ = 102 · (JKP

N − J
QP
N )/J

KP
N . Table I summarizes the

aforementioned results showing both the a priori optimal cost
JKP
N and JQP

N , given by (39) for the proposed QP controller, and
the one obtained through the numerical simulations, namely
J

KP
N and J

QP
N . As described in Section III, the superiority of

the proposed method descends from the fact that the proposed
sub-optimal solution is optimal in the larger class of quadratic
transformation output feedback controller, whilst the solution
of [29] is the optimal linear solution. Finally, the coherence of
the numerical results between the a priori and the empirical
cost validates the proposed approach that outperforms the
linear optimal solution of [29].

VI. CONCLUSIONS

In this paper we propose a sub-optimal solution for the
Linear Quadratic non-Gaussian (LQnG) regulator problem in
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Fig. 2. Cost index across realizations of the KP controller of [29] and the
proposed QP controller in the scenario with Π2.

Scenario Π1 JKP J
KP

αJ

KP controller [29] 146.45 147.46 -
QP controller 105.25 105.60 28.6%

Scenario Π2 JKP J
KP

αJ

KP controller [29] 159.84 160.20 -
QP controller 114.24 113.78 29.0%

TABLE I
A PRIORI COST JKP AND EMPIRICAL COST J

KP
OF THE LINEAR OPTIMAL

SOLUTION OF [29], i.e. THE KALMAN PREDICTOR (KP) CONTROLLER,
AND THE PROPOSED QUADRATIC OPTIMAL SOLUTION, i.e. THE

QUADRATIC PREDICTOR (QP) CONTROLLER.

the presence of measurable packet losses in the control input.
We show that the optimal controller in the class of quadratic
transformation of the output is a linear map of the quadratic
prediction of the state, i.e. the optimal prediction in the class of
quadratic transformation of the output. As a consequence, the
separation principle continue to be true even in this case since
estimation and control can be designed separately. Numerical
results validate the proposed approach that outperforms the
linear optimal solution. Further developments can include:
extension to the polynomial filtering, intermittent observations,
partial packet losses, Semi-Markov packet losses, intermittent
and/or probabilistic acknowledgment of packet drops.
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