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Abstract

The paper deals with the problem of synchronizing the outputs of a set of nonlinear agents that 

exchange information through a time-varying communication network in a leader-follower configuration. 

The dynamics of the individual followers may differ from each other and from that of the leader. The 

information exchange between the leader and (a limited fraction of) the followers as well as between 

neighboring followers only consists of the relative values of the output variables that are to be synchro-

nized. The theory of output regulation for nonlinear systems is used to design decentralized controllers 

embedding an internal model of the leader dynamics. Then, under mild connectivity hypotheses, it is 

shown how synchronization between the local control loops can be achieved.
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I. INTRODUCTION

The problem of achieving consensus (among states and/or outputs) in a (homogeneous or 

heterogenous) network of systems has attracted a major attention in the past fifteen years. This 

area of research, which begins with a series of seminal contributions such as those of [12],

[21], [18], [19], [1], [15], [4], is now pretty well established. The literature is vast and is 

hard to summarize in the introduction of a research paper. In what follows, we quote some 

recent contributions that are closer to and/or have influenced our own approach (for a more 

extensive survey of earlier work, see, e.g., the dissertation [30]). The present paper considers the 

synchronization problem for a heterogeneous network, i.e., a network in which the individual 

systems (agents) possess different internal dynamics. The synchronization problem for a hetero-

geneous network of linear systems connected through a time-invariant graph has been previously 

addressed in the papers [24], [26], [14], [16], [13], [32]. In particular, [32] for linear systems 

and [31] for nonlinear systems have shown that, if the outputs of the agents of a heterogenous 

network achieve consensus on a nontrivial trajectory, the trajectory in question is necessarily 

the output of some autonomous (linear or, respectively, nonlinear) system. This property is the 

equivalent of, in the context of the consensus problem, the celebrated internal model principle of 

control theory. Motivated by this observation, [13] and [32] have proposed a two-layer control 

structure for achieving consensus in heterogenous networks of linear systems connected through 

a time-invariant graph. In their approach, a network of identical local reference generators is 

synchronized and the theory of output regulation is used to guarantee that the outputs of the 

(non-identical) agents follow the (synchronized) outputs of each local generator. This approach 

has been recently extended in [11] to a network of nonlinear systems connected through a time-

invariant graph. Consensus problems for a heterogeneous network of nonlinear systems have 

also been successfully addressed in the very recent paper [29]. The approach of [13] has also 

been extended in [25] to the case of a switched topology.



The consensus problem in the case of systems connected through time-varying communication 

graph has been successfully addressed in the milestone paper [19], which fully solves the problem 

in the case of a network of integrator systems under very mild connectivity conditions. This 

approach, though, has not been extended yet to the case of higher-dimensional linear agents, 

exchanging relative (full-state and/or partial state) information, let alone the case of higher-

dimensional nonlinear agents.

A somewhat special synchronization scenario is the one in which states (or outputs) of (a 

large set of) agents (the followers) are required to asymptotically track the state (or the output) 

of a single autonomous system (the leader). The pattern of communication still consists of 

the exchange of relative information, as in the case of standard consensus problems, with the 

only difference that the leader receives no information from the followers. This difference is 

reflected in the fact that the entries of one row of the so-called adjacency matrix of the graph 

(the row whose index corresponds to the leader) are all zero. This setup, in which followers 

exchange information with neighbors but only a limited fraction of them receives (relative) 

feedback injection from the leader is also known as pinning control [4], [33]. The problem 

of consensus in such special communication setup has been successfully addressed in [20],

[22] for linear systems connected through time-varying communication graphs, and in [33] for 

nonlinear systems. These papers address the case in which the leader and the followers have the 

same dynamics (namely, the case of a homogeneous network) and exchange (relative) full-state 

information.

The purpose of this paper is to extend the results of [20], [22] and [33] to the problem 

of leader-follower coordination for a heterogeneous network of nonlinear system exchanging 

only relative output information. Since in this case the followers have different dynamics, it 

is necessary that each one of them is locally controlled, so as to obtain a local loop that 

embeds a copy of the dynamics of the leader, according to the internal model principle(see 

[31]). However, as in the pinning control problem, only a limited fraction of the local loops may



ẋ = f(x, t) x ∈ Rn (1)

in which f : Rn × R≥0 → Rn is a fixed vector field, and a continuous function V : Rn → R,

the upper directional derivative of V (x) along f(x, t), at (x, t), is defined as

D+
f(x,t)V (x) = lim sup

h→0+

1

h
[V (x+ hf(x, t))− V (x)] .

Sometimes, whenever the expression of the vector field f(x, t) along which the directional

derivative is to be taken is excessively long, we use instead – as a subscript – the corresponding

number of the equation in which f(x, t) is defined, i.e., we use the shortened notation

D+
(1)V (x) := D+

f(x,t)V (x) .

have access to (relative) information from the leader. In our setting, the communication graph 

that characterizes the information exchange is time-varying. In this case, since the dynamics of 

the agents are not necessarily first-order and only output (as opposite to full-state) information 

exchange is considered, the fundamental results of [19] cannot be directly used as such and a 

suitable extension is necessary, that is provided in the paper.

The paper is organized as follows. In section II we characterize the class of systems that are 

being studied. In section III we provide some background material about the theory of asymptotic 

tracking, via internal-model-based control, for nonlinear systems and the implementation of such 

theory in the present context. In section IV we address the problem of synchronization of the 

individual local loops under the given leader-follower information pattern. In section V we 

provide some simple example and we conclude in section VI with a summary of the results and 

a comparison with the existing literature.

Notations. In the paper, R and R≥0 denote the set of real and nonnegative real numbers, 

respectively, whereas N denotes the set of nonnegative integers. With Rn we indicate the n-

dimensional Euclidean space. For C a compact subset of Rn, ‖x‖C = miny∈C |x − y| denotes the 

distance from x to C. Given a dynamical system



A. Problem formulation

As indicated in the Introduction, we consider in this paper the problem of controlling a set

of N , not necessarily identical, nonlinear agents, the followers, in such a way that their outputs

asymptotically track the output of a fixed nonlinear leader. It is assumed that all followers have

relative degree r between control input and controlled output and are modeled in normal form

as

żk = fk(zk, ξk)

ξ̇k1 = ξk2

· · ·

ξ̇k,r−1 = ξkr

ξ̇kr = qk(zk, ξk) + bk(zk, ξk)uk

yk = ξk1

(2)

in which zk ∈ Rnk , ξk ∈ Rr denotes the vector ξk = col(ξk1, ξk2, . . . , ξkr) and uk ∈ R. In this 

equation, uk and yk denote the control input and, respectively, the controlled output of the 

individual kth agent. The assumption that all agents have the same relative degree is not restrictive, 

since it is always possible to achieve such property by adding a suitable number of integrators to 

the input channel of each agent.

The outputs yk of all such agents are requested to asymptotically track the output y0 of a 

(single) leader

ẇ = s(w)

y0 = h0(w)
(3)

In some parts of the paper we will use tools developed in the context of the theory of hybrid 

dynamical systems. In those parts, this work uses the framework and results of [8], from which 

also the notation is taken.

II. PRELIMINARIES



ς̇k = ϕk(ςk, νk)

uk = %k(ςk, νk)
(4)

exchanging information through a time-varying communication graph. Specifically, the input νk of 

each of such controllers, which represents exchange of relative information between the leader and 

the individual agents, is assumed to have the form

νk(t) = ak0(t)(ϑ0(t)− ϑk(t)) +
N∑
j=1
j 6=k

akj(t) (ϑj(t)− ϑk(t)), (5)

for k = 1, . . . , N . In (5), ϑ0 and the ϑj ’s, j = 1, . . . , N represent information taken at the leader 

and, respectively, at each agent, whereas the akj (t) are non-negative-valued functions, modeling 

the weight of the communication link between the kth and ith agents. In the simple case in which r 

= 1,

ϑi = yi ∀ i = 0, 1, . . . , N .

The expression (5) reflects the fact that each local feedback controller communicates only with 

a limited number of neighbouring agents.

The problem addressed in the paper consists in the design of a set of local feedback controllers 

(4) in such a way that, for each k, the difference between the output yk of the kth follower and the 

output y0 of the leader (henceforth referred to as tracking error) asymptotically decays to 0 as time 

tends to ∞.

B. Basic assumptions

All functions/maps considered in the models (2)–(4) are assumed to be smooth. It is also

assumed that, for some fixed pair of real numbers 0 < b ≤ b the so-called high-frequency gain

in which w ∈ W , with W a compact set. The set is assumed to be invariant for the dynamics of (3).

The (decentralized) control structure consists of a set of k local feedback controllers of the 

form



coefficient bk(zk, ξk) of the kth agent satisfies

0 < b ≤ bk(zk, ξk) ≤ b . (6)

The basic assumption on each of the agents (2) is that of being strongly minimum phase, 

formally specified in the following. 1 Using, as customary, Lsλ(w) to denote the directional 

derivative of a function λ(w) along a vector field s(w), define

ξss(w) =


Lrs
−1h0(w)

 
h0(w)

Lsh0(w)

· · ·


and observe that, if perfect tracking is achieved,

ξk(t) = ξss(w(t)) .

Assumption 1: There exists a smooth map πk : W → Rnk satisfying

Lsπk(w) = fk(πk(w), ξss(w)) ∀w ∈ W ,

and the system

ẇ = s(w)
(7)

żk = fk(zk, ξss(w) + u),

regarded as a system with state (w, zk) and input u, is input-to-state stable (ISS) to the invariant 

set 2

Ak = {(w, zk) ∈ W × Rnk : zk = πk(w)} .

with a linear gain function and with an exponential decay rate. In particular, there exists a locally 

Lipschitz function Vk : W × Rnk → R such that the following holds:

1This assumption is customary in the literature on output regulation for nonlinear systems [17]. 

2See [27] for an introduction to the concept of input-to-state stability.



• there exist positive ak and āk such that

ak‖(w, zk)‖Ak
≤ Vk(w, zk) ≤ āk‖(w, zk)‖Ak

for all (w, zk) ∈ W × Rnk ;

• there exist positive ck and dk such that

D+

(7)Vk(w, zk) ≤ −ckVk(w, zk) + dk|u|

for all (w, zk, u) ∈ W × Rnk × R

Remark. The existence of an ISS Lyapunov function with the properties detailed in the previous

assumption implies that for all (w(0), z(0)) ∈ W × Rnk and all bounded u(t), the resulting

trajectory (w(t), z(t)) of (7) satisfies

‖(w(t), zk(t))‖Ak
≤

max{λke−ckt‖(w(0), zk(0))‖Ak
, g◦k‖u(·)‖∞}

(8)

with λk = 2āk/ak and g◦k = 2dk

∫ ∞
0

e−ck(t−s)ds/ak, for all t ≥ 0. /

k

Remark. The assumption that the gain function of (7) is linear could be weakened, requiring only 

linearity in a neighborhood of the origin, in which case a bound similar to the bound (8) would 

hold, so long as it can be guaranteed that, for some compact set U , the input function u(·) of (7) 

satisfies |u(t)| ≤ U for all t ≥ 0, with g◦ a parameter depending on the set U . Weakening

the assumption in this way would yield weaker convergence results. /

III. STANDARD RESULTS ON ASYMPTOTIC TRACKING

If each follower had access to a measurement of the output y0(t) of the leader, the design 

problem could be trivially reduced to the (independent) design of a set of N regulators, which 

could be accomplished by means of (relatively) standard methods developed to solve the problem 

of asymptotic tracking for nonlinear systems (see, for instance, [17] and references therein). Of



A. Reduction to relative degree 1

It is well known that if r > 1 the output of system (2) can be redefined so as to lower the 

relative degree to 1 while keeping the property of being strongly minimum phase. The reduction 

in relative degree is achieved by picking as new output the function (see [10])

ϑk = ξkr +
r−1∑
j=1

cjξkj (9)

in which the cj ’s are such that the polynomial p(λ) = λr−1 +cr−1λ
r−2 + · · ·+c2λ+c0 is Hurwitz. 

The dynamics of (2) with ξkr replaced by ϑk can be seen as a system in normal form having relative 

degree 1 between input uk and output ϑk, i.e.,

żk = fk(zk, `(ξk1, . . . , ξk,r−1, ϑk))

ξ̇k1 = ξk2

· · ·

ξ̇k,r−1 = −
∑r−1

j=1 cjξkj + ϑk

ϑ̇k = qk(zk, `(ξk1, . . . , ξk,r−1, ϑk))

+
∑r−2

j=1 cjξk,j+1 + cr−1[−
∑r−1

j=1 cjξkj + ϑk]

+ bk(zk, `(ξk1, . . . , ξk,r−1, ϑk))uk

in which

`(ξk1, . . . , ξk,r−1, ϑk) = col(ξk1, . . . , ξk,r−1,−
r−1∑
j=1

cjξkj + ϑk) .

Having set

ϑss(w) = Lr−1s h0(w) +
r−1∑
j=1

cjL
j−1
s h0(w) ,

course, this is not the case in the present setting, where the information pattern is reduced and 

only information exchange between neighbors is allowed, as expressed in (5). However, as shown 

later in the paper, results from the theory of asymptotic tracking for nonlinear systems can still 

be conveniently used. For this reason, we review in this section a number of such results, and 

put them in a form that is suited to our subsequent developments.



ẇ = s(w)

żk = fk(zk, `(ξk1, . . . , ξk,r−1, ϑss(w) + u))

ξ̇k1 = ξk2

· · ·

ξ̇k,r−1 = −
∑r−1

j=1 cjξkj + ϑss(w) + u

(10)

is ISS to the invariant set

A′k = {(w, zk, ξi1, . . . , ξi,r−1) : w ∈ W,

zk = πk(w), ξi1 = h0(w), . . . , ξi,r−1 = Lrs−2h0(w)} .

Hence, if (2) is strongly minimum phase (in the sense of Assumption 1), so is the system obtained 

after the replacement of the original output yk with the new output ϑk.

In view of this calculation, from now on we restrict our analysis to the case in which all agents 

have relative degree 1. In this respect, it should also be observed that ϑk(t) is a linear combination 

of higher derivatives of yk, i.e.

ϑk(t) = yr−1k (t) +
r−1∑
j=1

cjy
j−1
k (t) .

For the purpose of establishing the desired tracking results, classical results (see [6]) can be used to 

prove that partial state information such as ϑk can be replaced (with appropriate precautions) by a 

rough approximation provided by a high-gain observer driven by the actual output yk. We will 

return to this issue at the end of the paper.

B. The standard internal model for each agent

In this subsection we briefly summarize some results of [17] concerning the design of a

regulator for each individual agent, that will be used later in solution of the synchronization

problem. Motivated by the discussion in the previous subsection, we consider the case of agents

it is readily seen, as a standard consequence of the property that the cascade of two ISS systems 

is an ISS system (see [10]), that the system



żk = fk(zk, yk)

ẏk = qk(zk, yk) + bkuk

(11)

in which bk is a (possibly unknown) positive number.

Define ψk : W → R via

Lsh0(w) = qk(πk(w), h0(w)) + bkψk(w) .

Based on the results of [17] it is known that there exists an integer mk, a Hurwitz matrix F ∈

Rmk×mk , a vector G ∈ Rmk×1 such that the pair F,G is controllable, a function γk : Rmk → R

and a map σk : W → Rmk , satisfying

Lsσk(w) = Fσk(w) +Gγk(σk(w))

ψk(w) = γk(σk(w))
∀w ∈ W . (12)

Consequently, it is possible to design, for the kth agent, an internal model of the form3

η̇k = Fηk +Gγk(ηk) +Gvk

uk = γk(ηk) + vk ,
(13)

in which ηk ∈ Rmk , F , G and γk(·) are such that (12) holds for some σk(·) and vk ∈ R is a residual 

control input that will be determined later to secure the desired convergence properties. Note that 

the function γk(·) is only known (from [17]) to be continuous. However, in what follows, for 

convenience it will be assumed that the function in question is globally Lipschitz.

Define the tracking error of the kth agent as

ek = yk − y0 .

3 It follows from the results of [17] that, since the number of agents is finite, it is possible to pick a single pair F,G for all

agents, as the notation suggests.

having relative degree 1 and, to simplify matters, we also assume that the “high-frequency gain” 

coefficient is independent of the state variables. In other words, we consider the case of agents 

modeled by equations of the form



ζk = ηk −
1

bk
Gek .

The normal form in question is

żk = fk(zk, h0(w) + ek)

ζ̇k = Fζk +Gγk(σk(w))− 1

bk
[Gqk(zk, h0(w) + ek)

−Gqk(πk(w), h0(w))− FGek]

ėk = qk(zk, h0(w) + ek)− qk(πk(w), h0(w))

+bk[γk(ζk +
1
Gek)− γk(σk(w)] + bkvk .

(14)

bk

Having assumed that the agent is strongly minimum-phase and taking advantage of the fact that

F is a Hurwitz matrix, it is possible to verify (using again the property that the cascade of two 

ISS systems is an ISS system) that the system

ẇ = s(w)

żk = fk(zk, h0(w) + ek)

ζ̇k = Fζk +Gγk(σk(w))− 1

bk
[Gqk(zk, h0(w) + ek)

−Gqk(πk(w), h0(w))− FGek],

(15)

viewed as a system with input ek, is input-to-state stable to the invariant set

Aa
k = {(w, zk, ζk) : w ∈ W, zk = πk(w), ζk = σk(w)} .

If, in addition, it is assumed that the function

qk(zk, h0(w) + ek)− qk(πk(w), h0(w)) ,

which vanishes if ‖(w, zk)‖Ak
= 0 and ek = 0, satisfies a bound of the form

|qk(zk, h0(w) + ek)− qk(πk(w), h0(w))| ≤

cz‖(w, zk)‖Ak
+ ce|ek|

(16)

The composition of (11) and (13), viewed as a system with input vk and output ek, has relative 

degree 1 and can be put in normal form by changing ηk into



k

holds:

• there exist positive aak and āak such that

aak‖(w, zk, ζk)‖Aa
k
≤ V a

k (w, zz, ζk) ≤ āak‖(w, zz, ζk)‖Aa
k

for all (w, zz, ζk) ∈ W × Rnk × Rmk ;

• there exists positive cak and dak such that

D+
(15)V

a
k (w, zz, ζk) ≤ −cakV a

k (w, zz, ζk) + dak|ek|

for all (w, zz, ζk) ∈ W × Rnk × Rmk .

Finally, note that the coupling term in the last equation of (14), namely

qk(zk, h0(w) + ek)− qk(πk(w), h0(w))

+bk[γk(ζk +
1

bk
Gek)− γk(σk(w)],

vanishes if ‖(w, zk, ζk)‖Aa
k 

= 0 and ek = 0.

If, as observed at the beginning of the section, each agent had access to a measurement of the 

output y0 of the leader, each agent would have access to a measurement of the tracking error ek. 

If this were the case, the design problem could be solved by simply picking vk = −κek, with κ 

a positive design parameter.

In fact, system (14) controlled by vk = −κek might be viewed as the feedback interconnection of 

the following two subsystems: (i) a system with input ek and state w, zk, ζk, modeled by (15), 

which is ISS to the invariant set Aa
k with a linear gain function and exponential decay rate; and 

(ii) a system with input ‖w, zk, ζk‖Aa
k 

and state ek, modelled by the last equation of (14) with 

vk = −κek, which can be rendered ISS to the invariant set ek = 0 if κ is large enough. Thus, by the 

small-gain theorem for ISS systems, if the gain parameter κ were large enough, the variable ek(t) 

would be guaranteed to converge to 0 (while all other variables remain bounded).

for some pair (cz, ce) of positive numbers independent of w, it can be concluded that (15) is ISS to 

the invariant set Aa
k with a linear gain function and exponential decay rate. In particular, there 

exists a locally Lipschitz function V a : W × Rnk × Rmk → R such that the following



C. The overall control structure

System (14) can be seen as a SISO system with input vk and output ek, having relative degree

1 and modeled by equations of the form (we omit indication of the dynamics of w)

żak = f a
k (w, zak, ek)

ėk = qak(w, z
a
k, ek) + bkvk .

in which zak = (zk, ζk) ∈ Rnk+mk and f a
k (·) and qak(·) are suitably defined.

Stacking all such systems together, we obtain a system with N inputs and N outputs modeled

by equations of the form

ż = f(w, z, e)

ė = q(w, z, e) +Bv
(17)

in which

z = col(za1 , z
a
2 , . . . , z

a
N)

e = col(e1, e2, . . . , eN)

v = col(v1, v2, . . . , vN)

f(w, z, e) = col(f a
1 (w, za1 , e1), . . . , f

a
N(w, zaN , eN))

q(w, z, e) = col(qa1(w, za1 , e1), . . . , q
a
N(w, zaN , eN))

B = diag(b1, b2, . . . , bN )

Note that, in view of the whole construction, if for all k = 1, . . . , N Assumption 1 and the bound 

(16) hold and the function γk(·) is globally Lipschitz, then the following holds:

This mode of control may not be feasible, though, because the kth agent may not have access to 

the kth tracking error. Thus, the structured exchange of information must be taken into account, 

as it will be done in the next section. We conclude the current section by rewriting in more 

compact form some of the relations developed so far.



(i) the system

ẇ = s(w)

ż = f(w, z, e) ,
(18)

viewed as a system with input e, is input-to-state stable, with a linear gain function and

exponential decay rate, to a compact invariant set A∗. In particular, there exists a locally Lipschitz

function Vz : W × Rn → R, n =
∑N

k=1(nk +mk), such that:

• there exist positive az and āz satisfying

az‖(w, z)‖A? ≤ Vz(w, z) ≤ āz‖(w, z)‖A?

for all (w, z) ∈ W × Rn ;

• there exists positive c and d such that

D+

(18)Vz(w, z) ≤ −cVz(w, z) + d|e| ,

for all (w, z) ∈ W × Rn.

(ii) there exists a pair (K1, K2) of positive numbers such that

|q(w, z, e)| ≤ K1|e|+K2‖(w, z)‖A∗

for all w, z, e.

IV. ASYMPTOTIC COORDINATION

In this section we present the main results of the paper. These results assume a property of 

connectivity, for a time-varying graph, which is based on the notion introduced by Moreau in 

[18] in his work on consensus in a network of integrator systems. A weaker version of such 

property is used in subsection IV-C, together with an additional assumption, to obtain the desired 

convergence result.



A. The communication protocol

We assume the reader is familiar with the major results about consensus of networked systems 

exchanging information over communication graphs and, therefore, we refrain from repeating 

well established definitions c oncerning g raphs. A s a nticipated i n S ection I I, t he e xchange of 

information between leader and followers has the expression (5), which in the present context 

takes the form (all agents have relative degree 1 and, therefore, ϑk = yk)

νk(t) = ak0(t)(y0(t)− yk(t)) +
N∑
j=1
j 6=k

akj(t) (yj(t)− yk(t)) (19)

for k = 1, . . . , N , where akj(t) is the element on the kth row and jth column of the so-called

adjacency matrix A(t) of the underlying communication digraph. All akj(t)’s are piecewise-

continuous and bounded functions of time. Moreover, akj(t) ≥ 0 and akk(t) = 0, for all t ∈ R.

Note that, in this specific case of a leader-follower configuration, a0j(t) ≡ 0 for all j = 1, . . . , N .

The signal (19), using the definition of tracking errors, can be expressed as

νk(t) =
N∑
j=1
j 6=k

akj(t)ej − [ak0(t) +
N∑
j=1
j 6=k

akj(t)]ek ,

and, in compact form, as

ν(t) = M(t)e(t) (20)

in which

ν = col(ν1, ν2, . . . , νN)

and M(t) ∈ RN×N is a matrix defined as

mkj(t) = akj(t) for k 6= j

mkk(t) = −
N∑
j=0
j 6=k

akj(t) .
(21)

Remark. Note that the off-diagonal elements of M(t) are non-negative and, for each k =

1, . . . , N , the sum of all elements of the kth row is equal to −ak0(t). As a matter of fact, the



ẇ = s(w)

ż = f(w, z, e)

ė = q(w, z, e) + κBM(t)e .

(22)

Of course, the possibility of achieving this goal depends on the connectivity properties of

the communication graph, which are reflected in properties of the matrix M(t) which, in turn,

influences the asymptotic properties of the time-varying linear system

ė = BM(t)e . (23)

B. A digression on a Theorem of Moreau

In order to analyze the asymptotic properties of system (23), it is convenient to recall a

fundamental result of Moreau (see [18]), who established appropriate connectivity assumptions 

under which the state x ∈ RN+1 of a network of N + 1 first-order agents

ẋk = uk k = 0, . . . , N (24)

4As observed earlier, if the entire vector e were available for measurement, a control law of the form v(t) = κe(t) would

suffice to solve the problem.

negative of M(t) coincides with the lower-right N × N block of the so-called Laplacian matrix 

L(t) of the graph induced by the matrix A(t). /

The purpose of this paper is to show that the target of asymptotic tracking can be achieved 

by means of a control law of the form

v(t) = κν(t) = κM(t)e(t) ,

in which κ > 0 is a gain parameter 4. This choice, in view of (20), yields an overall controlled 

network which, augmented with the dynamics of the leader, reads as



controlled by

uk =
N∑
j=0
j 6=k

akj(t)(xj − xk) (25)

asymptotically converges to the equilibrium subspace A = {x ∈ RN+1 : x0 = x1 = . . . = xN}.

In the present context of a leader-follower configuration, u0 = 0 and hence

ẋ0 = 0 .

Thus, without loss of generality, one can assume x0(t) = 0 for all t ∈ R and describe the

network in equivalent form in terms of the relative differences ek = xk − x0 as

ėk =
N∑
j=1

mkj(t)ej k = 1, . . . , N, (26)

in which the mkj(t) are the coefficients defined in (21).

The connectivity property determined in [18] under which the convergence of (24)–(25) to the

equilibrium subspace takes place, can be described (in the present context of a leader-follower

configuration) as follows.

Definition. The digraph associated with the adjacency matrix A(t) is uniformly connected if

there is a threshold value θ and an interval length T > 0 such that, for all t ∈ R, in the θ-digraph

5 associated with the adjacency matrix ∫ t+T

t

A(s)ds

all nodes may be reached from node 0. /

Theorem 1 of [18] states that, if the digraph associated with the adjacency matrix A(t) is 

uniformly connected, the equilibrium e = 0 of (26) is exponentially stable. Such a result can be

5The θ-digraph associated to an adjacency matrix A0(t) is a digraph with an arc from j to k (k 6= j) if and only if the 

element (k, j) of A0(t) is strictly larger than θ for all t ∈ R.



ėk = bk

N∑
j=1

mkj(t)ej ,

and hence system (23) can be interpreted as a system of the form (26) corresponding to an

adjacency matrix Ã(t) in which

ãkj(t) = bkakj(t) k = 1, . . . , N, j = 0, 1, . . . , N . (27)

Since bk is bounded as in (6), it is readily seen that, if the digraph associated with the adjacency 

matrix A(t) is uniformly connected, so too is the digraph associated with the adjacency matrix 

Ã(t). Thus, as an immediate corollary of Theorem 1 of [18], it can be concluded that if the digraph 

associated with the adjacency matrix A(t) is uniformly connected, the equilibrium e = 0 of (23) is 

exponentially stable.

Theorem 1 of [18] is proven by showing the existence of a (time-independent) positive definite 

function of e that asymptotically decreases along trajectories. The function in question, in the 

present context of a leader-follower configuration and hence of the system described as in (26), 

is the function

V (e) = max{e1, . . . , eN , 0} −min{e1, . . . , eN , 0} . (28)

This function is continuous but not continuously differentiable. However, it can be seen that this

function can be bounded as

ae|e| ≤ V (e) ≤ ae|e| ∀e ∈ RN , (29)

from which it is also seen that V (e) is globally Lipschitz.

The proof of Theorem 1 of [18] shows that, if the digraph associated with the adjacency

matrix A(t) is uniformly connected, along any trajectory e(t) of (26):

(i) the function V (e(t)) is non-increasing,

also used to determine the asymptotic properties of system (23). In fact, it suffices to observe 

that the kth row of system (23) reads as



(ii) for some class K∞ function γ(·)

V (e(t0 +NT ))− V (e(t0)) ≤ −γ(|e(t0)|) (30)

for any t0 (where the number T is the parameter appearing in the definition of uniform connec-

tivity).

C. Convergence results

Motivated by the result of [18] summarized above and by the forthcoming Proposition 1, we

consider in what follows the case in which the adjacency matrix A(t), which characterizes the

communication between agents, is such that the property indicated in the following assumption

holds.

Assumption 2: There exists a globally Lipschitz function Ve : RN → R, bounded as in

ae|e| ≤ Ve(e) ≤ āe|e| ∀ e ∈ RN

for some positive ae, āe, such that

D+
BM(t)eVe(e) ≤ 0 ∀ (e, t) ∈ RN × R≥0 . (31)

Moreover, there exists a time T0, a number a > 0 and a countable sequence of closed intervals

{Ik}k∈N ⊂ R≥0 of the form Ik = [tk,1, tk,2], with tk,1 ≤ tk,2 ≤ tk+1,1 and tk+1,1− tk,2 ≤ T0, such

that

D+
BM(t)eVe(e) ≤ −aVe(e) ∀ (e, t) ∈ RN × Ik . (32)

As a matter of fact, using the results of [18], it is possible to check the following result.

Proposition 1: Suppose that the digraph associated with the adjacency matrix A(t) is uni-

formly connected. Then, Assumption 2 holds.

Proof: As observed above, the digraph associated with the adjacency matrix Ã(t) defined

in (27) is uniformly connected. Therefore, along any trajectory e(t) of (23), the function V (e)



D+
BM(t)eV (e) ≤ − 1

2NT
γ(|e(t0)|) ∀t ∈ It0 .

This inequality, in turn, using the estimate (29) for V (e) and the property that V (e(t)) is non-

increasing, can be further elaborated to yield

D+
BM(t)eV (e) ≤ −

1

2NT
γ

(
V (e(t0))

ae

)
≤ −

1

2NT
γ

(
V (e(t))

ae

)
.

Finally, is it observed that the estimates provided in [18] show that the function γ(·) on the

left-hand side of (30) can be bounded as a0|e| ≤ γ(|e|) for some a0 > 0. As a consequence, it

is seen that

D+
BM(t)eV (e) ≤ − a0

2NTae
V (e) ∀ t ∈ It0 ,

from which it is concluded that property (32) also holds.

It is seen from Proposition 1 that Assumption 2 is actually weaker than the assumption of 

uniform connectivity. As such, however, Assumption 2 may not be strong enough to guarantee 

exponential stability of (23), for the simple reason that no lower bound is prescribed on the 

measure of the intervals Ik. In view of this, it is convenient to strengthen Assumption 2 by 

requiring, for instance, that the Ik’s (which, we recall, are intervals of the form [tk,1, tk,2]) satisfy, 

for some n0 ∈ N, n0 ≥ 1, and some τ > 0,
i−1∑
k=j

(tk,2 − tk,1) ≥ (i− j − n0)τ . (33)

This inequality essentially expresses the property that, in the average, the intervals Ik have a 

guaranteed length, so as to secure – in view of (32) – that the solutions of (23) asymptotically 

decay to zero. The time τ , in particular, can be seen as an average length of the intervals Ik, 

whereas n0 represents the maximal number of consecutive intervals Ik of zero length. As a whole, 

the condition can be regarded as an average dwell-time condition (see [9]). If this condition holds

defined in (28) is non-increasing and property (30) holds. The fact that V (e) is non-increasing 

implies (31). From the inequality (30), it is easy to deduce the existence of a closed interval

It0 ⊂ [t0, t0 + NT ] such that



ė = q(w, z, e) + κBM(t)e , (34)

we obtain

D+
(22)Vcl(w, z, e) = D+

(18)Vz(w, z) + βD+
(34)Ve(e) .

We develop separately the two terms. Regarding the derivative of Vz(·) we have

D+
(18)Vz(w, z) = −cVz(w, z) + d|e|

≤ −cVz(w, z) +
d

ae
Ve(e) .

Regarding the derivative of Ve(·), we have

D+
(34)Ve(e) = lim sup

h→0+

1

h
[Ve(e+ hė)− Ve(e)]

= lim sup
h→0+

1

h
[Ve(e+ hė)− Ve(e+ hκBM(t)e)

+ lim sup
h→0+

1

h
[Ve(e+ hκBM(t)e)− Ve(e)]

≤ κD+
BM(t)eVe(e) + lim sup

h→0+

1

h
L|hq(·)|

≤ κD+
BM(t)eVe(e) + LK1|e|+ LK2‖(w, z)‖A?

≤ κD+
BM(t)eVe(e) + L

K1

ae
Ve(e) + L

K2

az
Vz(w, z)

for some τ and n0, then the solutions of (23) exponentially decay to zero. Moreover, as it will be 

shown in a moment, if τ and κ are sufficiently large, then it is also true that the solutions of the full 

system (22) are such that e(t) exponentially decays to zero.

Proposition 2: Consider system (22) under Assumptions 1 and 2. There exist τ ? ≥ 0 and κ? > 0 

such that, if (33) holds for τ = τ ∗ and some n0 ≥ 1, then the set A? × {0} is globally asymptotically 

stable for system (22) for all κ ≥ κ?.

Proof: With Vz(w, z) and Ve(e) the Lyapunov functions introduced respectively at the end of 

Section III-C and in Assumption 2, let Vcl : W × Rn × RN → R be the candidate Lyapunov 

function for the closed-loop system defined as Vcl(w, z, e) = Vz(w, z) + βVe(e) with β > 0 yet to 

be chosen. By taking the upper directional derivative of Vcl(·) along (22), the last equation of 

which reads as



D+
(34)Ve(e) ≤ −(κa− LK1

ae
)Ve(e) + L

K2

az
Vz(w, z)

for all t ∈ {Ik} and for all (w, z, e) ∈ W × Rn × RN , and

D+
(34)Ve(e) ≤ L

K1

ae
Ve(e) + L

K2

az
Vz(w, z)

for all t /∈ {Ik} and for all (w, z, e) ∈ W × Rn × RN . Thus, choosing β so that

c− βLK2

az
≥ c

2

and κ? so that

βκ?a− βLK1

ae
− d

ae
≥ c

2
β

we have that, for all t ∈ {Ik}, for all (w, z, e) ∈ W × Rn × RN , and for all κ ≥ κ?,

D+

(22)Vcl(w, z, e) ≤ −cVz(w, z) +
d

ae
Ve(e)

−β(κa− LK1

ae
)Ve(e) + β

LK2

az
Vz(w, z)

≤ −(c− βLK2

az
)Vz(w, z)− (βκa− βLK1

ae
− d

ae
)Ve(e)

≤ − c
2

(Vz(w, z) + βVe(e)) = − c
2
Vcl(w, z, e)

:= −αcVcl(w, z, e) .

having denoted by L the Lipschitz constant of Ve(·) and having used the properties in the items 

(i) and (ii) at the end of Section III-C. This, bearing in mind (31) and (32), yields

Thus, on the time interval [tk,1, tk,2] the Lyapunov function decreases and the following estimate 

holds

Vcl(tk,2) ≤ e−αc(tk,2−tk,1)Vcl(tk,1) .



Similarly, for all t /∈ {Ik}, for all (w, z, e) ∈ W × Rn × RN , and for all κ ≥ 0

D+

(22)Vcl(w, z, e) ≤ −cVz(w, z) +
d

ae
Ve(e)

+βL
K1

ae
Ve(e) + βL

K2

az
Vz(w, z)

≤ (βL
K2

az
− c)Vz(w, z) + (

d

ae
+ βL

K1

ae
)Ve(e)

≤ αdVcl(w, z, e)

with αd := max{(βLK2/az − c) , (d/ae + βLK1/ae)/β}. In the time intervals (tk,2, tk+1,1), in

which the graph might not be connected, the growth of the Lyapunov function can be estimated

as

Vcl(tk+1,1) ≤ eαd(tk+1,1−tk,2)Vcl(tk,2) ≤ eαdT0Vcl(tk,2) .

From the inequalities thus established, it is seen that, if there exists a time τ0 such that

tk,2 − tk,1 ≥ τ0 for all k ∈ N (in which case (33) is trivially satisfied with n0 = 1 and τ = τ0)

and the times τ0 and T0 are such that

αcτ0 ≥ αdT0 ,

then the function Vcl(t) satisfies

V (tk+1,1) ≤ ᾱV (tk,1) ∀k ∈ N

for some ᾱ < 1, in which case the result of the proposition follows.

In general, if a lower bound τ0 for tk,2 − tk,1 cannot be guaranteed, but the weaker property 

(33) holds, one can still establish the desired asymptotic properties by looking at the closed-

loop system as an hybrid system flowing d uring t he t ime i ntervals I k i n w hich t he topology 

is connected and instantaneously jumping in the intervals t ∈ [tk,2, tk+1,1]. During flows the

closed-loop Lyapunov function satisfies D+
col(ẇ ,ż,ė)Vcl(·) ≤ −αcVcl(·), whereas during jumps the 

Lyapunov function satisfies V cl(·)+ ≤ eαdT0Vcl(·). The fact that the intervals I k satisfy an average 

dwell-time condition expressed above allows one to say (see [3]) that flow a nd j ump t imes of



υ̇c ∈ [0, 1/τ ]

w = s(w)

ż = f(w, z, e)

ė = q(w, z, e) + κBM(t)e

(35)

when (υc, w, z, e) ∈ [0, n0]×W × Rn × R and jumping according to

υ+c = υc − 1

w+ = w

z+ = z

e+ = e

when (υc, w, z, e) ∈ [1, n0]×W × Rn × R.

For this hybrid system we consider the Lyapunov function

Vh(υc, w, z, e) = eNυcVcl(w, z, e)

with N ∈ (αdT0, αcτ), by taking

τ ? =
αdT0
αc

.

During flows we have that

D+
(35)Vh = Nυ̇ce

NυcVcl + eNυcD+
(22)Vcl

≤ N

τ
eNυcVcl − αce

NυcVcl

≤ N

τ
Vh − αcVh

≤ −α′cVh

the hybrid system can be thought of as governed by a clock variable υc flowing according to υ̇c ∈ 

[0, 1/τ ], when υc ∈ [0, n0], and jumping according to υc+ = υc − 1, when υc ∈ [1, n0]. We thus 

endow the closed-loop system with the clock variable and study the resulting hybrid system 

flowing according to



where α′c = αc −N/τ > 0. On the other hand, during jumps,

V +
h = eNυ

+
c V +

cl

≤ eN(υc−1)eαdT0Vcl

= e−(N−αdT0)eNυcVcl

= εVh

with ε := e−(N−αdT0) < 1. This Lyapunov function is thus decreasing both during flows and during 

jumps and it is positive definite with respect to the set [0, n0] × A? × {0}. This proves the 

proposition.

Proposition 2 provides a sufficient condition under which the outputs yk(t), with k = 1, . . . , N , 

of the agents (2) asymptotically converge to the output y0(t) of the leader (3). A couple of 

remarks are in order. First of all it is observed that, if tk+1,1 = tk,2 for all k ∈ N, property (32) 

holds for all (e, t) ∈ RN × R≥0. This condition reflects t he p roperty t he d igraph i nduced by 

A(t) is connected at each t. In this case, T0 = 0 and, as seen from the proof of the Proposition 

by taking τ ∗ = 0, if κ is large enough, the set A? × {0} is globally asymptotically stable for system 

(22). Thus, under such (strong) connectivity assumption, the proposed scheme is able to solve the 

leader-follower coordination problem for a network of nonlinear agents, if the latter are strongly 

minimum-phase. In the (more challenging) case in which T0 > 0, coordination can be achieved 

provided that the average dwell-time condition (33) holds for some n0 and τ = τ ∗, with τ ∗ a time 

proportional (as seen from the proof of the Proposition) to T0. In this case, again, coordination is 

achieved by picking a large enough value of κ.

D. The case of higher relative degree

We conclude the analysis with a quick discussion on how to handle the general case of relative

degree r > 1. Recalling the definition (9) of ϑk, for k = 1, . . . , N , set also

ϑ0 = Lr−1s h0(w) +
r−1∑
j=1

cjL
j−1
s h0(w) .



The variable χk(t) = ϑk(t) − ϑ0(t) can be expressed as

χk(t) = er−1k (t) +
r−1∑
j=1

cje
j−1
k (t) (36)

and the control law (5) can be rewritten as

νk(t) =
N∑
j=1
j 6=k

akj(t)χj(t)− [ak0(t) +
N∑
j=1
j 6=k

akj(t)]χk(t) . (37)

If all ϑk’s were available for measurement, the implementation of such a control law would

give rise to an overall closed-loop system modelled by equations of the form (compare with

(22))

ẇ = s(w)

ż = f(z, χ, w)

χ̇ = q(z, χ, w) + κBM(t)χ ,

in which

χ = col(χ1, . . . , χN) .

If the sufficient conditions presented above are satisfied, χ(t) decays exponentially to zero and

so is the vector e(t) of tracking errors, which according to (36) can be seen as a component of

the state of a stable linear system driven by χ(t).

If the ϑk’s are not available, one could replace them by quantities of the form

ϑ̂k = ξ̂kr +
r−1∑
j=1

cj ξ̂kj := Cξ̂k ,

in which the ξ̂k’s, for k = 0, 1, . . . , N , are estimates provided by rough high-gain observers, the

kth one of which (k = 0, 1, . . . , N ) is modeled by equations of the form

˙̂
ξk1 = ξ̂k2 + gar−1(yk − ξ̂k1)
˙̂
ξk2 = ξ̂k3 + g2ar−2(yk − ξ̂k1)

· · ·
˙̂
ξk,r−1 = ξ̂kr + gr−1a1(yk − ξ̂k1)

˙̂
ξk,r = gra0(yk − ξ̂k1) ,

(38)



0 ≤ t <
1

3
τ0 ⇒ A(t) = A1 =



0 0 0 0 0

1 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0



in which the ai’s are such that the polynomial p(λ) = λr−1 + ar−1λr−2 + · · · + a2λ + a0 is Hurwitz 

and g is a design parameter.

Well-known results (see [6], [28], [7] and also [10]) can be invoked to conclude that, if 

the gain parameter g is large enough, in the resulting closed-loop system the tracking error e(t) 

asymptotically decays to zero, i.e., the output yk(t) of each agent asymptotically tracks the output 

y0(t) of the leader. In this respect, it should also be borne in mind that, if one is interested in 

establishing convergence for a fixed (compact) set of initial conditions (in which case the linear 

bounds for the ISS gains and the linear growth assumptions considered in the previous analysis 

are required to hold only in fixed compact regions, with parameters depending on the size of 

these regions) the control provided by (37) should be appropriately saturated, so as to avoid the 

occurrence of finite escape times (see again [6], [28]).

V. EXAMPLES

A. The setup

We consider the case of a set of four (N = 4) agents following a leader, with information

exchanged via a periodically time-varying communication graph. On each period, the graph is 

connected for a time τ0 > 0. The adjacency matrix A(t) is defined as follows (see also Example 1 

in [22]):



1

3
τ0 ≤ t <

2

3
τ0 ⇒ A(t) = A2 =



0 0 0 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0



2

3
τ0 ≤ t < τ0 ⇒ A(t) = A3 =



0 0 0 0 0

1 0 0 0 0

1 0 0 0 1

0 0 1 0 0

0 0 0 1 0


τ0 ≤ t < τ0 + T0 ⇒ A(t) = A4 = 0 .

The leader is a harmonic oscillator, described by

ẇ = Sw

y0 = C0w

in which

S =

 0 ω0

−ω0 0

 C0 =

(
1 0

)
.

In the simulations, the frequency is ω0 = 1 and the initial condition is w(0) = col(1, 0).

Two of the followers are linear systems having relative degree 1, described by

ẋk = Akxk +Bkuk

yk = Ckxk

in which

Ak =


0 1 0

−a0k −a1k 1

c0k c1k c2k

 Bk =


0

0

bk





Ck =

(
0 0 1

)
.

In the simulations, the parameters of agent 1 are a01 = 1, a11 = 2, c01 = 0, c11 = 1, c21 = 0, 

b1 = 1, whereas the parameters of agent 2 are a02 = 3, a12 = 1, c02 = 0, c12 = 1, c22 = 2, 

b2 = 1. The initial conditions are randomly chosen between -1 and 1.

The other two followers are nonlinear systems whose dynamics are that of a Van der Pol 

oscillator, with output map chosen so as to have relative degree 1

ẋ1k = x2k

ẋ2k = −x1k + εkx2k(1− x21k) + bkuk

yk = x2k + ckx1k

,

in which εk, ck > 0.

In the simulations, the parameters of agent 3 are ε3 = 1, c3 = 1, b3 = 1, whereas the parameters of 

agent 4 are ε4 = 10, c4 = 2, b4 = 1. The initial conditions are randomly chosen between -1 and 1.

The normal forms of agents 1 and 2 read as

żk =

 0 1

−a0k −a1k

 zk +

 0

1

 ξk

ξ̇k =

(
c0k c1k

)
zk + c2kξk + bkuk

yk = ξk

while the normal forms of agents 3 and 4 read as

żk = −ckzk + ξk

ξ̇k = ckξk − (1 + c2k) zk + εk (ξk − ckzk) (1− z2k)

+bkuk

yk = ξk .

From this, it is seen that all agents have relative degree 1 and Assumption 1 is fulfilled.



B. The localized internal models

According to the theory of output regulation, for the two linear agents we choose as internal

model a system of the form

η̇k = (Fk +GkΓk)ηk +Gkvk

uk = Γkηk + vk

in which Fk is a Hurwitz matrix, (Fk, Gk) is controllable and Γk such that the matrix Fk+GkΓk

is similar to the matrix S that describes the dynamics of the leader. In the simulations, we have

F1 = F2 =

 0 1

−1 −2

 , G1 = G2 =

 0

1

 ,

Γ1 = Γ2 =

(
0 2

)
.

For the two nonlinear agents, according to the results of [2], the internal model can be chosen

as a linear system of appropriate dimension. In particular, it can be chosen as

η̇k = (Fk +GkΓk)ηk +Gkvk

uk = Γkηk + vk

in which Fk is a Hurwitz matrix, (Fk, Gk) is controllable and Γk is such that the spectrum of Fk + 

GkΓk is {jω0, −jω0, j3ω0, −j3ω0}. In the simulations, we have

F3 = F4 =



0 1 0 0

0 0 1 0

0 0 0 1

−1 −4 −6 −4


. G3 = G4 =



0

0

0

1


,

Γ3 = Γ4 =

(
−8 4 −4 4

)
.



0 5 10 15 20
−1

−0.5

0

0.5

1

e 1(t)

0 5 10 15 20
−1

−0.5

0

0.5

1

t

e 2(t)

0 20 40 60

−5

0

5

t

e 3(t)

0 5 10 15 20

−2

0

2

t

e 4(t)

Fig. 1. Error dynamics in simulation 1 (τ0 = 1.2, T0 = 0)

This yields

Fk +GkΓk =



0 1 0 0

0 0 1 0

0 0 0 1

−9 0 −10 0


,

which, recalling that ω0 = 1, has the desired eigenvalues.

C. Simulation of the entire control system

The entire system was simulated, each agent being controlled by uk = Γkηk + vk, in which vk = 

−κνk, with νk defined as in (19) and κ a constant gain.

In the first s imulation, w e h ave c onsidered t he c ase i n w hich t he g raph i s c onnected f or all 

time t, i.e., T0 = 0. We have chosen τ0 = τ0 + T0 = 1.2 and set the gain parameter κ = 2. 

Figure 1 shows the resulting error dynamics of the four agents, which asymptotically converge 

to zero; Figure 2 shows the control actions.
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Fig. 2. Control actions in simulation 1 (τ0 = 1.2, T0 = 0)

Then, in the second simulation, we have considered the case in which τ0 = 0.3, with the graph 

disconnected over an interval of duration T0 = 0.9. In this setup, the value of the gain parameter 

κ selected in the previous simulation proved to be insufficient; therefore, κ  was set to the larger 

value κ = 20. Figure 3 shows the error dynamics of the four agents, which, also in this case, 

asymptotically converge to zero; Figure 4 shows the control actions. By comparing Figure 2 and 

Figure 4, it can be noted that the control actions are stronger in the second simulation, since a 

larger value of κ is needed to guarantee the asymptotic convergence when T0 > 0.

VI. FINAL REMARKS AND CONCLUSIONS

In this paper, we have addressed the problem of leader-follower coordination for a heteroge-

neous network of nonlinear agents exchanging relative output information through a time-varying 

communication network, extending in various directions a number of existing results, such as 

those of [19], dealing with the problem of achieving consensus in a set of first-order (integrator) 

systems, as well as those of [20], [22] and [33], dealing with the problem of leader-follower 

coordination for a homogeneous network of identical linear/nonlinear agents exchanging relative
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Fig. 3. Error dynamics in simulation 2 (τ0 = 0.3, T0 = 0.9)
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Fig. 4. Control actions in simulation 2 (τ0 = 0.3, T0 = 0.9)

state information. In our approach, the individual followers are not assumed to be identical, the 

state-space model is nonlinear and not necessarily of first o rder, a nd t he r equired information 

exchange between leader and (a limited fraction of the) followers as well as between neighboring 

followers only deals with relative values of the (output) variables that have to be synchronized



(as opposed to the case in which full state information exchange is used).

We address and solve the problem under appropriate assumptions. One basic assumption 

is that the state-space model of each agent has a well-defined relative degree and possesses 

a zero dynamics that is input-to-state stable. This a standard assumptions under which, for 

each individual follower, the problem of asymptotically tracking a reference generated by an 

autonomous leader can be solved. What makes the current problem different from the standard 

problem of asymptotic tracking is the information pattern, which, in this case, is characterized 

by the exchange of only relative information between neighbors connected through a possibly 

time-varying graph. The other basic assumption is a connectivity property of the communication 

graph. The connectivity property expresses the guaranteed decay, over time intervals of variable 

length satisfying an average dwell-time condition, of a candidate Lyapunov function associated 

to an auxiliary network of integrator systems. The property in question implies the existence 

of a well-defined (average) bound between time intervals in which the graph is disconnected 

and time intervals in which the graph is connected. This, in turn, makes it possible to use high-

gain output feedback to dominate the effects of the internal dynamics when the dimension of 

the followers is higher than one. If all followers were one-dimensional, a weaker connectivity 

condition – essentially equivalent to the one considered in [18] – would suffice.

Since the design depends on picking a sufficiently large value of the gain parameter κ, one may 

wonder how the minimal value of such parameter scales with the number N of agents. In this 

respect, it can be seen from the proof of the main result, that this minimal value (denoted κ∗) 

depends on certain bounds associated with the model of each follower (and as such, independent of 

the number N of agents so long as the same bounds can be uniformly established for all such 

agents) as well as on certain parameters (specifically the parameters a and ae in Assumption

2) associated with the connectivity hypothesis. Thus, it can be claimed that the value of κ∗ is 

independent of N so long as Assumption 2 holds for fixed pairs of such parameters.
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