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Abstract
This paper proposes a reliable monitoring scheme that can assist medical specialists in watching over the patient’s condition.
Although several technologies are traditionally used to acquire motion data of patients, the high costs as well as the large
spaces they require make them difficult to be applied in a home context for rehabilitation. A reliable patient monitoring
technique, which can automatically record and classify patient movements, is mandatory for a telemedicine protocol. In
this paper, a comparison of several state-of-the-art machine learning classifiers is proposed, where stride data are collected
by using a smartphone. The main goal is to identify a robust methodology able to assure a suited classification of gait
movements, in order to allow the monitoring of patients in time as well as to discriminate among a pathological and
physiological gait. Additionally, the advantages of smartphones of being compact, cost-effective and relatively easy to
operate make these devices particularly suited for home-based rehabilitation programs.

Keywords Gait analysis · Machine learning classifier · Smartphone technology · Wavelet-based feature extraction ·
Home-based telemedicine

1 Introduction

An important field of application for data classification
and screening is the one concerning human motion, in
particular the one required in gait analysis, defined as
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the systematic study of human walking [1–5]. As far as
we know, considerable information can be extracted by
analyzing patients’ walking because it contains important
biometric features. In effect, gait is related to the walker’s
physical and, sometimes, psychological state [6].

Decision-making for gait analysis could be supported
by the use of computational intelligence techniques for
automatic determining the status of a patient. For instance,
in [7–9] several classification algorithms are evaluated and
compared in terms of their ability to discriminate among
physiological and pathological gait.

Generally, the most adopted tools for gait analysis
are based on high complexity motion capture systems
exploiting active or passive markers, electromyography
(EMG), dynamometric platforms, and so on [10–14].
Unfortunately, the high cost and the complexity they
require make them suitable only for specific clinicians and
hospitals.

To ease the monitoring of patients’ motion, while
keeping the cost low, a lot of researchers focus their
attention on IMU sensors [15–17]. Unfortunately, these
sensors have severe drift problems, making necessary their
usage in parallel with other technologies [18]. To overcome
these issues, some studies have analyzed the impact that new
technologies based on both visual and non visual systems

/ Published online: 6 February 2021

Medical & Biological Engineering & Computing (2021) 59:535–546

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-020-02295-6&domain=pdf
http://orcid.org/0000-0002-9876-1494
mailto: massimo.panella@uniroma1.it
mailto: rosa.altilio@uniroma1.it
mailto: rossdamc@gmail.com
mailto: qiangfang@stu.edu.cn
mailto: jxgxd@hotmail.com


could bring on the related research and application fields [6,
19–21].

In effect, in the last decade, everyday life has been power-
fully influenced by technology, like tablets or smartphones
ceaselessly connected through mobile networks. Research is
increasingly striving towards the exploitation and the evolu-
tion of daily experiences by improving and developing new
functionality that people could ask for.

A current and quite recent trend of research has seen the
investigation of smartphone-based applications for move-
ment monitoring and analysis, as for example considered
in [22]. Gait analysis experiments using a smartphone
to demonstrate the capability to accurately quantify gait
parameters with a sufficient level of consistency have been
performed in [23] and in several other works as, for instance,
in [24–27]. However, these approaches mainly rely on
human experts (i.e., doctors) for the clinical analysis of
smartphone data and making a decision accordingly. The
feasibility, efficacy and usefulness of machine learning
techniques for discriminating automatically the gait move-
ments and for assessing the main extracted features have not
been systematically evaluated so far.

In this work, we extend the use of sensors contained
in a smartphone to realize a work particularly suited for a
future home-based rehabilitation approach. In particular, its
advantages of being compact, cost-effective and relatively
easy to operate automatically, compared to the other
onerous and expensive technologies, make this device
particularly suited for this context. As for the biomedical
context, a low-cost smartphone-based system could bring
great advantages to both diseased people and clinicians,
by upgrading the patients’ quality of life and reducing
the average rehabilitation cost. Despite this approach
being interesting for the treatment of many diseases like
Parkinson’s, multiple sclerosis and Coxarthrosis, we will
describe a specific solution tailored to the monitoring of
people recovering from a stroke. In effect, post-stroke
rehabilitation has been proven to be essential and effective
in helping stroke patients to gradually regain part of their
body functionality. In particular, gait analysis, which is the
standard practice for diagnosis, assessment, monitoring and
discussion of diseases that affect gait, is used to detect the
walking patterns and posture that are unique for hemiplegic
patients at different recovery stages.

We propose a reliable remote monitoring scheme that
can assist medical specialist in watching over the patient’s
condition. A smartphone is used to collect stride data and
obtain useful information from these data by means of
advanced features extraction methods. The system should
be used to assist medical specialists in analyzing the
rehabilitation path at range, also when the patient is not
in the hospital anymore. In this way, assuming that the
approach is inserted in a well-scheduled program of “home”

rehabilitation, it will be possible to reduce costs, while
improving the patient’s life quality and allowing clinicians
to evaluate patient’s improvements in a safer and faster
manner.

The novelty, with respect to state-of-the-art applications,
is the combination of the data acquisition and filtering
from the device, with data fusion and pattern recognition
techniques that provide a correct definition of the gait
movements, allowing to monitor the patient in time, as well
as discriminate among a pathological and a physiological
gait.

The rest of the paper is organized as follows. We intro-
duce the proposed approach in Section 2. The application is
ascertained by extensive computer simulations and several
benchmark results, which are reported in Section 3 and dis-
cussed in Section 4. Finally, our conclusions are drawn in
Section 5.

2Methods

2.1 Selection and description of patients

In the experimental process, which will be described in
the detail successively, we evaluate the gait of two set
of individuals. A group of both healthy people and post-
stroke patients took part in the experiment. We collected 60
different walking trials through heterogeneous smartphone
devices of different manufacturers. Among these 60 records,
25 of them belong to voluntary unhealthy patients from
the Rehabilitation Medical Center of the 2nd Hospital of
Jiaxing, Zhejiang province, China; the remaining 35 are
healthy persons among academic researchers and doctors
of the previously cited Medical Center. Additionally, data
differ for the length of the recording session: 41 of them
(respectively 13 from patients and 28 from healthy people)
are recorded in 10 s, the remaining 19 (12 of which are
patients) are recorded in 20 s. People are asked to perform a
walking in a straight path, without deviation.

All research activities in this study were conducted in
accordance with the ethical principles of the Declaration
of Helsinki. As it involves human participants, the present
study was performed in accordance with the relevant
institutional and national guidelines, with informed written
consent from all human subjects involved in the study
including for publication of the results. However, the
study is exempt from the explicit ethics approval of
appropriate institutional Committees, as it is mainly focused
on the engineering aspects pertaining to the use of
specific ICT technologies as well as signal processing
and analysis of the related data. All subject anonymity is
preserved as identifying information is not included in the
manuscript.
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Fig. 1 Position of the smartphone device during the clinical trials

2.2 Procedural information

In this study, we perform an analysis of the user’s stride in
order to extract suitable features for a classification purpose.
A low-cost smartphone device (i.e., Samsung’s Galaxy A3
2017 SM-A320F with Android v6.0.1) is put in the pocket
of a band and ties around the user’s calf as shown in
Fig. 1. In fact, most of the gait information and lower limb’s
angle movements are linked to this muscle. One device
only is adopted, so as to represent a realistic scenario in a
home-based context where a user has one smartphone only.

In order to implement a simple and cheap approach,
we decided to use one smartphone only in the clinical
trials. Further researches might investigate on the use
of two or more devices, although dealing with severe
issues as time synchronization and sensor mismatch among

smartphones. Consequently, we are not able to provide a
full representation of the gait cycle, which is represented
in Fig. 2, since one sensor node is not able to achieve
this. Rather, our aim is to evaluate some additional features
that could be used for a possible home-based lower limb
rehabilitation, by focusing on the features in Table 1 that
should be easy to recover using the adopted hardware setup.

The proposed system for gait monitoring is illustrated in
the flow chart of Fig. 3 and it can be summarized into several
main operations, described in the following subsections.

2.2.1 Raw data collection from sensors

Firstly, data acquisition is performed as follows:

– the user opens the application (we worked in this case
on an Android® device but any operating system can be
adopted) and sets the recording time;

– the smartphone is put into the band’s pocket and fasten
around the calf;

– the user taps the “Start” command on the screen and,
after a countdown of 3 s, the app begins to record data;

– during the recording time, the user performs the
walking test and a device’s vibration will advise him/her
that recording is terminated;

– at the end of the trial, the user uploads data into the
database after explicit consensus granted via the
application.

If the user is a voluntary hemiplegic patient, an
assistant helps him/her in any demands. Accelerometer,
gyroscope, and magnetometer data are captured during
each trial. However, in the following we will not consider
magnetometer data because they are too sensitive to the
presence of metal objects in the environment.

2.2.2 Data resampling

Once data are collected from sensors, the second main
step consists in resampling them in order to reduce the

Fig. 2 The general gait cycle
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Table 1 Spatio-temporal
features adopted for the gait
analysis

Feature Unit Description

Mean cycle duration s Mean value of the stride duration during a trial

Cycle regularity s Standard deviation of the stride duration during a trial

Cadence step/min Number of strides executed in a given time

PSD peak acceleration dB Maximum value of the acceleration’s PSD

PSD peak gyroscope dB Maximum value of the gyroscope’s PSD

differences caused by the fact that acquisition is carried
out using different smartphones with heterogeneous control
hardware and sensor technologies. In addition, the app code
usually cannot set the sampling rate at software level, as it
depends on the hardware available on the adopted device.
Depending on which device is used, each sensor data is
sampled at a different rate (i.e., from 50 to 350 Hz). In order
to apply the same denoising algorithm to the whole set of
data, we need a common sampling rate. Since 200 Hz is a
reasonable trade-off, also considering the final target rate
after wavelet filtering discussed successively, depending on
the starting rate we did resampling or low-pass filtering to
obtain the same rate.

Fig. 3 Flow chart of the proposed processing system

2.2.3 Denoising and filtering

The successive step consists in denoising both acceleration
and gyroscope data by a wavelet-based estimation algorithm
and, successively, in low-pass filtering the reconstructed
signals in order to make easier the feature extraction
process.

A wavelet-based denoising algorithm is firstly applied by
using the following model [28]:

s(n) = f (n) + σe(n) , (1)

where n is the sample (time) index, s(n) is the noisy signal,
f (n) is the signal to be recovered, e(n) is a zero-mean, unit-
variance Gaussian white noise and σ is the noise level. The
adopted algorithm is able to suppress the noise part of the
signal s(n) and to recover f (n) through the following steps:

1. a wavelet decomposition of s(n) at level W is evaluated
(we used the family of Daubechies’ least asymmetric
wavelets as default option);

2. a thresholding operation is performed to detail coeffi-
cients for each computed level from 1 to W ;

3. the wavelet reconstruction is computed based on the
level W original approximation coefficients and on the
modified detail coefficients from level 1 to W .

In the following, we will consider W = 4 levels taking
into account a minimum of 128 samples per data recording
trial. Noise estimate is performed at each wavelet level
to scale the reference noise model σ = 1, then a soft
thresholding is performed by using a “universal threshold”
approach for minimax performance [29], using a threshold
proportional to

√
2 ln(L) where L is the length of the

considered signal.
After denoising, acceleration and gyroscope signals are

passed through a 4-level Mallat’s filter bank [30] for low-
pass filtering and downsampling. In fact, average walking
frequency of healthy people is about 1.8 Hz [31] and hence,
as shown in Fig. 4, a final sampling frequency of 12.5 Hz
is suitable to make easier the subsequent feature extraction
process without loosing any useful information.
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Fig. 4 An example of denoising
and filtering on the absolute
value of the acceleration signal

2.2.4 Power spectrum density estimation

As a well-known result achieved in the literature [32],
the feature extraction for gait classification analysis should
be based also on the power spectrum density (PSD)
of considered signals, which coincide with the absolute
values of acceleration and gyroscope signals after denoising
and filtering. PSD estimation is then performed by the
“Periodogram” method and we used the maximum PSD
magnitude values (i.e., peaks) for both acceleration and
gyroscope data. An example in this regard is shown in
Fig. 5, where input denoised unfiltered data are shown.

It is worth to point out that the average stride frequency of
every stride can be estimated and used as a parameter to find

the walking cycle in each trial; in most cases, the accelera-
tion’s average frequency (PSD peak) is located at the gyro-
scope’s second harmonic (see Fig. 5). However, because of
relevant fluctuations due to the mechanism through which
data are measured, this rule could not be always satisfied.

2.2.5 Gait feature extraction

In addition to the PSD peaks introduced before, other
three features are used for gait cycles discrimination:
cycle duration (Cd ), cycle regularity (Cr ), and cadence or
revolutions per minute (Rm).

Those features are generally used by the clinicians, in
combination with other information on the subjects, to

Fig. 5 An example of PSD
extraction and peak detection on
denoised acceleration and
gyroscope data at the original
sampling rate of 200 Hz
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monitor the progress of a therapy or the evolution of a
disease [5, 33, 34]. By the proposed approach, we propose a
novel use of these features through the synergy of extracting
gait features by low-cost devices and making classification
automatically by means of machine learning models.

Each stride is recognizable from the acceleration pattern
as the time between two “valleys”. In fact, when the foot hits
the ground, the sudden acceleration causes a spike followed
by a deceleration that is represented by a valley; then, the
successive leg swinging causes a new acceleration and the
process is repeated cyclically. However, this behavior is
more evident in healthy people rather than hemiplegic ones,
as shown in Fig. 6.

In order to find out the time instants of foot contacts,
both accelerometer and gyroscope data are considered.
First, the absolute PSD’s peak of both accelerometer and
gyroscope data is measured; from the related frequency we
can obtain a gross estimate of the average time between
two steps considering either acceleration or gyroscope data,
respectively. The average of these time intervals is then used
as a rolling window to find a minimum in a small interval
around an initial guess in accelerometer data, the final result
is shown in Fig. 6.

Since we assume that the first valley is the starting point
of the first stride and that one stride is performed during the

time gap between two consecutive valleys, we can define
the cycle (stride) duration as:

Cd [k] = V [k + 1] − V [k] , (2)

where V [k] is the array containing the valleys’ locations
(in seconds) and k is their index. So, Cd [k] will represent
the time difference between two valleys of a gait cycle.
The cycle (stride) regularity is expressed as the standard
deviation of the elements in the vector Cd , it is measured in
second and proves regularity when the value of Cr tends to
zero. Finally, the cadence is defined as:

Rm = 60Nc

Vl − Vf

, (3)

where Nc is the number of cycles taken from recorded array,
Vl is the last element of the valley location (in seconds)
and Vf is the first one. Consequently, the cadence is the
projection of how many strides could be performed in a
minute and it is thus expressed in cycles/min.

All of the features adopted in this paper are summarized
in Table 1; for the cycle duration representing a recorded
trial we consider the average value of the elements in the
vector Cd .

Fig. 6 An example of stride
recognition using the absolute
value of the time acceleration
pattern for a healthy and
unhealthy user
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2.2.6 Feature normalization

Before using data for classification purposes it is helpful
to perform data normalization in order to scale the features
in the same numerical range, which in this case is chosen
between 0 and 1. Let M be the number of patterns in the
available dataset, where each pattern xm, m = 1 . . . M ,
is a collection of N features (i.e., N = 5 in the present
approach) associated with a specific recorded trial:

xm = [xm1 xm2 . . . xmN
] , m = 1 . . . M . (4)

Since data features are completely heterogeneous, patterns
cannot be normalized globally but with different affine
transformations of features independent from one another:

xmj
← xmj

− bj

aj − bj

, j = 1 . . . N , m = 1 . . . M , (5)

where the terms are defined as aj = maxm{xmj
} and

bj = minm{xmj
}, with j = 1 . . . N .

2.2.7 Data classification and results

The last step of the proposed algorithm consists in training
a binary classifier by using well-known machine learning
paradigms in order to categorize data and discriminate
between healthy and unhealthy people. This is useful also to
understand if the considered gait features are able to support
this kind of classification, as for many other application
fields [35–38].

We have investigated in our experiments all of the pos-
sible combinations of input features, therefore considering
25 − 1 = 31 different datasets. A 10-fold stratified valida-
tion is performed and several classification algorithms are
compared in terms of classification error for each dataset.

2.3 Statistics

Several classification algorithms are used to assess the
validity of the proposed approach:

– Linear Discriminant Analysis (LDA): tries to charac-
terize data using a linear polynomial in order to sep-
arate patterns into two or more classes. It maximizes
the inter-class discriminatory information by using the
Fisher Discriminant technique for surface separation
[39, 40]. For the method to perform well data should
satisfy the homoscedastic hypothesis, no hyperparame-
ters are to be set in advance.

– Quadratic Discriminant Analysis (QDA): similarly to
the LDA, tries to characterize a dataset using a quadratic
polynomial based on Gaussian density conditional
functions [41, 42]. It does not require any assumption

on data, so it is more suitable for real contexts, no
hyperparameters are to be set in advance.

– K-Nearest Neighbor (KNN): classifies a pattern
depending on the most frequent class in the neighbor-
hood of the pattern itself [43]. It does not require any
assumptions on data and, in the following, we will use
the Euclidean distance between patterns and K = 5 as
a default value.

– Naive Bayes (NB): is a statistical technique that seeks to
verify if an element belongs to a class based on Bayes’
Theorem [44, 45]. The algorithm calculates various
conditional probabilities and assigns the patterns to the
class with the highest probability. In the following we
will use Gaussian kernel smoothing to estimate and
model the data density.

– Support Vector Machine (SVM): is a particular
supervised learning approach that can be applied for
both regression and classification problems [46, 47].
Based on the solution of a quadratic convex problem,
it is used for finding global minimum also in nonlinear
complex problems. In the following we will adopt as
default options a Radial Basis Function (RBF) kernel
with Sequential Minimal Optimization (SMO) solver.

– Neuro-Fuzzy classifier (NF): is used to partition
the feature space into fuzzy sets and assign non
mutually exclusive membership values representing the
reliability of the pattern of belonging to each class [48,
49]. In the following the model will be trained by a
scaled conjugate gradient method with 100 maximum
epochs and one cluster per class.

– Classification and Regression Tree (CART): operates
by recursively splitting data until ending points, defined
by some predefined criteria, are achieved [50, 51]. It
should handle with nonlinear relations between features
and classes [52], finding a correct trade-off among
computational complexity and accuracy. Prior class
probabilities will be estimated in the following based on
class frequencies.

– Probabilistic Neural Network (PNN): this approach
is based on a four-layer neural network employ-
ing Bayesian decision-making theory and data-driven
learning [53, 54]. The spread of radial basis functions
will be set by default to 0.1.

– Fuzzy Inference System (FIS): this method adopts
first-order fuzzy rules and a data-driven inference
system trained by means of the Substractive Clustering
method [48, 55]. Gaussian membership functions will
be adopted with one rule per fuzzy cluster and 0.5
influence of the cluster center (normalized data space).

All the classifiers use the same set of data, no ad hoc
changes are made to make every dataset suited for the
specific classification model. It can be underlined, however,
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Fig. 7 Maximum PSD
magnitude of acceleration and
gyroscope of healthy (blue) and
unhealthy (red) subjects

that some general differences exist in the way by which each
algorithm extract information from the data. For instance,
KNN and SVM classifiers do not provide from training
data a mathematical model of the classifier. In fact, SVM
classifier gives as output the support vectors, while KNN
seeks, for each pattern to be classified, the nearest patterns
which the output label is extracted from.

On the contrary, statistical and fuzzy logic-based
classification algorithms aim at finding, by using training
data, the parameters of a mathematical model that is able
to infer the probability of or the fuzzy membership to a
class, respectively, for the pattern under classification. An
intermediate behavior is the one of CART classifiers, where
a decision tree is obtained by training data rather than

a parametric model. Further details can be found in the
references cited for each classifier listed above.

3 Results

In this section we report the obtained numerical results.
For the sake of illustration, let us consider firstly the
PSD magnitude of acceleration and gyroscope for healthy
classification. Looking at Fig. 7, where the first 35 (blue)
records are from the healthy group while the successive
25 (red) records are of the post-stroke patients, by the
differences of the maximum PSD magnitude the reader
could have a sufficient but not so accurate estimation of the

Table 2 Best feature subset per classifier and number of times a feature is adopted

Feature LDA QDA KNN NB SVM NF CART PNN FIS Occurrences

Mean cycle duration 0 1 1 0 0 1 0 0 0 3

Cycle regularity 0 0 0 1 0 0 0 0 0 1

Cadence 0 1 0 0 1 0 0 1 0 3

PSD peak acceleration 0 0 1 0 0 0 0 0 0 1

PSD peak gyroscope 1 1 1 1 1 1 1 1 1 9
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healthy status. Consequently, a more accurate classification
approach is required in order to perform a robust analysis.

To this end, we considered the classification models
introduced in Section 2.3 and we performed an exhaustive
search considering all the 31 sets of possible combinations
of the 5 features listed in Table 1. A stratified 10-
fold validation procedure was adopted for evaluating the
classification accuracy; for each subset of features a
classifier is trained 6 times, by classifying each time 10
different patterns (i.e., subjects or recorded trials) and using
the remaining 50 patterns for training. As most of the
classification models depend upon a random initialization of
model parameters, and the 10-fold partitioning of the dataset
is random as well, we repeated the above procedure 10 times
and the ones considered in the following are the average
values of accuracy obtained over the 10 different trials.

For each classifier we report in Table 2 the subset
of features that yielded the best (average) classification
accuracy, among all of the possible combination of features.
More precisely, there are 5 rows (one per feature) and 10
columns (one per each algorithm plus the number of times
that each feature is selected in an optimal dataset); each
element of the table takes value 1 if the corresponding
feature is selected and 0 otherwise. In case of identical
values we chose the subset with the lower number of
features according to a regularization approach [56].

The numerical classification results are summarized in
Table 3 where, for each classification algorithm, there are
reported the average classification accuracy and the related
standard deviation over the 10 trials carried out in correspon-
dence of the subset of features that yielded the best (average)
accuracy. The number of adopted features is obtained by
summing the ones in the related column of Table 2.

4 Discussion

By analyzing the results obtained in Table 2, it is evident that
the acceleration is not a useful feature while the gyroscope
must be taken into account for a good discrimination. In

fact, the sole use of the PSD Peak Gyroscope feature is
the best option for LDA, CART, and FIS classifiers. On
the other hand, QDA, SVM, and PNN are able to achieve
a good classification by using some other features, such as
Cadence, which is sufficient for SVM and PNN. It is worth
to point out that these results are quite in accordance with
current medical practices.

Looking at the overall performance of the proposed
classification approaches, we note that the accuracy in
discriminating among pathological and physiological gait
is always maintained at high levels, from 80 to 90%. In
addition to PSD peak gyroscope, cadence is the feature that
by means of PNN is able to obtain the best accuracy of
91.13%. Cycle regularity allows NB classifier to achieve
a 90.38%, which the second score in the ranking. In all
cases, the performance volatility measured by the standard
deviation is adequate. Overall, the great performance of
PNN with only 2 features does suggest that a data-driven
machine learning approach can bring improvements with
respect to statistical approaches based, for instance, on
Discriminant Analysis and to non-parametric models as
KNN as well.

As a final remark, we note that the previous numerical
results are strictly dependent on the uncertainty of measures
through which data are gathered and then processed. In
the present case, error in measurements depends by two
main factors: accuracy and precision of hardware sensors;
objectivity of the experimental setup, mainly depending on
the application of the smartphone on a same point of the
body as well as on the reproducibility of clinical trials (same
walking, same movements, etc.). In this work, the influence
of such errors is mitigated by the use of several and different
hardware devices and by the adoption of a relatively large
number of patients during the clinical tests.

5 Conclusions

The novelty with respect to state-of-the-art applications is
the combination of data acquisition and filtering on the

Table 3 Average classification
accuracy and standard
deviation for the best feature
subset

Classifier Average accuracy (%) Std. deviation (%) Adopted features

LDA 83.23 ±1.28 1

QDA 88.39 ±1.35 3

KNN 87.47 ±1.25 3

NB 90.38 ±0.89 2

SVM 89.84 ±1.38 2

NF 89.41 ±1.12 2

CART 87.74 ±1.07 1

PNN 91.13 ±1.12 2

FIS 86.40 ±1.19 1
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device, with pattern recognition and data fusion techniques
that provide a correct discrimination of gait movements. An
exhaustive feature selection approach is considered in order
to find out the best subset of features able to discriminate
among healthy and unhealthy subjects.

The procedure has been used also for evaluating the
performance of several classification models in terms
of classification accuracy. Very good performances, even
achieving a 100% of accuracy, are obtained on the clinical
trials performed in this research. It is important to point out
that this is a feasibility study, not a clinical trial of a model.
However, the results are very promising for making possible
to assist medical specialists in analyzing the rehabilitation
path in the near future.

In particular, the model could be extended for using it in
specific and personalized programs for home rehabilitation
meant to improve the patient’s quality of the life while
boosting the treatment effectiveness and thus shortening the
patient’s recovery time.
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