
 1 

 

I. INTRODUCTION 

  

n the last three decades, much progress has been made in 

the attempts to eradicate the Human Immunodeficiency 

Virus (HIV) responsible of the Acquired Immune 

Deficiency Syndrome (AIDS), [1-3]. The virus infects cells 

of the immune system, destroying or impairing their 

function: the immune system becomes weaker, and the 

person is more susceptible to infections. It can be 

transmitted by body fluids such as blood, semen, pre-

seminal fluid, rectal fluid, vaginal fluid, and breast milk; 

therefore, it is mainly transmitted by a subject during 

unprotected sex, sharing needles or syringes and, less 

commonly, by oral sex, blood transfusion or from mother to 

child during pregnancy or breastfeeding. The AIDS is the 

most advanced stage of the HIV infection and can be 

reached in 10-15 years from the infection. Up to now, no 

vaccine exists and the control actions are the prevention and 

the medication after a positive diagnosis. Despite the well-

known modalities of its transmission, it is still one of the 

most diffused disease; the recent data of the World Health 

Organization (last update 2016) report that there are more 

than 36 million of people with a positive diagnosis of HIV. 

There is still a serious delay for the infectious subjects to 

become aware of their status: it is estimated that in Europe 

more than 122000 subjects are HIV positive without 

knowing. 

The World Health Organization (WHO) suggests three 

levels of intervention:  

i. the first level is designed for healthy people to reduce the 

possibility of new infections; it corresponds to increase the 

effort to induce the subjects to adopt cautious behaviors;  

ii. the second level of prevention aims at a fast identification 

of new infections and risky conditions, thus reducing the 

percentage of subjects that are not aware of their illness (and 

therefore to reduce new infections);  

 

iii. the third level is the medication to the aware infectious 

subjects.  

Mathematical modeling of the HIV/AIDS diffusion may be 

grouped in two main approaches: one focuses on the 

dynamic at subjects’ interactions level [2, 4, 5]. Generally, 

four main classes are introduced: the Susceptible subjects 

(S) that are the healthy people that may contract the virus; 

the Infectious one (I) that are not aware of their condition; 

the pre-AIDS patients (P); the AIDS patients (A). In this 

framework, the control action is mainly focused on the 

prevention; for example, in [6] the attention is devoted to 

risky subjects, drug users and sex workers, showing, by 

means of simulations, the effects of prevention; in particular, 

the Authors studied the consequences of the reduction of 

syringe sharing and of the reduced time to diagnosis, 

stressing the relations among these factors and the HIV 

prevalence.  

The second approach focuses on the CD4 T-cells, the 

essential components of the immune system. An HIV patient 

is classified as an AIDS one if he has less than 200 CD4 T-

cells in mm3 of blood [7]; he could try to reach the long-term 

non-progression (LTNP) status that allows him to contrast 

the HIV and other infections. It is shown that two 

equilibrium points are present: the LTNP and the AIDS 

condition; the medication strategy aims at driving the patient 

into the LTNP region of attraction [2,3]. 

The natural framework to study the control of the epidemic 

models is the optimal control theory in which conflicting 

issues can be addressed [8]; in epidemic spread, the control 

represents the general prevention effort (in particular the 

vaccine action, if possible), the medication, the quarantine, 

allowing to face with limitations of resources. 

Optimal control has been applied referring to the classical 

SIR model (susceptible-infectious-removed subjects) [9-11], 

to the influenza [12-14], to the Dengue disease [15], to 

schedule vaccination strategies [16, 17], to study complex 

networks and identify spread process [18]. 

In this paper, following the first approach that considers 

the dynamics of the interactions between subjects, the model 

in [5] presenting a new HIV/AIDS description is assumed. 
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The susceptible individuals, S, are divided into two 

categories, the one that adopts wise behaviors and the one 

that does not take into account the dangerousness of this 

disease. This distinction appears particularly useful if one 

takes into account the trivial fact that if all the people 

assumed wise behavior no spread would occur. Therefore, 

five categories are present: along with the subjects with 

HIV/AIDS (i.e. classes I, P, A), two classes of susceptible 

subjects are considered. The control actions introduced are: 

i.an effective information campaign, inducing all the 

people to wise behaviors;  

ii.a test campaign to reduce the time in which an infectious 

subject I is not aware of his status and could infect an 

unwary one; 

iii.the medication applied on the patients with positive 

diagnosis of HIV/AIDS. 

In this paper, the control actions are chosen in order to 

minimize a cost index aiming at reducing the number of 

infectious subjects with as less resources as possible. These 

goals appear in line with the spread characteristics of the 

HIV virus: the reduction of the number of infectious subjects 

implies both the increase of the information and the test 

campaign. The third level of intervention, the medication on 

the patients, cannot influence the HIV/AIDS spread; 

however, it is preserved in the paper for completeness. The 

dynamical model is nonlinear, whereas for the cost index a 

quadratic lagrangian is chosen. A linearization of the model 

in the neighborhood of an equilibrium point is discussed, 

aiming at applying the linear quadratic (LQ) regulator 

theory, [19], which provides a state feedback control law. 

Since only the number of the patients with HIV (P) or AIDS 

(A) is available, an observer is determined to estimate the 

full state and, in particular, the number of the subjects I, 

infectious but not aware of their status. 

The paper is organized as follows. In Section II the 

adopted nonlinear model is briefly recalled and the optimal 

control problem is formulated. In Section III the control 

design is proposed; three subsections are introduced: in the 

first one the linear approximation of the model is discussed; 

then the regulator is determined in the linear quadratic 

framework; finally, the state estimator design, along with the 

full control action, are determined. In Section IV numerical 

results are presented and discussed, showing the 

effectiveness of the proposed control law. Conclusions and 

future work are outlined in Section V. 

 

 

II. MODEL DESCRIPTION AND OPTIMAL CONTROL PROBLEM 

FORMULATION 

 

In this paper, the model of the HIV/AIDS diffusion 

presented in [5] is adopted and is here briefly recalled. It 

suitably models the two main particularities of the 

HIV/AIDS spread that significantly distinguish this disease 

from the others: 

- there is a period, more or less long, in which the 

symptoms of the infection are not evident; 

- the HIV can be transmitted only by some body fluids and 

sharing needles or syringes. 

The first characteristic is responsible of the dangerousness of 

HIV/AIDS since an infectious individual could be unaware 

of his status for a long time and could infect unwise 

susceptible subjects. Therefore, it is useful to stress (and to 

model) the second characteristic described: the infection can 

be transmitted when unsafe behaviors are adopted. In fact, 

everyone is susceptible, but one can distinguish between the 

category of wise people that adopt safe behaviors, and the 

one of unwary subjects that could become infectious because 

they share syringes or needles, or for unprotected sex.  These 

two particularities of the HIV/AIDS spread are modeled in 

this paper, where control actions consistent with the three 

levels of intervention previously recalled are introduced.  

The effort to induce the population to participate to test 

campaign should reduce the risky time in which an 

infectious subject, not aware of his status, could infect 

healthy unwise susceptible ones, being able, of course, also 

to start a medication program.  

A schedule of the control action is advisable, since the costs 

of primary and secondary preventions represent an 

immediate economic effort, whereas their effects could be 

appreciated only in the future, as will be discussed later. 

Taking into account all these aspects, the variables 

introduced in the model are the following: 

- )(1 tS represents the number of healthy people that are 

not aware of dangerous behaviors and then can contract 

the virus; 

- )(2 tS represents the number of healthy people that, 

suitably informed, gives great attention to the protection; 

- )(tI represents the number of infectious subjects who are 

still not aware of their status; 

-  )(tP represents the number of patients which have 

received a diagnosis of HIV; 

- )(tA  represents the number of the patients which have 

received a diagnosis of AIDS positiveness. 

As far as the control actions is concerned, they are:  

- )(1 tu , related to the information campaign (thus 

reducing )(1 tS ); 

- )(2 tu , denoting the effort to improve a test campaign to 

the discovery of the infection as soon as possible (thus 

reducing the interactions between I  and 1S ) ; 

- )(3 tu , representing a therapy, aiming at reducing the 

transition from P  to A . 

Therefore, the final model is: 
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where: 

- )()()()( 21 tItStStNc ++=  denotes the number of 

subjects that actually are ( )(1 tS  and )(2 tS ) or think 

( ))(tI  to be healthy; 
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- d denotes the rate of natural death; 

- Z  denotes the flux of new subjects in the class 1S ; 

-   is related to the dangerous interactions between the 

1S  and the I categories; 

-   is the rate of wise subjects that could change, 

incidentally, their status increasing )(1 tS ; 

-   is related to the control action aiming at helping the 

individuals in I  to discover their infectious condition, 

and therefore to be assigned to the P  or the A  class; 

-   is the ratio of subjects that transit to P after positive 

test; 

-   is the rate of transition from I  to P  or A  without 

any external action; 

-   is the ratio of subjects that transit to P  by natural 

evolution; 

-   is the rate of the natural transition from P to A ;  

-  is the rate of death in A , directly caused by the 

infection. 

 

In Fig. 1 the block diagram describing the interactions 

illustrated above is shown. Note that the control actions are 

indicated with dotted arrows as inputs of the blocks of the 

categories of subjects over which they act directly. 

 

 
Figure 1. Block diagram of the HIV-AIDS scheme introduced. 

 

 

Introducing the five dimensional state vector  

( )TAPISSX 21=  and the functions 
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the system (1)-(5) can be re-written in the compact form: 
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where TuuuU )( 321= . 

As far as the output is concerned, the physically and 

realistically available measurements of the dynamics are 

represented by the number of the subjects with a positive 

diagnosis of HIV and /or AIDS, i.e. )(tP  and )(tA , also 

separately. Then, the measurable output can be assumed as: 
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Note that it is impossible to know the number of unaware 

infectious subjects )(tI  as well as it is not possible to 

quantify )(1 tS  and )(2 tS  separately. 

The aim is to minimize the number of infectious subjects 

)(tI by using as less resources as possible; then, the 

following quadratic cost index is assumed: 
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and ( )TtututU )()()(ˆ

21= . 

It is worth to be noted that the control )(3 tu has not been 

introduced in the cost index (8) since it does not affect the 

)(tI dynamic, as evident from the model (1)-(5). 

The solution of the minimization problem (8) cannot be 

easily obtained if the variables involved ( )(tI  in the present 

case) are not measurable and, at the same time, a desirable 

goal is to design a feedback control law. 

As far as the first point is concerned, the problem of state 

variables estimation introduces an error that affects the cost 

index value, yielding a solution which cannot be optimal. 

For the control law design, a possible choice is the linear 

quadratic approach on the linearized system, thanks also to 

the quadratic structure of the cost index; this choice 

guarantees a priori the closed form implementation.  

Then, the global control design proposed is composed by 

two main steps: 
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- the LQ regulator: a linear approximation of (6) is 

preliminary required; then the classic LQ solution is found 

as a linear state feedback; 

- the state estimation: the linear approximation adopted 

suggests to use a linear observer which simplifies the whole 

design allowing the application of the separation principle.  

 

III. THE CONTROL DESIGN 

 

In this Section the proposed control design procedure is 

described. The nonlinear system is firstly linearized, as 

described in Subsection 3.1; this aspect is quite crucial and 

requires a preliminary analysis for the choice of the working 

point around which the linearization is computed.  

Thanks to the choice of a quadratic cost index, the linear 

quadratic regulator theory is applied to the linearized system 

in Subsection 3.2, aiming at a solution in closed form. Since 

the state is not available, an estimation is required; then, in 

Subsection 3.3 a linear observer is determined. It guarantees 

the application of the separation principle so allowing the 

use of the feedback control law, determined by the LQ 

regulator, with the state estimation. Clearly, in the numerical 

simulations the linear approximated control law is used with 

the nonlinear system. 

 

  

3.1 The linear approximation 

 

According to the control design proposed, a linear 

approximation in the neighborhood of an equilibrium point 

is required. Following a classical approach, the computation 

of the state space points which verify the equation

0)0,( =eXF  is performed, yielding the solutions [5] 
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where  −=H . 

The positiveness of the elements in the vector state 
eX 2  

implies the conditions: 0H  and dH  ; therefore the 

second equilibrium point 
eX 2  is a feasible one only if 

 

dH                                                                                 (10) 

 

If dH = ,  
eX 2  coincides with 

eX1 .  

Assume condition (10) satisfied, for a more general analysis 

of both the points and for the fact that in the present case the 

parameter values make (9) verified. So, two possible 

linearized dynamics can be computed in the neighborhood of 

the two points, recalling that, in any case, C is given by (7). 

The state matrix, i.e. the Jacobian matrix evaluated at the 

equilibrium point 
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must be computed, for 2,1=i . 

The stability analysis gives that, under condition (10), the 

equilibrium point 
eX1  is unstable, due to the presence of one 

real positive eigenvalue, whereas the equilibrium point 
eX 2  

is locally asymptotically stable, since all the eigenvalues of 

2A  have negative real part [5].  

Since the aim of the control problem is to minimize the 

value of )(tI , so leading it as close as possible to zero, the 

choice of working in a neighborhood of 
eX1 , for which 

0=eI , seems effective. Unfortunately, the properties of 

controllability and observability for the linear approximation 

are not fulfilled, as shown in the Appendix for the general 

case of equilibrium points with 0=eI . This fact prejudices 

the control design and, consequently, 
eX1  does not represent 

a practicable choice for the system linearization. 

On the other hand, once the equilibrium point 
eX 2  is 

considered, the controllability and observability properties 

for 2A , 2B  and C  are both satisfied, as shown in the 

Appendix for the case of case of equilibrium points with 

0eI ;  consequently,
eX 2  represents a suitable choice. The 

condition 0eI  has a drawback is the fact that in this 

equilibrium point 
Hd

dH
I e

)( +

−
=  can be far from zero; this 

would force the linear approximation to be valid in a quite 

large neighborhood of the equilibrium point, with all the 

consequent approximation errors. 

Since all these considerations arise from the classical 

analysis of the equilibria 0)0,( =eXF , a possible extension 

of such concept can bring to study a more general condition 

0),( =ee UXF in which forced equilibria are considered 

under a constant input action eU . This idea, applied in the 

present case, can be used to increase the possibility of 

finding suitable forced equilibrium points, which present 

controllable and observable linear approximations and, in 

addition, are characterized by 0=eI . 

The results of the computation of such new set of 

equilibrium points is reported in the Appendix, where it is 

shown that the two conditions, on 
eI  and on the structural 

properties, cannot be satisfied contemporarily. So, the use of 

generalized forced equilibrium points does not help in the 

present control design; on the contrary, it may introduce 

some complications in the evaluation of the ranges and of 

the bounds of the control values. 

Then, in the sequel, the choice of 
eX 2  as the linearization 

point is performed. Therefore, the system (6)–(7) is 

linearized in the neighborhood of such a point; denoting 

with  

 



 5 

eXtXtX 2)()(
~

−=                              (13) 

the new variables, one has: 
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with 2A  as in (11) while 2B̂  represents the first two 

columns of 2B  given in (12) .  

 

3.2 The LQ solution 

The system (6) is nonlinear and the cost index (8) is 

quadratic in the state and in the control; aiming at 

determining a control in the linear quadratic regulator 

framework, the linearized system (14), determined in the 

previous Subsection 3.1, is herein considered. As already 

discussed, the aim is to determine a control action able to 

minimize the number of infectious subjects )(tI  not aware 

of their status, using as less resources as possible, and the 

choice of the cost index (8) well describes these two 

contrasting requirements. 

Since the state variables may be expressed, from (13), as
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)( 2 tXXtX e += ,  the cost index (8) must be rewritten 

putting in evidence the new variable )(
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tX , whose 

estimation will be computed by the observer. Then:  
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where )(
~

tI   is the third component of the state )(
~

tX .  

The minimization of the cost index (15) for the linear 

dynamical system (14) is equivalent to solve an LQ  tracking 

problem where the reference 
I

r~  for )(
~

tI  is the constant 

value 
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The existence and uniqueness of the solution of the 

stationary tracking problem on infinite time interval is in 

general guaranteed only if the matrix Q  is positive definite; 

however, with Q  semidefinite positive, as in  the present 

case, the existence of a stabilizing feedback control law is 

still guaranteed.  

The state feedback optimal control law for the problem (14)-

(15) is given by [8]: 
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where  
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with control (17): 
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- rg  is given by: 
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- K  is the solution of the algebraic Riccati equation 

(ARE): 

 

QKAKAKBRBK
TT

−−−= −
222

1
2

ˆˆ0                           (20) 

 

 

As previously discussed, the state )(tX , and consequently

)(
~

tX , is not fully available; in particular the number )(tI  of 

the infectious subjects non aware of their status is not 

known.  

Then, the linear observer is designed in the next subsection. 

In fact, once the system (6) has been linearized and the 

choice of a linear quadratic regulator is assumed to obtain an 

easy feedback control law, a linear observer appears 

advisable also in view of the possibility of using the 

separation principle, as it will be outlined in the next 

subsection.  

 

3.3. The state estimator and the control law design 

To complete the solution of the problem (14)-(15), the 

separation principle approach is applied; a state observer is 

designed determining an estimation   of the non-available 

state of the linearized system (14).  

The separation principle allows to apply the control law (17) 

with the estimated state; this implies the separated 

determination of the gain of the observer and of the gain of 

the linear quadratic tracking controller in (17).  

In the numerical results section, it will be assessed that for 

the values of the parameters chosen in [1, 5], reasonable for 

describing the HIV/AIDS spread and adopted in this paper, 

the system (14) is observable.  

Then, it is possible to design the local state observer: 
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obtaining the gain G  in order to place the eigenvalues of 

GCA −2  in the left side of the complex plane. 

Therefore, )(
~

tX o
 can be substituted in (17) by its estimation 

  given by (21). The control law (17) becomes: 

 

r
ToTo gBRtKBRtU 2

1
2

1 ˆ)(ˆ)(ˆ −− +−=                                (22) 

 

with o satisfying: 

 

  )(~ˆˆ)(ˆˆ)( 2
1

22
1

22 tyGgBRBtKBRBGCAt r
ToTo ++−−= −−   

(23)  
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The feedback law which solves the original optimal control 

problem, minimizing the cost index (8) for the nonlinear 

system (6)-(7), is therefore given by (22)-(23). 

 

 

IV. NUMERICAL RESULTS 

 

In this Section, numerical computations are performed to 

show the feasibility of the proposed control scheme. 

The values chosen for the parameters in the dynamics (1)-(5) 

are the ones used in [1] and [5]: 

 

;02.0=d ;5.1= ;4.0= ;6.0= ;95.0= ;2.0=

;105= ;5.0= ;1= .1000=Z  

Consequently, 01.1 =−= H  and then the equilibrium 

point 
eX 2  exists and is locally asymptotically stable: 

 

3
2 10

90.0

08.1

34.2

0

91.0























=eX                                                                 (24) 

 

The linear approximation in the neighborhood of this 

equilibrium point yields the following matrices:  

 























−

−

−

−−

=

02.15.016.000

052.024.000

003024.007776.0

00022.00

001176.02.07976.0

2A      (25)                                      

 

 























−

−

=

19.00

63.30

82.30

057.3

057.3

ˆ
2B                                                     (26) 

 

The output matrix C  is the one in (7). It is easy to verify 

that the linear system (14), with numerical values (25) and 

(26) and position (13) is both observable and controllable; 

then all the computations described in the previous Section 

can be performed. 

The offset (16) assumes the value 3
~ 1034.2 −=
I

r .  

With a first choice for the weights in the cost index as 

,10 4−=q  ,11 =r  ,10002 =r  the solution of the ARE 

0ˆˆ 1 =−−−− QKAKAKBRBK TT
gives 

 























−

−



= −−−

−−−

−−−

00000

00000

001036.41038.11082.2

001038.11042.41086.4

001081.21086.41019.6

6119

111010

91010

K  

 

from which 

  























−

−

−

= −

−

−

0

0

1003.1

1006.1

1013.1

2

4

4

rg  

 

and the optimal control, which should drive the state 

variable )(
~

tI  of the linearized system to the reference value 

I
r~ , and therefore, once applied to the nonlinear dynamics, 

the state variable )(tI  to zero, is 

   

+














−


=

−−−

−−−

)(
~

001014.31096.91003.2

001057.21001.41021.1
)(ˆ

4107

677

tXtU oo
   

              
















+

−

−

1

3

1039.7

1034.6
                                                    (27) 

 

Recalling the hypothesis assumed on )(3 tu , the complete 

control law is: 

 














=

0

)(ˆ
)(

tU
tU

o
o

                                                              (29) 

 

Simulations can be performed applying the control law (29) 

to the linear system used for design purpose and to the 

nonlinear initial system. 

Figure 2 shows the comparison between the time history of 

the number of infectious individuals )(tI  with the 

corresponding evolution for the linearized dynamics )(
~

tI  

(dotted line) shifted by the equilibrium value 
eI . 

The effectiveness of the procedure here proposed and 

adopted for the design of the optimal state feedback control 

law for nonlinear dynamics (1)-(5), making use of a local 

linearized approximation, is then well evident, being the two 

time evolution comparable. 

Note that the result shown is obtained under the simplifying 

hypothesis of state measure availability. 
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Figure 2. Time history of the number of the infectious subjects 

)(tI (solid), compared with the same for the linear approximation 

translated by the equilibrium value 
eI  (dotted), and with the 

uncontrolled case (dashed). 
 

As discussed in the previous Sections, the unavailability of a 

direct measurement for the number of the subjects infectious 

but not aware of such a condition, the )(tI , makes 

impossible the direct use of (29). The solution here proposed 

is based on the use of a linear state observer to produce an 

estimation of the real value of )(tI .  

The choice of a linear observer, designed on the basis of the 

linear approximation (26) of the nonlinear dynamics (1)-(5), 

is also supported by the encouraging results obtained for the 

control computed on the linear approximation shown in 

Figure 2, thus suggesting that the convergence region may 

be quite large.  

Then, starting from the linear approximation (14), a linear 

state observer of the form (21) is computed.  

A crucial aspect is the choice of the velocity of convergence 

of the estimation error. The effects of the linear observer 

applied to the linear dynamics is reported in Figure 3 for the 

set of eigenvalues 
 4.1,3.1,2.1,1.1,0.1 −−−−−=  

Note that 
eI  is added to both )(

~
tI  and its estimation to refer 

them to the state variable )(tI . 

The eigenvalues are chosen of the same order of magnitude 

as the given linear dynamics. In order to stress the 

importance of the observer dynamic, the input 0)( =tU  has 

been considered. The overall control law (22) is constituted 

by the state feedback (17), optimal according to (15) for the 

local linear approximated dynamics, feeded by the linear 

state estimator (21).   

The effect of the state estimation performed by applying the 

linear observer to the nonlinear dynamics is illustrated in 

Figure 4, showing a satisfactory behavior. 
 

 

 

Figure 3. Comparison between the state )(
~

tI  of the linear 

approximation (solid line) and its estimation (dashed line), both 

shifted by 
eI ,  performed by the state observer applied to the 

linearized system. 

 

 
Figure 4: Comparison between actual state )(tI  of the nonlinear 

dynamics (solid line) and its estimation  (dashed line) obtained by 

shifting the output of the linear state observer by 
eI . 

 

The control scheme proposed is applied to the original 

nonlinear system (1)-(5); the simulation results are reported 

in Figures 5-11. In particular, Figures 5-9 show the results 

for the five state components, depicting each variable with 

and without control along with the equilibrium value, while 

in Figures 10-11 the resulting control inputs are plotted. 
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Figure 5. Time history of the number of unwise population 

members )(1 tS , comparing the cases with and without control 

action. 

Figure 6. Time history of the number of wise population members 

)(2 tS , comparing the cases with and without control action. 

 

 
Figure 7. Time history of the number of infectious individuals )(tI

responsible of the epidemic diffusion, comparing the cases with 

and without control action. 

 

 

 
Figure 8. Time history of the number of diagnosed subjects in the 

pre-AIDS phase )(tP , comparing the cases with and without 

control action. 

Figure 9. Time history of the number of AIDS diagnosed subjects 

)(tA , comparing the cases with and without control action. 

 
Figure 10. Time evolution of the prevention control action )(1 tu . 
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Figure 11. Time evolution of the diagnostic control action )(2 tu . 

 

The overall effect of the control is also summarized in 

Figures 12 and 13, where the time history of the total 

number of non-infectious subjects, given by )()( 21 tStS + , 

and the number of known and unknown infectious ones, 

)()()( tAtPtI ++ , are reported respectively. 

 
Figure 12. Time history of the number of total uninfectious 

individuals with (solid) and without (dashed) the infection spread 

control action 

 
Figure 13. Time history of the number of total infectious 

individuals, with (solid) and without (dashed) the infection spread 

control action. 

 

The positive effects of the control actions can be observed in 

the time hystories of the state components. The number of 

uninfectious subjects increases, more sensibly for the unwise 

group, )(1 tS , than for the wise one, )(2 tS . This behavior is 

due to the small action of the first control, as seen in Figure 

12, which moves individuals from 1S  to 2S , combined with 

the action of the control )(2 tu , which, aiming to empty the 

group I , reduces the possibility of contagious interaction 

between 1S  and I , leaving a larger number of subjects in 

1S . As already said, the number of unaware infectious 

individuals introduced in the cost function, )(tI , strongly 

decreases; since such reduction is not due to a change in the 

illness conditions but only in a change of awareness of the 

individual illness status, one evident effect is the increment 

of the number of the diagnosed infectious )(tP   and )(tA . 

Despite the choice of the weights 11 =r  and 10002 =r  

which impose a higher cost for the second input, the higher 

magnitude of the control  )(2 tu  shows the great importance 

of the diagnosis in the epidemic control. It is a consequence 

of the impossibility, according to the considered model, of 

any contagious actions between the known infectious subject 

and all the others. 

One more interesting observation, arising from the time 

histories of the two controls, is that they show the classical 

shape that usually can be met when dealing with optimal 

control of epidemic diffusion: an initial high effort to bring 

the number of the contagious individuals below a certain 

level and then an almost constant action to keep the situation 

at acceptable values according to the costs introduced. 

The positive global effects of the control actions are easily 

understood once the time evolution of the number of total 

safe individuals (Figure 12) and of infectious individuals 

(Figure 13), compared to the case of absence of control, is 

considered. Figure 12 shows a total increment of 

uninfectious persons, as it is expected. The reduction of the 

total amount of infectious subjects, Figure 13, proves that 

the increment of the number of individuals in )(tP and 

)(tA are highly compensated by the reduction of the 

dangerous components of )(tI . 

In any optimal control problem, a peculiar aspect is 

represented by the choices of the weights in the cost 

function: different relevance can then be given to the control 

and to the errors, and between each control or each error 

component.  

A characterization of the contribution of the weight 

parameter defined in (15) can be performed by means of 

some simulations for different values.  

So, in Figures 14-15-16 the effects of the weight q  is 

evidenced by means of the corresponding state evolutions: 

the sum of the susceptible subjects, )()( 21 tStS + , the 

unaware infectious people, )(tI , and the patients 

)()( tAtP + , respectively . The different values for q  are 

used while the two weights on the control are kept fixed to 

the main case: 11 =r  and 10002 =r . 

 

 



 10 

Figure 14. Time history of the total uninfectious individuals for 

different choices of the weight q . 

Figure 15. Time history of the infectious individuals in )(tI  for 

different choices of the weight q . 

Figure 16. Time history of the total infectious individuals for 

different choices of the weight q . 

 

 

The general effects are obvious: the higher is the value of 

the weight q , the more important are the positive effects of 

the control action. An interesting observation can arise once 

the increment of the beneficial effects is compared to the 

increment of the q  value. While this effect is verifiable on 

these Figures, the more evident contribution can be noted in 

Figure 15. Starting with the small value ,10 10−=q  an 

increment of three order of magnitude, ,10 7−=q  produces a 

steady state reduction of infectious subjects )(tI from 2300  

to less than1500 , while a further increment up to seven 

order of magnitude, using ,1=q produces a decrement of 

about 300 units.  

 

A different comparative analysis can be performed studying 

the effects of changes in  1r  and 2r  values on the amplitude 

of the control inputs. Figures 17 and 18 show how much the 

input )(1 tu  is dependent on the changes in 1r  and 2r

respectively. Also in this case it can be important to stress 

the fact that increments in case of small values produce more 

relevant effects than in case of higher ones. For example, 

comparing the case of 11 =r  and 12 =r , solid line in Figure 

18, with the case of  51 =r  and 12 =r , solid line on Figure 

17, a difference of three orders of magnitude in )(1 tu  

amplitude can be appreciated. However, for any couple of 

values considered for 1r  and 2r , the order of the amplitudes 

of )(1 tu  is equal or less than 
310−

.  

When the second input is considered, a first relevant result 

that can be observed is the one evidenced in Figure 19: the 

small effects of input )(1 tu , and then of its changes, makes 

input )(2 tu almost independent from the choice of 1r .  

In Figure 20 the more intuitive relationship between the cost 

of input )(2 tu  and its amplitude is present, the greater the 

cost, the lower the amplitude. 

In any case, for the different choices adopted for 1r  and 2r , 

the contribution of )(2 tu  is always much greater than the 

one of )(1 tu . This suggests that, if the control )(1 tu  is set 

equal to zero as done for )(3 tu  (canceled for different 

general considerations), and in the cost function the 

corresponding term is neglected, the solution so obtained 

should be quite similar to the present one. 

However, the choice of maintaining )(1 tu  has been adopted 

since it can be more interesting once the actual cost, in terms 

of economical budget required for actuation, is introduced. 

 

  

Figure 17. Time evolution of the control )(1 tu  for different values 

of weight 1r . The dotted curves correspond to intermediate values 

of the parameter. 
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Figure 18. Time evolution of the control )(1 tu  for different values 

of weight 2r . The dotted curves correspond to intermediate values 

of the parameter. 

 

 

 

Figure 19. Time evolution of the control )(2 tu  for different values 

of weight 1r . 

 

 

Figure 20. Time evolution of the control )(2 tu  for different values 

of weight 2r . The dotted curves correspond to intermediate values 

of the parameter. 

 

V. CONCLUSION AND FUTURE DEVELOPMENTS 

 

In this paper the model of HIV/AIDS spread is faced 

proposing a state feedback control scheme using a novel 

nonlinear model that considers five classes of population, 

two for the susceptibles and three for the infectious subjects. 

The problem is formulated in the framework of the optimal 

control theory, defining a quadratic cost index aiming at the 

reduction of the number of infectious individuals not aware 

of their status, using as less resources as possible.  

The design approach is based on the linearization in the 

neighborhood of a suitable equilibrium point, obtaining a 

system that is both controllable and observable.  

The consequently transformed cost index and the linearized 

system could be studied in the framework of linear quadratic 

tracking problem. The state variable to be minimized is not 

measurable and it has been estimated using a linear observer. 

The choice of operating in a linearized contest makes the 

separation principle hold, simplifying the design and 

guarantying the feedback control structure for the original 

nonlinear system.   

The results obtained, the contribution of each control action 

and the importance of a suitable choice for the weight 

coefficients in the cost function are all discussed by means 

of different simulations results. 

 

The problem faced in this paper can be extended in the 

following directions. From the modeling point of view, 

generalizations could include: i. other possible interactions, 

like incautious unaware contacts with subjects in the pre-

AIDS condition; ii. the flux of new subjects can affect more 

classes; iii. noise and uncertainties in the state variable 

dynamics, which for example suggest the use of an extended 

Kalman filter (EKF) or the unscented one (UKF). 

As far as the control design approach, different choices for 

the cost index can be introduced, for example to activate all 

the three levels of intervention. In addition, a nonlinear 

control strategy designed directly on the original system 

could be introduced as well as a nonlinear observer. 
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APPENDIX 

 

Computation of the equilibrium points. 

The traditional definition of equilibrium points for time 

invariant nonlinear dynamics of the form 

))(),(()( tUtXFtX =  with 
nRX  , 

mRU   refers to the 

state space points 
eX  which constitute invariant conditions 

under no external action, satisfying 0)0,( =eXF , for which 

the condition 
eXX =)0(  implies 

e

tU
XtX =

=0)(
)( 0t . 

Sometimes it can be useful to extend such concept assuming 

a constant input and computing the equilibria under external 

action, i.e. determining forced equilibria. The formulation of 

the extended problem is quite straightforward, since a forced 

equilibrium point 
nee RUX )( , with 

me RU  , must 

satisfy the condition 0)),(( =eee UUXF , which gives 

e

UtU
XtX e ==)(

)(   0t , once )()0( ee UXX =  is set.  

Since the classical formulation can be obtained setting 

0=eU , the extended case is firstly studied, and the 

consequences of the choice 0=eU  are successively 

addressed. 

For the given system (6), the condition 0)),(( =eee UUXF  

assumes the explicit form  

0112
1

1 =−+−− uSS
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IS
dSZ ee

e
c

ee
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
                                   (A1) 

( ) 0112 =++− uSSd ee                                                      (A2) 

( ) 02
1 =−+− u

N

I
Id

N

IS
e
c

e
e

e
c

ee




                                         

(A3) 

( ) 032 =+++− uPu
N

I
PdI e

e
c

e
ee                               (A4) 

( ) ( ) ( ) 011 32 =−−++−+− uPu
N

I
AdPI e

e
c

e
eee    (A5)       

once  ( )Te uuuU 321=  is set and  )( ee UX  is shortened 

as 
eX .  

The attention will be focused on the first three equations 

only, since 
eP  can be easily obtained from (A4) once the 

first three components are found:  

( )
e

e
c

e
ce I

udN

uN
P

3

2

−+

+
=




                                                   (A6) 

and the same holds for 
eA  given the other state variables: 

( ) ( )
( )

ee

e
c

e
ce P

d

u
I

dN

uN
A

+

−
+

+

−+−
=







 3211
                       (A7) 

 

Moreover, the main interest is in 
eI , being directly involved 

in the control problem addressed in the paper. 

 

From (A3) one gets the solution  

0=eI                                                                                (A8) 

holding for any choice of the control actions, and the input 

dependent solution 

( )
221 u

d
SS

d

d
I eee
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
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+
−−

+

+−
=                                   (A9) 

The two cases are now investigated. 

 

Case 1: 0=eI  

From (A8), (A1) and (A2) give 

d
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u
S e
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                                                       (A11) 

while (A6) and (A7), with (A8), give 0=eP  and 0=eA  

for any value of 
eU . 

Therefore, the complete solution is 
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0 eU                                                                         (A12) 

 

For 01 =u , corresponding to ( )Te uuU 320= , one has  

( ) ( )Tee

d

Z
XX 00001011 == ,  0, 32  uu       (A13) 

Increasing the value of  1u , the point moves in the 21 SS −

plane, keeping all the other three components identically 

equal to zero. 

Since  

( ) ( )Te

u d

Z
uX 00010lim 11

1

=
+→

 and  
d

Z
SS ee =+ 21 ,  

the effect of the control 1u  is to move individuals, at the 

equilibrium conditions, from ,1
d

Z
S e =  02 =

eS  to ,01 =eS  

d

Z
S e =2 .  

The relationship between the two state variables at the 

equilibrium point is evident also from (A2), which gives  

ee S
d

u
S 1

1
2

+
=


                                                               (A14) 
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verified 0 eU . 

Case 2: 
( )

221 u
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I eee
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−−
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Expression (A9), making use of (A2), can be rewritten as 
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and the expression for 
e
cN  is  
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which must be positive and then  021 − uS e   

Moreover,  
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1

1

uS

uS
d

u
dS

N

IS
e

ee

e
c

ee









−












−























+
++−

=          (A17) 

 

Then, from (A1), one has 

 

=−+−− 112
1

1 uSS
N

IS
dSZ ee

e
c

ee
e 


 

( )( ) ( )( ) 0ˆˆ)ˆ1()ˆ1( 2121

2

11 =−++++−+= uZSuudZSu ee              

 

                                                                                        (A18) 

with 
d

u
u

+
=


1
1̂  and 22

ˆ uu



= . 

The two solutions, functions of the constant inputs, depend 

on the values of the parameters. They have the expressions 

( )( )
( )


−+

+++−
=





)ˆ1(2

ˆ)ˆ1(

1

21
1

u

uudZ
S e           

( )( ) ( ) 
( )



−+

−+++++

)ˆ1(2

)ˆ1(ˆ4ˆ)ˆ1(

1

12
2

21

u

uuZuudZsqrt
       (A19) 

 

However, according to the Descartes’ rule of signs applied 

to (A18), if ( ) 0)ˆ1( 1 −+  u there is one real positive 

solution and one negative. Then, one feasible solution exists 

and its expression is  

 

( ) ( )
( )( )
( )

( )( ) ( ) 
( )







−+

−+++++

+
−+

+++−
==

)ˆ1(2

)ˆ1(ˆ4ˆ)ˆ1(

)ˆ1(2

ˆ)ˆ1(
)ˆ,ˆ),

1

12
2

21

1

21
211211

u

uuZuudZsqrt

u

uudZ
uuSuuS ee

     (A20) 

 

By substitution into (A2), (A15), (A6) and (A7), one obtains 

the equilibrium point ( ) ( )212212
ˆ,ˆ, uuXuuX ee =   

 

If the condition ( ) 0)ˆ1( 1 −+  u  is not satisfied, both the 

solutions have positive real part, but it must be checked 

whether they are real; the corresponding condition is 

( )( ) ( ) 0)ˆ1(ˆ4ˆ)ˆ1( 12
2

21 −+++++  uuZuudZ          (A21) 

With  (A21) satisfied, let ( ))ˆ,ˆ
21

1
1 uuS e

 and ( ))ˆ,ˆ
21

2
1 uuS e

 be 

such solutions computed taking the minus and the plus sign 

respectively; again, by substitution into (A2), (A15), (A6) 

and (A7), one obtains the two equilibrium points 

( ) ( )21
1

221
1

2
ˆ,ˆ, uuXuuX ee =  and ( ) ( )21

2
221

2
2

ˆ,ˆ, uuXuuX ee = , 

corresponding to the solutions ( ))ˆ,ˆ
21

1
1 uuS e

 and ( ))ˆ,ˆ
21

2
1 uuS e

 

of (A19), respectively. 

Some additional considerations can be performed setting one 

or both the input equal to zero. 

 

i. 02 =u  ( 0ˆ2 =u ) 

In this case the equation (A18) becomes  

( )( ) 0)ˆ1( 1

2

11 =+−+ ee ZSSu   

and gives only one feasible solution 

)ˆ1( 1
1

u

Z
S e

+−
=


 if 



 −
1û .  

From 
eS1 , one can compute  

))ˆ1()(( 1

1
2

ud

Zu
S e

+−+
=


  

using (A2),  

( )
Z

udd

dudd
I e

))ˆ1()()((

)())((

1

1

+−++

+−++−
=




 

using (A15), ( )eeeee ISSPP ,, 21=  by means of (A6) and 

( )eeeeee PISSAA ,,, 21=  thanks to (A7), so obtaining all 

the components of the equilibrium point 

 ( ) ( )0,ˆ0, 1
1

21
1

2 uXuX ee =  

ii. 01 =u ( 0ˆ
1 =u ) 

Under this assumption, equation (A18) assumes the 

simplified expression: 

( )( ) ( )( ) 0ˆˆ
212

2

1 =−+++− uZSudZS ee               (A22) 

and the solutions for 
eS1  can be obtained directly from 

(A19); one has 

( )( )
( )

( )( ) ( ) 
( )







−

−+++


−

++−
=

2

ˆ4ˆ

2

ˆ

2
2

2

2
1

uZudZsqrt

udZ
S e

 

If ( ) 0−   only one positive real solution can be 

found:  

( )( ) ( )( ) ( )
( )



−

−++++++−
=

2

}ˆ4ˆ{ˆ
2

2
22

1

uZudZqrtudZ
S e

 

Then, from (A2), (A15), (A6) and (A7), the equilibrium 

point ( ) ( )2222
ˆ,0,0 uXuX ee =  is computed. 

In case of ( ) 0−  , (A22) has two real positive roots, 

and then, physically acceptable, only if condition (A20), 

simplified as ( )( ) ( ) 0ˆ4ˆ
2

2
2 −+++  uZudZ , holds. 

Denote by 
1

1
eS  and 

2
1
eS  such solutions, if they exist. 

Referring once again to (A2), (A15), (A6) and (A7), the 

two equilibrium points ( ) ( )2
1

22
1

2
ˆ,0,0 uXuX ee =  and 

( ) ( )2
2

22
2

2
ˆ,0,0 uXuX ee =  can be obtained. 
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iii. 021 == uu  ( 0ˆˆ 21 == uu ) 

Under zero input one obtains the classical unforced 

equilibrium points. To compute them, equation (A18) 

becomes, in the present case, ( )( ) 011 =+− ee SZS and 

the only acceptable solution is: 

 −
=

Z
S e

1 ;  

therefore, the other components are: 

02 =
eS ,        

( )
Z

d

d
I e

))(( 



−+

+−
= ,  

( )( )
( )

Z
dd

d
Pe

))(( 



−++

+−
= , 

( )( ) ( )( )
( )( )

Z
ddd

dd
Ae

))((

1





−+++

+−−+
= . 

The equilibrium point so obtained is denoted by 

( )0,022
ee XX = . 

iv. 
( )( )( )

( )1

1
2

)(

udd

uddd
u

++

+−++−
=




  

In this case, expression (A9) gives the forced solution 

0=eI , and the system has only one equilibrium point, 

whose expression is the same as in (A12). 

In conclusion, the classical equilibrium points computation 

gives the two solutions 
eX1  and 

eX 2 .  

If forced equilibrium points are looked for, the system has 

one solution  

( ) ( )212212
ˆ,ˆ, uuXuuX ee =  if ( ) 0)ˆ1( 1 −+  u ,  

while it has two solutions  

( ) ( )21
1

221
1

2
ˆ,ˆ, uuXuuX ee =  and ( ) ( )21

2
221

2
2

ˆ,ˆ, uuXuuX ee = ,  

if ( ) 0)ˆ1( 1 −+  u   

and ( )( ) ( ) 0)ˆ1(ˆ4ˆ)ˆ1( 12
2

21 −+++++  uuZuudZ .  

Otherwise, no solution exists.  

Structural properties analysis 

The results of the previous computation of the equilibrium 

points for the given system (1)-(5), both in the classical 

unforced case, i.e. 0=eU , and in the presence of constant 

inputs, 0eU , can be divided into two groups: one in 

which, directly or under forced behavior, 0=eI , and one in 

which 0eI . The structure of an equilibrium point in the 

first group is 

( )T
I

ee
a SSXX

e
00021

0
==

=
 

while for the second one the form is 

( )T
I

ee
b APISSXX

e 21
0
==


 

The computation of the linear approximations in the 

neighborhood of each type of equilibrium point is performed 

in order to analyze the controllability and the observability 

properties, whose fulfillment are necessary conditions for 

the control design proposed in the paper. 

To this aim, the first step is the computation of the linear 

state matrix A   as the Jacobian matrix 
X

UXF
UXJ




=

),(
),(  

evaluated at each equilibrium point, and the input matrix B  

as the matrix 
U

UXF



 ),(
 computed in the same points. The 

output of the system is already in linear form, so that 

( )11000=C  is known. 

In the following matrices, for sake of simplicity, only the 

terms which are always equal to zero are evidenced, 

denoting with the character ‘*’ all the other ones. 

Case ( )T
I

ee
a SSXX

e
00021

0
==

=
 

The form of the matrices is 























=



=

==

***00

***00

00*00

000*0

00***

, UUXX

a
e
a

X

F
A  

( )00

000

000

000

00*

00*

1,

,

a

UUXX

a b
U

F
B

e
a

=























=



=

==

 

that give the reachability matrix: 

( )























==

00000

00000

00000

*****

*****

1,
4

1,
3

1,
2

1,1, aaaaaaaaaa bAbAbAbAbR  

and the controllability one 























=























=

***00

***00

***00

***00

**000

4

3

2

a

a

a

a

a

CA

CA

CA

CA

C

O  
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which show that neither controllability nor observability 

hold. 

Case ( )T
I

ee
b APISSXX

e 21
0
==


 

The form of the matrices are 























=



=

==

*****

0****

00***

000**

00***

, UUXX

b
e
b

X

F
A  























=



=

==

**0

**0

0*0

00*

00*

, UUXX

b
e

b

U

F
B  

The determinants of the reachability and observability 

matrices bR  and bO  are functions of all the inputs and the 

model parameters. The can be equal to zero only for 

particular combinations of such values; their ranks must be 

verified for any given particular case.  

 

 

 

 


