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Abstract

This Thesis deals with the application of the Vilenkin idea of a probabilistic inter-
pretation of the Universe wavefunction, firstly proposed in the 1969, to the Bianchi
models exploiting in particular two different quantization procedures: the Standard
one and the Polymer Quantum Mechanics. The whole work can be divided in three
research areas.

The first one is the study of the Taub Cosmology, a particular case of the
Bianchi IX model in which there are two equal cosmic scale factors. We developed
a suitable technical algorithm to implement a separation of the Minisuperspace
configurational variables into quasi-classical and purely quantum degrees of freedom,
in the framework of both a Standard quantization procedure and a Polymer quantum
Mechanics reformulation of the canonical dynamics. We then implemented this
technique to a Taub Universe with a massless scalar field. We used a set of Misner-
Chitrè-like variables. We have identified the volume of the Universe and a function
of the scalar field as quasi-classical variables; while we have identified the Universe
anisotropy as purely quantum degree of freedom.

The resulting evolution (Schrödinger) equation for this anisotropy variable has,
in the spirit of this analysis, two main physical implications. Firstly, the Taub model
is reduced to a cyclical Universe, evolving between a minimum and a maximum
value of the Universe volume. This offers an intriguing paradigm for the physical
implementation of a cosmological history: clearly the maximum volume turning point
is expected to live in a classical domain of the Universe dynamics, while the Bounce
turning point has a pure quantum character, in the sense of a Polymer regularization.
Then the Universe anisotropy is always finite in value as a result of the singularity
regularization and its specific value in the Bounce turning point depends on the
initial conditions of the system, but in principle, it can be restricted to small enough
values to make the Bounce dynamics unaffected by their behavior. This ensures the
applicability of the Born-Oppenheimer approximation. This study permitted us to
submit an article, whose title is “WKB approximation for the Polymer quantization
of the Taub Model”, that is undergoing the refereeing procedure.

In the second part, we analyzed the Bianchi IX Universe dynamics within the
corner region associated to the potential term which the spatial curvature induces
in the Minisuperspace. The study was done in two different cases: in the vacuum
and in the presence of a massless scalar field plus a cosmological constant term. We
investigated the dynamics in terms of WKB scenario for which the isotropic Misner
variables (the volume) and one of the two anisotropic ones (and the scalar field
when present) are treated on a semi-classical level, while the remaining anisotropy
degree of freedom, the one trapped in the corner, is described on a pure quantum
level. The quantum dynamics always reduced to the one of a time dependent
Schrödinger equation for a harmonic potential with a time dependent frequency.
The vacuum case is treated in the limits of both a collapsing and an expanding
Universe, while the dynamics in presence of massless scalar field and cosmological
constant is studied only in the case of crescent time. In both analysis, the quantum
dynamics of the anisotropy variable is associated to a decaying standard deviation
of its probability density, corresponding to a suppression of the quantum anisotropy
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associated. In the vacuum case, the corner configuration becomes an attractor for
the dynamics and the evolution resembles that one of a Taub cosmology in the
limit of a non-singular initial Universe. This suggests that if the Bianchi dynamics
enters enough the potential corner then the initial singularity is removed and a Taub
picture emerges. The case when the scalar field and the cosmological constant are
present well mimics the De-Sitter phase of an inflationary Universe. We showed
that both the classical and quantum anisotropies are exponentially suppressed, so
that the resulting dynamics corresponded to an isotropic closed Robertson-Walker
geometry. This study permitted us to submit an article, whose title is “Quantum
dynamics of the corner of the Bianchi IX model in the WKB approximation”, that
has been published in Physical Review D 102.
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Chapter 1

Introduction

Quantum Cosmology began as the idea of applying Quantum Mechanics to every
aspect of Nature, Universe included; although a similar quantization procedure is,
even now, in its early stages since the General Relativity Theory states that not only
matter but also space and time become physical objects and not mere background.
This means that Quantum Cosmology is inexorably linked to Quantum Gravity, i.e.
the quantum theory of gravitation as a whole; such a theory, unfortunately, is still
incomplete and it contributes to give an unclear theoretical foundation to cosmology.
Despite being studied a lot in the last century, this is not the only issue of this
fascinating theory.

General Relativity demonstrated that the space-time is physical and dynamic,
and interacts with matter; since the last one is described by Quantum Mechanics, a
suitable matching would require the exact quantization of the space-time, but the
structure of its microscopic degrees of freedom remains obscure. In this theory, the
space-time is characterized by its symmetries, they are not accidental but rather they
guarantee the intrinsic meaning of the theory, in the sense that the predictions have
to be independent of the choice of the observer and the mathematical description
of the coordinates. What we need to require to a healthy quantization of the
gravitational field is that it should preserve the classical symmetries in order to
maintain the self-consistency of the theory; although it can be an obvious request,
this results in one of the greatest challenges.

The canonical approach to Quantum Cosmology consists in considering the
quantization of a certain space-time in presence of some symmetries that help its
description. Such a procedure takes to a configuration space with a finite number
of degrees of freedom, called minisuperspace. Another problem deals with a rather
sensitive case; Quantum Mechanics requires a system quantized in space and the
existence of a time in which the system evolves as an external parameter, while
General Relativity states that time has to be the same of all the others coordinates,
and so a first attempt to match those two different perspectives would necessarily
bring to the loss of the intrinsic covariance of the theory. This issue naturally requires
a new interpretation of the concept of time.

Given a self consistent quantum model of bricks of space, a suitable quantum
space would be the union of all the portions of the space described above, which on
long distances could accurately reproduce the curved Relativistic space-time. This
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union could also be also viewed as an approximation of an inhomogeneous space-time
with a series of homogeneous surfaces; a more acute analysis could interpret it as
a physical decomposition of the space, if the quantum theory of gravitation will
require discrete structures.

As a consequence there are two different tasks we have to deal with:

• find the exact quantum theory of the single patch of space, similarly to the
dynamics of a single particle;

• determine the rules for the matching of different patches in a more complex
system that includes two or more patches, this is the comparable to the case
of interacting multi-body systems;

only once we solve both of them, we could say that we have a Quantum Cosmology
theory and it will be merely necessary to find a way to make direct observations in
order to test its consistency.

The simplest interpretation of the single patch is the classical description of a
homogeneous and isotropic space-time. Such a system is described by the Friedman
equations, and the canonical approach is the one that involves their direct quantiza-
tion. It is important to highlight that the point of view of the single patch theories
is not the same of traditional minisuperspace quantization, although both of them
quantize the Friedman equations and in some cases are formally equivalent. In the
minisuperspace models one tends to interpret the single patch as the entire Universe;
the traditional approach, however, brought to a series of issues, especially in the
case of discrete theories that give birth to some corrections which depend on the
size of the patch, while in the minisuperspace models a measure of these corrections
is not properly given, since the size of the patch is set as the size of the Observable
Universe.

A strong and valid argument in favor of these multipatch-theories is the so called
BKL conjecture originally formulated in [11]. In their work the physicists stated
that going towards the singularity, the terms that contain time derivatives in the
Einstein equations dominate over the one with spatial derivatives; this means that
the system of partial differential equations (PDE) can be well approximated by a
system of ordinary differential equations (ODE) and the dynamics becomes local
and oscillatory. So the time evolution of fields, analyzed in every spatial point, is
well approximated by the homogeneous cosmologies in the Bianchi classification, in
particular the Bianchi IX model. At the beginning such a conjecture was strongly
criticized but firstly the pioneering work of Ashtekar and then modern numerical
studies on black holes gave more strength to the BKL analysis, prompting researchers
to accurately address the issues of the quantum cosmology theory.

In my PhD thesis,I have put particular interest in the generalization of a proba-
bilistic approach to Quantum Cosmology, that was initially developed by A. Vilenkin
[54], to a more general class of cosmological models than the Friedman ones, i.e. the
homogeneous but anisotropic Universes. Such models play a crucial intermediate role
in the developing of the so called General Cosmological Solution, namely a solution
of the Einstein equations without particular symmetries. I found a solid formulation
that allows to demonstrate the general validity of such an approach. Therefore, in
this context, I will analyze some applications to the Bianchi I model and to few
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particular cases of the Bianchi IX model, i.e. Taub model and the right corner of the
Bianchi IX potential. This discussion will be divided in two separated parts: in the
first, I will utilize the standard representation for the Quantum Mechanics, while in
the second one, I will adopt a more complex representation, the Polymer one, that
is non-equivalent to the Schrödinger one.

Polymer Quantum Mechanics allows to greatly simplify the formulation by giving
a Physical interpretation of the treated system. As we will see in the following the
results obtained in both of the representations will be consistent with each other,
obviously bearing in mind the differences given by their intrinsic characteristics. The
conclusions on the quantum nature of the studied models have been validated by the
study of Gaussian Packets, built on the basis of the wavefunction that is solution of
the Schrödinger equation, and compared with the expectation values given by the
Ehrenfest Theorem, obtaining, in the relevant cases, a good correspondence between
them.

The Thesis is composed in the following way.
In chapter (2) will be introduced the homogeneous cosmological models and the

Bianchi classification, taking particular care in the description of three important
Universes:

• Bianchi I that is the simplest cosmological model;

• Taub Model that is a very peculiar case of the more complex Bianchi IX
Universe;

• Bianchi IX model

I will present the dynamics of those Universes from a critical point of view.
In the last part of this chapter, I will also introduce the canonical quantization

of the Gravitational Field starting from its historical iter, in order to describe the
modern discussion on such a theory with largely used instruments such as the
Wheeler-DeWitt equation, the ADM formalism and its counterpart: the original
Vilenkin approach. At the end, I will present even the Polymer representation of the
Quantum Mechanics and some open issues in Modern Quantum Cosmology, these
last parts will be especially relevant for the following.

In chapter (3) and (4), I will describe the works made during my PhD and they
represents all the efforts of the last years.

In the first one, I will demonstrate firstly how to generalize the Vilenkin Approach
to more complex cosmological models with particular maths; then I will diversify
the treatment between the two different quantum representation and they will be
presented in parallel and only after I will compare the results once thoroughly
studied. Finally, I will adopt this generalized approach to two different cosmological
models, Bianchi I and the Taub model. While for the former it will not be useful,
for the latter I will analyze the dynamics of a Gaussian Packet and use it in order
to reveal the behavior of the Particle-Universe in his early stages. This study also
aims to demonstrate that the Polymer Quantum Dynamics can be used instead of
the standard one in the case where the last one isn’t predictive, without altering the
system description.

The work explores the possibility to deal with a cosmological model in which
the singularity is regularized via a Polymer Quantum Mechanics approach and a
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time dependence of the Universe wave function is defined via a Born-Oppenheimer
decomposition of the quantum dynamics. The non trivial technical question we
address here is to reconcile the momentum representation of the quantum dynamics,
mandatory for a Polymer quantization, as developed in [19] for the continuum limit
and the WKB scheme, thought in the coordinate representation. The crucial point
is that the potential term emerging in the Minisuperspace model is, in general,
non quadratic in the configurational variables, like instead in general is the Kinetic
part of the Hamiltonian in the momenta. To overcome this difficulty, we introduce
a suitable and general algorithm and then we implement it in the particular and
important case of a Taub Cosmological model [40, 47].

Furthermore, the Taub cosmology has a non-trivial meaning for the physics of
the early Universe. It corresponds to a Bianchi IX model with two scale factor equal
to each other, and it is well-known that the Bianchi dynamics in the "corner" of
the spatial curvature induced potential [15, 48] closely resembles small oscillations
around a Taub configuration. Thus the generality of the Bianchi IX cosmology,
versus a generic inhomogeneous cosmological model [47], justifies the interest for
the present analysis. Finally, implementing the polymer paradigm within a WKB
decomposition of the Minisuperspace dynamics, we aim to clarify the behavior of
the anisotropy degree of freedom when a Big-Bounce emerges.

The case of a vacuum Taub cosmology, when the polymer quantum mechanics
is implemented on the anisotropy dynamics only, was analyzed in [5], showing how
the cosmological singularity is not removed, but only probabilistic weakened. The
merit of such an investigation consists in clarifying that the emergence of a bouncing
cosmology requires that the polymer reformulation also involves the Universe volume.
In this respect, the present analysis is the conceptual continuation of the study in
[5]. We include in the quantum dynamics a massless scalar field in order to deal
with a relational time variable giving a material nature [32].

In the second one, we analyze the Bianchi IX Universe dynamics within the
corner region associated to the potential term which the spatial curvature induces in
the Minisuperspace. We analyze the diagonal Bianchi IX Universe both in vacuum
and in the presence of a massless scalar field and a cosmological constant term. The
dynamics is always analyzed in terms of a WKB scenario.

The Bianchi IX model [11, 2, 47] has a relevant role in the study of the cosmo-
logical dynamics since, despite its spatial homogeneity, it possesses typical features
of the generic cosmological solution [9, 29, 45], like a chaotic time evolution of the
cosmic scale factors near the cosmological singularity [25, 47]. Approaching the
cosmological singularity, the potential term of the Bianchi IX dynamics resembles
an infinite well having the morphology of an equilateral triangle. In the presented
analysis, we study the situation in which the Bianchi IX dynamics is trapped in a
corner of the potential, but the oscillating small degree of anisotropy is in a quantum
regime.

In the vacuum case, the corner configuration becomes an attractor for the
dynamics to the singularity and the evolution resembles that one of a Taub cosmology
in the limit of a non-singular initial Universe. The case when the scalar field is
present well mimics the De-Sitter phase of an inflationary Universe and we show
that both the classical (macroscopic) anisotropy as well the quantum (microscopic
one) are exponentially suppressed, so that the resulting dynamics corresponds to an
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isotropic closed Robertson-Walker geometry.
Finally, there will be a conclusive chapter in which all the results obtained will

be inserted and discussed critically.
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Chapter 2

Quantum Cosmology: a brief
introduction

In this chapter, I will first introduce the homogeneous and anisotropic cosmologi-
cal models. Such models are included in the Bianchi classification. For the purposes
of this thesis, I will analyze the properties of two of them: the Bianchi I model
and the Bianchi IX model. Then, I will present the canonical quantization of the
gravitational field with all its problems. After a brief historical background, I will
introduce the ADM formalism in order to formulate a fundamental equation for the
description of the dynamics of the Universe, the Wheeler-DerWitt equation. Next, I
am going to show a particular approach that allows to gain insights on the problem
and that is the logical extension of the idea of DeWitt, i.e. the Vilenkin approach.
Finally, I will analyze a representation of quantum mechanics that is different from
the Schrödinger one, the Polymer Quantum Mechanics.

2.1 Homogeneous Cosmological Models
We begin introducing the definition of homogeneity [47]: a space is homogeneous

if its metric tensor allows an isometric group that maps the space in itself. Such a
group is generated by the Killing vector fields which compose a Lie Algebra. We
formulate this definition considering a group of transformations

xµ → x̄µ = fµ (x, τ) ≡ fµτ (x) (2.1)

on a space Σ, where the τ are n independent parameters which characterize the
group and we impose, also, that τ0 corresponds to the identity fµτ0 = xµ.

If we analyze now an infinitesimal transformation near the identity such that

xµ → x̄µ = fµ (x, τ0 + δτ) ≈

≈ fµ (x, τ0) +
(
∂fµ

∂τa

)
(x, τ0) δτa ≡ xµ + ξµa (x) δτa =

= (1 + δτaξa)xµ ,

(2.2)

where the n differential operators of the first order ξa are defined by ξa = ξµa∂µ and
correspond to the n vector fields with components ξµa , that are the generator fields.
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In this way if we implement the transformation (2.2) on a generic point of the space
Σ, it will be translated of δxµ = δτaξµa in the initial coordinates and so

x̄µ ≈ (1 + δτaξa)xµ ≈ eδτ
aξaxµ . (2.3)

If the group is a Lie group, the generators create a Lie Algebra, i.e. a n-dimensional
vector space where the ξa form a closed basis under the commutation operation

[ξa, ξb] = ξaξb − ξbξa = Ccabξc , (2.4)

where the Ccab are the structure constants of the group.
Let us consider a Lie group that acts on a variety Σ like the group of transfor-

mation (2.1) and define the orbit of x as

fB (x) = {fτ (x) | τ ∈ B} , (2.5)

namely the set of all the points that can be reached by x via the transformation; we
also define the isometry group in x as the subset of B that let fixed x

Bx = {fτ (x) = x | τ ∈ B} . (2.6)

If we suppose Bx = {τ0} and fB (x) = Σ, every transformation of B translate the
point x and every point in Σ can be reached from x with a single transformation;
since B/Bx = {τ/τ0 | τ ∈ B}, the group B is isomorphic to the manifold Σ. As
soon as we identify B with Σ the metric tensor on Σ is invariant under the group B.

Let us consider the case of a space-time (M, gij) whose metric is invariant under
spatial isometries. This is called spatially homogeneous if it exists a family of
space-like surfaces Σt such that for every couple (p , q) ∈ Σt there is a single element
τ : M→M of a Lie group B such that τ (p) = q. For a spatially homogeneous space-
time, it is necessary to consider only a representative group from every equivalence
class of the Lie groups of tridimensional isometries. The classification of such groups
takes its name from Luigi Bianchi and determines the various possible symmetries
of the tridimensional spaces.

The metric in the homogeneous models have to assure that its properties are the
same in every point of the space. Under the action of the isometry τ : x→ x′ the
spatial line element

dl2 = hαβ (t, x) dxαdxβ , (2.7)

has to be invariant, i.e.
dl2 = hαβ

(
t, x′

)
dx′αdx′β (2.8)

must be true with the spatial metric that has the same formulation in both the new
and the old coordinates. The metric tensor of a homogeneous space-time is obtained
choosing a dual vector basis preserved by the isometries.

In the general case of a tridimensional homogeneous non euclidean space, there
are three invariant differential forms that we can write as ωa = eaαdx

α. We can
then rewrite the line element as dl2 = ηαβ (eaαdxα)

(
ebβdx

β
)
such that in the triadic

representation the metric tensor is

hαβ (t, x) = ηαβ (t) eaα (xγ) ebβ (xγ) , (2.9)
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with ηαβ as a symmetric matrix dependent only on time. The invariance of the line
element implies that

eaα (x) dxα = eaα
(
x′
)
dx′α (2.10)

with the compact notation x = xγ and where the eaα are the same functions written
respectively in terms of both the old and the new coordinates. The triad algebra
enables to rewrite equation (2.10) in the form

∂x′β

∂xα
= eβa

(
x′
)
eaα (x) . (2.11)

This is a system of differential equations that define the change of variables in terms
of the basis vector, the integrability of the system is given by the Schwartz condition

∂2x′β

∂xα∂xγ
= ∂2x′β

∂xγ∂xα
(2.12)

that explicitly implies[
∂eβa (x′)
∂x′δ

eδb
(
x′
)
−
∂eβb (x′)
∂x′δ

eδa
(
x′
)]
ebγ (x) eaα (x) = eβa

(
x′
) [∂eaγ (x)

∂xα
− ∂eaα (x)

∂xγ

]
(2.13)

Multiplying both sides by eαd (x) eγc (x) efβ (x′) it is possible to demonstrate that

eαa
∂eγb
∂xα

− eβb
∂eγa
∂xβ

= Ccabe
γ
c . (2.14)

This expression states that the homogeneity condition reduces to a constraint for
the 1-forms ωa = eaαdx

α which have to satisfy the Maurer-Cartan equation

dωa + 1
2C

a
bcω

b ∧ ωc = 0 . (2.15)

From the definition, the structure constants are anti-symmetric under the exchange
of the lower indices and so the homogeneity can be written as the Jacobi cyclical
identity

CfabC
d
cf + CfbcC

d
af + CfcaC

d
bf = 0 . (2.16)

Introducing the structure constants with two indices Ccab = εabdC
dc, where εabd is

the totally anti-symmetric tridimensional Levi-Civita tensor, the above equation
(2.16) become

εbcdC
cdCba = 0 . (2.17)

Analyzing eq. (2.17), it is clear that the classification of all the possible homogeneous
models reduces to the identification of all the non-equivalent sets of the structure
constants of a tridimensional Lie group.

2.1.1 Minisuperspace and Bianchi Models

The idea of the Minisuperspace originates from the possibility to restrict the
general problem of Quantum Gravity to the simple case of a highly symmetrical space-
time, reducing the dynamics to a finite dimensional scheme and the quantization
procedure to the natural Dirac prescription for the Universe wave-function. [48]
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Figure 2.1. Overview Table of the Bianchi Models

The most relevant implementation, for the purpose of this Thesis, corresponds
to the case of Homogeneous Universes, described by the Bianchi Models; those
models represent Universes where all the space points are equivalent to each other,
but the independent directions scale in time with different laws, creating a certain
degree of anisotropy. It is worth noting that only three of the nine Bianchi Universes
present the isotropic limit and so the anisotropy of such models is not only a purely
dynamical factor, but it derives from an intrinsic geometrical reason.

The list of all the possible tridimensional Lie algebras was presented, for the
first time, by Luigi Bianchi in 1897 so that every algebra exclusively determines
the local properties of a 3−D group. A homogeneous space-time with its group of
symmetries is a Bianchi N Model if its structure constants can be written as

Cab = nab + εabcac , (2.18)

with nab = nba e aa = Cbba. Using this form, the Jacobi identity reduces to [47]

nabab = 0 , (2.19)

and a Lie group is determined therefore by assigning a dual vector ac and a symmet-
rical matrix nab that satisfy the constraint (2.19). Without loosing in generality we
can impose ac = (a , 0 , 0 ), for example with a global rotation of the triadic vectors,
and redefine the symmetric matrix as a diagonal one nab = diag (n1 , n2 , n3 ), so
that equation (2.19) reduces to an1 = 0. In this way it is possible to identify, inside
the Bianchi Models, two different groups:

• a = 0 Class A (6 models),

• a 6= 0 Class B (3 models) .

In Figure (2.1) it is indicated the list of all the possible choices of (a, n1, n2, n3) that
satisfy the constraint (2.19).

It is worth noting [47] that Bianchi I is isomorphic to the translation group on
R3, for which the flat FRW model is a particular case when we restore the isotropy,
Bianchi V contains the open FRW, while Bianchi IX, that holds SO (3) as symmetry
group, includes the closed FRW as a particular case.
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The metric tensor can be easily written considering a basis of vectors ωa preserved
by the isometries. Remembering equation (2.9) the line element 4−D is in the form

ds2 = N2 (t) dt2 − ηab (t)ωaωb , (2.20)

parametrized by the proper time, where the 1-forms ωa satisfy the Maurer-Cartan
equation. We can, now, write the Einstein equations for a homogeneous Universe.
In the tetrad basis the equations reduce to a system of ODE (ordinary differential
equations) that includes only functions of time [47]

R0
0 = ∂

∂t
Ka
a −Kb

aK
a
b = κ

(
T 0

0 −
1
2T
)

R0
a = Kc

b

(
Cbca − δbaCddc

)
= κT 0

a

Rab = 1
√
η

∂

∂t
(√ηKa

b )−3Rab = κ

(
T ab −

1
2δ

a
bT

) (2.21)

in which the relation Kab = −∂tηab/2 holds. The components of the Ricci tensor
become

3Rab = −1
2

(
Ccdb Ccda + Ccdb Cdca −

1
2C

cd
b Cacd − CccdCdab + CccdC

d
ba

)
(2.22)

2.1.2 Bianchi I Model

Analyzing figure (2.1), the simplest model to study is Bianchi I, that corresponds
to the case in which all the a and ni are zeros, in the vacuum. The characteristics of
such a model imply that the tridimensional Ricci tensor is identically null. Moreover,
being the metric tensor independent of spatial coordinates, from the equations (2.21)
we can see that even the R0α are null. So the Einstein equations reduce to [47] :

K̇a
a +Kb

aK
b
a = 0 ,

1
√
η

∂

∂t

(√
ηKb

a

)
= 0 .

(2.23)

From the second equation we get the first conserved quantity
√
ηKb

a = ζba = costante , (2.24)

whose contraction of a and b gives

Ka
a = η̇

2η = ζaa√
η
, (2.25)

and finally
η = (ζaa )2 t2 . (2.26)

Without loosing in generality, rescaling the coordinates xα, we can impose

ζaa = 1 , (2.27)
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and substituting (2.24) in the first of equations (2.23) we get the relation between
the constants ζba

ζab ζ
b
a = 1 . (2.28)

Lowering the b index in the (2.24), we obtain a system of ODE in terms of ηab

η̇ab = 2
t
ζcaηcb . (2.29)

The set of coefficients ζca can be considered the matrix associated to a certain linear
transformation, reducible to a diagonal form, whose eigenvalues can be written as
(pl, pm, pn) ∈ R and the eigenvectors as l, m, n. The solution of (2.29) can finally
be put in the form

ηab = t2pl lalb + t2pmnanb + t2pnmamb . (2.30)

If we choose the tridimensional basis and we call the coordinates x1, x2 and x3,
the spatial line element becomes [47]

dl2 = t2pl
(
dx1

)2
+ t2pm

(
dx2

)2
+ t2pn

(
dx3

)2
, (2.31)

where the pi are the so called Kasner indices that satisfy the relations

pl + pm + pn = 1 ,
p2
l + p2

m + p2
n = 1 ,

(2.32)

and so the solution is characterized by a unique independent parameter. Except
for two particular cases, (0, 0, 1) e (−1/3, 2/3, 2/3), the Kasner indices are always
different from each other and one is always negative while the other two are always
positive.

Once ordered the indices in the following way

p1 < p2 < p3 , (2.33)

their existence domains are

− 1
3 ≤ p1 ≤ 0 , 0 ≤ p2 ≤

2
3 ,

2
3 ≤ p3 ≤ 1 . (2.34)

Such indices allows the following parametrization

p1 (u) = −u
1 + u+ u2 , p2 (u) = 1 + u

1 + u+ u2 , p3 (u) = u (1 + u)
1 + u+ u2 , (2.35)

with the parameter u varying in the range 1 ≤ u <∞. For the values of u that are
inferior to 1 we can use the inversion property

p1

(1
u

)
= p1 (u) , p2

(1
u

)
= p3 (u) , p3

(1
u

)
= p2 (u) . (2.36)

The line element, defined by (2.30), describes an anisotropic space where the volumes
linearly increase with the time, while the linear distances grow in two dimensions
and decrease along the third one. The metric has only a singularity that cannot be
removed in t = 0 with the only exception of the case (0, 0, 1) that corresponds to
the standard Euclidean space.
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2.1.3 Limitations of the Kasner Solution

Let us analyze, now, the limitations of the above Kasner Solution; this solution
approximates correctly the cases in which the Ricci tensor 3Rab included in the
Einstein equations is at least of the order of t−2 an therefore negligible; however,
since one of the Kasner indices is negative there appear dominant terms with respect
to the tensor order rendering the Kasner solution unstable near the initial singularity.
We introduce three spatial vectors ea = {l (xγ) ,m (xγ) , n (xγ)} that satisfy the
homogeneity constraint and that take the matrix hαβ in its diagonal form

hαβ = a2 (t) lαlβ + b2 (t)mαmβ + c2 (t)nαnβ , (2.37)

these are called Kasner vectors while the time dependent coefficients are the scale
factors. As a consequence the Einstein equations in a synchronous system and for a
generic homogeneous cosmological model in the vacuum take the form [47]

−Rll = (ȧbc)˙
abc

+ 1
2a2b2c2

[
λ2
l a

4 −
(
λmb

2 − λnc2
)2
]

= 0

−Rmm =

(
aḃc
)

˙
abc

+ 1
2a2b2c2

[
λ2
mb

4 −
(
λla

2 − λnc2
)2
]

= 0

−Rll = (abċ)˙
abc

+ 1
2a2b2c2

[
λ2
nc

4 −
(
λla

2 − λmb2
)2
]

= 0

−R0
0 = ä

a
+ b̈

b
+ c̈

c
= 0

(2.38)

in which the off-diagonal components are identically null because of the diagonal
form of ηab. Eventually, the 0α components can assume values different from zero if
there is a matter term that causes the rotation of the Kasner axes; the constants λi
respectively correspond to the structure constants with the equal indices introduced
above.

If we use the notation

α = ln a , β = ln b , γ = ln c (2.39)

and a new time variable defined by

dt = abc dτ , (2.40)

the system (2.38) becomes [47]

2αττ =
(
λmb

2 − λnc2
)2
− λ2

l a
4

2βττ =
(
λla

2 − λnc2
)2
− λ2

mb
4

2γττ =
(
λla

2 − λmb2
)2
− λ2

nc
4

1
2 (α+ β + γ)ττ = ατβτ + ατγτ + βτγτ .

(2.41)

The Kasner regime described above is the solution that corresponds to a simulta-
neously cancellation of all the right hand sides of the system (2.41). However, this
behavior cannot exist indefinitely for t→ 0 since near the singularity there is always
at least one term on the RHS that becomes relevant.
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2.1.4 Bianchi IX Universe and Taub Model

We introduce now a model more general than the Bianchi I model; the Bianchi
IX Universe. This corresponds to set all the ni to 1. We will study, for the purpose of
this thesis, the solution of the system (2.38) using the standard Belinskii, Khalatnikov
e Lifshitz approach [7, 8, 9, 10, 11]. For this model, the structure constants are
(λ = 1, 1, 1) and the equations (2.38) reduce to

2αττ =
(
b2 − c2

)2
− a4

2βττ =
(
a2 − c2

)2
− b4

2γττ =
(
a2 − b2

)2
− c4

1
2 (α+ β + γ)ττ = ατβτ + ατγτ + βτγτ .

(2.42)

Let us consider the case in which the negative index corresponds to the function
a (t); the perturbation caused to the Kasner regime is given by the terms λ2

l a
4 while

the others decrease with decreasing t; taking into account only the growing terms in
the RHS of the (2.42) we get the system [48] [47]

αττ = −1
2e

4α

βττ = γττ = 1
2e

4α
(2.43)

whose solutions describe the evolution of the metric from its initial definition (2.31).
If we have initially

a ∼ tp1 , b ∼ tp2 , c ∼ tp3 (2.44)
then

abc = Λt

τ = 1
Λ ln t+ costante

(2.45)

where Λ is constant, such that the initial conditions for the (2.43) can be written as

ατ = Λp1 , βτ = Λp2 , γτ = Λp3 , per τ →∞ . (2.46)

So the solution of the system becomes

a2 = 2Λ|p1|
cosh (2Λτ |p1|)

b2 = b2
0 exp [2Λτ (p2 − |p1|)] cosh (2Λτ |p1|)

c2 = c2
0 exp [2Λτ (p3 − |p1|)] cosh (2Λτ |p1|)

(2.47)

We consider now the obtained solutions in the limit τ → ∞ : towards the
singularity they can be simplified as

a ∼ exp [−Λp1τ ]
b ∼ exp [Λ (p2 + 2p1) τ ]
c ∼ exp [Λ (p3 + 2p1) τ ]
t ∼ exp [Λ (1 + 2p1) τ ]

(2.48)
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which, as function of t become

a ∼ tp′l , b ∼ tp′m , c ∼ tp′n , abc = Λ′t (2.49)

where we defined the ′ variables in the following way

p′l = |p1|
1− 2|p1|

, p′m = −2|p1| − p2
1− 2|p1|

,

p′n = p3 − 2|p1|
1− 2|p1|

, Λ′ = (1− 2|p1|) Λ .

(2.50)

Let us analyze the obtained results: the perturbation to the Kasner regime
ensures that one Kasner epoch will be replaced by another one in such a way that
the negative index goes from the direction l to the direction m. In this way the
term that previously contributed to the perturbation now is damped and eventually
becomes negligible, while one of the terms that before were negligible now grows to
become the principal perturbation. Such index exchanges are formalized in the rules
of the BKL map, with the bigger positive index that remains positive.

The following swaps are characterized by a series of bounces, with the negative
index that shift from the l direction to the m one until the integer part of the initial
value of u become null, i.e until u > 1. Then, thanks to the inversion rules above, we
can transform u < 1 in u > 1 and we return to the situation in which one between
pl and pm is negative while pn is the smallest positive index, and so the next series
of shifts will be between l and n or between m and n. In terms of the parameter u
the map (2.50) takes the form

u′ =
{
u− 1, per u > 2

1
u−1 , per u < 2.

(2.51)

This phenomenon of growth and decrease of the various terms with the transition
from one Kasner era to the next one is repeated an infinite number of times until
the singularity. We now want to concentrate on the implication of the BKL map
and its inversion properties.

We write the initial value of u as u0 = k0 + x0 with k0 and x0 respectively the
integer part and the fractional one of u. The continuous exchanges proceed until u
becomes less than 1, i.e. for a number of times equal to k0 Kasner eras. The new
value of the parameter will be u′ = 1/x0 > 1, with the Kasner indices that transform
as (2.36) and the new switches will be l→ n or m→ n.

The evolution of the model towards the singularity consists in a succession of
eras, in which the distances oscillate on two axes while decreasing along the third
one, while the volumes always decrease (roughly) linearly with the synchronous time
t. The order in which the switches between the axes take place and the lengths of
the eras assume a stochastic behavior, and towards the singularity they tend to be
thickened. The qualitative analysis does not change even if we insert a matter term
in the equations.

In the Bianchi IX model, the dynamics of the Universe near the classical sin-
gularity can be described as a chaotic motion of the particle; more precisely, this
particle impacts an infinite number of times against a pseudo-triangular potential
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barrier, on a bi-dimensional plane that describes the configuration space of the
Universe dynamics. The Taub model consists in reducing the problem to the study
of a 1−D particle that bumps into a potential wall with only one possible degree of
freedom: this situation corresponds to choose a preferential direction in the Bianchi
IX bi-dimensional configuration space, in particular we have chosen to cancel one of
the anisotropic variables of the model [47], but the problem has triangular symmetry
so one can choose arbitrarily the preferential direction.

2.2 Canonical and Polymer Quantizations of the Grav-
itational Field

2.2.1 Brief historical background

A little time after the formulation of the Quantum Field Theory (QFT), by
Heisenberg, Pauli, Fock and Dirac, many scientists tried to implement it on fields
different from the Electromagnetic one for which the theory was developed. In
1930, the Belgian physicist Léon Rosenfeld attempted to use it directly on the
gravitational field but, from the beginning, he found out that there were some
serious technical problems and tried to solve them with general methods; first thing
he calculated the gravitational self-energy of a photon at the lowest perturbative
order obtaining a quadratic divergence, confirming the divergent nature of the
QFT already experienced in the calculation of the electromagnetic self-energy of an
electron. Many read in his results a prediction that, from the very beginning, the
quantum gravitodynamics was destined to be inextricably linked to the difficulties
which are at the basis of the particles physics.

Throughout the vast excitement of the physics during the 30s, the problems
linked to the insane nature of the QFT were often set aside; moreover it soon became
clear that the quanta of the gravitational field (assuming their existence) could not
give noticeable contributions beneath energies of the order of the Planck Energy, i.e.
1028 eV, and unfortunately this persuaded many researchers to give up on such a
theory.

In 1950, the American physicist Bryce S. DeWitt, with his PhD thesis, retraced
the path started by Rosenfeld, using a manifestly Lorentz-covariant and gauge invari-
ant formulation; such a study was supported by the contemporary renormalization
theories of Tomonaga, Schwinger and Feynman, and was due to the demonstration
that the results of the Belgian scientist imply a mere renormalization of the charge
rather than a finite mass for the photon. However, during his analysis, an unexpected
difficulty appeared, caused by the fact that there were not one but two gauge groups
at the same time (firstly the electromagnetic one and on the other hand the one as-
sociated to gravity) that do not combine in the form of a direct product, but instead
they combine in the form of a semidirect product based on the authomorphisms of
the electromagnetic gauge group under general transformations of the coordinates.
This means that if we want to keep a fixed gauge, we have to implement on every
coordinates transformation an electromagnetic gauge transformation; however the
calculation was made at the first perturbative order, which includes only closed
1-loop Feynman diagrams and so, in this case, the problem can be easily solved.
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Approximately in the same period of DeWitt, there was a more ambitious study
carried out by the German physicist Peter Bergmann; although the renormalization
technique obtained some important results in the quantum electrodynamics (QED),
it was still under special surveillance because of the particular explicit manipulation
of the divergences. Similar difficulties (even if more basic) still persisted in the
classical particles theory, with only one exception: the interaction theory of point-
particles with gravity; in 1938, Einstein, Infeld and Hoffmann demonstrated that
the equations of motion of such particles were derived only from the equations of
the gravitational field, without bringing up the divergent quantities or concepts like
the self-mass, in addition this result was rapidly generalized to the case of electric
charged particles and with the pledge of being applicable even to the case of particles
with spin. The gravitational field, so, appeared as a classical regulator and Bergman
inferred that it could be true even in the quantum theory; since that, in the work of
Einstein, Infeld and Hoffmann, the fields were the basis and the particles were mere
singularities of the fields themselves, the first duty of the German scientist was to
quantize the gravitational field hoping that the commutation rules for the positions
and their momenta would come out as corollaries.

The obstacles faced by Bergmann were enormous. First of all, the equations of
motion depended strongly on the non-linearity of the Einstein equations and so it
was mandatory to quantize the whole non-linearity of the gravitational field; then it
was necessary to find a certain way of defining the positions and their conjugated
momenta of the particles as function of only the field variables; on the other hand, it
would eventually be required to include even the spin so that the calculation could be
generalized to all the particles that obey the Dirac equation; finally, it was necessary
to extract the Fermi statistics (for the particles) from the Bose one (followed by
the gravitational field); moreover, he would have to be able to completely remove
the asymmetry between the particles and the field in order to justify, as in QED,
the creation of couples and the vacuum polarization. It is not surprising that, even
nowadays, the objective of Bergmann is, like in the past, out of reach.

In order to reach his aim, Bergmann undertook the classical canonical way in
search of a Hamiltonian; although this road, treating the time differently from the
space, goes against the spirit of every relativistic theory, it seemed a good intuition
for many reasons: firstly, because there wasn’t an alternative method; secondly, the
canonical approach allows for a fast way to observe some important properties of
the theory; finally, at the time it seemed plausible that they could use the standard
perturbative theory for some of the calculations.

However, Bergmann faced, from the very beginning, great difficulties, as Rosen-
feld himself predicted, that were called "constraint problems" and they appeared
in the following way: some of the variables of the field did not have a conjugated
momentum, while the remaining conjugated momenta weren’t dynamically inde-
pendent, even the field equations were linearly dependent and few of them didn’t
include second derivative in time and so the Cauchy problem was more difficult to
solve. All these problems were due to the existence of a group of general coordinates
transformations as invariant group for the theory. Similar troubles were found even
for the electromagnetic field and it was developed a method in order to treat them,
but in the case of the gravitational field its implementation resulted much more
complicated; a big problem was due to the fact that non all the relations between
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the momenta (see the constraints) are linear, moreover we should not forget that
since the invariance group for the gravity is non-Abelian, the calculations, made in
order to demonstrate that the commutators of the various constraints did not bring
up inner inconsistencies, resulted longer and more difficult.

Bergmann and his team did a really great job in formulating specifically all the
difficulties and solving them partially, while in the meantime an unexpected help
came to them; in 1950 Dirac published the basis for a general Hamiltonian theory
that had to be, in principle, applicable to every system described by an Action
principle. Pirani and Schild rapidly understood the potential of this theory and
implemented it on the gravitational field; unfortunately they chose to develop their
theory in a parametric formalism in the hope of obtaining an evident covariance that
the Dirac method would have otherwise destroyed; the complexity of the algebra
prevented the calculation of all the constraints.

The theory spent many years in this incomplete state, but regained strength
after the Relativity Jubilee in 1955 and the second international conference on the
theory in 1957, a little step forward was made by DeWitt that showed how, using
the Pirani-Schild formalism, the four so-called primary constraint could be rewritten
as pure momenta thanks to a phase transformation. This meant that the gravity
wavefunction did not depend on the metric’s g0µ components. Shortly after, Higgs
demonstrated that the secondary (or dynamical) constraints were the generators of
infinitesimal transformations for the spatial coordinates. This implied that the state
has to be independent of the coordinates chosen on the space-like hypersurfaces
x0 = constant and so they could not be taken as arbitrary functions of the metric’s
gij components. Dirac himself started to implement his method to the gravitational
field and, following some simplifications and clarifications, it became clear that
the fourth dynamical constraint was consistent with the others, and the theory for
the first time gained the state "Technically completed". At the time, however, the
scientists started to ask themselves "What is the meaning of all this?"

In the classical theory, the issue of the physical interpretation was easily solved
by Arnowitt, Deser and Misner, which demonstrated how to use the canonical
formalism in order to obtain a precise characterization of the gravitational radiation
and its energy. In the quantum theory, instead, such an interpretation remained
confusing for many years precisely because the scientists could not formalize the
right questions, only in the 60s the priorities were highlighted, especially thanks to
the patient research of Wheeler that was inspiring for many physicists, in particular
for DeWitt.

The close cooperation between these two scientists gave to the literature a lot of
contributions that are even nowadays largely used in the modern research in this
field; it was, in particular, the necessity to study the structure of the manifold in
which the wavefunction is defined that led to several interesting results, namely
it gave a way to interpret all of the problems that, although not definitive, could
be used in the past and even today. Their target was, initially, the case of finite
Universes firstly because the issues are most critical and bizarre, and then because
the case of infinite Universes is treated better with a manifestly covariant theory;
although this theory reached the level of technical completeness thanks to the hard
work of Feynman, it is quite different from the canonical theory and even now there
is not a clear mathematical link between them even if they are complementary: the
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Figure 2.2. Example of a 3+1 Space Time

canonical formulation is needed for describing the quantum behavior of a 3-space as
a geometrical object varying in time, while the covariant one describes the behavior
of both real and virtual gravitons that propagate in it. [21]

Let us analyze how to formulate the issue of describing a tridimensional space
as an object varying in time and this will lead to the natural birth of an important
equation that is the basis of the majority of the modern quantum cosmology, the
Wheeler-DeWitt equation.

2.2.2 ADM formulation

The study of the dynamics of the Universe in a quadrimensional space-time
is always quite difficult, but there are a few prescriptions that allow to simplify
the problem, one of such prescriptions is the subdivision of a 4-D space in a 3 + 1
space-time obtained considering a family of hypersurfaces space-like. [42]

The simplest foliation one can imagine is the one shown in figure (2.2), in which
the parameter that separate the surfaces is a “time” and the distance between two
successive hypersurfaces is infinitesimal.

We start [31] requiring that our space-time variety is globally hyperbolic (i.e.
it is composed by Cauchy hypersurfaces 1) and so once fixed the initial conditions
it is possible to describe the past and future evolution univocally. Every Cauchy
hypersurface represents a picture of our universe, taken at a set value of the real
parameter t which identify it uniquely. As a result we operate a space foliation of
the kindM = Σt ⊗ R, decomposing the 4-D varietyM in a union of parallel 3-D
subvarieties.

Such a foliation requires the introduction of a time-like vector n orthogonal to
the surfaces Σt. Then, if we introduce also the 3-metric hij which characterize the
geometry of the Σt, we can define two important quantities: the Lapse Function N
and the Shift Vector Ni. Such functions specify, respectively, the proper time in the
hypersurfaces, and the distance between the intersection of nµ and Σt+dt and the
position of xi on Σt+dt. As we can observe from figure 2.2, the distance is redefined
using the analogous of the Pitagora Theorem on curved spaces:

ds2 = hij
(
dxi +N idt

) (
dxj +N jdt

)
− (Ndt)2 , (2.52)

1Cauchy Hypersurfaces: Subset of the space-time intersected only by curves that are not
space-like
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where the metric tensor is the one of the 3-geometries, quite different from

ds2 =(4)gαβdx
αdxβ (2.53)

in which the metric tensor is the 4-D one. Comparing the two above expressions we
can obtain the 4-metric from the tridimensional one in the following way [47]∣∣∣∣∣(4)g00

(4)g0k
(4)gi0

(4)gik

∣∣∣∣∣ =
∣∣∣∣∣
(
NsN

s −N2) Nk

Ni hik

∣∣∣∣∣ (2.54)

naturally the same can be done with the inverse metric.
The action of the gravity is the Einstein-Hilbert one and can be read as

S = − 1
2cχ

∫
d4x
√
−g (4)R (2.55)

with (4)R the quadridimensional curvature scalar; it is possible to express it as
function of the variables (N,Ni, hij) as:

(4)R = K2 −KijK
ij −(3)R (2.56)

where Kij is the extrinsic curvature, i.e. the curvature of Σt seen from a 4-D point
of view, defined by

Kij ≡
1

2N
(

(3)∇iNj +(3)∇jNi − ∂thij
)

K ≡ hijKij = Tr
(
Kij

)
.

(2.57)

We can rewrite the action (2.55) as

S = − 1
2cχ

∫
dt

∫
d3x N

√
h
[
K2 −KijK

ij −(3)R
]
. (2.58)

We can also calculate the conjugated momenta to N and Ni from the Lagrangian
density L of the gravitational field:

Π = δL
δ (∂tN) = 0 , Πi = δL

δ (∂tN i) = 0 . (2.59)

The relations (2.59) are a consequence of the fact that the Lagrangian does not
depend explicitly on the derivatives of N and Ni and so they are called Primary
Constraint. In the same way we can obtain the conjugated momentum to the metric
tensor hij as:

Πij = δL
δ (∂thij)

= 1
2cχ
√
h
(
Khij −Kij

)
6= 0 . (2.60)

Using a Legendre transformation and the constraints (2.59), it is possible to
rewrite the action in a more suitable form

S =
∫
dt

∫
d3x

{
Πij∂thij −NH−N iHi

}
, (2.61)
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where we defined

H ≡ GαβγδΠαβΠγδ −
√
h

2κ

3

R

Hα ≡ −2hαγ∇bΠγβ

Gαβγδ ≡
κ√
h

(hαγhβδ + hαδhβγ − hαβhγδ) .

(2.62)

The Lapse Function and the Shift Vector act in the action as Lagrange Multipliers,
and so they do not affect the dynamics. Moreover, calculating the commutators with
the Hamiltonian and imposing reasonable conditions, it is possible to observe that

[Π , HADM ] = −H ≈ 0 ,
[Πk , HADM ] = −Hk ≈ 0 ;

(2.63)

those make the SuperHamiltionian and the SuperMomentum second class constraints.
In (2.63) we defined the ADM Hamiltonian that is simply the ordinary Hamiltonian
solved in one of the inner variables. Being the ADM Hamiltonian a combination of
first and second class constraints, we can state that even the latter is null, and this
imposes an important constraint to the system, the Hamiltonian one.

Now all we have to do is to implement the Dirac prescription for the quanti-
zation of the constrained systems and define the physical states as the ones that
are annihilated by the operators associated to the constraints [48]; since the conju-
gated momenta Π and Πi are null, we can impose the following conditions on the
wavefunction

−i} δ

δN
Ψ
(
N,N i, hij

)
= 0 ,

−i} δ

δN i
Ψ
(
N,N i, hij

)
= 0 ,

(2.64)

which can be easily solved taking a Universe wavefunction as a function only of the
3-metric and not of the variables that describe the slicing of the space-time. The
SuperMomentum constraint, instead, can be seen as

ĤiΨ = Di

[
δ

δhij
Ψ
(
N,N i, hij

)]
= 0 , (2.65)

which is solved imposing that the wavefunction is a function only of the 3-geometries
rather than one particular representation.

2.2.3 Hamiltonian formulation of the dynamics

We start considering the line element for a generic homogeneous space-time in
the standard ADM formulation [47]

ds2 = N2 (t) dt2 − hαβdxαdxβ , (2.66)

where

hαβ = eql lα (xγ) lβ (xγ) + eqmmα (xγ)mβ (xγ) + eqnnα (xγ)nβ (xγ) (2.67)
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with qa (a = l,m, n) depending only on time. For the Bianchi Models, moreover, it
can be written even as function of the 1-forms imposing

hαβdx
αdxβ = ηαβω

αωβ = eqaδabω
aωb , (2.68)

in such a way that for example for the Bianchi IX model we obtain [47]

ω1 = sinψ sin θdφ+ cosψdθ
ω2 = − cosψ sin θdφ+ sinψdθ
ω3 = cos θdφ+ dψ

(2.69)

where θ ∈ [0, π), φ ∈ [0, 2π) and ψ ∈ [0, 4π) are the Euler angles. The Einstein-
Hilbert action in the vacuum can be integrated on the spatial variables providing
the factor ∫

ω1 ∧ ω2 ∧ ω3 =
∫

sin θdφ ∧ dθ ∧ dψ = (4π)2 . (2.70)

It is worth noting that this is simply the surface of a tri-sphere of radius 2: the
closed FRW, indeed, is a particular case of the Bianchi IX Model, for qa = qb = qc.
As a consequence, the evolution of the dynamics in vacuum of Bianchi IX is summed
up by the variational principle

δSB = δ

∫ t2

t1
LB (qa, q̇b) dt = 0 . (2.71)

Here t1 and t2 define two fixed time values and the lagrangian L is described by

LB = −
8π2√η
κ

[ 1
2N (q̇lq̇m + q̇lq̇n + q̇nq̇m)−N3R

]
. (2.72)

Defining more clearly the potential term [47] we obtain

η3R = −1
2

∑
a

λ2
ae

2qa −
∑
a6=b

λaλbe
qa+qb

 ,

η = det (ηab) = exp
(∑

a

qa

)
.

(2.73)

From the Lagrangian formulation, the Hamiltonian is gained by a Legendre trans-
formation, i.e. calculating the momenta pa conjugated to the generalized coordinates
qa as [48] [47]

pl ≡
∂L
∂q̇l

= −4π2

κ

√
η

N
(q̇m + q̇n)

pm ≡
∂L
∂q̇m

= −4π2

κ

√
η

N
(q̇l + q̇n)

pn ≡
∂L
∂q̇n

= −4π2

κ

√
η

N
(q̇m + q̇l)

(2.74)

and then taking into account the standard transformation

NHB =
∑

a=l,m,n
paq̇a − LB , (2.75)
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where the q̇a are obtained thanks to the equations (2.74). In this way we can derive
the action

SB =
∫
dt (paq̇a −NHB) , (2.76)

with

HB = κ

8π2√η

∑
a

(pa)2 − 1
2

(∑
b

pb

)2

− 64π4

κ2 η3R

 , (2.77)

where HB = 0 is the constraint for those models.
We now introduce the so-called anisotropic parameters, defined by

Qa ≡
qa∑
b q

b
,
∑
a

Qa = 1 . (2.78)

These parameters allow us to read the last term on the RHS of (2.77) as a potential
for the dynamics. In fact it can be rewritten as

η3R = −1
2

∑
a

λ2
aη

2Qa −
∑
b 6=c

λbλcη
Qb+Qc

 . (2.79)

The principal benefit of writing the potential as in (2.79) is when we study its
properties in the asymptotic limit towards the cosmological singularity (η → 0).
Actually the second term on the RHS of equation (2.79) becomes negligible and the
first one strongly dependent on the sign of the Qa. As a consequence the potential
can be represented as an infinitely deep box

− η3R =
∑
a

Θ∞ (Qa) (2.80)

where

Θ∞ (x) =
{

+∞, sex < 0
0, sex > 0 .

(2.81)

From equation (2.80) we can see how the Universe dynamics is similar to the one of
a particle confined in the domain ΠQ, defined by the simultaneous positiveness of
all the anisotropy parameters.

2.2.4 Wheeler-Dewitt equation

In order to continue the analysis of the canonical theory, it is necessary to
introduce a specific representation for the quantum states; following the original
approach of Wheeler and DeWitt we can use the so-called metric representation, in
which the wavefunction Ψ depends only on the metric components and the momenta
become differential operators

Π = −i δ
δN

, Πi = −i δ

δN i
, Πij = −i δ

δhij
(2.82)

As above described, the first class constraints allow us to state that the wavefunction
depends only on the tri-geometries and it will be labeled as Ψ (hij). A method to
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express such a dependence is to impose that Ψ is a function of a numerable infinite
set of variables, in particular all the constants that can be built from the Riemann
tensor and its covariant derivatives multiplied by the topology of the tri-space.

Let us denote M the set of all the possible tri-geometries owned by a finite
Universe, the first question to address is: “Is it possible to impose a topology on
M that is useful and, at the same time, that holds a well defined physical meaning
in the context of the Quantum Mechanics?” A possibility is to considerM as an
infinite dimensional vector space in which the elements are discrete sets of the above
invariants; in this case, the topology will be naturally defined by the Cartesian
metric of such a space. But this method is not very useful since, even if we have to
assign a metric (and so a pseudo-Riemanian structure) toM, it does not grant us
any concrete advantage, however it can be helpful in order to remember thatM is
not a simple set but a manifold which will be the domain of the wavefunction Ψ and
its elements will be the tri-geometries.

We now want to describe the quantum dynamics of the gravitational field.
As above said, all the dynamics is included, from a classical point of view, in
the SuperHamiltonian constraint. In the same way, once implemented all the
quantization procedure, all the informations on the system must necessarily be found
in the quantum formulation of the same constraint, i.e.(

Gijkl
δ

δhij

δ

δhkl
−
√
h (3)R

)
Ψ (hij) = 0 , (2.83)

where
Gijkl ≡

1
2
√
h

(hikhjl + hilhjk − hijhkl) . (2.84)

Equation (2.83) is known as the Wheeler-DeWitt equation and it is a fundamental
relation for the quantum dynamics of the gravitational field.

There are, although, some things to highlight. First of all, a structure of a Hilbert
space in the domain of the solutions of the constraints has yet to be identified. The
major difficulties are the definition of a basis of the physical Hilbert space (the
equation (2.83) is not linear) and the definition of an inner product. Another problem
is that the equation holds a physical meaning only if we can regularize the product
of the operators acting on the same point, this can be achieved by the definition of
a triangulation of the spatial manifold and implementing the product only on the
vertices of the triangles. This regularization allows to regularize the Wheeler-DeWitt
and simplifies the potential term treatment. This approach is promising since it
gives a more solid mathematical basis to the theory, but it is not yet sure that it
could solve all the problems of the canonical quantization of the gravity.

Another big issue is the so-called “Frozen Formalism”, in the ordinary quantum
mechanics the Hamiltonian operator is the generator of the time-translation of the
phase-space which leads to the Schrödinger equation, but, in the gravitation case,
the Hamiltonian of the field is a linear combination of the SuperHamitonian and
SuperMomentum constraints and so, under the Dirac scheme, it would annihilate
the physical states

ĤΨ = 0 . (2.85)
The last equation could be interpreted as a Schrödinger equation for a state inde-
pendent of time and this means that there is no evolution for the states, and so
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there could not exist a quantum dynamics. The problem here is due to the different
concept of the time in the two theories: for the quantum mechanics, time is an
external parameter in which the system evolves, while, for the General Relativity,
time is only a mere coordinate like the spatial ones and it is not observable (because
the equations are invariant under general transformation of coordinates).

2.2.5 Vilenkin approach

Since the formulation of the Quantum Field Theory, many well-known physicists
took on the challenge of quantizing the gravitational field, a lot of different approaches
were tried but all of them showed a few problems often insurmountable. One of the
most observed issues was the probabilistic interpretation of the Universe wavefunction;
in fact, the quantum theory requires an external time in which the system evolves,
but in General Relativity this cannot be possible since time is an inner variable and
this fact causes enormous problems when we try to integrate the squared module of
the wavefunction.

In this thesis, I chose a particular approach that suggests a viable solution to
the above problem, the approach of Alexander Vilenkin. The Ukrainian theoretical
physicist, now professor in the Tufts University (Massachusettes), in a paper pub-
lished in 1989 [54] provided a rather linear and elegant procedure which allows to
obtain a probabilistic interpretation of the Universe wavefunction consistent with
the studies of Bohr from the beginning of the century.

He analyzed the simple case of a homogeneous minisuperspace where the variables
are the tri-geometries (i.e. the tri-metric linked by diffeomorphisms), in addition
he chose to use the ADM formulation. From the SuperHamiltonian constraint he
derived the Wheeler-DeWitt equation (WDE) which is a generalized Klein-Gordon
equation (KGE) in n dimensions and with a variable mass. This corresponded to
a conserved current that ensured the conservation of the probability density. Such
an analogy with the KGE naturally took to the well-known issue of the negative
probabilities.

In order to avoid this problem, Vilenkin chose to divide the minisuperspace
variables into two separate classes: semiclassical variables and quantum ones; the
presence of the first class is fundamental in order to make the probability semidefinite
positive. The results of the original paper are divided in two sections, in the first all
the variables are classical, in the latter he included a set of quantum variables and
compared the two dynamics; all the idea is based on three important assumptions:

1. WKB Approximation of the wavefunction:

ψ (hα) = A (hα) e
i
}S(hα)φ (hα, qν) ; (2.86)

where A is the amplitude, S is the action of the system, hα is a compact notation
indicating all the semiclassical variables while qν denotes the quantum ones.

2. Adiabatic hypothesis: division between fast and slow variables [27];

3. Negligibility hypothesis: the effect of the quantum variables on the semiclassical
ones is negligible [27].
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For the purposes of the Vilenkin paper [54] the WDE is simply(
∇2 − U −Hq

)
ψ = 0 (2.87)

where the ∇ operator is defined with the covariant derivatives and in the studied
case reduced to gαβ∂α∂β , Hq is the Hamiltonian related to the quantum variables of
the system and the potential term U is of the order }−2; from this equation derives
naturally the definition of the conserved current

jα = − i2}g
αβ (ψ∗∇βψ − ψ∇βψ∗) , (2.88)

which satisfies ∇αjα = 0.
Replacing equation (2.86) into (2.87), and deriving the various order in }, he

wrote the equations which describe the system. At the lowest order he obtained the
Hamilton-Jacobi equation for the action S, while at the following order he gained
both the equation for the amplitude A and, when there is at least one quantum
variable, the Schrödinger equation for the φ. Now I will show how to practically
derive those equations and I will try to explain their physical meaning, they will also
be necessary for the purposes of my first original work that will be widely presented
in the following.

Let us start with the case in which all the variables are semiclassical. This
implies that equations (2.86) and (2.87) respectively reduce to

ψ (hα) = A (hα) e
i
}S(hα) ,(

∇2 − U
)
ψ = 0 .

(2.89)

and so we get the following equation(
}2gαβ∂α∂β − U

)
Ae

i
}S = 0 (2.90)

that can be written explicitly as

}2gαβ∂α

[
(∂βA) e

i
}S + i

}
A (∂βS) e

i
}S
]
− UAe

i
}S =

}2gαβ
[
(∂α∂βA) e

i
}S + i

}
(∂βA) (∂αS) e

i
}S + i

}
(∂αA) (∂βS) e

i
}S
]
+

+}2gαβ
[1
}
A (∂α∂βS) e

i
}S − 1

}2A (∂βS) (∂αS) e
i
}S
]
− UAe

i
}S = 0 .

(2.91)

We now study the lowest order terms of the above equations. Those correspond to
the Hamilton-Jacobi equation for the action S

gαβ (∂βS) (∂αS) + U = 0 . (2.92)

If we consider the following perturbative order we get the equation for the amplitude
A

i}
{
gαβ [(∂βA) (∂αS) + (∂αA) (∂βS) +A (∂α∂βS)]

}
= 0 . (2.93)
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Figure 2.3. Space-like Hypersurfaces crossed only one time by the trajectories

From the definition of the current (2.88), instead, we get:

jα = − i2}g
αβ
{(
A†e−

i
}S
) [

(∂βA) e
i
}S + i

}
A (∂βS) e

i
}S
]}

+

+ i

2}g
αβ
{(
Ae

i
}S
) [(

∂βA
†
)
e−

i
}S − i

}
A† (∂βS) e−

i
}S
]} (2.94)

which, at the lowest order, returns:

jα = |A|2 (∂αS) (2.95)

if we now differentiate the above current saturating the index α we get exactly the
(2.93) and so we verify the existence of a conserved current.

The action S describes a family of classical trajectories, one for every point of the
configuration space allowed by the reality condition of the action. The conjugated
momentum, along the solution of the motion in every point hα is pβ = ∂βS (hα) ,
while the velocity is, from the Hamilton equations,

ḣα = N
∂H

∂pα
= 2N∂αS ∝ pα . (2.96)

Following the Vilenkin approach, we assume that the minisuperspace variables
are chosen in such a way that S (h) is a single value function[54] [55]; the probability
distribution must be defined on n− 1 dimension surfaces, in order to replicate the
role of fixed time surfaces. Moreover, there is the possibility of choosing every family
of surfaces, with the only requirement that they are crossed exactly once by the
trajectories and in the same direction, as shown in figure (2.3).

Mathematically, this can be formulated as the condition that ḣαdΣα has the
same sign for every element of the surface. The choice of the sign is arbitrary and we
can easily take it so that it satisfies ḣαdΣα > 0. The probability density is defined
by dP = jαdΣα and for all the above discussion is semidefinite positive. In this
way it is possible a normalization of the wavefunction so that

∫
V j

αdΣα = 1 with V
representing all the space-time.

A suitable choice of the surfaces can be the one in which S is constant, being them
orthogonal, by definition, to the family of trajectories; there is, also, the freedom to
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make a coordinates transformation in the superspace in order to choose hn = t as
one of the coordinates. The conservation of the current ∂αjα can be rewritten as

∂ρ0
∂t

+ ∂αJ
α = 0 , (2.97)

where Jα = ρ0ḣ
α and the index α goes from 1 to n− 1. In this case ρ (hα, t) can be

interpreted as the distribution function of an ensemble of classical Universes so that
hα characterizes the trajectories and ρ0 is the probability density of the Universe
evolving along the trajectory described by hα.

If we consider the case in which the wavefunction is a superposition of many
WKB terms, we observe that the interference terms are mediate to zero and so the
results expressed above maintain their validity, once all the terms are taken into
account.

In order to generalize this approach, let us consider a Universe with both
semiclassical and quantum variables. To maintain a compact notation easy to
understand, we will use the same one chosen by Vilenkin in its paper: the first half
of the Greek alphabet will indicate the former while the other half of the Greek
alphabet the latter.

We start again from the complete WDE

(H0 −Hq)ψ = 0 (2.98)

where H0 is the part in which all the quantum variables and their conjugated
momenta are neglected; we expand even the metric tensor in power of } and take
only the zero order. Moreover, we assume that the mixed terms of the metric are
negligible, in order to have a clear factorization of the wavefunction in semiclassical
an quantum part. As before we start with a

ψ = A (h) e
i
}Sφ (h, q) ≡ ψ0φ (2.99)

where the classical part satisfies the equation

H0ψ0 = 0 . (2.100)

Repeating the same steps of the earlier case, we find exactly the same equations
for the action S and the amplitude A, while in this case we find even a third equation,
at the first quantum order, which describes the purely quantum part of the system,
let us see how:(

∇2
0 − U0 −Hq

)
Ae

i
}Sφ = 0

⇒ Ae
i
}S∇2

0φ+ 2
[
(∇0 lnA) e

i
}S + iA (∇0S)

]
e
i
}S∇0φ−HqAe

i
}Sφ = 0

⇒ 2i (∇0S)∇0φ = Hqφ

(2.101)

where in the last line we exploited the adiabatic hypothesis in order to state that the
variation of the quantum part of the wavefunction is way faster than its semiclassical
counterpart. Being the term ∇0S proportional to the momentum and so to the
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velocity defined by (2.96) we obtain the differentiation in t that allows us to get the
equation

i
∂φ

∂t
= NHqφ (2.102)

which is the Schrödinger equation for φ.
Applying the conservation law ∇αjα = 0 in the case of a wavefunction like (2.99)

we find the two principal terms in } :

jα = |φ|2|A|2∇α0S ≡ jα0 ρφ for the classical variables

jν = − i2 |A|
2 (φ∗∇νφ− φ∇νφ∗) ≡ i

2 |A|
2jνφ for the quantum variables

(2.103)

Using the conservation of the total current and the one relative to the only classical
part, it is possible to find a continuity equation for the current

∂ρφ
∂t

+N∇νjνφ = 0 . (2.104)

The probability distribution corresponding to the classical current can be written as

ρ (h, q, t) = ρ0 (h, t) |φ (q, h (t) , t) |2 (2.105)

If now we represent the surface element on the fixed time surfaces as dΣ=dΣ0dΩq,
where the term with the subscript 0 refers to the surface element defined by the
classical variables, then the ρ0 and the φ are normalized by∫

ρ0dΣ0 = 1 ,∫
|φ|2dΩq = 1 .

(2.106)

We found again the standard interpretation of the wavefunction for a little subset of
the Universe; if we assume that the starting wavefunction is a superposition of many
WKB terms, it can be demonstrated, with the same logical steps, that the results
are identical. There are not issues even if, during the evolution of the system, a few
quantum variables become purely classical variables.

Until now we reported the calculations made by Vilenkin in his original paper in
1989 [54], explaining the more subtle steps.

The interpretation of the Universe wavefunction a la Vilenkin is approximated
by its nature; it is only natural that the probability of a particular state of the
Universe (or of a part of it) can be determined only approximately, with a precision
level not exceeding the quality of the semiclassical approximation of the whole
Universe. In this approach, even the unitarity is a sensitive concept and obviously
the probabilities cannot add up to 1 with a better accuracy level than the one with
whom they are defined. Anyway, the approximative nature of the reasoning is not
necessarily a disadvantage. In fact, it is in excellent agreement with the standard
interpretation of the quantum mechanics in which the classical measuring devices
play a fundamental role.
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2.2.6 Polymer Quantum Mechanics

Polymer Quantum Mechanics is a non-equivalent representation of the ordinary
quantum mechanics, based on a modified version of the canonical commutation
rules (CCR). In the following, we will clarify firstly what is the equivalence between
different representations, then we will present the kinematics and the dynamics for
the new model. The transition from the ordinary CCR to the Weyl ones will be
showed for the case of a 1-D particle described by a couple of canonical variables
(q, p).

Quantizing a system means switching from the Poisson Brackets

{q, p} = 1 (2.107)

to the respective commutator between the operators associated to the classical
canonical variables [53]

[q̂, p̂] = i~Î . (2.108)

It is necessary to choose a Hilbert space and a polarization in order to redefine the
quantum states. For the space, the choice is the space of the integrable squared
functions, i.e. H = L2 (R, dµ); for the polarization, instead, the choice is the positions
one, i.e. the q-polarization. The eigenvalue problem for the operator associated to
the qs reduces to

q̂ |q〉 = q |q〉 . (2.109)

The basis kets are normalized to a Dirac Delta function

〈q|q′〉 = δ
(
q − q′

)
. (2.110)

Now that we have introduced all the fundamental elements, we can consider the
projection onto a generic state

〈q|ψ〉 = ψ (q) (2.111)

and even
〈q|q̂|ψ〉 = q 〈q|ψ〉 = qψ (q) . (2.112)

Taking into account the CCR we can represent the operator associated to the ps
as

p̂ = −i~ d
dq̂

+ F (q̂) (2.113)

with F generic; we can make a unitary transformation, which does not change the
physics of the system, and get a definition of the momentum operator without the
additional term, i.e.

〈q|p̂|ψ〉 = −i} d
dq
ψ (q) . (2.114)

We get the following eigenvalue equation for the above operator

p̂ |p〉 = p |p〉 (2.115)

that projected on the basis |q〉 becomes

〈q|p̂|p〉 = p 〈q|p〉 = −i} d
dq
〈q|p〉 , (2.116)
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where the last equality is a differential equation for 〈q|p〉 which admits a solution of
the kind

〈q|p〉 = Ae
iqp
} , p ∈ R . (2.117)

If we now change to the p-polarization and we follow the same steps we get a
wavefunction and a representation of q̂

〈p|q̂|ψ〉 = i}
d

dp
ψ (p) . (2.118)

So, in summary we have

q̂ψ (q)→ qψ (q) , p̂ψ (q)→ −i} d
dq
ψ (q) , basis |q〉 ,

q̂ψ (p)→ i}
d

dp
ψ (p) , p̂ψ (p)→ pψ (p) , basis |p〉 .

(2.119)

We have just gone through the ordinary quantization procedure. Anyway, it can
be possible that there is no differential operator associable to one of the canonical
variables. This is the case of the theories which hold a reticular configuration of
the space or the time. We then need another class of operators, i.e. the difference
operators. Such objects are built thanks to the use of quotient operators, just like
the derivative case; we can define two different kinds of quotient operators acting on
adequate functional spaces [22]. If we take a test function f [R] we have

• the additive one

Kaf (x) = f (x+ a)− f (x− a)
(x+ a)− (x− a) = f (x+ a)− f (x− a)

2a a ∈ {R \ {0}} ,

(2.120)

• the multiplicative one

Ksf (x) = f (sx)− f
(
s−1x

)
sx− s−1x

= 1
x

f (sx)− f
(
s−1x

)
s− s−1 s ∈ {R \ {1}} .

(2.121)

If we consider the continuum limit (a→ 0 , s→ 1) of the definitions (2.120) and
(2.121) it is easy to observe that we get the ordinary definitions of differential
operators.

Stone-von Neumann theorem

Let us analyze another important class of groups, the ones with a strongly
continuous parameter; in order to give a definition of them, we introduce the self-
adjoint operator and a real parameter t. We consider a family of unitary operators
{U (t)}, such operators belong to a group with a strongly continuous parameter if
the following two conditions are met

• U (t+ t′) = U (t)U (t′),

• limt′→t U (t′) = U (t).
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The Stone theorem states that, given an unitary representation U strongly continuous,
it exists a unique self-adjoint operator A, called the generator of the group, such
that

U (t) = eitA . (2.122)

For example, the family of the translation operators is a group with a strongly
continuous parameter, and its generator is A = −i} d

dx .
We introduce now unitary transformations that own as generators the operators

associated to the canonical variables of the system. Let us consider the algebra
generated by those operators

U (α) = e
i
}αq̂ , V (β) = e

i
}βp̂ , α, β ∈ R (2.123)

where α and β are the parameters that characterize the transformation. It can be
shown that, starting from such operators, one can obtain the Weyl commutation
rules (WCR)

U (α)V (β) = e
i
}αβV (β)U (α) . (2.124)

In general, a couple of unitary operators that acts on a fixed Hilbert space gives a
Weyl representation if it satisfies the WCR.

A representation is irreducible if the Hilbert space holds an subspace invari-
ant under the action of the null group. Two representations ({U (α)} , {V (β)})
and

({
U (α)′

}
,
{
V (β)′

})
which act on two separate Hilbert spaces are unitarily

equivalents only if it exists an unitary operator W : H → H′ such that

WU (α)W ∗ = U (α)′ , WV (β)W ∗ = V (β)′ , ∀α, β ∈ R . (2.125)

Moreover, a representation is regular if the transformations

α→ U (α) , β → V (β) (2.126)

are continuous. We are now able to enunciate the following theorem
Stone-Von Neumann Theorem : Every regular and irreducible representation

of the CCR is unitarily equivalent to the Schrödinger representation
Historically, this theorem was exploited in order to demonstrate the equivalence

between the Schrödinger and the Heisenberg representations. We will observe, unfor-
tunately, that the Polymer representation does not satisfy the regularity hypothesis
and so can not be equivalent to the Schrödinger one.

Representations and polarization

The substantial difference between the Polymer representation and the Schrödinger
one consists in the a priori choice of which variable is considered discrete. In the
Schrödinger representation (see (2.119) for reference), the difference between the two
polarizations is that the differential operator is associated either to the q variable
(p-polarization) or to the p variable (q-polarization). If we choose to discretize the
q variable in the Polymer paradigm, then in the p-polarization the operator q̂ acts
as a derivative with respect to p and it is not possible to define the momentum
operator. In the q-polarization, instead, the operator q̂ acts as a multiplier and it is
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not possible to define the operator p̂ since the limit of the incremental ratio is not
defined. So we need the difference operators introduced in (2.120). [23]

If in the Polymer representation we assign a discrete character to the p variable,
the conclusions obtained are diametrically opposed. In the p-polarization the p̂
operator acts as a multiplier and it is not possible to define the position operator.
In the q-polarization, instead, the p̂ operator acts as a derivative with respect to q
and the position operator does not exist.

Kinematics

Let us understand now ho to redefine the kinematics in the Polymer paradigm,
following [19]. We introduce a discrete set of kets |µi〉, with µi ∈ R and i = 1, ..., N ,
belonging to a certain Hilbert space Hpoly. The state of the system is described by
a generic linear combination of the kets:

|ψ〉 =
N∑
i=1

ai |µi〉 . (2.127)

The product of two kets is normalized to the Kronecker delta

〈ν|µ〉 = δν,µ , (2.128)

as a consequence the product of two vectors |ψ〉 and |φ〉 is:

〈ψ|φ〉 =
N∑

i=1,j=1
b̄jai 〈νj |µi〉 =

N∑
i=1

b̄iai . (2.129)

Now we define two fundamental operators on this space: the label operator ε̂
and the shift operatorŝ(λ). They act in the following way:

ε̂ |µ〉 = µ |µ〉 ŝ(λ) |µ〉 = |µ+ λ〉 . (2.130)

In order to associate physical operators to the abstract objects just introduced,
in the following we will analyze a system with only one degree of freedom described
by the phase space variables (q, p). We will make the physical choice of discretizing
the position variable q and observe the differences between the states of the system
obtained in both the representations.

P-polarization

We will first consider the p-polarization. The state projected into the basis
vectors, in this case, is

φ (p) = 〈p|ψ〉 , (2.131)

furthermore, we know that, as in the Schrödinger representation, the projection of
the position vector in the momenta basis is

φµ (p) = 〈p|µ〉 = e−
i
}µp . (2.132)
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By letting the operator V (λ) act, introduced in the first part, on φµ (p) we get

V (λ)φµ (p) = V (λ) e−
i
~µp = e

i
}λpe−

i
}µp = e

i
} (−µ+λ)p = φµ+λ (p) . (2.133)

Remembering the definition given in 2.130, it is easy to identify the operator V (λ)
with the shift operator ŝ (λ).

Moreover, in this representation we identify the label operator with the position
operator; let us show how it is a generator for the unitary transformation U (α):

q̂φµ (p) = i}
d

dp
e−

i
}µp = µe

i
}µp = µφµ (p) . (2.134)

From the definition of U in (2.123) we know that, given a generic ϕµ

lim
α→0
〈ϕµ|Ua|ϕµ〉 = lim

α→0
〈ϕµ|eiαq̂|ϕµ〉 = lim

α→0
〈ϕµ|eiαµ|ϕµ〉 =

= lim
α→0

eiαµ 〈ϕµ|ϕµ〉 = eiαµ = 1 ,
(2.135)

which means that it is a continuous relation. This ensures that it is possible to find
an operator q̂. In particular, we have that

q̂ |µ〉 = −i lim
α→0

α−1 (U (α)− I) |µ〉 = µ |µ〉 . (2.136)

This shows how the q̂ operator is the generator of the transformations U (α).
In order to complete the scheme, we should demonstrate that the p̂ operator

is the generator of the transformation V (λ). Anyway, this is not possible because,
even if we take an infinitesimal value for the parameter λ, two successive vectors
|µ〉 and |µ+ λ〉 are always orthogonal, i.e. remembering the identification of the V̂
operator with the shift operator

〈ϕµ|Vλ|ϕµ〉 = 〈ϕµ|ŝ (λ))|ϕµ〉 = 〈ϕµ|ϕµ+λ〉 =
{

1, λ = 0
0, λ 6= 0

(2.137)

This means that a transformation of the kind λ→ 〈µ|Vλµ〉, as it happens in the
case of the label operator, does not exist. Such a discontinuity violates the regularity
hypothesis, it prevents the natural definition of the p̂ operator and so we can not
use the Stone-Von Neumann theorem in this case.

Essentially, the Polymer representation is non-equivalent to the Schrödinger
representation. Let us observe how in this scheme the normalization given by (2.128)
is correct. In order to do so, we should define a measure dµ in the space in which we
defined the φµ(p). What we can demonstrate is that the space Hpoly is isomorphic
to the space

Hpoly,p = L2 (Rb, dµH) (2.138)

where Rb is the Bohr compactification of the real line and dµH is the Haar measure.
Once introduced those elements, we can redefine the inner product as

〈ψν (p) |ψλ (p)〉 =
∫
Rb
dµH ψ̄ν (p)ψλ (p) = lim

L→∞

1
2L

∫ L

−L
dpψ̄ν (p)ψλ (p) =

lim
L→∞

1
2L

∫ L

−L
dpe

i
~νpe−

i
}λp .

(2.139)
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From this, we can note that the normalization with the Dirac delta function,
given by 2.128, is accurate. In fact

〈ψν |ψλ〉 = lim
L→∞

1
2L

∫ L

−L
dpe−

i
}νpe

i
}λp =

{
1, ν = λ

0, ν 6= λ
(2.140)

Q-polarization

Let us analyze the same system but in the position representation. In this case
the wavefunction depends on the q variable

φ(q) = 〈q|ψ〉 . (2.141)

This time the projection of the state vector |µ〉 on the basis vectors is realized with
the vectors |q〉. It is obtained simply inserting a completeness relation

φ (q)µ = 〈q|µ〉 = 〈q|
∫
<b
dµH |p〉 〈p|µ〉 =

∫
<b
dµH 〈q|p〉 e

i
}µp =∫

<b
dµHe

− i
}pqe

i
}µp = δq,µ .

(2.142)

Let us study what are the changes in the label and shift operators in this
polarization. We expect that they could be represented in the opposite way, but
maintaining the same characteristics. We notice that, as in the previous case, the p̂
operator does not exist because the derivative of the Kronecker delta is not defined.
In fact, being in the position representation, we get p̂→ −i/ ddq .

So
p̂φµ (q) = −i} d

dq
δq,µ (2.143)

is an inconsistent operation. Moreover, the identification of the V operator with the
shift one maintains its validity

V (λ)φ (q) = φ (q + λ) (2.144)

and the q̂ operator acts as multiplication operator for the basis vectors:

q̂φµ (q) = µφµ (q) . (2.145)

As in the previous case it is possible to define a Hilbert Space

Hpoly,x = L2 (Rd, dµc) (2.146)

and an inner product normalized to the Kronecker delta

〈ψν (q) |ψλ (q)〉 = δµ,λ (2.147)

As we have seen in both the representations, it is impossible to define a differential
operator as the limit of the incremental ratio. This is a direct consequence of the
physical choice of assigning to the spatial variable q a discrete character. There is no
reason we cannot, naturally for different physics problems, choose the momentum
variable as discrete. In that case, we could have reproduced exactly all the above
calculations, obtaining that in both polarizations the position operator q̂ does not
exist.
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Dynamics

In order to grant a dynamics to the studied model, we ought to know the
Hamiltonian properties of the system. Let us take the simplest possible case of a
1-D free particle with mass m inside a potential V (q). Classically we get

H = p2

2m + V (q) (2.148)

whose quantum counterpart is given by

Ĥ = p̂2

2m + V (q̂) . (2.149)

We immediately notice that, even for the simplest system, in the Polymer case
there is not a direct quantum implementation because of the presence of both p̂
and q̂ operators in Ĥ. How can we solve the problem of the non-existence of one
of the two operators? The idea behind every quantization of the Polymer kind
consists in the approximation of the terms corresponding to the non-existing operator
and in the identification of adequate and well defined quantum operators for its
implementation. We choose to characterize the q as a discrete variable, and so
the p cannot be promoted to differential operator, as in the ordinary case, and we
approximate the kinetic term p2

2m in such a way that its quantum counterpart is
well defined. The standard procedure consists in the definition of a subspace Hγa
of Hpoly which includes all the existent vectors on the lattice of all the equidistant
points defined by

γa = {q ∈ R|q = na,∀n ∈ Z} (2.150)

where the parameter a is a length and it is the distance between two successive
points.

As a consequence, the basis vectors are of the kind |µn〉 (where µn = na) and
the states are all in the form

|ψ〉 =
∑
n

bn |µn〉 . (2.151)

Let us see how to approximate the kinetic term. In the section (2.2.6) we saw how
the operator V̂ (λ)), in both the representations, is defined as the shift operator.
Given its validity, we can use it to implement at the quantum level the approximation
of the kinetic term. Recalling the action of the shift operator defined in (2.130) and
requiring that such operation does not take the vectors outside of the lattice, it is
only natural to identify the parameter λ with a. So the action of V on a state vector
is

V̂ (a) |µn〉 = |µn + a〉 = |µn+1〉 . (2.152)

This is the basis of the approximation of every polynomial function of p. In fact
we get that, for p� }

a ,

p ' }
a

sin
(
ap

}

)
= }

2ia
(
e
i
}ap − e−

i
}ap
)
. (2.153)
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Now we can define an alternative version of the p operator. It depends on the scale
a that we chose and acts on the vectors in a multiplicative way:

p̂a |µn〉 = }
2ia [V (a)− V (−a)] |µn〉 = i}

2a (|µn−1〉 − |µn+1〉) . (2.154)

Similarly, we can define the alternative version of the operator associated to p2.
Always for p� }

a , even it acts in a multiplicative way:

p2 ' 2}2

a2

[
1− cos

(
ap

}

)]
= 2}2

a2

[
1− e

i
}ap − e−

i
}ap
]
. (2.155)

So

p̂2
a |µn〉 = }2

a2 [2− V (a)− V (−a)] |µn〉 = }2

a2 [2 |µn〉 − |µn+1〉 − |µn−1〉] (2.156)

We are now able to give a proper definition of the Hamiltonian operator in this
Hilbert subspace Hγa :

Ĥa = 1
2mp̂2

a + V (q̂) . (2.157)

Free Particle

A particular case that could be useful for the following is the free particle case.
Let us analyze the system in the momenta polarizations. The classical Hamiltonian,
for small enough momenta, reduces to

H ' }2

ma2

[
1− cos

(
ap

}

)]
. (2.158)

For all we said in the section (2.2.6), in this approximation is possible to implement
a quantization procedure. We write the quantum version of the above equation and
we solve the eigenvalue problem. Given a wavefunction ψ (p):

Ĥaψ (p) = Eaψ (p) −→
[

}2

ma2

(
1− cos

(
ap

}

))
− Ea

]
ψ (p) = 0 . (2.159)

The energy spectrum takes the form

Ea = }2

ma2

[
1− cos

(
ap

}

)]
≤ 2}2

ma2 = Emaxa (2.160)

from which we can deduce that, for every chosen scale, our system has always a
finite spectrum. Naturally, we can see how the energy spectrum we got tends, for
a→ 0, to the one typical of a quantum particle in the Schrödinger representation.
In fact, the spectrum assumes the form

Ea = }2

ma2

[
1− cos

(
ap

}

)]
−−−→
a→0

p2

2m (2.161)

while the superior limit of the spectrum becomes

Emaxa = 2~2

ma2 −−−→a→0
∞ . (2.162)
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Let us analyze now the form of the eigenfunctions. In this representation, we
can easily verify that the solution for the eigenfunctions ψ (p) is in the form

ψ (p) = Aδ (p− Pa) +Bδ (p+ Pa) (2.163)

where
Pa = }

a
arccos

(
1− ma2

}2 Ea

)
. (2.164)

With an inverse Fourier transform we can obtain the eigenfunctions in the q-
polarization. Considering the discrete structure assigned to the q variable (we
considered only the points included in the lattice γa), the eigenfunctions of p that
preserve this structure are all of the form e

i
}anp, n ∈ Z. Such functions have a period

of 2π}
a and, in terms of the inner product, this results in calculating the integral on

the momenta only in the range p ∈
(
−π}

a ,
π}
a

)
ψ (q) = 1√

2π

∫ π}
a

−π}
a

ψ (p) e
i
}pq =

= 1√
2π

∫ π}
a

−π}
a

[Aδ (p− Pa) +Bδ (p+ Pa)] e
i
}pq =

=
√

2π}
a

(
Ae

iqPa
} +Be−

iqPa
}
)
.

(2.165)

If the system is such that the momenta are comparable to the value π}
a , then

we expect that the approximation will be very rough and very different from the
standard case, in both classical and quantum dynamics. On the other hand, if we
stay always inside the region where the approximation holds, we can be near enough
to the standard case.

Particle in a box

Another relevant example is the well-known particle in the box. The physical
system consists in a particle confined along a segment of length L = Na,N ∈ N. In
this case the potential V (q) = V (na) is in the form

V (q) =
{
∞, x > L, x < 0
0, 0 < x < L

(2.166)

Basically, the particle behaves as a free particle inside the box and it can not
trespass the border due to the infinite potential wall. This results in some boundary
conditions for the wavefunction found in (2.165):

ψ (0) = ψ (L) = 0 . (2.167)

Let us take the (2.165) and impose the conditions (2.167)

ψ (0) =
√

2π}
a

(A+B) = 0 −→ A = −B

ψ (L) =
√

2π}
a

A
(
e
iLPa

} − e−
iLPa

}
)

=
√

2π/
a

A sin
(
LPa
}

)
= 0→

→ LPa = nπ} n ∈ Z

(2.168)
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In the end, the eigenfunctions results in the form

ψ (q) = 2
√

2π}
a

A sin
(
nπq

L

)
, (2.169)

we can calculate the energy spectrum simply considering the boundary conditions
for the (2.160). We obtain a discrete and limited spectrum:

Ea,n = }2

ma2

[
1− cos

(
anπ

L

)]
. (2.170)

If we take the limit for a→ 0 of the above spectrum

lim
a→0

Ea,n = lim
a→0

}2

ma2

[
1− cos

(
anπ

L

)]
= π2n2}2

2mL2 (2.171)

we get exactly the same infinite spectrum of the standard particle in the box.

2.3 Open Issues in Quantum Cosmology

2.3.1 Bounce Cosmology and Cyclic Universe

One of the most recent and appreciated developments of Modern Cosmology is
the existence of a Big Bounce for the Planckian evolution of the isotropic universe.
Despite some theoretical shortcomings, like the problem of entropy, the idea of
a cyclic (closed) Universe, oscillating between a Big Bounce and a turning point,
seemed to Einstein and other theoreticians a very pleasant alternative to the Big Bang
singularity. In this respect, the results obtained by Ashtekar and his collaborators
are a very encouraging issue in favor of this cyclical idea.

The isotropic Big Bounce has been derived implementing the ideas and formalism
of Loop Quantum Gravity (mainly due to Ashtekar, Smolin and Rovelli). This
canonical approach to the quantization of the gravitational field has the great merit
of starting from a continuous description of the spacetime manifold, nonetheless
recovering the discrete structure of the space, in terms of discrete spectra of the
geometrical operators, like areas and volumes. The kinematical sector of Loop
Quantum Gravity resembles a non-Abelian gauge theory and it allows the exten-
sion to the gravitational field of the so-called Wilson loops approach for strongly
coupled Yang-Mills theories. However, the dynamical implementation of the super-
Hamiltonian quantum constraint contains a certain level of ambiguity, e.g. the
non-unitary equivalence of theories corresponding to different values of the Immirzi
parameter, entering the canonical variables definition.

The application of Loop Quantum Gravity to the minisuperspace of a homoge-
neous cosmological model, expectedly implies a non-singular behavior of the quantum
Universe, as a direct consequence of the cut-off scale imposed on the Universe vol-
ume, by the minimal (taken Planckian) value of its operator spectrum. Indeed, the
Friedmann-Robertson-Walker geometry acquires in Loop Quantum Cosmology a
non-singular behavior as described in terms of a free massless scalar field (the kinetic
term of the inflaton field) playing the role of a relational time. The semiclassical
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picture of this non-singular Universe can be restated in the form of a maximal critical
energy density for the asymptotic approach to the initial instant.

This cut-off on the maximal available temperature of the primordial Universe
does not affect the theory of the Hot Big Bounce, because its scale is much greater
than the physical regions of interest for the Standard Cosmological Model predictions
like inflation, baryogenesis and nucleosynthesis. In this new scenario, the idea of a
cyclical Universe takes new vigor and is substantiated by a precise quantum and
semiclassical scenario. Although the Big Bounce theory is a promising perspective
and deserving many attempts to extend its applicability to more general cosmological
models (up to the generic quantum Universe), nevertheless its derivation is affected
by some open issues. In fact, the restriction of the Loop Quantum Gravity theory
to the minisuperspace has the non-trivial implication to replace the non-Abelian
SU(2) by an Abelian U(1) symmetry, unable to ensure the discreteness of the volume
spectrum.

The possibility to recover the Big Bounce from the minisuperspace dynamics
relies on the introduction by hands of the space discreteness as a natural, but not
direct, consequence of the full theory equipment. These shortcomings of imposing
the symmetries of the isotropic model before quantizing its dynamics prevent the
Big Bounce to be self-consistently derived, but do not seem able to affect the impact
of this issue on the modern idea of a primordial Universe.

In my research group many authors addressed the problem of the removal of
the initial singularity (see for reference [5, 34]). In particular, in [5] there are some
noteworthy ideas. They studied the Taub cosmology, a particular case of the Bianchi
IX model, with a Polymer quantization prescription; this was one of the first attempt
to analyze the Early Universe with this kind of quantization procedure. They decided
to implement the Polymer Representation only to the anisotropic variable and they
demonstrated that in this way the singularity cannot be removed but the work is
nevertheless a fascinating one.

My first work [14] is the natural extension of this study, we implemented the
Polymer Quantum Mechanics on all the variables, both semiclassical and quantum
ones. For my research we decided to adopt the Vilenkin approach [54] in order to
retrieve a wavefunction of the Universe with a well defined probability density. We
found that the Taub cosmology is a singularity-free Universe and that the evolution of
the volume of the Universe is confined between a series of big bounces and maximum
volume turning points, this suggests that this model is cyclical. All of this will be
better explained in (3).

2.3.2 The isotropization Mechanism

In quantum cosmology the Universe is described by a single wave function Ψ
providing puzzling interpretations as soon as the differences with respect to ordinary
quantum mechanics are addressed [54, 24]. Quantum cosmology is defined up to
the following two assumptions. (i) The analyzed model is the Universe as a whole
and thus there is no longer an a priori splitting between classical and quantum
worlds. No external measurement crutch is available and an internal one cannot play
the observer-like role because of the extreme conditions a primordial Universe is
subjected to. (ii) In General Relativity, time is an arbitrary label and clocks, being
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parts of the Universe, are also described by the wave function Ψ.
Time is thus included in the configuration space and the integral of |Ψ|2 over the

whole minisuperspace diverges as in quantum mechanics when the time coordinate is
included in the configuration-space element. As a result, the standard interpretation
of quantum mechanics (the Copenhagen interpretation) does not work in quantum
cosmology. On a given (space-time) background structure only, observations can
take place in the sense of ordinary quantum theory.

In [6] a wave function of a generic inhomogeneous Universe, which has a clear
probabilistic interpretation, has been obtained. It can be meaningfully interpreted
because of a separation between semiclassical degrees of freedom, in the Wentzel-
Kramers-Brillouin (WKB) sense, and quantum ones. In particular, the quantum
dynamics of weak anisotropies (the physical degrees of freedom of the Universe) is
traced with respect to the isotropic scale factor which plays an observer-like role as
soon as the Universe expands sufficiently. A generic inhomogeneous cosmological
model, describing a Universe in which any specific symmetry has been removed,
represents a generic cosmological solution of the Einstein field equations [11]. Belinski-
Khalatnikov-Lifshitz (BKL) showed that such a geometry evolves asymptotically to
the singularity as an ensemble, one for each causal horizon, of independent Bianchi
IX homogeneous Universes [43]. This model represents the best description we have
of the (classical) physics near a spacelike cosmological singularity.

The main result of their paper is that the wave function of the Universe is
spread over all values of anisotropies near the cosmological singularity, but it is
asymptotically peaked around the isotropic configuration. The closed Friedmann-
Robertson-Walker (FRW) cosmological model is then the naturally privileged state
as soon as a sufficiently large volume of the Universe is taken into account. A
semiclassical isotropization mechanism for the Universe is thus predicted. This
model can be regarded as a concrete implementation, to a physically interesting
cosmological problem, of the semiclassical approach to quantum cosmology [54]. An
isotropization mechanism is in fact necessary to explain the transition between a
very early Universe and the observed one. The isotropic FRW model can accurately
describes the evolution of the Universe until decoupling time [31].

On the other hand, the description of its primordial stages requires more general
models. It is thus fundamental to recover a mechanism which can match these two
cosmological epochs. Although many efforts have been made inside classical theory
[30, 18] (especially by the use of the inflation field), no quasi-classical (or purely
quantum) isotropization mechanism has not yet been developed in detail.

The authors of my research group [6] demonstrated that when the Universe
moves away from the cosmological singularity, the probability density to find it is
asymptotically peaked (as a Dirac δ-distribution) around the closed FRW configura-
tion. Near the singularity all values of the anisotropies are almost equally favored
from a probabilistic point of view. On the other hand, as the volume of the Universe
grows, the isotropic state becomes the most probable state of the Universe. The
key feature of such a result relies on the fact that the isotropic scalar factor has
been considered as an intrinsic variable with respect to the anisotropies. It has
been treated semiclassically (WKB) while the two physical degrees of freedom of
the Universe have been described as quantum variables . In this way, a positive
semidefinite probability density can be constructed for the wave function of the
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quantum subsystem of the Universe.
Their pioneering work inspired us to further develop the research and with our

paper [15] we have shown that, even if the Universe is in a corner-configuration, it is
possible to retrieve an isotropization mechanism that leads the Bianchi IX model
towards an isotropic Universe. This will be fully covered in chapter (4).
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Chapter 3

WKB approximation for the
Polymer quantization of the
Taub Model

In this Chapter we develop a suitable technical algorithm to implement a separa-
tion of the Minisuperspace configurational variables into quasi-classical and purely
quantum degrees of freedom, in the framework of a Polymer quantum Mechanics
reformulation of the canonical dynamics. We then implement this technique to a
Taub Universe, in the presence of a free massless scalar field. In particular, we
identify the quasi-classical variables in the Universe volume and a suitable function
of the scalar field, while the purely quantum degree of freedom corresponds to the
Universe anisotropy. We demonstrate that the Taub cosmology is associated to a
cyclical Universe, oscillating between a minimum and maximum volume turning
points, respectively. The pure quantum Universe anisotropy has always a finite
value.

3.1 Introduction

One of the most puzzling shortcomings of the Universe representation in modern
Cosmology is the presence of an initial singularity, predicted by the Einstein equation,
but undoubtedly it is an unphysical ultraviolet divergence to be somehow regularized
[47, 31, 56].

Various non-singular cosmological models can be constructed on a classical and
quantum level, see for instance [17] but the emergence of a Bounce Cosmology can
be attributed to the implementation of Loop Quantum Gravity on a cosmological
setting, see [4]. When a metric approach is considered, the most natural way to
deal with a singularity-free cosmological model, relies on the implementation of a
Polymer Quantum Mechanics approach to the Minisuperspace [19, 4]. This approach
is, de facto, a discretization procedure of the considered configurational variables
(in cosmology they are Universe scale factors), which turn out to live on a graph
and can have only a discrete spectrum, for a picture of the literature in merit, see
[48, 5, 34, 19].

From the side of the quantum physics of space-time, an highly non-trivial question
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concerns the absence of a parametric (external) time variable, when the canonical
method is implemented [26, 51, 46, 38].

Among many different proposal to construct a suitable clock in quantum gravity
[32], it stands the WKB approach proposed in [54], see also [28]. The proposed
scenario relies on a Born-Oppenheimer approximation, in which some Minisuperspace
variables behaves slowly and are quasi-classical degrees of freedom, becoming a good
clock for the fully quantum and rapidly changing variables. In other words, the time
dependence of the wave function of the quantum part is recovered by its dependence
on the quasi-classical variables, in turn linked to the coordinate time.

The present work explores the possibility to deal with a cosmological model in
which the singularity is regularized via a Polymer Quantum Mechanics approach and
a time dependence of the Universe wave function is defined via a Born-Oppenheimer
decomposition of the quantum dynamics. The non trivial technical question we
address here is to reconcile the momentum representation of the quantum dynamics,
mandatory for a Polymer quantization, as developed in [19] for the continuum limit
and the WKB scheme, thought in the coordinate representation. The crucial point
is that the potential term emerging in the Minisuperspace model is, in general,
non quadratic in the configurational variables, like instead in general is the Kinetic
part of the Hamiltonian in the momenta. To overcome this difficulty, we introduce
a suitable and general algorithm and then we implement it in the particular and
important case of a Taub Cosmological model [40, 47].

The classical Taub solution links a non-singular expanded universe to a singular
point of the space-time curvature, as it naturally arises because it is nothing more
than a Bianchi IX model with two equal cosmic scale factors (the spatial geometry
is the same of a closed Robertson-Walker geometry).

The cosmological model resulting from our regularization is a very intriguing
paradigm: we get an evolution quantum picture, whose description corresponds to a
(non-singular) cyclical Universe.

Our study of the Taub cosmology in the presence of a scalar field is performed
using Misner-Chitrè-like variables [25]. The quasi-classical variables are identified in
the scalar field and in the one that is most directly linked to the Universe volume,
actually in the adopted variables the isotropic metric component and the anisotropies
are somehow mixed together. The quantum degree of freedom is identified in the
relic anisotropy coordinate of the Taub model, a suitable redefinition of the variables
is also necessary during the technical derivation.

The resulting evolution (Schrödinger) equation for this anisotropy variable has,
in the spirit of the analysis here presented, two main physical implications: i) the
Taub model is reduced to a cyclical Universe, evolving between a minimum and a
maximum value of the Universe variables, offering an intriguing paradigm for the
physical implementation of a cosmological history: clearly the maximum volume
turning point is expected to live in a classical domain of the Universe dynamics,
while the Bounce turning point has a pure quantum character , in the sense of a
Polymer regularization; ii) the Universe anisotropy is always finite in value as a
result of the singularity regularization and its specific value in the Bounce turning
point depends on the initial conditions of the system, but in principle, it can be
restricted to small enough values to make the Bounce dynamics unaffected by their
behavior, i.e. the applicability of the Born-Oppenheimer approximation is ensured
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in the spirit of the analysis provided in [1].
All of this is inserted in [14] that is undergoing the refereeing procedure.

3.2 The generalization of the Vilenkin Approach

In this paragraph I will extend the study of Vilenkin [54] to the case of a totally
general homogeneous universe. We will start from the Wheeler-De Witt equation in
the momenta base that is written as:[

gαβ
(
∂S

∂pγ

)
pαpβ − U

(
∂S

∂pγ

)
−Hq

]
ψ (p) = 0 (3.1)

and the Action S is in the ADM form and the wave function will be:

ψ (p) = A (p) e
i
}S(p)φ (p, q) . (3.2)

The first step to achieve the generalized approach is to introduce a generalization
of the Derivative operator [39] that will greatly help in the following. Let us start
from the simplest cases:

Dµ
p [pν ] = Γ (ν + 1)

Γ (ν − µ+ 1)p
ν−µ

Dµ
p [ep] = Dµ

p

[ ∞∑
k=0

pk

k!

]
=
∞∑
k=0

pk−µ

Γ (k + 1− µ) ≡ E
p
µ ;

(3.3)

where Epµ is the generalized exponential function defined by:

Eapµ ≡ pµeapγ∗ (µ, ap) ,

γ∗ (µ, ap) ≡ e−ap
∞∑
j=0

(ap)j

Γ (µ+ j + 1) .
(3.4)

let us further advance and introduce the case of a grade-n polynomial as the exponent

Dµ
p [eap]=Dµ

p

[ ∞∑
k=0

(ap)k

k!

]
=aµ

∞∑
k=0

(ap)k−µ

Γ (k + 1− µ)≡a
µEapµ (3.5)

let us define another function for the purpose of this paper

Lnµ
[
Eapµ

]
≡ ap . (3.6)

When everything is taken into account it must be said that as soon as we put a
generic function in the place of the exponential of a polynomial, all the maths starts
to decade because the initial definition has a lot of problems that are solved only in
the case of polynomial functions. In the following this generalized derivative will be
often used because we will only consider functions that are related to polynomial.
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3.2.1 Ordinary Case

The Hamilton-Jacobi equation is described by the first order expansion of the
Wheeler-DeWitt equation. In order to obtain it, it’s necessary to expand the
exponential in its power series and take only the right order terms. We get:

ψ (p) = A (p)
[
1 + i

}
S (p)− 1

2}2S
2
]
φ (p, q) (3.7)

and so the WDE becomes at the lowest order:

gαβ
(
∂S

∂pγ

)
pαpβA (p)

(
− 1

2}2S
2
)
φ (p, q) +

−U
(
∂S

∂pγ

)
A (p)φ (p, q) = 0 ;

(3.8)

with the due simplifications and introducing the notation
(

∂
∂pγ

)
≡ (∂γ) we obtain

gαβ
(
∂S

∂pγ

)
pαpβ

S2

}2 + 2U
(
∂S

∂pγ

)
= 0 . (3.9)

that reproduce exactly the Hamilton-Jacobi equation of the classical case once we
identify

(
∂S
∂pγ

)
with hγ .

At the next order we get two separate equations given that, as in the case analyzed
by Vilenkin, we can exploit the adiabatic approximation. let us start analyzing first
the equation for the amplitude A and then the one for the quantum wavefunction.
Studying the general case, we don’t have the explicit forms of the metric and the
potential term, and so we can’t let them act directly on the wavefunction; what we
can do is, instead, multiply by the identity both of the terms defining

I = (i}∂γ)−1 (i}∂γ) . (3.10)

The desired equation can be obtained at the next order of the expansion in }.
Multiplying by the identity defined above and having the exotic derivative acting
only on the amplitude while the normal one acts on the exponential term we obtain:

gαβpαpβ
[(
∂−1A

)(
∂ e

i
}S
)]
φ− U

[
(∂A)

(
∂−1e

i
}S
)]
φ = 0 (3.11)

Those are not the only terms at the right order so we multiply again the equation
by the identity and we get:

igαβpαpβ
{[

2∂−1
(
∂∂−1A

)
(∂S)

]
+
[(
∂−2A

)(
∂2S

)]}
e
i
}S+

−U}
[
2 (∂A)

(
∂−1e

i
}S
)]

= 0
(3.12)

And this is the equation for the amplitude A (p) .
Now we analyze the equation for the pure quantum wavefunction. As in the above

case, we multiply the initial equation by the identity, but this time the important
part, in order to obtain the Schrödinger equation, is when the exotic derivative
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acts on the exponential and the normal one acts on the quantum term; before we
approach the real calculation it’s opportune expanding the action in its power series:
S (p) =

∑∞
k=0 ck (t) pk (t).

let us start applying the exotic derivative on the exponential using the definition:

(i}∂γ)−1 e
i
}
∑∞

k=0 ckp
k = (i}∂γ)−1

∞∏
k=0

∞∑
j=0


(
i
}ckp

k
)j

j!

 =

= 1
i}

 1∑∞
k=1

[
i
}ckk

] ∞∏
k=0

∞∑
j=0

(
i
}ckp

k
)j+1

Γ (j + 2)

 =

= 1
i}C

∞∏
k=0

E
i
} ckp

k

−1 ,

(3.13)

where Γ is the Euler Gamma Function, for the sake of notation I have defined
C =

∑∞
k=1

i
}ck and I have introduced the generalized exponential function defined

above in (3.4). The equation

Ĥ0
(
∂−1e

i
}S
)

(∂φ) = Ĥqe
i
}Sφ (3.14)

becomes, exploiting (3.13),

Ĥ0
1
C

∞∏
k=0

E
i
} ckp

k

−1 (∂γφ) = Ĥqe
i
}
∑∞

k=0 ckp
k

φ , (3.15)

where Ĥ0 is the classical part of the WD. We highlight in particular the property of
one of the terms in equation (3.15):

1
C

∏∞
k=0E

i
} ckp

k

−1

e
i
}
∑∞

k=0 ckp
k

= F (p)
F ′ (p) = 1

∂γLn−1 [F (p)] (3.16)

and so we obtain:
Ĥ0

1
∂γLn−1 [F (p)] (∂γφ) = Ĥqφ . (3.17)

We can rewrite the p-derivative of the logarithm as its time derivative times ∂t
∂pγ

,
thanks to the properties of the differentials, and it ensures that it’s possible to obtain
the time derivative even of the quantum terms. let us see how it can be done

Ĥ0
1

∂tLn−1 [F (p)] ∂γt
(∂γφ) = Ĥqφ . (3.18)

The time derivative of the logarithm, ∂tLn−1 [F (p)] can be written as i
}D and

so we obtain the equation:

1
iD
}

(
∂pγ
∂t

∂φ

∂pγ

)
= Ĥ0

−1
Ĥqφ . (3.19)
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We can take all the temporal dependence of the above equation and define a new
time derivative in τ in order to get

− i} 1
D

(
∂φ

∂t

)
= Ĥ0

−1
Ĥqφ , (3.20)

if we define τ such that
∂

∂τ
≡ 1

D

(
∂

∂t

)
(3.21)

and after we take all the other terms to the second member we obtain:

− i}∂φ
∂τ

= Ĥ1φ (3.22)

that is the desired Schrödinger’s equation for the quantum wavefunction. In equation
(3.22) I have defined

Ĥ1 ≡ Ĥ−1
0 Ĥq

3.2.2 Polymer Case

As seen in the section about the Polymer quantum mechanics, imposing a Polymer
quantization means assuming a discrete structure for some of the variables of the
phase space. The consequence of this fact is that it’s not possible to associate to the
conjugated variables quantum differentials operators as in the ordinary case. The
Polymer paradigm, to solve this problem, consists in the substitution p→ 1

µ sin (µp).
As a consequence, the Polymer version of the WD equation is:[

}2

µ2
ˆgαβ sin

(
µpα
}

)
sin
(
µpβ
}

)
− U −Hq

]
ψ = 0 . (3.23)

Expanding it at the lowest order and using the power series of the exponential we
find the Hamilton-Jacobi equation for the Polymer case:

−}2

µ2
ˆgαβ sin

(
µpα
}

)
sin
(
µpβ
}

)
AS2φ

2}2 − UAφ = 0

⇒ 1
µ2

ˆgαβ sin
(
µpα
}

)
sin
(
µpβ
}

)
S2 + 2U = 0 .

(3.24)

As seen above at the next order we find two separate equations because of the
adiabatic approximation. In order to find those equations we will use the same
method of the last section with the identity defined by

I = (i}∂γPol)−1 (i}∂γPol) .

Using the same notation of the last section we get:
}2

µ2
ˆgαβ sin

(
µpα
}

)
sin
(
µpβ
}

)
φ− UIψ = 0 ⇒

}2

µ2
ˆgαβ sin

(
µpα
}

)
sin
(
µpβ
}

)
I
(
∂−1
PolA

)
(∂PolE+)φ− UI

[
(∂PolA)

(
∂−1
PolE+

)]
φ = 0

⇒ }2

µ2
ˆgαβ sin

(
µpα
}

)
sin
(
µpβ
}

)(
∂−1
Pol

)
(∂Pol)

[(
∂−1
PolA

)
(∂PolE+)

]
φ−

U
(
∂−1
Pol

)
(∂Pol)

[
(∂PolA)

(
∂−1
PolE+

)]
φ = 0 .

(3.25)
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If we write explicitly the known terms we obtain:

i}
µ2

ˆgαβ sin
(
µpα
}

)
sin
(
µpβ
}

) [
2
(
∂−1
PolA

)
(∂PolS) +

(
∂−2
PolA

) (
∂2
PolS

)]
E+

− U}
[
2 (∂PolA)

(
∂−1
PolE+

)]
= 0

(3.26)

This is the equation for the Polymer amplitude A.
Although the calculation made till now demonstrates that the equations that we

obtain in both the representations are the same taking into account the correction
introduced by the passage from one to the other, let us see what happen to the
quantum wavefunction. The method is exactly the same of the last section since
f [sin (p)] ≡ f (p). The equation

Ĥ0Pol

(
∂−1
Pole

i
}S
)

(∂Polφ) = ĤqPole
i
}Sφ (3.27)

becomes, exploiting (3.13),

Ĥ0Pol
1
C

∞∏
k=0

E
i
} ckp

k

−1 (∂γφ) = ĤqPole
i
}
∑∞

k=0 ckp
k

φ , (3.28)

where with Ĥ0Pol has been indicated the classical part of the WD in the Polymer
representation. In this particular case the generalized exponential function contains
all the Polymer correction and it is substantially different from the ordinary one.
We highlight, even in this case, the property of one of the terms in equation (3.28):

1
C

∏∞
k=0E

i
} ckp

k

−1

e
i
}
∑∞

k=0 ckp
k

= F (p)
F ′ (p) = 1

∂γLn−1 [F (p)] (3.29)

and so we get:
Ĥ0Pol

1
∂γLn−1 [F (p)] (∂γφ) = ĤqPolφ . (3.30)

Taking into account the properties of the differentials, we can rewrite the p-derivative
of the logarithm as the time derivative of the logarithm times ∂t

∂pγ

Ĥ0Pol
1

∂tLn−1 [F (p)] ∂γt
(∂γφ) = ĤqPolφ . (3.31)

The time derivative of the logarithm, ∂tLn−1 [F (p)] can be written as i
}DPol

and so we get the equation:

1
iDPol

}

(
∂pγ
∂t

∂φ

∂pγ

)
= Ĥ−1

0PolĤqPolφ . (3.32)

We can take all the temporal dependence of the above equation and define a new
time derivative in τ in order to get

− i} 1
DPol

(
∂φ

∂t

)
= Ĥ−1

0PolĤqPolφ , (3.33)
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if we define τPol such that
∂

∂τPol
≡ 1

DPol

(
∂

∂t

)
(3.34)

and after we take all the other terms to the second member we obtain:

− i} ∂φ

∂τPol
= Ĥ1Polφ , (3.35)

where
Ĥ1Pol ≡ Ĥ

−1
0PolĤqPol

.
The equation above is the desired Schrödinger equation and it’s equivalent to the

ordinary case. Clearly both in the time variable and in the terms of the Hamiltonian
there is the Polymer correction, but formally they are the same.

3.2.3 Conserved Current

We analyze now the probability current defined from the WDE in order to
obtain the continuity equation that allow us to replicate the Vilenkin approach.
We start from ψ (p) = A (p) e

i
}S(p)φ (p, q) and its complex conjugated ψ∗ (p) =

A† (p) e−
i
}S(p)φ∗ (p, q). Imposing the Hamiltonian constraint we can formally find

pα = f (hα) along the equation of motion. Furthermore it is possible to use the
Hamilton equations to find the analytical expressions for ṗ and ḣ. The definition of
the probability current is:

Jδ = i

2}pαpβ ĝ
αβ
(
∂

∂pδ

)−1( ∂

∂pγ

)−1

[ψ∗∂γψ − ∂γψ∗ψ] (3.36)

We differentiate the above equation to obtain:

∂δJ
δ =

i

2}pαpβ ĝ
αβ
[(
∂−1
γ ψ∗

)
(∂γψ)− (∂γψ∗)

(
∂−1
γ ψ

)
− ψ∗ψ + ψ∗ψ − ψ∗ψ + ψ∗ψ − ψ∗ψ + ψ∗ψ

]
+ i

2}∂δ
(
pαpβ ĝ

αβ
)
∂−1
δ

[(
∂−1
γ ψ∗

)
(∂γψ)− (∂γψ∗)

(
∂−1
γ ψ

)]
+ i

2}pαpβ ĝ
αβ∂−1

δ

{
∂δ
[(
∂−1
γ ψ∗

)
(∂γψ)− (∂γψ∗)

(
∂−1
γ ψ

)]}
+

+ i

2}pαpβ ĝ
αβ∂−1

δ ∂−1
γ [(∂δψ∗) (∂γψ)− (∂γψ∗) (∂δψ) + ψ∗ (∂δ∂γψ)− (∂δ∂γψ∗)ψ] ;

(3.37)

with the due simplifications and defining

Λ ≡
[(
∂−1
γ ψ∗

)
(∂γψ)− (∂γψ∗)

(
∂−1
γ ψ

)]
(3.38)
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we obtain the following equation:

∂δJ
δ=

i

2}pαpβ ĝ
αβ
[
4Λ+

(
∂−1
δ ∂−1

γ ψ∗
)
(∂δ∂γψ)−(∂δ∂γψ∗)

(
∂−1
δ ∂−1

γ ψ
)]

+
i

2}pαpβ ĝ
αβ
[(
∂δ∂
−1
γ ψ∗

)(
∂−1
δ ∂γψ

)
−
(
∂−1
δ ∂γψ

∗
)(
∂δ∂
−1
γ ψ

)]
+

i

2}
2∂δ
(
pαpβ ĝ

αβ
)
∂−1
δ Λ .

(3.39)

The last two terms within the square brackets of the above equation are null for
the properties of the generalized derivative while the last line of the right hand side
reproduce exactly the equation of motion and so it’s null.

From the analysis of the term in Λ it is evident that the only terms at the right
order in (}) are:

Λ = i
(
∂−1
γ |A|2

)
(∂γS) |φ|2+

+|A|2
(
∂−1
γ E−

)
E+φ

∗(∂γφ)− |A|2E−
(
∂−1
γ E+

)
(∂γφ∗)φ ,

(3.40)

with the notation E± ≡ e±
i
}S . A property very important of the generalized

derivative is, as in the ordinary one, the Leibniz law, that applied in this case gives
the relation (

∂−1
γ E−

)
E+ + E−

(
∂−1
γ E+

)
=D−1

p (E−E+)=D−1
p (1) = p (3.41)

and so it is possible to express one term of the left hand side as a function of the
other, in order to maintain the initial ordering we choose the relation E−

(
∂−1
γ E+

)
=

p−
(
∂−1
γ E−

)
E+ and we get

Λ = i
(
∂−1
γ |A|2

)
(∂γS) |φ|2 + |A|2

(
∂−1
γ E−

)
E+

(
∂γ |φ|2

)
(3.42)

the term that contains p is of a different order and so it can be neglected.
As for the second term on the right hand side of the first line of the equation

(3.39) the only term of the right order is i
(
∂−1
δ ∂−1

γ |A|2
)

(∂δ∂γS) |φ|2. At the end we
can say that the dominant terms of the equation (3.39) reduce to:

∂δJ
δ= i

[(
∂−1
γ |A|2

)
(∂γS)|φ|2+

(
∂−1
δ ∂−1

γ |A|2
)
(∂δ∂γS)|φ|2

]
+

+ |A|2
(
∂−1
γ E−

)
E+

(
∂γ |φ|2

)
.

(3.43)

Those are the equations (3.12) and (3.14) for the Universe wavefunction and for its
complex conjugate derived before. Considering their definitions the term on the
right hand side it’s identically null and so even in the case of this study there is a
conserved probability current. This demonstration is valid for both Standard and
Polymer Quantum mechanics once taken the correct assumptions.



52 3. WKB approximation for the Polymer quantization of the Taub Model

3.3 Application to the Taub Model

In this section I will applicate the results of the previous sections to the Taub
Model (one of the particular cases of Bianchi IX model), the result will be a quantum
wavefunction for the Universe that will allow us to infer the behavior of the Early
Universe.

Although usually the best choice for this kind of study are the Misner Variables
(α, β+, β−) for their immediate physical interpretation: α is related to the volume of
the Universe, while the β are related to the two physical degree of freedom of the
Gravitational Field, for the following discussion I chose another set of variables more
complicate and with a not immediate physical sense, the Misner-Chitrè variables.
They enable us to study the dynamics of the system in the so-called Poincaré Half
Plane that eliminate the dynamics of the potential’s wall. In particular the two set
of variables have the following relations [49]:

α− α0 = −eτ 1 + u+ u2 + v2
√

3v

β+ = eτ
−1 + 2u+ 2u2 + 2v2

2
√

3v

φ = eτ
−1− 2u

2v .

(3.44)

In order to make the Vilenkin Approach works it’s necessary to insert a term of
matter, for the purpose of this study I chose the Scalar Field.

The dynamics of this model near the singularity reduces to the one of a particle
that hit continuously the walls of a pseudo-triangular box [43] [44]; the cosmological
singularity is reached when the trajectory ends in one of the corner of the box. This
model consists in taking one preferential direction in the β-plane, and so only one of
the walls of the Bianchi IX Universe that the particle hits only one time and then
goes directly in the opposite corner. This means that the Misner β− is identically
null and so the Misner-Chitrè u is always a constant and equal to −1/2, implying
that the conjugate momentum pu is always zero.

In the chosen variables the Super-Hamiltonian constraint H = 0 leads to a WD
equation without all the terms in pu. In this case the metric assumes the simple
form

ds2 = ε

v2

[
du2 + dv2

]
. (3.45)

In order to make the math easier we change again variables, introducing

v = ρ sin (2δ)
u = ρ cos (2δ) ,

(3.46)

with 0 < ρ <∞ and 0 < δ < π. If we insert them in the metric it’s simple to verify
that (3.45) becomes

ds2 = ε

[
dρ2

ρ2 sin2 (2δ)
+ 8dδ2

sin2 (2δ)

]
. (3.47)
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If now we define dx = dρ/ρ e dθ = dδ/ sin (2δ) and integrate them we find two
variables with the same limits of the Misner-Chitrè ones

x = log |ρ| , −∞ < x <∞

θ = 1
2 log | tan (δ) | , −∞ < θ <∞ ;

(3.48)

with a few calculations it’s possible to rewrite the term sin2 (2δ) present in (3.47) as
a function of the new variable θ only as

sin2 (2δ) = 4 sin2 (δ) cos2 (δ) =

4 sin2
[
arctan

(
e2θ
)]

cos2
[
arctan

(
e2θ
)]

=

4 e4θ

e4θ + 1
1

e4θ + 1 = 2
1 + cosh (4θ)

(3.49)

where I used the formula sin2 [arctan (x)] = x2

x2+1 and the definition of the hyperbolic
cosine. With these substitutions the metric becomes

ds2 = ε

[
2dρ2

1 + cosh (4θ) + 8dθ2
]
, (3.50)

we can choose a gauge and we decided to use the condition H ′ = θH and so the
Hamiltonian of the system becomes

H = θ

[
−p2

τ −
p2
θ

8 + cosh2 (2θ) p2
x

]
. (3.51)

3.3.1 Ordinary Case

let us analyze this Hamiltonian (3.51) in order to get the equations for the
dynamics of the system, we derive them via the Ehrenfest Theorem as

〈ṗθ〉 = 1
i~
〈[pθ, H]〉 = p2

τ + p2
θ

8
〈τ̇〉 = 1

i~
〈[τ,H]〉 = −2θpτ

〈θ̇〉 = 1
i~
〈[θ,H]〉 = −θpθ4

〈ẋ〉 = 1
i~
〈[x,H]〉 = 2θ cosh2 (2θ) px

(3.52)

The Hamiltonian (3.51) doesn’t depend explicitly on τ and x and so their
momenta are constant of motion. Those are the equations that describe the dynamics
of the Universe.

Now I will adapt the Vilenkin approach to the Taub Universe. First of all I
will use a wavefunction in the form ψ(pτ , pθ, px) = A(pτ , pθ) e

i
~Sχ(pτ , pθ, px) where

S(pτ , pθ) is the Action of the system. If we take the lowest order of the Hamiltonian
constraint Hψ = 0 we find the Hamilton-Jacobi equation for the system as in (3.9):

p2
τS dS − ~2pθ dpθ

4 = 0 ; (3.53)
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as seen in the previous section we derive the equations for the Amplitude of the
wavefunction and the Schrödinger equation for the dynamics of the quantum variables
respectively as:

− i

~
p2
τA

∂S

∂pθ
+ p2

θ

8
∂A

∂pθ
= 0 (3.54)

i~
∂χ

∂t
= p2

xχ (3.55)

Putting together equations (3.53) and (3.54) we get the amplitude of the Universe
wavefuntion as A = A0e

−4i pτ
pθ and this completely characterize the classical part of

the probability density defined above.
The variable t, that appears in (3.55), is a time-variable defined by ∂

∂t ≡
1

∂S
∂pθ

cosh2(2θ)
∂
∂z and z is the Vilenkin time defined by d

dz ≡ ṗτ
∂
∂pτ

+ ṗθ
∂
∂pθ

. If we

consider a quantum part of the Universe wavefunction in the form χ = e
i
}Etφ(pθ, px)

and we put it in (3.55) we can solve it and we find

E = p2
x

2
φ(px) = C1δ(px − pE,x) + C2δ(px + pE,x)

φ(x) = 1√
2π
e−ipE,xx

(
C1 + C2e

2ipE,xx
)
.

(3.56)

3.3.2 Polymer Case

let us go back to the Hamiltonian (3.51) and use the Polymer Quantum Dynamics
instead of the classical one. If we want the Hamilton equations we must remember
that in this case the canonical commutator is [x̂i, p̂i] = i} cos (µpi). The Wheeler-De
Witt equation in this case is in the form:

θ

{
− 1
µ2 sin2 (µpτ )− 1

8µ2 sin2 (µpθ)
}

Ψ+

+θ
{

cosh2 (2θ)
µ2 sin2 (µpx)

}
Ψ = 0

(3.57)

With the same calculations of the previous section we find the equations for the
dynamics of the particle Universe

〈ṗθ〉 = 1
µ2 sin2 (µpτ ) + 1

8µ2 sin2 (µpθ)

〈τ̇〉 = θ

µ
sin (2µpτ )

〈θ̇〉 = θ

4µ sin (2µpθ)

〈ẋ〉 = 2θ cosh2 (2θ)
µ

sin (2µpx) .

(3.58)

As in the previous section, even in this case the other two momenta are constant of
motion. Those are the equations that describe the dynamics of the Early Universe.
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Now we use the Vilenkin approach in this case, from equation (3.57) we can derive
the Hamilton-Jacobi equation, the equation for the amplitude of the wavefunction
and the Schrödinger equation for the quantum variables respectively

1
µ2 sin2 (µpτ )S dS − }2

4µ2 sin (µpθ) cos (µpθ) dpθ = 0 (3.59)

iA sin2 (µpτ )
~

∂S

∂pθ
+ sin2 (µpθ)

8
∂A

∂pθ
= 0 (3.60)

i~
∂χ

∂tpol
= [1− cos (µpx)]χ

µ2 (3.61)

Using together equations (3.59) and (3.60) we get the amplitude of the Universe

wavefuntion as A = A0e
−4i sin(µpτ )

sin(µpθ) and this completely characterize the classical part
of the probability density defined above.

The variable tpol, that appears in (3.61), is a time-variable defined by ∂
∂tpol

≡
sin(µpτ )

~ cos(µpθ) cosh2(2θ)
∂

∂zpol
where zpol is the Vilenkin time in the Polymer representation.

If we consider a quantum part of the Universe wavefunction in the form χ =
e
i
}ktpolφ(pθ, px) and we put it in (3.61) we can solve it and we find

k = k(µ) = 1
µ2 [1− cos (µpx)] ≤ kmax = 2

µ2

φk,µ(px) = C1δ(px − pk,µ) + C2δ(px + pk,µ)

φk,µ(x) = 1√
2π
e−ipk,µx

(
C1 + C2e

2ipk,µx
)
.

(3.62)

We can notice that those are the same results of the previous section once taken into
account the Polymer modifications, moreover we can also notice that the eigenvalue
here has an upper limit and this will be very important in the dynamics of the
Universe.

3.4 Discussion of the results
We now analyze the equations that we found in the previous section, in particular

the Hamilton equations (3.52) and (3.58) obtained in the two different cases. If we
integrate those systems we obtain the following equations for the volume of the
Universe τ , the scalar field θ and its momenta pθ

〈pθ〉 = 2
√

2pτ tan (J)
〈θ〉 = C2 cos2. (J)

〈τ〉 = C3 + 4
√

2C2
3 cos3. (J) csc (J) ·

· 2F1

[1
2 ,

3
2 ,

5
2 , cos2. (J)

]
sin (J) .

(3.63)

Those are the equation for the ordinary case in which we defined J = 1
4

(
pτz + 8

√
2C1

)
,

the dynamics of the volume of the Universe will be plotted in Fig (3.1) while the
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equation for the anisotropy x is numerically solved and we will show its dynamics in
Fig (3.2). The Universe starts at a point with finite volume, evolves towards the
potential wall and then goes straight into the singularity without the possibility to
evade it. The anisotropies, instead, explode near the singularity and are practically
null near the wall.

For the Polymer case there are no analytical solutions of the system (3.58), all
the equations are numerically integrated and their dynamics will be plotted in Fig
(3.3) and Fig (3.4) (solid line).

The plots shown in figure (3.3) and (3.4) allow us to state that the Taub model
can be reduced to a singularity-free model with a cyclical behavior in both volume
and anisotropies. In the four plots it’s possible to highlight the main differences
between the two representations, in the ordinary case the singularity is unavoidable,
while in the Polymer approach there is a periodic behavior of the Universe variables,
and so the singularity is regularized.

If we take the general solution of the Schrödinger equation (3.62) with the
boundary conditions due to the Taub Cosmological Model, that in our variables it
can be shown that read as φ(x0) ≡ φ(∞) ≡ 0 (where we defined x0 = log

(
1√
2

)
), the

wave function of the Universe becomes

Ψ = C1√
2π
e
i
}kz

[
eipx − eip(x0−x)

]
(3.64)

With this we can now construct a Gaussian packet and study its dynamics, the first
step is to define the packet as

Ξ =
∫ kMax

0
exp

[
−(k − k0)2

2σ2

]
Ψ dk (3.65)

then we numerically evaluate this integral at different times in order to obtain a
dynamics of the Gaussian packet, in figure (3.4) we have shown the results of our
analysis and we have even compared the evolution of the Gaussian packet with
the dynamics of the mean value of the quantum anisotropy that we got with the
Ehrenfest theorem.

From the plot it can be seen that the two trajectories coincide up to the Bounce-
turning-points, then the packet dynamics reveals a series of turning point like the
volume variable and we can even see a correspondence between the behavior of the
two variables. In those points the variance, calculated via the distribution theory, on
the Ehrenfest equation for the anisotropy is comparable to the mean value and so
we can say that in the bounce-turning-points of this model, the Ehrenfest theorem
cannot be applied straightforwardly, i.e. the packet dynamics shows the correct
evolution of the anisotropy variable. Thus we can conclude that in our approach the
true singularity of the Taub Model is regularized with the Polymer Quantization
within the Vilenkin approach.

In figure (3.5) we have shown the dynamics of the other Universe variables, while
for the momentum conjugated to the scalar field we can state that in the Polymer
case it gains an oscillatory behavior between a minimum and a maximum turning
point, for the scalar field the difference between the two representations is only a
time-shift, in particular we can observe a delay induced by the Polymer Quantum
Mechanics.
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Figure 3.1. Dynamics of the volume of the Universe in the Vilenkin time variable z defined
above. The Universe starts at finite volume, reach the potential barrier (z=0) and then
goes toward the singularity of the model (z = ∞).

The reason we concentrate our attention on the Taub cosmology in the presence
of a massless scalar field consists both of the presence of the necessary Minisuperspace
degrees of freedom and because the WKB construction of a Schrödinger evolution
for the real quantum variables naturally apply for the Universe anisotropy degree
of freedom. More specifically, on one hand, the possibility to deal with two quasi-
classical variables and a purely quantum one, allows to fully implement the scheme
introduced in [54] and, on the other hand, the polymer regularized anisotropy variable
(we will see that its value no longer diverges, as in standard evolution) is a phase
space sample very appropriate to the concept of "smallness" of the quantum system
also invoked in [54].

Furthermore, the Taub cosmology has a non-trivial meaning for the physics of
the early Universe. It corresponds to a Bianchi IX model with two scale factor equal
to each other and, it is well-known, that the Bianchi dynamics in the "corner" of
the spatial curvature induced potential [15, 48] closely resembles small oscillations
around a Taub configuration. Thus the generality of the Bianchi IX cosmology,
versus a generic inhomogeneous cosmological model [47] justifies the interest for
the present analysis. Finally, implementing the polymer paradigm within a WKB
decomposition of the Minisuperspace dynamics, we are trying to clarifying the
behavior of the anisotropy degree of freedom when a Big-Bounce emerges. The case
of a vacuum Taub cosmology, when the polymer quantum mechanics is implemented
on the anisotropy dynamics only, was analyzed in [5], showing how the cosmological
singularity is not removed, but only probabilistic weakened. The merit of such
an investigation consists in clarifying that the emergence of a bouncing cosmology
requires that the polymer reformulation also involves the Universe volume. In this
respect, the present analysis is the conceptual continuation of the study in [5]. We
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Figure 3.2. Dynamics of the anisotropies of the universe in the Vilenkin time variable z
defined above. The Universe starts with a finite degree of anisotropy, it then reaches a
constant value near the potential wall (z=0) and then explodes in the singularity of the
model (z = ∞).

include in the quantum dynamics a massless scalar field in order to deal with a
relational time variable giving a material nature [32].

When we face the description of the anisotropy degree of freedom as a pure
quantum variable, we adopt the quasi-classical representation for both the Universe
volume and the scalar field. However, following the analysis in [54], we are able to
identify, in the end, the label time coordinate along the space-time slicing, with
a suitable function of the volume and the massless scalar field, by using a gauge
fixing. All the variable are approached in the polymer formulation and therefore we
are able to infer a bouncing cosmology, with the very important feature that the
anisotropy degree of freedom is now really "small” in the sense of the WKB analysis
requirement, see also [1] for a more precise characterization of this concept.

By means of some non-trivial technicalities, like a suitable re-definition of the
Misner-Chitrè-like variables here adopted, we finally demonstrate that the Taub
cosmology is a good candidate, in the present paradigm, for describing a cycli-
cal anisotropic Universe, always remaining not to far form the Robertson-Walker
geometry.
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Figure 3.3. Dynamics of the volume of the universe in the Vilenkin time variable zpol
defined above. The Universe starts with a finite volume, it then reaches a series of
turning points.
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Figure 3.4. Dynamics of a Gaussian packet build from the solution of the Schrödinger
equation in the Vilenkin time variable compared to the dynamics obtained with the
Ehrenfest Theorem.
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(a) Dynamics of the momentum conjugated
to the scalar field in the ordinary case
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(b) Dynamics of the scalar field in the ordinary
case
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(c) Dynamics of the momentum conjugated
to the scalar field in the polymer case
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Figure 3.5. Dynamics of the other two variables in both standard and polymer case
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Chapter 4

Quantum dynamics of the
corner of the Bianchi IX model
in WKB approximation

In this Chapter we will analyze the Bianchi IX Universe dynamics within the
corner region associated to the potential term which the spatial curvature induces
in the minisuperspace. We investigate the dynamics in terms of WKB scenario
: the isotropic Misner variable (α) and one of the two anisotropic variables (β+)
are treated as semi-classical, while the remaining anisotropy (β−) is described on a
pure quantum level. The quantum dynamics always reduces to the one of a time-
dependent Schrödinger equation for a harmonic potential with a time dependent
frequency.

The study is done in the vacuum and in the presence of a massless scalar field
φ and a cosmological constant term Λ. The vacuum case is treated in the limits
of a collapsing and an expanding Universe, while the dynamics in presence of φ
and Λ is studied only for t → ∞. In both analyses the quantum dynamics of the
anisotropy variable β− suggests a suppression of the quantum anisotropy associated.
In the vacuum case the corner configuration becomes an attractor for the dynamics
and the evolution resembles that of a Taub cosmology in the limit of a non-singular
initial Universe. This suggests that if the Bianchi dynamics enters deeply enough in
the potential corner the initial singularity is removed and a Taub picture emerges.
The case when φ is present well mimics the de-Sitter phase of an inflationary
Universe. Here we show that both the classical and quantum anisotropies are
exponentially suppressed, so that the resulting dynamics corresponds to an isotropic
closed Robertson-Walker geometry.

4.1 Introduction

The Bianchi IX model [11, 2, 47] has a relevant role in the study of the cosmo-
logical dynamics since, despite its spatial homogeneity, it possesses typical features
of the generic cosmological solution [9, 29, 45], like a chaotic time evolution of the
cosmic scale factors near the cosmological singularity [25, 47]. In the Hamiltonian
representation, the Bianchi IX dynamics can be reduced to that of a two-dimensional
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point-particle in a time-dependent potential [2, 42]. The chaotic features of the
model correspond to an infinite sequence of bounces of the point particle against the
potential walls, which in the representation based on the so-called Misner-Chitrè-like
variables can be shown to induce an ergodic evolution, having also a significant
degree of stochasticity [16, 42, 25].

Approaching the cosmological singularity, the potential term of the Bianchi IX
dynamics resembles an infinite well having the morphology of an equilateral triangle,
as shown in Fig.4.1.

The three open corners which appear in the vertices of such a triangular con-
figuration correspond to the non-singular Taub cosmology [40], which defines the
limit when the Bianchi dynamics is associated to two equal scale factors of the three
possible independent ones.

It was shown [25] (see also the original literature therein) that, during its evolution
toward the initial singularity, there is always a situation where the point-particle
is deeply inside one of the corners and two of the scale factors rapidly oscillate. In
[11] the authors defined this regime as “small oscillation”. It is a well-known result
[47] that the Bianchi IX universe, after spending a long time in this regime, escapes
from it to restore the standard dynamics in the central region of the potential well.
Furthermore, the probability that small oscillations take place again is strongly
suppressed.

In the present analysis we study the situation in which the Bianchi IX dynamics
is trapped in a corner of the potential, but the oscillating small degree of anisotropy,
is in a quantum regime.

In particular, we consider the corner configuration for which β+ → ∞ and
|β−| � 1 (which corresponds to the corner to the far right in Fig. 4.1), given
this is the simplest case to be addressed. Indeed, the potential level surfaces for a
fixed value of the variable α are invariant under a π/3 rotation and it is clear that,
choosing a different “corner”, a re-definition of the coordinates β+ and β−, trough a
π/3 rotation in their plane, would restore the same picture we are considering here.

The paradigm we are addressing corresponds to the WKB proposal of Vilenkin
[54] for the interpretation of the wave function of a small quantum subsystem of the
minisuperspace. The idea is that a part of the primordial Universe has reached a
quasi-classical limit and can therefore play the role of a clock for the small quantum
subsystem.

Here we consider the volume α, the macroscopic anisotropy β+ and φ when
present as semi-classical variables, while the small anisotropy variable β− as quantum
variable. We consider β− to be the quantum variable because its dynamics is somehow
trapped in the corner phase space. In [1] it has been shown that the Vilenkin picture
can be applied to a quantum subset only if, in agreement to the Vilenkin hypotheses,
the region of the phase space concerning that subset is “small”. Therefore, considering
the variable β+ as a quantum coordinate, in the considered corner configuration,
would have no clear physical justification, since its classical dynamics covers a much
larger phase space than it is available to β−. The same it’s true for the variable α
and the scalar field φ.

The analysis in which both β+ and β− are simultaneously treated as quantum
variable must be referred to a quasi-isotropic Universe. In this case both the
anisotropic variables are close to the origin of their plane. For an implementation of
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this scenario in the case of Bianchi IX Universe see [6]. The same quasi-isotropic
scenario, in the case of a Taub has been discussed in [20].

The Bianchi IX dynamics in the corner is studied in two different cases: Bianchi
IX in the vacuum, and also in presence of a massless scalar field φ and a cosmological
constant Λ. The latter is interesting since it mimics an inflationary-like scenario.

In both scenarios, it has been shown that the small quantum degrees of freedom
are naturally suppressed by the Universe’s exponential expansion during the de-Sitter
phase.

In the vacuum case we distinguish two different situations corresponding to the
expanding or collapsing behavior of the Universe respectively. When the volume
expands and the classical anisotropy β+ increases, the standard deviation of the
probability distribution associated to the small quantum anisotropy β− is damped
to zero and the Universe asymptotically approaches a Taub cosmological model [40].
As a result, if the point-Universe enters sufficiently into the corner, this configuration
becomes an attractor and the quantum anisotropy is increasingly damped.

If we consider this picture in the direction of a collapsing Universe instead, we get
that the frequency of the harmonic oscillator associated to the quantum anisotropy
takes a constant value. Therefore, the classical component of the Universe takes the
form of a Taub Universe, possessing a small fluctuating additional anisotropy. It is
known [40] that the Taub model has a singularity in the future, but a non-singular
finite Universe volume in the past. Thus if we start with a point Universe entering
the corner backward in time, thought as the past of the considered framework, the
approach to the initial singularity would be stopped.

In this respect, differently from the pure classical behavior (see [11, 47]), in a
WKB scenario a la Vilenkin, where the small anisotropy is thought as a quantum
degree of freedom, the existence of the initial singularity could be removed. The
backward extension of a Mixmaster dynamics [2] sooner or later would deeply enters
the corner and the limiting initial configuration of the Universe would be a finite
volume Universe, endowed with a small stationary distribution for the relic quantum
anisotropy. This conjecture could offer a more general paradigm if we recall that
the Bianchi IX model is the prototype for the generic cosmological solution [9, 47].

When φ and Λ are included in the dynamics, we consider the limit of an
asymptotic exponentially expanding Universe, according to a de-Sitter phase of an
inflationary paradigm. We show that both the classical macroscopic anisotropy, and
the small quantum one are exponentially suppressed as the volume expands. In
other words, we are implementing a new dynamical scheme for the isotropization
of the Bianchi IX dynamics. This issue completes the analysis in [6], where the
depicted scenario corresponds to the case of two small quantum anisotropies, i.e. the
case when the point-particle is close to the potential center.

The present study seems to be of more cosmological interests since we expect,
due to the time reversibility of the Einsteinian dynamics, that also in the expanding
picture the Bianchi IX Universe spends long time in the corner configuration. This
consideration makes plausible that, on one hand the small anisotropy degree of
freedom is in a quantum regime, and on the other hand, the cosmological constant
term has time to grow, and therefore the de-Sitter phase has time to start.

All of this is included in the paper [15] that has just been published in PRD.
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4.2 Hamiltonian Formulation of the Mixmaster model
The importance of the Hamiltonian formulation of the Mixmaster model, ob-

tained following the ADM method [47], relies on the fact that it shows how it is
possible to reduce the dynamics of the Bianchi IX model to the dynamic of a two-
dimensional point particle performing an infinite series of bounces inside a potential
well.
In this paper we adopt natural units: ~ = c = 1.

The line element for this model is

ds2 = N2(t)dt2 − eqaδabωaωb (4.1)

where ωi are 1-form depending on the Euler angles θ ∈ [0, π], φ ∈ [0, 2π], ψ ∈ [0, 4π)

ω1 = sinψ sin θdφ+ cosψdθ
ω2 = − cosψ sin θdφ+ sinψdθ
ω3 = cos θdφ+ dψ

(4.2)

and N is the lapse function.
Following the computation presented in [47], we obtain the action

SB =
∫
dt(paq̇a −NHB) (4.3)

where pa are the conjugate momenta to the generalized coordinates qa,

pa ≡
∂L
∂q̇a

(4.4)

and the Hamiltonian density can be written as

HB = k

8π2√η

∑
a

(pa)2 − 1
2

(∑
b

pb

)2

− 64π4

k2 η 3R

 (4.5)

where

η 3R = −1
2

∑
a

λ2
ae

2qa −
∑
a6=b

λaλbe
qa+qb

 (4.6)

can be interpreted as the potential for the dynamics.
To obtain a Hamiltonian that resembles the one of a point-particle, it is necessary

to diagonalize the kinetic part introducing the following variables:
q1 = 2(α+ β+ +

√
3β−)

q2 = 2(α+ β+ −
√

3β−)
q3 = 2(α− 2β+)

(4.7)

where α, β± are the Misner variables, introduced by Misner in [2]: α describes
the volume of the Universe, β± describe the anisotropy degrees of freedom.
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The introduction of the Misner variables allows us to write the super-Hamiltonian
constraint for the Bianchi IX Universe in the ADM formalism [2] as

HIX = Nk

3(8π)2 e
−3α(−p2

α + p2
+ + p2

− + p2
φ)+

+ Nk

3(8π)2 e
−3α

[
3(4π)4

k2 e4αVIX(β−, β+) + Λe6α
]

= 0
(4.8)

where (pα, p±) are the conjugate momenta to (α, β±) and we added a classical
scalar field φ and the cosmological constant Λ in order to obtain an inflationary
scenario.
VIX(β−, β+) is the potential of the Bianchi IX model and is given by

VIX(β−, β+) =e−8β+ − 4e−2β+ cosh(2
√

3β−)+
+ 2e4β+ [cosh(4

√
3β−)− 1].

(4.9)

As seen from Fig.(4.1) this function has the symmetry of an equilateral triangle
with steep exponential walls and three open angles.

Figure 4.1. Equipotential lines for the Bianchi IX potential (4.9) in the plane (β+, β−).
[47]

The expressions for the potential 4.9 for large values of |β+| and small |β−| are:

VIX ∝
{
e−8β+ , β+ → −∞, |β−| � 1
48β2

−e
4β+ , β+ → +∞, |β−| � 1

(4.10)

while close to the origin, for β± = 0,

VIX ∝ (β2
+ + β2

−). (4.11)
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The Hamiltonian approach provides the following equations of motion

α̇ = N
∂HIX
∂pα

, ṗα = −N ∂HIX
∂α

, (4.12)

β̇± = N
∂HIX
∂p±

, ṗ± = −N ∂HIX
∂β±

. (4.13)

The Universe evolution at this point is described as the motion of a point-like
particle governed by (4.10) and (4.11) and is characterized by a sequence of bounces
against the potential wall, when the system evolves towards the singularity [47, 48].

4.3 Quantum behavior of the Mixmaster model
In this section we are going to briefly introduce the Wheeler-DeWitt equation

(WDW) and to show how it is used in [54] in order to obtain an interpretation of
the wave function of the Universe.

The WDW equation describes the quantum behavior of the Universe and it can
be seen as the quantum version of the super-Hamiltonian constraint (4.8).

To canonically quantize a system, the required commutation relation is

[q̂a, p̂b] = iδab (4.14)

which is satisfied for p̂a = −i∂a.
Therefore, imposing the constraint equation (4.8) and replacing the canonical

variables with their operators in order to select the physically allowed states, we
obtain the WDW equation

ĤΨ = (∇2 − V )Ψ = 0 (4.15)

where Ψ is the wave function of the Universe, which provides information about the
physical state of the Universe.

It is important to notice that in the general formulation of the WDW equation,
Ψ is defined on a superspace, intended as the infinite dimensional space of all the
possible three-metric where the wave function is defined, while in the present paper it
is defined on a mini-superspace; this is obtained restricting the number of degrees of
freedom of the metric to a finite number by imposing symmetries. This simplification
is possible since we are focusing on homogeneous models where only three degrees
of freedom (the three different scale factors) are allowed.

With this in mind, we can finally write the WDW equation for the Bianchi IX
model

ĤIXΨ = Nk

3(8π)2 e
−3α[∂2

α − ∂2
+ − ∂2

− − ∂2
φ]Ψ+

+ Nk

3(8π)2 e
−3α

[
3(4π)4

k2 e4αVIX + Λe6α
]

Ψ = 0
(4.16)

where Ψ = Ψ(α, β+, β−, φ).
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4.3.1 Resolution of the Schrödinger equation

The quantum probability distribution for the wave function of the universe, as
show in the probability density definition, is given by |χ|2. This can be computed
solving the Schrödinger equation.

Substituting Hq explicitly with its expression, the Shrodinger equation becomes

i
dχ

dτ
=
(
p2
− + 16e4(α+β+)β2

−

)
χ (4.17)

which can be viewed as the Schrödinger equation of a harmonic oscillator with
time-dependent frequency and unitary mass if we impose ω2(τ) ≡ 16e4(α+β+) and
redefine the time variable τ ′ = 2τ . In the following we will use τ instead than τ ′ for
simplicity.

In [35, 36, 37] the authors developed a method to obtain eigenvectors and
eigenvalues for this particular Schrödinger equation using the invariant method. As
summarized in [50] the general solution of an equation of the form (4.17) is given by:

χ =
∑
n

cne
iαn(τ)φn(β−, τ) =

∑
n

cnχn(β−, τ) (4.18)

where cn are numerical coefficients that weight the different χn,

αn(τ) = −(n+ 1
2)
∫ τ

0

1
ρ2dτ

′ (4.19)

χn(β−, τ) = Ωn exp
[
i

2

(
ρ̇

ρ
+ i

ρ2

)
β2
−]Hn(β−

ρ
)
]

(4.20)

where Ωn =
[

1
(π)1/2n!2nρ

]1/2
and ρ is a c-number quantity satisfying

ρ′′ + ω2(τ)ρ− 1
ρ3 = 0 (4.21)

where the ′ indicates a differentiation respect to the time variable ρ depends to,
which is τ .

It is usually complicated to solve (4.21) analytically, but in [36] the authors
developed a method that allows us to have the explicit expression of the ρ as a linear
combination of f(τ) and g(τ), linear solutions of

∂2q

∂τ2 + ω2(τ)q = 0. (4.22)

4.3.2 Bianchi IX in the vacuum

As first part of our work we study the dynamical evolution of the Mixmaster
model in the simplest case: the vacuum. In this case the Hamiltonian (4.8) is simply

H = e−3αK(−p2
α + p2

+ + p2
− + V) (4.23)

where K is a numerical coefficient.
The quantum part of the Hamiltonian Hq is given by

Hq = −p2
− + ω2(τ) =

(
p2
− + 16e4(α+β+)β2

−

)
(4.24)
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as already stated in (4.17).
To compute the solution of (4.17) we need to write ω2(τ) explicitly as a function

of τ . This can be done starting from (4.12), (4.13) and (4.8) . In particular

α̇ = ∂α

∂t
= ∂H0
∂pα

= −2pαke−3α (4.25)

ṗα = ∂pα
∂t

= −∂H0
∂α

= −3H = 0 (4.26)

where H0 = e−3αk(−p2
α + p2

+).

Integrating (4.25) through separation of variables, and using the result of (4.26),
which states that pα has a constant value, we get

e3α = 6|pα|Kt (4.27)

which gives

α(t) = 1
3 log 6|pα|K + 1

3 log t (4.28)

It is worth noticing that, in the calculation above we used the absolute value of
pα; looking at (4.25) we see that α̇, which denotes how the volume of the Universe
changes with time, has the opposite sign of pα. Since our study is based on an
expanding Universe and therefore we need α̇ > 0, we impose pα < 0.
Using (4.28) in the new time variable definition we obtain

τ(t) = 1
6|pα|

log t (4.29)

that can be substitute it in (4.28) to give

α(τ) = 1
3 log 6|pα|K + 2|pα|τ. (4.30)

Given (4.29), and the asymptotic behavior of the synchronous time variable t,
0 < t <∞, we have that −∞ < τ <∞.

As mentioned in the introduction , for the study of the vacuum , we decided
to characterize two different situations: the dynamical evolution of the Bianchi IX
model in an expanding and in a collapsing Universe.

Bianchi IX in the vacuum: expanding Universe

In this section we consider the dynamical evolution when the semi-classical
anisotropy variable β+ increases in the direction of an expanding Universe, that
means β̇+(t) > 0.
To find the explicit expression for β+(t) and consequently for β+(τ), we follow the
same arguments presented in the computation of α(t).
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In particular from (4.13)

β̇+(t) = ∂H0
∂p+

= 2p+Ke
−3α

β+(t) = 1
3
p+
|pα|

log t+ β0 (4.31)

˙p+ = −∂H0
∂β+

= 0 → p+ = const. (4.32)

The ratio p+/|pα| can be simplified using the Hamilton-Jacobi equation(
∂S

∂α

)2
−
(
∂S

∂β+

)2
= 0→ pα = ±p+ (4.33)

and taking into account that we are interested in studying what happens for t→∞
(hence α̇ > 0) and deeply inside the corner, therefore for β̇+ > 0: this translates in
the condition p+ > 0.

Substituting (4.30) and (4.29) into (4.31) we obtain

β+(τ) = β0 + 2|pα|τ (4.34)

The frequency of the harmonic oscillator becomes

ω2(τ) = 16e4(α(τ)+β+(τ))

= 16e4(α0+β0)e16|pα|τ ∝ Cekτ , (4.35)

with k and C constants.
The solution of equation (4.17), with α(τ) and β(τ) given in (4.30) and (4.34), can
be obtained solving (4.22) to find ρ(τ). The 2 independent solutions are :

f(τ) = J0

[
2
√
C
√
ekτ

k

]
(4.36)

g(τ) = N0

[
2
√
C
√
ekτ

k

]
(4.37)

where J0 and N0 represent the Bessel functions of the first and the second kind.
Combining them together we obtain

ρ(τ)= π

2k

√√√√√J2
0

[
2
√
C
√
ekτ

k

]
+

64k2N2
0

[
2
√
C
√
ekτ

k

]
π2 +

8
√

3kJ0
[

2
√
C
√
ekτ

k

]
N0
[

2
√
C
√
ekτ

k

]
π

(4.38)
Substituting (4.38) into (4.18) and defining its conjugate, we can finally compute

numerically the probability distribution for the quantum part of the Universe wave
function, namely

|χ (τ, β−) |2 =
∑
n

cnχn

(∑
m

cmχm

)∗
(4.39)
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The coefficients cn are given by

cn =
∫
χ0χ

∗
ndβ− (4.40)

where χ0 = χn(τ0) and it has been chosen such that |χ0|2 has a gaussian shape
peaked around β− = 0.
We plot |χ|2 as a function of the quantum anisotropic variable β− for different times
t in Fig.4.2.

To conclude the study of the probability density of the wave function of the Uni-
verse, we calculate the probability density of the semiclassical variables, |A(α, β+)|2,
by variable separation.
In particular, A(α, β+) = A1(α)A2(β+) and results:

A(α, β+) = e
W
pα

(α+β+) (4.41)

where W is a constant.
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Figure 4.2. Probability density function for different values of the synchronous time variable
for Bianchi IX in the vacuum in the case β+ = 2|pα|τ , for an expanding Universe.

Bianchi IX in the vacuum: collapsing Universe

In this section we consider the dynamical evolution when β+ decreases for t→∞,
since we are interested in changes in the |χ|2 in the direction of a collapsing Universe.
The equations of motion and the Hamilton-Jacobi equation do not change compared
to those of the previous case (4.31) and (4.33).
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However, the initial assumption in this case is that β̇+ < 0, which translates in
p+ < 0. Therefore the semi-classical anisotropic variable becomes:

β+(τ) = β0 − 2|pα|τ (4.42)

and the frequency ω2(τ) reads as

ω2(τ) = 16e4(α(τ)+β+(τ)) = 16e4β0 (4.43)

which is a constant.
The solution of (4.21) can be computed as in [37] and it results:

ρ(τ) = 1√
ω(τ)

= e−β0

2 . (4.44)

The eigenfunctions χn, which depend on time through ρ(τ), are constant as well;
hence the probability density distribution |χ|2 is defined simply by choosing its
shape at the initial time. Therefore, as the point-Universe moves towards the time
singularity, it moves deeply inside the corner (β̇+ < 0), while the probability density
|χ|2 remains constant.
In this case, given that pα = p+

A(α, β+) = e
W
pα

(α−β+) (4.45)

where W , as before, is a constant.

4.3.3 Bianchi IX model in presence of cosmological constant and
scalar field

Finally we study the Bianchi IX model in the presence of a cosmological constant
Λ and a scalar field φ, in order to mimic the inflationary scenario. In this case the
Hamiltonian takes the form

H = e−3αK(−p2
α + p2

+ + p2
− + p2

φ + V + Λe6α). (4.46)

Hq does not change respect to the previous case, while H0 = e−3αK(−p2
α + p2

+ +
p2
φ + Λe6α).

In this case equations (2.92) and continuity equation give the following probability
distribution for the semi-classical component of the wavefunction of the Universe:

A (α, β+, φ) = A1(α)A2(β+)A3(φ)

where

A1(α) =

Exp


C1 tanh−1

√
p2++p2

φ
+Λe6α√

p2++p2
φ

6
√
p2

++p2
φ


(p2

+ + p2
φ + Λe6α)1/4

A2(β+) = Exp

[
C2
2p+

β+

]



72
4. Quantum dynamics of the corner of the Bianchi IX model in WKB

approximation

A3(φ) = Exp

[
−C1 + C2

2pφ
φ

]
(4.47)

with C1 and C2 constants. Following the same steps of the previous subsection
(4.3.2) we can write the full expression for τ(t), α(τ) and β+(τ)

τ(t) = 1
6
√
p2

+ + p2
φ

log
{

tanh
[1

2
(
6Kt
√

Λ + J
)]}

α(τ)= 1
3log


√

(p2
+ + p2

φ)
√

Λ
sinh

[
2 tanh−1

(
e

6τ
√
p2

++p2
φ

)]
β+(τ) = β0 + 2p+τ

(4.48)

and their asymptotic behavior

−∞ < τ < 0
−∞ < α <∞
−∞ < β+ < β0 (4.49)

Given the complexity of the analytic expression of the time and the Misner variables,
it was not possible to solve (4.21) analytically, therefore we computed |χ|2 numerically
for different values of t.
The plots obtained are shown in Fig (4.3).
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Figure 4.3. Probability density of the quantum subsystem for different values of the time
variable in the case of an expanding volume.

It is worth mentioning that, we realized different plots changing the numerical
values of Λ and the standard deviation σ of |χ0|2. The results did not change respect
to those proposed in Fig.(4.3).
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4.4 Discussion of the results
Here we are going to discuss the results obtained above. It is worth reminding

that in both cases the initial conditions were such that β+ � 1 and |β−| � 1.
Here we found that once we give the initial condition on the quantum anisotropy

β−, namely χn (τ0), if we evaluate the dynamics of a Gaussian packet initially peaked
in β− = 0, we obtain that as β+ grows in time (meaning that the Universe moves
deeper in the corner) the packet tends to peak even more around the value β− = 0.
This can be observed in Fig.(4.2).
We can conclude that the corner of the potential is an attractor for the point-particle
Universe; once the Universe enters, it cannot escape any more. This situation
resembles the case of the Taub Model (a particular case of the Bianchi IX model
where β− is set to zero), which is a singularity-free model. Therefore the result
obtained can be seen as a first step in order to remove the Mixmaster’s singularity.

From the analysis of the wave packet behavior we see that, as far as, the point-
Universe enters deeply in the corner, in correspondence to an expanding Universe,
the small quantum anisotropy is damped to zero, as described by the temporal
profile of its standard deviation, see Fig.(4.2). Firstly we are going to analyze the
subsection (4.3.2). Here we found that, when we evaluate the dynamics of a Gaussian
packet initially peaked in β− = 0, namely χn(τ0), as β+ grows in time (meaning
that the Universe moves deeper in the corner), the packet tends to peak even more
around the value β− = 0.

This can be observed in Fig.(4.2). As a consequence the corner becomes an
attractor for the global system dynamics in the proposed representation and the
Universe approaches on a very good level a Taub cosmological model.

On the contrary, when the point-Universe enters the corner in a backward
picture in time, so that the volume is collapsing, the standard deviation of the small
quantum anisotropy remains constant, as a consequence of the constant character of
the harmonic oscillator frequency. In this case the backward evolution of the Universe
would correspond to a Taub Universe, which is no longer a singular cosmology in
the past, endowed with a small fluctuating anisotropy degree of freedom, in addition
to the macroscopical classical one.

This picture becomes intriguing if the following scenario is addressed. When we
follow, like in [11], the backward dynamics of a classical Bianchi IX model, we know
that it, soon or later, will deeply enter the corner. If the variable β− becomes so
"small" that it is required a quantum treatment for its evolution, we can apply the
above backward picture and the singularity in the past would be removed, due to
the emergence of a Taub model.
Clearly a phenomenological implementation for this suggestive scenario, in the past
history of our Universe, would require a characterization of the available initial
conditions on the cosmological problem and a more detailed understanding of the
time reversibility of the proposed dynamical framework.
Finally we analyze the results of section (4.3.3) summarized in Fig (4.3).

In this case we can conclude that there is not a precise trend of the probability
density evolution in time, but as the Universe evolves in time, the variable β+ leans
to a constant value and the variable β− tends to peak around the value β− = 0; thus
the presence of the cosmological constant tends to isotropize the Universe.
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In the first proposed work, we developed a technical algorithm to implement the
WKB approach to the quantum Minisuperspace dynamics [54] within the Polymer
representation of quantum mechanics [19]. One of the difficulties of the analysis
above consisted in the necessity to deal with the momenta representation of the
quantum dynamics, the only viable for the Polymer quantization procedure, as
approached in the continuum limit. The point is that the potential term of the
Minisuperspace Hamiltonian is, in general, not quadratic in the Minisuperspace
variable, like the kinetic part is in the momenta.

We proposed a procedure to construct the semi-classical WKB limit in the
momentum representation, which is, in principle, applicable to any Minisuperspace
system. Such an algorithm has the aim to implement the concept of a cut-off on the
quantum dynamics of the Universe, by separating the dynamics into a quasi-classical
evolution of a set of configurational variables, e.g. the Universe volume, and those
ones rapidly evolving in a fully quantum picture of the dynamics. According to the
original idea proposed in [54], we arrived to define a Schrödinger-like equation for
the quantum subsystem, allowing a consistent probabilistic interpretation of the
wavefunction.

Then, we applied the general procedure constructed above, to the particular
case of a Taub cosmology, as described in the framework of Misner-Chitrè -like
variables. We considered as quasi-classical variables the most closely resembling the
Universe volume and a suitable function of the free massless scalar field included
in the dynamics. As purely quantum variable, we adopted that one most closely
resembling the Universe anisotropy.

As a result, we got a consistent cosmological picture, describing a cyclical Universe
in which a quantum anisotropy is regularized, i.e. its amplitude is always finite. The
obtained cosmological paradigm is of significant interest in view of constructing a
realistic global (quantum and classical) dynamics of the Universe, being characterized
by a regular minimum volume turning point (the Big-Bounce), where the possibility
for an interpretation of the anisotropy wavefunction can be coherently pursued.
Furthermore, such a resulting model has a maximum volume turning point, living
in the pure classical region of the dynamics for all configurational coordinates and
allowing for the emergence of cyclical closed Universe dynamics, slightly generalizing
the positive curved Robertson-Walker geometry, but removing the singular point in
which the Big-Bang takes place for the Standard Cosmological Model [47, 31, 56].

In the second work, we analyzed the Bianchi IX cosmology in vacuum and when
a massless scalar field φ and a cosmological constant term Λ are present. We limited
our attention to the situation in which the point-Universe is trapped in a corner
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of the scalar curvature potential. The adopted dynamical scheme corresponded to
deal with a WKB decoupling of the quasi-classical degrees of freedom, the Misner
variables α and β+ and φ when present, from a microscopic fully quantum degree of
freedom, the small anisotropy variable β−.

In both cases, we had to solve a time dependent Schrödinger equation with a
quadratic potential, which resembled the equation of a harmonic oscillator with
time-dependent frequency. We demonstrated that, both with and without matter,
the solution of this equation suggests that the small quantum anisotropy β− is
strongly suppressed via the dynamics of the quasi-classical variables, .

In the vacuum case we observed that, if we considered the situation when
the point-Universe entered the corner with an expanding Universe, we found a
suppression of the the quantum variable β−, as its standard deviation decayed
in time. We concluded that the corner of the potential was an attractor for the
point-particle Universe; once the Universe enters, it cannot escape any more.

Following this analysis, we also studied the limit in which the system entered
in the corner when it approached the cosmological singularity. Here the constant
character of the variance associated to the anisotropic variable had a very deep
meaning on the whole structure of the Bianchi IX dynamics.

When β− ' 0, the resulting cosmology is indistinguishable from a Taub Universe,
which is not a singular model in the limit α→ −∞. Since the emergence of a long
regime of the classical Bianchi IX dynamics within the a corner has been convincing
established [47], if the proposed picture is applicable, i.e. the smallness of the β−
values justifies its quantum treatment, then the singular behavior of the Bianchi IX
Universe could be removed.

This result, in view of the prototype character of the Bianchi IX cosmology
versus the generic cosmological solution [9, 25], could have a deep implication on the
notion of the cosmological singularity as a general property of the Einstein equations,
under cosmological hypotheses.

Finally in the last section (4.3.3), the study of the Bianchi IX dynamics, performed
in the presence of φ and Λ, is developed in expanding picture, i.e. for α→∞. The
aim of this analysis was to mimic the behavior of the Bianchi IX Universe if the
de-Sitter phase, which is associated to the inflationary paradigm for the primordial
Universe, takes place when a corner evolution is performed by the point-Universe.

In this case, we have shown that, in the limit of applicability of the WKB
proposed scheme, the Universe naturally isotropizes since the classical anisotropy
degree of freedom β+ is suppressed via the natural exponential decay emerging from
the Hamilton dynamics, while the fully quantum variable, i.e. β−, is characterized
by a decaying standard deviation. In other words, if we start with a Gaussian
distribution for β−, its natural evolution in the future is towards a Dirac delta-
function around the zero value. Thus, this study offers a new paradigm for the
Bianchi IX cosmology isotropization, based on the idea that the de-Sitter phase is
associated with a corner regime of the model.

To conclude, this study generalizes and completes the results discussed in [6],
where the Bianchi IX isotropization is faced in the same WKB scenario, but starting
with two very small quantum anisotropy variables, i.e. assuming that the de-Sitter
phase starts when the point-Universe is in the center of the potential, already near
to an isotropic configuration.
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