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Abstract

Flavour Physics is a very powerful tool to test the Standard Model and quantify the
effects of New Physics by exploring possible departures from the model. It is necessary,
however, to increase the level of precision of the experimental measurements and
of the theoretical predictions in order to be sensitive to possible deviations. In
this thesis we address this issue by providing theoretical improvements for both
non-perturbative and perturbative calculations of some relevant flavour observables.
On the one hand, we present a new strategy to renormalize lattice operators in
QCD+QED in the RI-MOM scheme, fully including the non perturbative dynamics
of QCD, and QED at O(αem). We show how to keep systematically into account
all contributions not separable between the two interactions, thus overcoming the
factorization approximation in which the mixed effects are neglected. A numerical
analysis in the electro-quenched approximation is carried out for quark bilinear
operators and for the case of the matrix elements relevant for K`2 and π`2 processes
and for semileptonic decays like K`3. A detailed discussion of the calculation of
the leading isospin breaking corrections to the leptonic decay rates Γ(Kµ2) and
Γ(πµ2) is presented. On the other hand, we compute for the first time the anomalous
dimension matrices of quark bilinear and weak four-fermions semileptonic operators
at O(αsαem), thus improving the evolution and matching of the matrix elements
related to such operators in Effective Field Theories.
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Introduction

The discovery of the Higgs boson at LHC in 2013 established the Standard Model (SM)
of particle physics as the most accurate description of nature in terms of elementary
particles and their interactions, except gravity. So far, the SM has been proven
to be very successful in reproducing the experimental data, even considering the
recent and impressively precise measurements from the LHC experiments. However,
despite its remarkable success, there are several reasons to believe that the SM is
not a complete theory of particle interactions, but just a low-energy approximation
to a more fundamental theory. One of the most evident limits of the SM is perhaps
its inability to describe the gravitational interaction. Other problems of the model
are also the following: the lack of a mechanism that explains baryogenesis and the
masses of the neutrinos, the absence of a candidate for dark matter, the instability of
the Higgs mass to radiative corrections and the failure to unify all the fundamental
forces.

In addition, several issues related to the flavour structure of the SM remain still
unanswered. In particular, the fact that the model, although parametrizing the
observed hierarchy of particles masses and mixing angles through free parameters (for
quark sector we have: 6 masses, 3 angles and 1 complex phase), does not explain it.

All (or part of) these questions could find an answer in an underlying theory,
that manifests itself at some higher energy scale. The strategy for discovering New
Physics (NP) at the fundamental level is based on three pillars: the energy frontier
(LHC), the intensity frontier (LHCb, BelleII, rare decays experiments, etc.) and
astrophysics (XENON, Darkside, axion searches, etc.). Within the intensity frontier,
flavour physics is a very powerful tool to test the SM and to quantify the effects
of NP by exploring possible departures from the SM, given its highly non-trivial
structure.

In the hadronic sector, quark flavour mixing is described by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and the accurate determination of its elements,
obtained by combining experimental inputs with theoretical calculations, represents
one of the most powerful tests of the limits of the SM, allowing to put stringent
lower bounds on the NP energy scale. Since, up to now, no sign of NP has been
observed both in direct and indirect searches, we expect that the contributions of
NP to SM processes are rather tiny, certainly smaller than the actual experimental
and theoretical precision. Therefore, in order to observe a sensible deviation of
the experimental measurements from the theoretical predictions it is necessary to
increase the level of precision on both sides.

Theoretical calculations are usually complicated by hadronic effects due to
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strong interactions, which are described by quantum chromodynamics (QCD) and
become very intense at low energies. The general mathematical approach to compute
correlation functions in interacting quantum field theories is perturbation theory,
which consists in performing an expansion in the coupling constant, thus linearizing
the theory and making it solvable analytically. When it comes to strongly coupled
theories, however, an expansion in the coupling constant is not appropriate any
more. As regards QCD, the only available method which allows to compute hadronic
observables in a non-perturbative way from first principles is Lattice QCD (LQCD).
It consists in the simulation of QCD by formulating the Lagrangian on a discrete
and finite Euclidean space-time, that allows for numerical computations of path
integrals via Monte Carlo methods.

Most of the theoretical predictions on phenomenologically relevant hadronic
observables have been derived assuming the exact validity of the isospin symmetry
and completely neglecting the effects of electromagnetic (e.m.) interactions. The
up (u) and down (d) mass difference is indeed small with respect to the confinement
scale ΛQCD. Also the e.m. isospin breaking (IB) effects are small on hadronic
observables because in the low energy regime αem � 1. For several quantities relevant
for flavour physics phenomenology, LQCD has recently reached the impressive level
of precision of O(1%), or even better. Important examples are the ratio fK/fπ of
kaon and pion leptonic decay constants and the K`3 vector form factor f+(0) [1],
which play a central role in the accurate determination of the CKM entries |Vus/Vud|
and |Vus|, respectively. Since both αem and (md−mu)/ΛQCD are of O(1%), IB effects
need to be included in lattice simulations to make further progress in flavour physics
phenomenology, beyond the currently impressive precision obtained in iso-symmetric
QCD.

A possible way to include such effects in lattice simulations is to use a perturbative
approach (the RM123 method proposed in Refs. [2, 3]) in which the lattice path-
integral is expanded in terms of the two small parameters αem and (md−mu)/ΛQCD
and IB corrections to observables computed in the iso-symmetric limit are evaluated
at first order in these parameters. Such a perturbative approach also allows one
to control the subtraction of infrared (IR) divergences arising when evaluating the
corrections to hadron decay rates introduced by quantum electrodynamics (QED).
While IR divergences are cancelled by including both virtual corrections and the real
emission of photons, ultraviolet (UV) divergences have to be treated by including
QED corrections in the renormalization procedure.

Non-perturbative renormalization of lattice operators is a long-time known
procedure in pure QCD, but it has never been extended before to the QCD+QED
context. Renormalization constants (RCs) at O(αsαem) were indeed computed
separately (e.g. in Refs. [4, 5]): the QCD RCs non-perturbatively on the lattice
and the pure QED ones at one loop in perturbation theory. However, in this
factorization approximation mixed non-factorizable QCD+QED contributions to
the RCs are not taken into account and hence a systematic error is introduced in
the calculation. A central part of this thesis will be the formulation of a strategy
to extend the renormalization procedure on the lattice in order to fully include
the non perturbative dynamics of QCD, and QED corrections at O(αem), thus
overcoming the factorization approximation and improving the precision of the RCs.
This strategy will be applied to quark bilinear operators and to the four-fermion
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operators involved in the calculation of light-meson leptonic decay rates.
A first calculation of IB corrections to the ratio Γ(Kµ2)/Γ(πµ2) was done in Ref. [6].

In the ratio of the decay rates there was a large cancellation of renormalization
corrections and the factorization approximation only affected the quark mass RCs.
However, to obtain a separate determination of the first order corrections to the decay
rates Γ(Kµ2) and Γ(πµ2) it is necessary to overcome the factorization approximation
and renormalize the operator mediating the process non-perturbatively in QCD
and at O(αem) in QED, taking into account its possible mixing with other lattice
operators. Such calculation and its results will be described in details in the first
part of this thesis work. We anticipate here some key results: after extrapolation of
the data to the physical pion mass, and to the continuum and infinite-volume limits,
the IB corrections to the leptonic decay rates can be written in the form [7]

Γ(π± → µ±ν`[γ]) = (1.0153± 0.0019) Γ(0)(π± → µ±ν`) ,
Γ(K± → µ±ν`[γ]) = (1.0024± 0.0010)Γ(0)(K± → µ±ν`) ,

where Γ(0) is the leptonic decay rate at tree level in the Gasser-Rusetsky-Scimemi
(GRS) scheme which is a particular definition of QCD [8] (see Sec. 1.5.2 below). The
corrections are about 1.5% for the pion decays and 0.2% for the kaon decay. Taking
the experimental value of the rate for the Kµ2 decay, our result for the IB correction
together with Γ(0)(K± → µ±ν`) obtained using the lattice determination of the kaon
decay constant we obtain |Vus| = 0.22567(42), in agreement with the latest estimate
|Vus| = 0.2253(7), recently updated by the Particle Data Group (PDG) [9], but with
better precision. Alternatively, by taking the ratio of Kµ2 and πµ2 decay rates and
the updated value |Vud| = 0.97420 (21) from super-allowed nuclear beta decays [10],
we obtain |Vus| = 0.22538(46). The unitarity of the first row of the CKM matrix is
satisfied at the per-mille level, e.g. taking the value of Vus from the ratio of decay
rates and |Vub| = 0.00413(49) [9], we obtain |Vud|2 + |Vus|2 + |Vub|2 = 0.99988(46).
See Sec. 5.4 for a more detailed discussion of our results and their implications.

An important step for the calculation of the decay rates is the matching of
the lattice renormalized operator mediating the process to the W -regularization
scheme, in which the theory has to be renormalized in order to be consistent at
O(αem) with the value of GF extracted from the lifetime of the muon and exploit
the matching of the effective theory to the Standard Model made in Ref. [11]. The
matching is done in perturbation theory and, in order to consistently evolve the
operator renormalized in QCD+QED from one scale to another, the knowledge of
the two-loop anomalous dimension matrix (ADM) at O(αsαem) is necessary. Both
for bilinear operators and the complete mixing matrix of the weak four fermion
operators studied in this work, the ADMs were absent in the literature. Therefore,
we have produced a Mathematica package in which such ADMs have been computed
in the MS-scheme in naive dimensional regularization. The anomalous dimensions
are extracted from the single poles of two loop diagrams in which one gluon and
one photon are exchanged, after the subtraction of eventual one-loop counterterms
and contaminations of evanescent operators [12, 13]. The introduction of the mixed
two-loop anomalous dimension in the evolution of the operator mediating light-
meson leptonic decays made it possible to reduce the residual truncation error in
the matching to the W -regularization scheme. The residual uncertainty is now of
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O(αemαs(MW )), reduced from O(αemαs(1/a)) of Ref. [14]. The typical size of the
inverse lattice spacing is of order O(2− 4) GeV, much smaller than MW ∼ 80GeV ,
and thus αs(MW ) < αs(1/a). As a consequence, we expect that higher order
corrections will be smaller at a larger scale. The perturbative calculation of two-loop
anomalous dimensions and the discussion of the NLO QCD+QED renormalization
group evolution is discussed in the second part of the thesis.

This thesis work is organized as follows:

Part I: Non-perturbative calculations

• In Chapter 1 we describe how to include IB corrections in LQCD calculations
using the RM123 method and discuss the non-compact implementation of QED
on the lattice, thus giving a regularized prescription for the photon propagator.
We also discuss the relation between the full QCD+QED theory, including
e.m. and strong IB effects, and isosymmetric QCD without electromagnetism.

• In Chapter 2 we present the calculation of the relevant amplitudes for the
calculation of leptonic decay rates of light-mesons. Furthermore, we discuss
how the operator mediating the process is renormalized in theW -regularization
scheme and its relation to the corresponding lattice operator(s) renormalized
non-perturbatively in QCD+QED.

• Chapter 3 contains a detailed description of a novel framework to renormalize
lattice operators with the inclusion of O(αem) corrections. The procedure
is presented in the RI-MOM scheme and is then applied to quark bilinear
operators and to the four-fermion operators entering the calculation of leptonic
decay rates.

• In Chapter 4 we describe the numerical analysis of the QCD+QED renor-
malization constants in the RI-MOM scheme and report the results for the
quark bilinear and the four-fermion operators. The analysis is performed using
lattice gauge configurations with Nf = 4 degenerate sea quarks produced by
the ETM Collaboration.

• In Chapter 5 we include renormalization corrections into the calculation of
leptonic decay rates. We describe the final steps of the lattice calculation: the
extrapolation to the physical pion mass, the continuum and infinite volume
limits. Finally, we present the first results of the leading e.m. and strong IB
corrections to the leptonic decay rates of pions and kaons into muons and we
discuss their implication.

Part II: Perturbative calculations

• In Chapter 6 we derive the renormalization group evolution function for
renormalized operators at next-to-leading order in QCD+QED, including
contributions from the mixed anomalous dimension of order O(αsαem).
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• Chapter 7 is devoted to the calculation of the two-loop anomalous dimension
matrices of order O(αsαem) for quark bilinear operators and the weak four-
fermion operators studied in Part I of the thesis. The computation is done in
the MS scheme using a self-produced Mathematica package. The results of
the calculation of two-loop diagrams are reported in Appendix A.

• In Chapter 8 we investigate a further possible extension of the calculation
of anomalous dimensions to penguin operators and discuss possible related
phenomenological implications.
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Part I

Non-perturbative calculations
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1 | Isospin breaking effects on the
lattice

Isospin is an almost exact symmetry of strong interactions as described by the QCD
Lagrangian. This symmetry is based on the assumption that the up (u) and down (d)
quarks are strictly identical particles. In nature, however, such symmetry is only
approximate and it is broken by two effects: the different electric charge of u and d
quarks and their mass difference, which exists also in the absence of electromagnetic
interactions. We will refer to these effects respectively as electromagnetic and strong
isospin breaking (IB) effects. The IB is driven by two small parameters: the fine
structure constant,

α̂em ' 1/137.036 , (1.1)

and the up-down quark mass splitting,

m̂d − m̂u

ΛQCD
. 0.01 , (1.2)

yielding in general small corrections of O(1%) to hadronic observables. Here and
through all the chapter we indicate renormalized quantities with an “hat”, e.g. m̂u,d,
to distinguish them from the corresponding bare quantities. For the above reasons
isospin symmetry can be considered as a good approximation of reality with an O(1%)
relative error. Nevertheless, it is interesting to note that these small IB corrections
are crucial to describe the structure of atomic matter in the Universe. Indeed, the
hydrogen atom is stable because ∆Mn = Mn−Mp = 1.29333205 (51) MeV is greater
then the electron mass Me = 0.5109989461 (31) MeV [9] and hence the electron
capture p+ e− → n+ νe is forbidden.

In flavour physics, the precision reached so far by experimental measurements of
many hadronic observables related to weak processes is smaller than O(1%). On
the theoretical side, lattice simulations performed in the isospin symmetric limit
of QCD, i.e. by considering the masses of u and d quarks to be equal and the e.m.
interactions switched off, allow in principle to reach a precision of O(1%) or even
smaller on many hadronic observables [1]. However, the precision of such results
is limited by the systematic uncertainty given by the missing IB effects, which are
expected to be of the same order of magnitude. Therefore, at this level of precision,
strong IB effects and e.m. corrections cannot be neglected in lattice simulations.
In the past, IB effects due to the light quark mass difference, also called strong
IB (SIB) effects, have been accommodated within the chiral perturbation theory
(ChPT) framework or relying on model-dependent approximations (see for example
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Refs. [15–18]), while several attempts to compute e.m. corrections to the hadron
spectrum in lattice QCD have been presented [19–22].

Over the past decade several approaches to include QED effects in lattice simu-
lations have been pursued by different collaborations, following mainly two methods.
In the all-order (or “stochastic”) approach, QED is added directly to the action, and
dedicated QCD+QED simulations are performed, with the result of including the
IB corrections to all orders (see, e.g., Refs. [23–25]). In the perturbative approach,
also called RM123 approach, presented in Refs. [2, 3, 26] and adopted in this work,
the lattice path-integral is expanded at first order in the two small parameters
α̂em and (m̂d − m̂u)/ΛQCD, and the IB corrections to observables are evaluated in
the isospin symmetric theory, with no need to perform new dedicated simulations.
Moreover, as it will be described later in Chap. 2, the perturbative approach allows
one to control the subtraction of infrared divergences arising when evaluating the
QED corrections to charged hadron observables.

In the following we explain how we included electromagnetism in our lattice sim-
ulations using a non-compact formulation of QED, i.e. by using the electromagnetic
field Aµ as a dynamical variable on the lattice. As we will see, the expansion of the
lattice path-integral in powers of α̂em leads to correlators containing the integral over
the whole space-time lattice volume of two insertions of the quark electromagnetic
currents multiplied by the lattice photon propagator. These quantities have both
infrared and ultraviolet divergences that must be removed by providing an infrared
safe finite volume definition of the lattice photon propagator and by imposing suitable
renormalization conditions. These issues will be discussed in detail. We illustrate our
method explaining how we performed the expansion in terms of (m̂d − m̂u) and α̂em
of physical observables and how to calculate corrections to the lattice path-integral.

The method is applicable in principle to any hadronic observable which can
be computed on the lattice and it was tested applying it to the computation
of leading IB effects for several physical quantities of interest: the pseudoscalar
meson masses [26], the neutron-proton mass splitting [3], the light meson decay
constants [6, 7], the form factors of semileptonic K`3 decays [2] and the hadronic
vacuum polarization contribution to the lepton anomalous magnetic moments [4, 5].
All the results presented in this work have been obtained within the so-called electro-
quenched approximation, which will be introduced later in this chapter and consists
in considering dynamical sea quarks as neutral with respect to electromagnetism. We
then dedicate the final part of this chapter to the issue of defining QCD within the
full QCD+QED (physical) theory. In particular, we discuss different prescriptions
to define QCD and introduce the hadronic schemes, advocating their use in future
lattice simulations.

1.1 QED on the lattice

We start our discussion by describing how QED can be regularized on the lattice
and we discuss the issues associated with the expansion of the quark action with
respect to the electric charge. In particular we present a safe prescription for the
definition of the IR regularized finite volume lattice photon propagator which can be
conveniently used in numerical calculations by working directly in coordinate space,



1.1 QED on the lattice 11

in such a way to eliminate the infrared divergence associated with the photon zero
momentum mode.

In this work we have adopted a non-compact formulation of lattice QED, that
consists in treating the electromagnetic gauge potential Aµ(x) in a fixed QED gauge
(e.g. Feynman gauge) as a dynamical variable. The field Aµ(x) is introduced as a
free field with the kinetic Maxwell action (in the Feynman gauge)

SA = 1
2
∑
x

∑
µ,ν

Aµ(x)
[
−∇−ν ∇+

ν

]
Aµ(x)

= 1
2
∑
k

∑
µ,ν

Ã?µ(k) [2 sin(kν/2)]2 Ãµ(k) , (1.3)

where Ãµ(k) denotes the Fourier transform of the real field Aµ(x) and satisfies the
condition Ã?µ(k) = Ãµ(−k). The operators ∇±µ are defined as follows

∇+
µ f(x) = f(x+ µ̂)− f(x)
∇−µ f(x) = f(x)− f(x− µ̂)

−→ ∇µ =
∇+
µ +∇−µ

2 . (1.4)

The interaction between quarks and photons is described in terms of quark
covariant derivatives by introducing the QED link through exponentiation1,

Aµ(x) → Eµ(x) = 1 + τ3

2 e−ieueAµ(x) + 1− τ3

2 e−iedeAµ(x) , (1.5)

where ef is the fractional electric charge of the quark of flavour f , i.e. eu = 2/3 for
up-type quarks and ed = −1/3 for down-type quarks. In the previous expression
we have considered the up and down quarks as components of a flavour doublet.
The covariant derivatives are obtained by multiplying the QCD links Uµ(x) for the
appropriate U(1)em factor,

Ufµ (x) = Efµ(x)Uµ(x) with Efµ(x) = e−ief eAµ(x) , (1.6)

thus obtaining

D+
µ [U,A]ψf (x) = Ufµ (x)ψf (x+ µ̂)− ψ(x) ,

D−µ [U,A]ψf (x) = ψf (x)− Ufµ
†(x)ψ(x− µ̂) . (1.7)

Exact electromagnetic gauge invariance is obtained if the fields are transformed as
follows

ψf (x) → eief eλ(x) ψf (x) ,
ψ̄f (x) → ψ̄f (x) e−ief eλ(x) , (1.8)
Aµ(x) → Aµ(x) +∇+

µ λ(x) .

We want to treat electromagnetism at fixed order with respect to α̂em and, to this
end, we need to expand the quarks action in powers of e. The e.m. corrections

1Here and in the following equations the variable x has to be considered as a lattice discretized
variable.
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involving one photon propagator can be obtained by starting from the explicit
expression of the lattice Dirac operator Df [U,A;~g] and by calculating∑

x

ψ̄f (x)
{
Df [U,A;~g]−Df [U, 0;~g]

}∣∣∣
O(e2)

ψf (x) = (1.9)

=
∑
x,µ

{
efeAµ(x)V µ

f (x) + (efe)2

2 Aµ(x)Aµ(x)Tµf (x)
}
,

where V µ
f (x) is the (non-local) conserved vector current corresponding to the quark

with flavour f while Tµf (x) is the “tadpole” vertex, and ~g is a compact vector notation
for the bare parameters of the theory,

~g =
(
e2, g2

s ,mu,md,ms,mc, . . .
)
. (1.10)

Clearly, both the conserved vector current and the tadpole vertex depend upon the
particular choice made for the discretization of the fermion action. Their definitions
are given in Eq. (37) of Ref. [3] for the Twisted Mass action in the physical basis
at maximal twist. Once the fermion action has been expanded, the leading QED
corrections to a given lattice correlator are obtained by considering the time product
of the original operators with two insertions of the combination Aµ(x)V µ

f (x) or with
a single insertion of Aµ(x)Aµ(x)Tµf (x)2. To give an example, let us consider the
electromagnetic corrections to the kaon two-point correlator. One of the contributions
one has to compute is

− =
〈∑

x,y

Aµ(x)Aν(y) T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉
〉A

=
∑
x,y

Dµν(x− y) T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉 , (1.11)

where the notation 〈· · ·〉A represents the path integral average over the gauge
potential Aµ, Dµν(x− y) is the lattice photon propagator and a factor eseue2 has to
be understood. Here we have neglected the disconnected quark contributions coming
from the contraction of the vector currents among themselves. As anticipated, the
corrected correlators are expressed in terms of the photon propagator and thus have
both infrared and ultraviolet divergences. For this reason, now we have to give a
prescription for treating the zero mode of the photon propagator.

1.2 Photon propagator
The lattice action of the QED gauge field (in the Feynman gauge) defined in Eq. (1.3)
is explicitly reported in momentum space to highlight the well-known problem with
the definition of the lattice photon propagator, i.e. the infrared divergence associated
to the zero momentum mode. Indeed, the propagator of the field Aµ is defined

2Here we have used a compact notation for V µf and Tµf in which they seem to depend only on
the point x. It should be stressed that these vertices are non-local and connect different lattice
points.
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as the inverse of the kinetic term and, in order to define the inverse of the lattice
Laplace operator −∇−µ∇+

µ , one has to provide a prescription to cope with its kernel.
One possibility, originally proposed in Ref. [19], is to make the zero momentum

mode to vanish identically. The resulting theory is called QEDTL and has been
widely used in the literature [3, 19, 27]. Although this scheme is simple, it introduces
some strong finite-volume effects which can be hard to control [28]. Alternative
regularizations of the zero momentum mode of the photon propagator results into
different finite volume behaviours (for a recent review on QED simulations in a
finite box, see Ref. [29]). In our calculation we have adopted the so called QEDL
prescription, which consists in removing all spatial zero-modes, i.e. to set to zero
all the photon modes k with ~k = ~0, Ãµ(k0,~0) = 0. This scheme is inspired from
Ref. [30] where QED is formulated in a finite spatial volume directly with an infinite
temporal dimension.

We define the infrared regularized photon propagator as the expectation value of
the time-ordered product of two photon fields:

Gµν(x1, x2) = 〈Aµ(x1)Aν(x2)〉 , (1.12)

where the photon field Aµ(x) is generated according to the distribution probability

P (A) dA ∝ exp
[
−Aµ(x1)G−1

µν (x1, x2)Aν(x2)
]
. (1.13)

Being the action Gaussian distributed it is easier to generate photon fields in
momentum space, in which the probability distribution is diagonal with respect to
k, namely

P (Ã) dÃ ∝ exp
[
−Ãµ(k) G̃−1

µν (k) Ãν(k)
]
. (1.14)

The local change of variable B̃µ(k) =
√
G̃−1
µρ (k) Ãρ(k) allows to further simplify the

calculation drawing each component of B̃ independently:

P (B̃) dB̃ ∝ exp
[
−B̃2

µ(k)
]
, (1.15)

and the value of Ã can be reconstructed as

Ãµ(k) =
√
G̃ρµ(k) B̃ρ(k) . (1.16)

The matrix G̃µν(k) for the Wilson (Plaquette) action in a generic covariant gauge is
given by [31]

G̃µν(k) =
[
δµν

1
k̂2
− (1− ξ) k̂µk̂ν

(k̂2)2

]
(1.17)

where k̂µ is the lattice shortcut for

k̂µ = 2
a

sin
(
kµa

2

)
(1.18)

and the gauge parameter ξ = 0 (1) corresponds to the Landau (Feynman) gauge.
Once the field Ãµ(k) is determined, the real space configuration can be recovered by
Fourier transform.
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1.3 Electromagnetic corrections to hadronic observables
In this Section we describe the general strategy to calculate leading IB corrections to
hadronic observables according to the RM123 approach proposed in Refs. [2, 3, 26].
We compute strong IB effects and QED corrections on the lattice by performing a
combined perturbative expansion of the lattice path-integral of the full theory in the
two small parameters: (m̂d − m̂u)/ΛQCD ∼ α̂em ∼ O(ε), neglecting contributions of
order O(ε2). We denote as “full” the theory with both QCD and QED interactions
switched on and, consequently, with m̂d 6= m̂u, while we call “isosymmetric QCD”
or simply “isosymmetric” the theory without electromagnetic interactions and with
m̂d = m̂u. We anticipate here that the separation of QCD and QED effects is
prescription dependent. Indeed, since the electric charges of the up and down quarks
are different, the presence of electromagnetism itself induces a difference in their
masses, in addition to any explicit difference in the bare masses input into the
action being simulated. Therefore, the separation of IB effects into strong and e.m.
components requires a convention. This topic will be discussed in details later in
Sec. 1.5. In order to compute O(α̂em) corrections to a given observable we have
to take into account correlators containing two insertions of the electromagnetic
current or one insertion of the tadpole vertex, multiplied by the IR regularized
photon propagator and integrated over the space-time volume. In the first case, the
correction to a given correlator is proportional to

T 〈O(xi)〉 −→ T

∫
d4yd4z Dµν(y − z) 〈O(xi)Jµ(y)Jν(z)〉 , (1.19)

where T 〈O(xi)〉 is the T–product of a certain number of local operators, Dµν(y − z) is
the photon propagator in a fixed QED gauge and Jµ(x) is the sum of the electro-
magnetic currents of all the flavours. Because of the contact interaction of the
electromagnetic currents, the equation is UV divergent and need to be regularized.
The introduction of electromagnetism induce a (divergent) shift of quark masses, of
the strong coupling constant and, if chirality is broken, also of the critical masses.
By neglecting for the moment the contribution of the critical mass shift and the
tadpole vertex, let consider the short distance expansion of the product of two
electromagnetic currents, namely

Jµ(x)Jµ(0) ∼ c1(x)1 +
∑
f

cfm(x)mf ψ̄fψf + cgs(x)GµνGµν + · · · . (1.20)

The “counterterm” coefficients c1, cfm and cgs are divergent quantities that must be
fixed by fixing appropriate renormalization prescriptions. In particular, the terms
proportional to cfm can be reabsorbed by a redefinition of each quark mass mf , the
term proportional to cgs can be reabsorbed by a redefinition of the strong coupling
constant (i.e. of the lattice spacing) while the term proportional to c1 corresponds
to the vacuum polarization and the associated divergence cancels by taking the fully
connected part of the right hand side of eq. (1.19).

Let us consider a generic physical quantity O in the full QCD+QED theory,

O(~g) = O(e2, g2
s ,mu,md, . . . ) = 〈O〉~g , (1.21)
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where we have used the compact vector notation for the bare parameters of the
theory, ~g =

(
e2, g2

s ,mu,md, . . .
)
, and where the notation 〈 · · · 〉~g means that the

path-integral average is performed in the full theory. The RM123 method consists in
expanding the observable O(~g) with respect to the isosymmetric QCD result O(~g 0)
as follows,

O(~g) = O(~g 0) +
{
e2 ∂

∂e2 +
[
g2
s − (g0

s)2
] ∂

∂g2
s

+
[
mf −m0

f

] ∂

∂mf

}
O(~g)

∣∣∣∣∣
~g=~g 0

= 〈O〉~g 0 + ∆O , (1.22)

where

~g 0 =
(
0, (g0

s)2,m0
ud,m

0
ud, . . .

)
(1.23)

and the notation 〈 · · · 〉~g 0 means that the path-integral average is performed in
the isosymmetric theory. Note that since physical observables are QED and QCD
gauge invariant and depend on e2 and g2

s , terms linear in e and gs are absent in
Eq. (1.22). The parameters of the physical QCD+QED theory can be fixed by using
a suitable number of experimental inputs. On the other hand, as already anticipated,
“unphysical” parameters of the isosymmetric theory have to be set by giving some
renormalization prescription. Here we follow the procedure of Ref. [3], where IB
effects are defined by using an intermediate renormalization scheme and a matching
procedure. Once the full theory renormalized parameters ĝi(µ) = Zi(µ) gi have been
tuned by using experimental inputs, the renormalized couplings of the isosymmetric
theory (α̂em = m̂d− m̂u = 0), ĝ0

i (µ) = Z0
i (µ) g0

i , are fixed by the matching condition
ĝ0
i (µ?) ≡ ĝi(µ?) at a given scale µ?. Note that the renormalized parameters of the
two theories, although equal in this scheme at the scale µ?, are different at any other
scale. More precisely, we impose the following matching conditions

ĝ0
s(µ?) = ĝs(µ?) ,

m̂0
ud(µ?) = m̂ud(µ?) = m̂d(µ?) + m̂u(µ?)

2 , (1.24)

m̂0
s(µ?) = m̂s(µ?) .

This is known as the Gasser-Rusetsky-Scimemi (GRS) prescription [8] and has been
widely used in the past [3, 6, 26]. In this work we rely on this prescription by
matching the couplings renormalized in the MS scheme at the scale µ? = 2 GeV.
A detailed discussion on the GRS scheme and possible alternative prescriptions is
postponed to Sec. 1.5.

By using the property that a physical observable is a Renormalization Group
Invariant (RGI) quantity, i.e. O(gi) = O(ĝi) and O(g0

i ) = O(ĝ0
i ), the perturbative

expansion of Eq. (1.22) can be expressed in terms of the renormalized couplings
according to

∆O =
{
ê2 ∂

∂ê2 +
[
ĝ2
s −

(
Zgs

Z0
gs

ĝ0
s

)2
]

∂

∂ĝ2
s

+
[
m̂f −

Zmf

Z 0
mf

m̂0
f

]
∂

∂m̂f

}
O(ĝi)

∣∣∣∣∣
ĝi= Zi

Z0
i

ĝ0
i

. (1.25)
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From the comparison of the previous equation with Eq. (1.20) we find that the diver-
gent quantities Zmf /Z0

mf
and Zgs/Z0

gs correspond respectively to the counter-terms
cfm and cgs . In practice, these counter-terms appear because the renormalization
constants of the full theory are different from the corresponding quantities in pure
QCD, the theory in which we perform the numerical simulations. Once the counter-
terms have been properly tuned, this procedure can be interpreted as the expansion
of the full theory in the renormalized parameters α̂em and m̂d − m̂u. The electric
charge e does not need to be renormalized at this order,

ê2 = e2 = 4πα̂em ∼
4π

137.036 . (1.26)

The problem of the electric charge renormalization would arise in the calculation
of next-to-leading IB corrections, which can be safely neglected by now from the
phenomenological point of view.

In Eq. (1.20) we did not take into account the shift of the critical mass induced
by electromagnetism when a Wilson term is introduced in the fermionic action. To
do this we re-write Eq. (1.20) by adding to the left-hand side a contribution from
tadpole vertices of the different quarks, and to the right-hand side an additional
divergent contribution that have to be reabsorbed in the definition of the critical
masses, namely

Jµ(x)Jµ(0) +
∑
µ

Tµ(x)

∼ c1(x)1 +
∑
f

cfk(x)ψ̄f iγ5τ
3ψf +

∑
f

cfm(x)mf ψ̄fψf + cgs(x)GµνGµν + · · · ,

where the coefficients cfk(x) are the critical mass counter-terms.
The determination of the counter-term associated with the electromagnetic shift

of the critical mass can be done by using the Ward-Takahashi identity (WTI) of the
continuum theory (see Ref. [3] for the explicit calculation).

We can generalize the operator ∆ in Eq. (1.22) by taking into account also the
dependence of a generic lattice observable on the critical mass mcr

f . More precisely,
we have to add new parameters to the full theory,

~g =
(
e2, g2

s ,mu,md,m
cr
u ,m

cr
d , . . .

)
, (1.27)

and by calling mcr
0 the single critical mass parameter of the symmetric theory, we

have that isosymmetric QCD simulations correspond to the set of parameters

~g 0 =
(
0, (g0

s)2,m0
ud,m

0
ud,m

cr
0 ,m

cr
0 , . . .

)
. (1.28)

Therefore, the generalization of Eq. (1.22) to the case in which Wilson fermions are
used is

∆O =
{
e2 ∂

∂e2 +
[
g2
s − (g0

s)2] ∂

∂g2
s

+ [mf −m0
f ] ∂

∂mf
+ [mcr

f −mcr
0 ] ∂

∂mcr
f

}
O(~g)

∣∣∣∣∣
~g=~g 0

.

(1.29)
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1.4 Path integral expansion at O(αem)
In this section, we discuss in detail the derivation of the formulas necessary to
calculate the LIB corrections to a specific observable by following the strategy
outlined in the previous section. We start by discussing the separation of the QCD
action from that in the full theory.

The lattice action in the full QCD+QED theory is given by

Sfull = 1
g2
s

SYM + SA +
∑
f

(
Skin
f +mf S

m
f

)
+
∑
`

(
Skin
` +m` S

m
`

)
. (1.30)

Here SYM is a discretisation of the gluon action, SA is the preferred discretization
of the Maxwell action of the photon (see Eq. (1.3)), Skin

f is the kinetic term for the
quark with flavour f , including the interaction with the gluon and photon fields,
mfS

m
f = mf

∑
x qf (x)qf (x) is the mass term, Skin

` and Sm` are respectively the
kinetic and mass terms for the lepton `. For fermion actions which break chiral
symmetry, such as the Wilson action, a counterterm is needed to remove the critical
mass and mfS

m
f has to be replaced with mfS

m
f +mcr

f S
cr
f . A mass counterterm is in

principle needed also in the case of the lepton, but at leading order in αem the lepton
critical mass can be ignored. It is useful to rewrite the full action in Eq. (1.30) by
factorizing the isosymmetric QCD action

SQCD = 1
g2

0
SYM +

∑
f

(
Skin
f,0 +mf,0S

m
f

)
, (1.31)

where the kinetic term only includes gluon links and the subscripts 0 indicate that
the bare coupling and masses are different from those in the full theory of Eq. (1.30).

The lattice action in the full theory then takes the form

Sfull = SQCD +
∑
`

S`,0 + SA + Sct + ∆S , (1.32)

where S`,0 = Skin
`,0 +m`S

m
` , while the counter-term Sct and the QED part ∆S are

given by

Sct =
( 1
g2
s

− 1
g2

0

)
SYM +

∑
f

[
(mcr

f −mcr
0 )Scr

f + (mf −mf,0)Smf
]
, (1.33)

∆S =
∑
`

(
Skin
` − Skin

`,0
)

+
∑
f

(
Skin
f − Skin

f,0
)
. (1.34)

We now consider these terms in detail using Wilson fermions for illustration. The
kinetic term for the quark with flavour f , Skin

f , is given by:

Skin
f =

∑
x

ψ̄f (x)
(
γµ
D+
µ [U,A] +D−µ [U,A]

2 −
D+
µ [U,A]D−µ [U,A]

2

)
ψf (x) , (1.35)

where ψf is the quark field and the modified covariant derivatives D±µ [U,A] are
defined in Eq. (1.7). On the other hand, the leptonic action is given by

Skin
` + Sm` =

∑
x,`

ψ̄`(x)
(
γµ
D+
µ [A] +D−µ [A]

2 −
D+
µ [A]D+

µ [A]
2 +m`

)
ψ`(x) (1.36)
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with ψ` being the lepton field and D±µ [A] corresponding to the covariant derivatives
in Eq. (1.7) with the QCD links set to 1 and E`µ(x) = exp{−ie`eAµ(x)}. In pure
QCD, the kinetic term only includes the gluon links so that for Wilson fermions

Skin
f,0 =

∑
x

ψ̄f (x)
(
γµ
D+
µ [U ] +D−µ [U ]

2 −
D+
µ [U ]D−µ [U ]

2

)
ψf (x) , (1.37)

and the derivatives are defined in Eq. (1.7) with the QED link Efµ = 1. Since for
leptonic and semileptonic decays, leptonic spinors are present even in the absence of
electromagnetism, it is also convenient to define the kinetic action for free leptons
(all links set to 1):

Skin
`,0 =

∑
x

ψ̄`(x)
(
γµ
D+
µ [1] +D−µ [1]

2 −
D+
µ [1]D−µ [1]

2

)
ψ`(x) . (1.38)

Physical observables are determined from correlation functions evaluated from
lattice computations in the full theory. For a generic observable O evaluated in the
full theory up to O(αem) we write:

〈O〉 =
∫
U,A,ψf ,ψ` e−Sfull

O[ψf , ψ`, U,A]∫
U,A,ψf ,ψ` e−Sfull (1.39)

=
∫
U,ψf

e−SQCD ∫
A,ψ` e−SA−

∑
`
S`,0

{
1− Sct −∆S + (∆S)2

2

}
O[ψf , ψ`, U,A]∫

U,ψf
e−SQCD ∫

A,ψ` e−SA−
∑

`
S`,0

{
1− Sct −∆S + (∆S)2

2

} ,

where in the integrand O is a generic multilocal composite operator. In general, the
determination of physical observables requires the processing of correlation functions
of the form of Eq. (1.39). Hadronic masses, for example are obtained from behaviour
in the time separation of two interpolating operators.

We now turn to the definition of correlation functions in QCD defined in a generic
scheme. For a generic observable O we define its value in QCD by:

〈O〉QCD ≡
∫
U,ψf

e−SQCD ∫
A,ψ` e−SA−

∑
`
S`,0 O[ψf , ψ`, U,A]∫

U,ψf
e−SQCD ∫

A,ψ` e−SA−
∑

`
S`,0

. (1.40)

The free QED action is included in the numerator and the denominator of Eq. (1.40)
since, even without radiative corrections, the physical quantities such as Γ(K`2)
and Γ(π`2) studied in this work are obtained by combining the results for hadronic
matrix elements obtained from QCD simulations with leptonic spinors. Moreover,
for other quantities, for example the long-distance contributions to the amplitude
for the rare kaon decay K+ → π+νν̄, there are internal free lepton propagators even
in the absence of isospin breaking [32, 33].

Comparing Eqs. (1.39) and (1.40) we arrive at

〈O〉full = 〈O〉QCD −
〈
OSct

〉QCD
−
〈
O

(
∆S − (∆S)2

2

)〉QCD

(1.41)

≡ 〈O〉QCD + 〈δO〉QCD ,
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where 〈δO〉QCD coincides with the correction ∆O in Eq. (1.22).
Before closing this section we clarify a subtlety which we must account for. We

need to convert the results obtained from simulations in lattice units (i.e. in units of
the lattice spacing) into values given in physical units (such as MeV). Eq. (1.41) is
also written in lattice units. Let us consider an observable O with mass dimension
n and rewrite Eq. (1.41) with the lattice spacing included explicitly:

〈anO〉full = 〈an0O〉
QCD + 〈an0δO〉

QCD , (1.42)

where, since we are working to first order in isospin breaking, in the second term
on the right-hand side we do not need to distinguish between the lattice spacing in
the full theory (a) and that obtained in QCD (a0). The quantity which we wish to
determine, 〈O〉phys in physical units, is therefore given by

〈O〉phys ≡ 〈aO〉
full

a
= 〈a

n
0O〉

QCD

an0
+ 〈a

n
0δO〉

QCD

an0
− n δa

an+1
0
〈an0O〉

QCD , (1.43)

where δa = a− a0. The three expectation values on the right-hand side of Eq. (1.43)
are directly computed in QCD simulations.

A concrete example of the above procedure is represented by the correction to
the quark propagator Sf , which has been explicitely computed in Ref. [3] using the
Twisted Mass action at maximal twist and in the physical basis3:

∆( ) = (1.44)

= + − [mf −m0
f ] − [mcr

f −mcr
0 ] +

−
∑
f1

−
∑
f1

−
∑
f1

+
∑
f1f2

+

+
∑
f1

[mcr
f1
−mcr

0 ] +
∑
f1

[mf1 −m0
f1

] +
[
g2
s − (g0

s)2] GµνG
µν

.

Here the diagram represents the propagator of a quark with flavour f
with the insertion of the local scalar operator

∑
y ψ̄f (y)ψf (y), while the

propagator with the insertion of the local pseudoscalar operator i
∑
y ψ̄f (y)γ5ψf (y) 4.

Quark propagators of different flavours have been drawn with different colours and
different lines and f1,2 denotes the flavour of sea quarks. We have reported here the
explicit expression of the correction to the quark propagator to define the quenched
QED (qQED) or electro-quenched approximation and visualize its effect. Quark
disconnected diagrams are in general noisy and difficult to calculate and therefore the
usual solution to this problem consists in forcing the sea quarks to be neutral with
respect to electromagnetic interactions. In practice, such approximation neglects the

3For simplicity we show the result for a fixed value of the Wilson parameter, namely r = 1.
4In the case of standard Wilson fermions the red and grey “blobs” would coincide.



20 1. Isospin breaking effects on the lattice

contribution of disconnected diagrams in the evaluation of the lattice path-integrals
of Eq. (1.41). In addition to completely disconnected diagrams (i.e. the vacuum
polarization diagrams), also the polarization diagrams proportional to the charges
of the valence quarks, which are a flavour SU(3) breaking effect, are neglected in
the qQED approximation.

Therefore, in such approximation the propagator in Eq. (1.45) becomes5

∆( ) = + − [mf −m0
f ] − [mcr

f −mcr
0 ] .

(1.45)

1.5 Defining QCD in the full QCD+QED theory
Before concluding the chapter and presenting the detailed description of our calcula-
tion of leptonic decay rates, we find it useful to further discuss the relation between
the “full” QCD+QED theory, that includes explicit e.m. and strong IB effects, and
QCD without electromagnetism.

At the level of precision to which we are currently working it is only the full
theory, described by the action of Eq. (1.30), which is expected to reproduce physical
results and that is therefore unambiguous. Nevertheless, one could wonder what is
the difference between the results for a physical quantity computed in the full theory
and in pure QCD, and how big are the strong isospin-breaking effects with respect
to the e.m. corrections. We underline that in order to properly formulate such
questions it is necessary to carefully define what is meant by QCD. It is naturally
to be expected that in QCD alone physical quantities will not be reproduced with
a precision of better than O(αem) ' 1% and this of course is the motivation for
including QED corrections in lattice calculations. In order to define what is meant
by QCD at this level of precision, it is necessary to state the conditions which are
used to determine the quark masses and the lattice spacing. The separation of the
full theory into QCD and the rest is therefore prescription dependent.

In Ref. [3] the issue of a precise definition of QCD has been discussed by using
the GRS scheme originally proposed in Ref. [8]. In the following we present an
extended and detailed discussion by introducing the hadronic schemes. Indeed,
in light of the fact that hadron masses can nowadays be computed very precisely,
we strongly suggest using hadronic schemes in future lattice calculations of QED
radiative corrections. At the end of this section we discuss the connection with the
GRS scheme that has been adopted at the time in which this calculation was started
and that, for this reason, has been used in this work.

1.5.1 Renormalization of the full theory
The main difference in the steps required to renormalize the full theory compared to
the procedure in QCD is the presence of a massless photon and the corresponding
finite-volume (FV) corrections which appear as inverse powers of L, where L is the

5We stress that this result is obtained in Ref. [3] using the Twisted Mass action at maximal
twist and in the physical basis. In Sec. 4.1.1 we will find a similar expression, but with different
coefficients. This is due to the use of the twisted basis for fermions, instead of the physical one.



1.5 Defining QCD in the full QCD+QED theory 21

spatial extent of the lattice, and the volume V = L3. By contrast, in QCD for
leptonic and semileptonic decays the FV corrections are exponentially small in the
volume.

A possible strategy to renormalize the full QCD+QED theory, in principle, is
the following:

1. Fix the number of lattice points N , e.g. L = aN and T = 2L, where L and T
are the spatial and temporal extents of the lattice and the lattice spacing a
will be determined later6.

2. Using a four-flavour theory for illustration, we now need to determine the four
physical bare quark masses, the bare electric charge and the lattice spacing. To
this end we need to compute six quantities, e.g. the five dimensionless ratios7

R1(aN ; gs, e,m) = aMπ+

aMΩ
(aN ; gs, e,m) ,

R2(aN ; gs, e,m) = aMK0

aMΩ
(aN ; gs, e,m)

R3(aN ; gs, e,m) = aMDs

aMΩ
(aN ; gs, e,m) , (1.46)

R4(aN ; gs, e,m) = aMK+ − aMK0

aMΩ
(aN ; gs, e,m) ,

R5(aN ; gs, e,m) = aMD0 − aMD+

aMΩ
(aN ; gs, e,m) ,

as well as a dimensionful quantity, e.g. the mass of the Ω baryon, computed in
lattice units, from which the lattice spacing can be determined after extrapola-
tion to the infinite volume limit (see below):

R0(aN ; gs, e,m) = aMΩ(aN ; gs, e,m)
Mphys

Ω
, (1.47)

where Mphys
Ω = 1.672GeV is the physical value of the mass of the Ω baryon [9].

For illustration we are considering the masses of QCD+QED stable pseu-
doscalar mesons in the numerators of the dimensionless ratios (1.46) and using
Mphys

Ω to determine the lattice spacing, but of course other quantities can
be used instead. For example, in the four-flavour theory that we are con-
sidering here one can in principle avoid potentially noisy baryon observables
by using one of the charmed mesons masses already considered above to set
the scale. In Eqs. (1.46) - (1.47) we have used aN instead of L to highlight
that the infinite-volume limit should be taken at fixed lattice spacing (see
Eq. (1.48) below). The quantity m represents the vector of bare quark masses
m ≡ {mu,md,ms,mc}. Note that in the RM123 strategy, since one works at
first order in αem, it is not necessary to impose a renormalization condition to

6The specific choice T = 2L is convenient for illustration but not strictly necessary for the
following argument.

7An alternative procedure to determine the bare electric charge would be the evaluation of the
hadronic corrections to a leptonic observable.
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fix the e.m. coupling [3, 26]. In this case the electric charge can simply be fixed
to the Thomson limit, i.e. e =

√
4π/137.036, and R5 becomes a predictable

quantity. For the remainder of this section, we assume that we are working
to O(αem) and only consider the four ratios Ri (i = 1, 2, 3, 4) as well as R0
when discussing the calibration of the lattices. Notice also that at first order
in αem the π0 cannot decay in two photons, so that it can also be used in the
calibration procedure (see Sec. 2.4 below).

3. Up to this point the procedure is the standard one used in QCD simulations.
The difference here is in the FV effects which behave as inverse powers of L.
We therefore suggest to extrapolate the ratios Ri to the infinite-volume limit
by taking the lattice spacing fixed:

Ri(gs, e,m) ≡ lim
N→∞

Ri(aN ; gs, e,m) , i = 0, 1, 2, 3, 4, 5 . (1.48)

4. For a given discretization and choice of the coupling gs, the physical bare quark
masses, mphys(gs), and the electric charge, ephys(gs), are defined by requiring
that the five ratios R1,2,3,4,5 take their physical values

Ri(gs, ephys(gs),mphys(gs)) = Rphys
i , i = 1, 2, 3, 4, 5 . (1.49)

In practice, of course, depending on the specific choice of the ratios Ri, this
will require some extrapolations of results obtained at different values of the
bare quark masses and electric charge.

5. The lattice spacing a at this value of gs can now be defined to be

a(gs) = R0(gs, ephys(gs),mphys(gs)) . (1.50)

Note that with such a procedure the bare parameters and the lattice spacing
a do not depend on the lattice volume.

6. At leading order in the two IB parameters, i.e. O(αem,md−mu), the renorma-
lization of the lepton masses is performed perturbatively, by requiring that the
on-shell masses correspond to the physical ones. If one wishes to go beyond
first order, when hadronic effects first enter, then the physical lepton masses
should be added to the quantities used in the non-perturbative calibration.
The bare lepton masses, together with the other parameters, should be chosen
such that, in addition to satisfying the conditions in Eq. (1.46), the lepton-
lepton correlators decay in time as e−m`t, where m` is the physical mass of the
lepton `.

In Eq. (1.48) we have taken the infinite-volume limit of the computed hadron masses.
By working in the QEDL finite-volume formulation of QED, if for each hadron H the
FV corrections of order O(e2/(MHL)3, e4) can be neglected, then the extrapolation
to the infinite-volume limit can be avoided by making use of the formula [23, 30]

aMH(L; gs, e,m)
aMH(gs, e,m) = 1− καem e

2
H

{
1

2LMH(gs, e,m) + 1
L2M2

H(gs, e,m)

}
, (1.51)
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where eH is the charge of the hadron H and κ = 2.837297 (1) is a known universal
constant, independent of the structure of the hadron H. Similar formulae also exist
for other finite-volume formulations of the theory, see e.g. Ref. [34] in the case of C?
boundary conditions. Equation (1.51) can be used to determine the infinite-volume
mass of the hadron H from the value measured on the finite-volume L3, up to
corrections of order of O(e2/(mHL)3, e4).

1.5.2 Defining observables in QCD
The procedure discussed above in Sec. 1.5.1 provides a full framework in which to
perform lattice simulations of QCD together with isospin-breaking effects including
radiative corrections. Under the assumption that isospin breaking effects are not
negligible, QCD by itself is an unphysical theory and requires a definition. Different
prescriptions are possible and, of course, lead to different results in QCD. In this
section we propose and advocate hadronic schemes, based on the non-perturbative
evaluation of a set of hadronic masses in lattice simulations, and compare them
with schemes like the GRS one, which is based on equating the renormalized
strong coupling and masses in some renormalization scheme and at a particular
renormalization scale.

We recall that the QCD action is given by Eq. (1.31), which is evaluated with
bare coupling and masses different from those in the full theory, described instead
by the action of Eq. (1.30). Indeed the two theories have different dynamics that,
in turn, generate a different pattern of ultraviolet divergences. The difference in
the bare parameters of the two theories, for all schemes used to define QCD, can in
fact be related to the necessity of reabsorbing the different ultraviolet singularities.
In what follows we present two different approaches to making the choice of the
parameters g0 and mf,0.

Hadronic schemes
In hadronic schemes we choose a value of g0 and determine the bare quark masses
mphys

0 and the lattice spacing a0 imposing the same conditions as for the full theory
with the ratios R0,...,4 evaluated at vanishing electric charge, i.e. following steps 1 - 5
in Sec. 1.5.1 without imposing any constraint on the ratio R5. These parameters
differ by terms of order O(αem) from those in the full theory. For this discussion,
we make the natural and convenient choice g0 = gs. With this choice, the lattice
spacings in QCD (a0) and in the full theory (a) can be obtained as

a0 = 〈a0MΩ〉QCD

Mphys
Ω

and a = 〈aMΩ〉full

Mphys
Ω

≡ a0(1 + δa) . (1.52)

To illustrate the procedure imagine that we wish to calculate an observable O of
mass dimension 1, for example the mass of a hadron which has not been used for the
calibration. At a fixed value of gs = g0, we denote the best estimate of the observable
O, which is the one obtained in the full theory, by Ophys, and that obtained in QCD
as defined above by OQCD:

Ophys ≡ 〈aO〉
full

a
and OQCD ≡ 〈a0O〉QCD

a0
. (1.53)
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We define the difference of the two as being due to QED effects, δOQED ≡ Ophys −
OQCD. By using the result obtained in Eq. (1.43) with n = 1, we get

Ophys = OQCD + 〈a0 δO〉QCD

a0
− δa

a2
0
〈a0O〉QCD , (1.54)

where we have combined the contributions to the correlation functions from the
exchange of virtual photons and from the insertion of the mass counterterms into
〈a0δO〉QCD and the last term comes from the difference in the lattice spacings
δa = a − a0 in the full theory and QCD. The first term on the right-hand side is
one that can be calculated within QCD alone. This term allows us to define what is
the difference between QCD (defined as above) and the full theory in the hadronic
scheme: δOQED = Ophys −OQCD.

An important feature of the RM123 approach which we follow in the numerical
study presented below, is that the O(αem) terms are computed explicitly and so we
do not have to take the difference between numerical calculations performed in the
full theory and in QCD. Each of the terms on the right-hand side of Eq. (1.54) is
calculated directly. We now explain the procedure in some more detail by assuming
that terms of order O(α2

em) are negligible.

a. Correlation functions corresponding to diagrams with the exchange of a virtual
photon and to the insertion of the mass counterterms are already of O(αem) and
are calculated directly in QCD. The term proportional to the time separation
in the correlation functions gives us the mass shift δMHi (i = 1, 2, 3, 4) and
δMΩ for the five masses (or mass differences) in the ratios Ri (i = 1, 2, 3, 4) in
Eq. (1.46);

b. In the hadronic scheme being used for illustration, we impose the condition
that the four ratios Ri = mHi/mΩ are the same in QCD and in the full theory.
This corresponds to requiring that

δMHi

MHi

− δMΩ
MΩ

= 0 (i = 1, 2, 3, 4) . (1.55)

The QED contribution to the left-hand side is different from zero (and also
ultraviolet divergent) and we require the terms proportional to the counterterms
to cancel this contribution. We therefore (in principle) scan the values of
the four mass counterterms δmf = mf −mf,0 (f = u, d, s, c) until the four
conditions (1.55) are satisfied. Also in this case no subtraction of results
obtained in the full theory and in QCD is necessary.

c. Finally we determine the difference δa ≡ a− a0 in the lattice spacing. Having
determined the bare masses using item b, we can calculate the shift in the Ω
mass (δMΩ) due to both QED and the mass counterterms and use Eq. (1.52).

We have discussed in detail the definition of the isospin-breaking effects due to
electromagnetism, δOQED. Having done this, the subsequent definition of the strong
isospin breaking effects is straightforward. To do this, however, we need to define
the isosymmetric theory (labelled by “ISO”) by imposing appropriate conditions to
determine the bare quark masses and the lattice spacing. Since mu = md, in the
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Nf = 2 + 1 + 1 theory we need to determine only three quark masses and hence we
only need three conditions, e.g. we can use the ratios R1,2,3 in Eq. (1.46) to determine
the physical bare quark masses. For the determination of the lattice spacing we
have two options. The simplest one is to work in a mass–independent scheme and
set the lattice spacing in the isosymmetric theory, aISO

0 , equal to the one of QCD
with mu 6= md, i.e. aISO

0 = a0. The other option is that we set the lattice spacing
in the isosymmetric theory by using R0 in Eq. (1.50). The difference between the
two options is due to cutoff effects that disappear once the continuum limit is taken
consistently. The strong isospin breaking correction δOSIB to the observable O can
now be defined by

δOSIB = OQCD −OISO , (1.56)

where OISO = 〈aISO
0 O〉ISO

aISO
0

is the value of the observable obtained in isosymmetric QCD.
With these definitions we have the natural relation Ophys = OISO + δOQED + δOSIB.

The GRS scheme

A different prescription consists in using the GRS scheme already introduced in
Sec. 1.3. This was originally proposed in Ref. [8] (see also Ref. [35]) to relate the bare
quark masses and bare coupling of QCD (m0

f and g0) to those in the full theory (mf

and gs). This prescription has been adopted in Refs. [3, 26]. In the GRS approach,
instead of determining the bare parameters of QCD by requiring that the chosen
hadronic masses in QCD are equal to their physical values, one imposes that the
renormalized parameters in a given short-distance scheme (e.g. the MS scheme) and
at a given scale are equal in the full and QCD theories.

A consistent procedure is the following:

1. The full theory is renormalized by using a physical hadronic scheme as dis-
cussed in subsection 1.5.1. This means that for each chosen value of gs, the
corresponding physical value of the bare electric charge ephys(gs) and of the
lattice spacing a(gs) are known.

2. The renormalization constants (RCs) of the strong coupling constant and of
the quark masses are computed in a short-distance mass-independent scheme
both in the full theory and in the theory with e = 0.

3. In order to set the bare parameters of QCD at a given value of the lattice
spacing we choose a matching scale µ and impose that the renormalized strong
coupling constant and quark masses are the same as in the full theory. In
practice we might want to simulate QCD at the same values of the lattice
spacing used in the full theory simulations. In this case the matching conditions
are

ĝ0(µ) = Zg(0, g0, a(gs)µ)g0 = Zg(ephys(gs), gs, a(gs)µ)gs = ĝs(µ) , (1.57)
m̂0
f (µ) = Zmf

(0, g0, a(gs)µ)m0
f (g0) = Zmf

(ephys(gs), gs, a(gs)µ)mf (gs) = m̂f (µ) ,

where the hat (̂) indicates renormalized quantities. Notice that quarks with
the same electric charge have the same RC, e.g. Zmu(e, gs, µ) = Zmc(e, gs, µ),
and that the quark mass RC at vanishing electric charge is flavour independent,
Zmf (0, g0, µ) = Zm(g0, µ).
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4. In order to define isosymmetric QCD by using this approach, the bare up-down
quark mass is determined from

Zm(g0, a(gs)µ)m0
ud(g0) = m̂u(µ) + m̂d(µ)

2 . (1.58)

The GRS scheme is a short-distance matching procedure that can also be used to
match the theories at unphysical values of the renormalized electric charge and/or
quark masses with the physical theory. By following the procedure outlined above
one can perform lattice simulations of the full theory and of isosymmetric QCD
at the same value of the lattice spacing but, consequently, at different values of
the bare strong coupling constant. This is different from the strategy outlined in
the previous subsection where, by using hadronic schemes, it was more natural to
choose the same value of the bare strong coupling (g0 = gs) at the price of having
two different lattice spacings. The absence of the lattice spacing counterterm (see
Eq. (1.54) above) in the GRS scheme is compensated from the presence of the
counterterm (1/g2

0 − 1/g2
s)SYM originating from the difference of the bare strong

coupling constants in the two theories.
A remark of some practical relevance concerns the possibility of implementing

hadronically the GRS scheme. To this end, note that in the GRS scheme the
dimensionless ratios Ri will not be equal to the corresponding physical values and
the difference can be parametrized as follows

RQCD-GRS
i = Rphys

i (1 + εGRS
i ), (1.59)

where the εGRS
i are order O(αem) and depend on the chosen matching scheme and

also on the chosen matching scale. Once the εGRS
i (and hence the RQCD-GRS

i ) are
known, for example from a particularly accurate lattice simulation, then they can
be used in other lattice computations. The bare quark masses are then determined
by requiring that the Ri in isosymmetric QCD reproduce RQCD-GRS

i as given by
Eq. (1.59), and, at this stage, the GRS scheme can be considered to be a hadronic
one as it is defined in terms of non-perturbatively computed quantities (in this case
meson masses). We stress however that this requires prior knowledge of the εGRS

i .
Of course other schemes are also possible. In general, the εi provide a unifying

language to discuss the different schemes for the definition of (isosymmetric) QCD
in the presence of electromagnetism; in physical hadronic schemes the εi = 0, while
in the GRS and other schemes they are of order O(αem). For later use, we make the
simple observation that two schemes can be considered to be equivalent in practice
if the εi in the two schemes are equal within the precision of the computations.

Although the GRS scheme is perfectly legitimate, we advocate the use of physical
hadronic schemes in future lattice calculations. For lattice simulations of physical
quantities, a non-perturbative calibration of the lattice is necessary in general, but
the renormalization required for the GRS conditions in Eq. (1.57) is not generally
necessary (except perhaps for the determination of the renormalized coupling and
quark masses themselves). Now that hadronic masses are calculated with excellent
precision in lattice simulations and their values are well known from experimental
measurements, it is natural to use hadronic schemes. By contrast, the renormalized
couplings and masses are derived quantities which are not measured directly in
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experiments. In spite of this, as explained above, at the time that the computation
of leptonic decay rates was started, the GRS scheme was adopted. Of course the
physical results in the full theory do not depend on this choice.
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2 | QED corrections to hadronic
decay rates

The study of weak processes play a crucial role in exploring the limits of the
Standard Model of particles and in searching signals of new physics. Leptonic and
semileptonic decays of hadrons allow one to extract the entries of the CKM matrix
by comparing theoretical determinations with experimental measurements. The
precision in extracting CKM matrix elements is generally limited by our ability
to quantify hadronic effects and the main goal of large-scale simulations using the
lattice formulation of QCD is the ab initio evaluation of the non-perturbative QCD
effects in physical processes. The recent improvement in lattice computations has led
to a precision approaching O(1%) for a number of quantities (see e.g. Ref. [1] and
references therein) and therefore in order to make further progress electromagnetic
and strong isospin-breaking effects, which are of the same order of magnitude, have
to be considered. The inclusion of IB effects in lattice calculations, described in
the previous Chapter 1 following the RM123 approach of Refs. [2, 3, 26], has been
first applied with great success to the calculation of the hadron spectrum. The
issue of how to include electromagnetic effects in the hadron spectrum and in the
determination of quark masses from lattice calculations was addressed for the first
time in Ref. [19]. Using a variety of different methods to include QED effects in lattice
QCD simulations, several collaborations have recently obtained remarkably precise
results for the hadron spectrum, such as the determination of the charged-neutral
mass splittings of light pseudoscalar mesons and baryons [2, 3, 21, 27, 36–42] (see
Refs. [28, 29, 43] for recent reviews on the subject). However, the computation of
the hadron spectrum is much simplified by the absence of infrared (IR) divergences.
The same is not true when computing hadronic amplitudes, where electromagnetic
IR divergences are present and cancel only for well defined, measurable physical
quantities only after including diagrams containing both real and virtual photons, as
first understood by Bloch and Nordsieck in Ref. [44]. This is the case, for instance,
for the leptonic π`2 and K`2 and semileptonic K`3 decay rates. The presence of IR
divergences in intermediate steps of the calculation requires in this case a new strategy
beyond those developed for the calculation of IB effects in the hadron spectrum.
Such a new strategy was proposed in Ref. [14], where the lattice determination of
the decay rate of a charged pseudoscalar meson (P±) into either a final `±ν` pair or
`±ν`γ state was addressed.

In this chapter we discuss in full detail such strategy, focusing on the leptonic
decay of a pseudoscalar meson with positive charge, P+.
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2.1 The method

Let Γ0 be the partial width for the decay P+ → `+ν` where the charged lepton ` is
an electron or a muon (or possibly a τ) and ν` is the corresponding neutrino. The
subscript 0 is used to indicate that there are no photons in the final state. In the
absence of electromagnetism, the non-perturbative QCD effects are contained in a
single number, the decay constant f (0)

P , which is defined in the continuum and in a
given scheme in terms of the matrix element of the QCD axial current A(0)

P as

A
(0)
P ≡ 〈0| q̄2 γ0γ5 q1 |P (0)〉 ≡ f (0)

P M
(0)
P , (2.1)

where the initial state meson P (0) (considered at rest) is composed of the valence
quarks q̄1 and q2, andM (0)

P is the P -meson mass defined in isosymmetric QCD in the
chosen scheme as well. Many calculations of decay constants fπ, fK , fD(s) and fB(s)
have been done in the last years in isosymmetric QCD [1], some of which approaching
O(1%) precision. As noted above, at such a level of precision isospin breaking effects,
including electromagnetic corrections, have to be taken into account. However, as it
has been stressed in Refs. [45, 46], it is not possible to give a physical definition of the
decay constant fP in the presence of electromagnetism, because of the contributions
from diagrams in which the photon is emitted by the hadron and absorbed by the
charged lepton. Thus the physical width can only be obtained by a full calculation
of the electromagnetic corrections at a given order in αem. The immediate difficulty
one encounters when including electromagnetic corrections is that Γ0 contains IR
divergences and by itself is therefore unphysical. In order to solve the problem,
as mentioned above, one has to include the contributions from real photons. We
therefore define Γ1 to be the partial witdh for the decay P+ → `+ν`γ, the subscript 1
indicating that there is one photon in the final state. The e.m. corrections due to
the exchange of a virtual photon and to the emission of a real one can be both
computed non-perturbatively, by numerical simulations, on a finite lattice with
the corresponding uncertainties. The exchange of a virtual photon depends on
the structure of the decaying meson, since all momentum modes are included, and
the corresponding amplitude must therefore be computed non-perturbatively. The
non-perturbative evaluation of the emission of a real photon is very challenging and
first promising results have been recently obtained [47, 48]. However, it is possible
to compute the real emission amplitudes in perturbation theory by limiting the
maximum energy of the emitted photon in the meson rest-frame to a value ∆Eγ
small enough so that the internal structure of the decaying meson is not probed
and the meson P+ can be treated as a pointlike particle1. The IR divergences in
the non-perturbative calculation of the corrections due to the exchange of a virtual
photon are cancelled by the corrections due to the real photon emission even when
the latter is computed perturbatively, because IR divergences do not depend on the
structure of the decaying hadron. Such a strategy, which requires an experimental
cut on the energy of the real photon, is the one originally proposed in Ref. [14] and it
will be the one adopted in this thesis. It is necessary to ensure that the cancellation

1On the other hand, ∆Eγ must be sufficiently large that the decay rate can be measured
experimentally.
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of IR divergences between Γ0 and Γ(∆Eγ) occurs with good numerical precision,
since they are computed in a Monte-Carlo simulation and in perturbation theory
respectively. An intermediate step is therefore needed, in which an IR regulator is
introduced. The inclusive rate Γ(P+ → `+ν`[γ]) can be expressed as [14]

Γ(P± → `±ν`[γ]) = Γ0 + Γpt
1 (∆Eγ) (2.2)

= lim
L→∞

[
Γ0(L)− Γpt

0 (L)
]

+ lim
µγ→0

[
Γpt

0 (µγ) + Γpt
1 (∆Eγ , µγ)

]
,

where the subscripts 0, 1 indicate the number of photons in the final state, while the
superscript pt denotes the point-like approximation of the decaying meson and µγ
is an IR regulator. In the first term on the r.h.s. of Eq. (2.2) the quantities Γ0(L)
and Γpt

0 (L) are evaluated on the lattice. Both have the same IR divergences which
therefore cancel in the difference. We use the lattice size L as the intermediate
IR regulator by working in the QEDL finite-volume formulation of QED [30] (see
Sec. 1.2). The difference

[
Γ0 − Γpt

0

]
is independent of the regulator as this is

removed [49]. As already pointed out, since all momentum modes contribute to
it, Γ0(L) depends on the structure of the decaying meson and must be computed
non-perturbatively. In the second term on the r.h.s. of Eq. (2.2), the meson is
treated as point-like and both Γpt

0 (µγ) and Γpt
1 (∆Eγ , µγ) can be calculated directly

in infinite volume in perturbation theory, using a photon mass µγ as the IR regulator.
Each term is IR divergent, but the sum is convergent [44] and independent of the
IR regulator. The explicit perturbative calculations of

[
Γpt

0 + Γpt
1 (∆Eγ)

]
and Γpt

0 (L)
have been performed in Refs. [14] and [49], respectively.

The first application of this method to the calculation of leptonic decay rates
has been done in Ref. [6], where e.m. and IB corrections to the ratio of Kµ2 and πµ2

decay rates of charged kaons and pions into muons, Γ[K → µνµ(γ)]/Γ[π → µνµ(γ)],
was evaluated. The ratio is less sensitive to various sources of uncertainty than
the IB corrections to πµ2 and Kµ2 , since the e.m. corrections coming from the
renormalization of the operator mediating the decay process cancel out in the ratio.
However, in order to obtain a separate evaluation of IB corrections to the πµ2 and
Kµ2 decay rates such contributions must be included in the calculation. Therefore,
in the following we describe how to renormalize the weak effective Hamiltonian in
the presence of e.m. interactions. Then, in Sec. 2.4 we will describe the structure of
the calculation of leptonic decay amplitudes, including the leading order IB effects.

2.2 From Standard Model to W -regularization

At the lowest order in the e.m. and strong perturbation theory, the process P+ →
`+ν` takes place by an s-channel exchange of a W boson between the constituent
quarks of the meson and the lepton pair, see left-hand diagram of Fig. 2.1. Since
the energy-momentum carried by the W boson in this process is much smaller than
the W -boson mass MW , it is standard practice to rewrite the amplitude in terms of
a four-fermion local interaction, described by the effective Hamiltonian

HW = GF√
2
V ∗q1q2 O1 ≡

GF√
2
V ∗q1q2

(
q̄2γµ(1− γ5)q1

) (
ν̄`γ

µ(1− γ5)`
)
, (2.3)
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Figure 2.1. Tree-level diagram for the process P+ → `+ν` (left-hand diagram). In the
effective theory the interaction is given by a local four-fermion operator (right-hand
diagram).

where GF is the Fermi constant and Vq1q2 is an element of the CKM matrix. At
lowest order in αem the two full dots in the right-hand diagram of Fig. 2.1 represent
the two currents in the bare four-fermion operator

O1 =
(
q̄2γµ(1− γ5)q1

) (
ν̄`γ

µ(1− γ5)`
)
. (2.4)

In order to compute the rate on the lattice, such a replacement is necessary, since
the lattice spacing a is much greater than 1/MW . When including first order QED
corrections, the ultraviolet (UV) contributions to the matrix element of the local
operator in the effective theory are different from those in the Standard Model.
Therefore, a matching between the two theories is necessary. The Fermi constant
GF is conventionally taken from the measured value of the muon lifetime using the
expression [50, 51]

1
τµ

=
G2
Fm

5
µ

192π3

[
1− 8m2

e

m2
µ

] [
1 + αem

2π

(25
4 − π

2
)]

, (2.5)

leading to the value GF = 1.16634× 10−5 GeV−2. For an extension of Eq. (2.5) to
O(α2

em) and the inclusion of higher powers of ρ ≡ (me/mµ)2 see Sec. 10.2 of Ref. [9].
The Particle Data Group [9] quote the corresponding value of the Fermi constant to
be GF = 1.1663787(6)× 10−5 GeV−2.

Eq. (2.5) can be taken as the definition of GF at O(αem). When calculating
the Standard Model corrections to the muon lifetime many of the contributions
are absorbed into GF and the remaining terms on the right-hand side of Eq. (2.5)
come from the diagrams in Fig. 2.2, in which the factor 1/k2 in the Feynman-gauge
photon propagator is replaced by 1/k2×M2

W /(M2
W −k2), where k is the momentum

in the propagator. This is called the W -regularisation of UV divergences [52]. The
diagrams are evaluated in the effective theory with the local four-fermion operator
(ν̄µγµ(1 − γ5)µ) (ēγµ(1 − γ5)νe), the two currents being represented by the filled
black circles in Fig. 2.2. In such regularization, the photon propagator is rewritten
as

1
k2 →

1
k2 −M2

W

+ M2
W

M2
W − k2

1
k2 (2.6)

and the UV divergent contributions absorbed in the definition of GF come from
the first term. In addition, the Standard-Model γ-W box diagram is ultra-violet
convergent and is equal to the corresponding diagram in the effective theory (i.e.
the third diagram in Fig. 2.2) with the W-regularisation, up to negligible corrections
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µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

Figure 2.2. Diagrams contributing to the O(αem) corrections to muon decay; see Eq. (2.5).
The curly line represents the photon.

of O(q2/M2
W ), where q is the four-momentum of the electron and its neutrino. Other

electroweak corrections not explicitly mentioned above are all absorbed into GF .
The helpful feature of W -regularization is that most of the terms which are

absorbed into GF are common to other processes, including leptonic decays of
pseudoscalar mesons [11, 53]. There are however, some short-distance contributions
which do depend on the electric charges of the individual fields in the four-fermion
operators and these lead to a correction factor of (1 + 2αem

π log MZ
MW

) to Γ0 [11].
The conclusion of the above discussion is that the evaluation of the amplitude

for the process P+ → `+ν` up to O(αem) can be performed in the effective theory
with the effective Hamiltonian

HW = GF√
2
V ∗q1q2

[
1 + αem

π
log

(
MZ

MW

)]
OW-reg

1 (MW ) , (2.7)

where GF is obtained from the muon lifetime and OW-reg
1 (MW ) is the operator O1 of

Eq. (2.3) renormalized in the W -regularization scheme and with the Feynman-gauge
photon propagator in the W -regularization. At order O(αem), the two full dots in
the right-hand diagram of Fig. 2.1 denote instead the insertion of OW-reg

1 (MW ).

2.3 From W -regularization to Lattice

Since the W -boson is too large to be simulated on the lattice, the inverse lattice
spacing being much smaller than the W -boson mass, a matching between the lattice
weak operator O1 and the one renormalized in the W -regularization scheme is
necessary. Moreover, for lattice formulations which break chiral symmetry, like
the one used in the present work, the lattice weak operator O1 mixes with other
four-fermion operators of different chirality. The calculation of OW-reg

1 takes place in
two steps: we start by renormalizing the lattice four-fermion operator O1 defined in
Eq. (2.4) in the RI'-MOM scheme [54], at all orders in QCD and first order in QED,
obtaining ORI'

1 (µ), and then perturbatively match the operator ORI'
1 (µ) to the one

in the W -regularization [14]

OW-reg
1 (MW ) = ZW-RI'

(
MW

µ
, αs(µ), αem

)
ORI'

1 (µ) . (2.8)

The coefficient ZW-RI' (MW /µ, αs(µ), αem) can be computed by first evolving the
operator in the RI' scheme to the scaleMW and then matching it to the corresponding
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operator in the W -scheme. The coefficient can therefore be written as the product
of a matching coefficient and an evolution operator

ZW-RI'
(
MW

µ
, αs(µ), αem

)
= ZW-RI' (1, αs(MW ), αem) URI' (MW , µ;αem) . (2.9)

Below we will only consider terms of first order in αem and, therefore we will
consistently neglect the running of αem.

We note that the original bare lattice operators and OW-reg
1 (MW ) are gauge

invariant, and thus the corresponding matching coefficients are gauge invariant.
This is not the case for ORI'

1 (µ) that instead depends not only on the external
states chosen to define the renormalization conditions, but also on the gauge. Conse-
quently the matching coefficient ZW-RI'

(
MW
µ , αs(µ), αem

)
and the evolution operator

URI' (MW , µ, αem) are in general gauge dependent. However, at the order of pertur-
bation theory to which we are working, the evolution operator turns out to be both
scheme and gauge independent.

In the following, we discuss the matching coefficient, ZW-RI' (1, αs(MW ), αem),
and give the result for the evolution operator URI' (MW , µ, αem), while the calculation
of the renormalized operator ORI'

1 (µ) obtained non-perturbatively on the lattice will
be the subject of Chapters 3 and 4. A detailed calculation of the evolution operator
at NLO in QCD+QED is done in Chapter 6.

The matching coefficient. At first order (one loop) in αem, the matching
coefficient takes the form

ZW-RI' (1, αs(MW ), αem) = 1 + αem
4π CW-RI' , (2.10)

where the strong interaction corrections for the RI'-MOM operator vanish, at this
order, because of the Ward identities of the quark vector and axial vector currents
appearing in the operator O1 in the massless limit. We stress that we currently
do not include terms of O(αs(MW )αem) in the matching coefficient ZW-RI'. The
inclusion of such terms would require the knowledge of the three-loops anomalous
dimension matrix in QCD+QED, which we have not computed. The specific value
of CW-RI' used in this work will be given later in Eq. (5.17).

The evolution operator. The evolution operator URI' (MW , µ;αem) is the
solution of the renormalization group equation[

µ2 ∂

∂µ2 + β(αs, αem) ∂

∂αs

]
URI' (MW , µ;αem) = γ(αs, αem)

2 URI' (MW , µ;αem) ,

(2.11)
where URI' (MW , µ;αem) satisfies the initial condition URI' (MW ,MW , αem) = 1,
γ(αs, αem) is, in general, the anomalous dimension matrix [12, 13], although in our
particular case it is actually a number (and not a matrix), and β(αs, αem) is the
QCD β-function with the inclusion of e.m. corrections. A detailed discussion on the
calculation at NLO in QCD+QED of the evolution operator URI' for a given set
of operators is done in Chap. 6, while the calculation of the anomalous dimension
matrix γ(αs, αem) is carried on in Chap. 7.
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According to Eqs. (6.50) - (6.52), together with the results obtained for the
anomalous dimension of the operator ORI'

1 in Eqs. (7.57), the evolution operator has
the form

URI' (MW , µ;αem) = 1− αem
4π

γ
(0)
e

2 log
(
M2
W

µ2

)
− αs(µ)αem

(4π)2
γ

(1)
se

2 log
(
M2
W

µ2

)

= 1 + αem
4π 2

(
1− αs(µ)

4π

)
log

(
M2
W

µ2

)
. (2.12)

Note that at this order the evolution operator is independent of the QCD β-function.
This is a consequence of the fact that the QCD anomalous dimension vanishes for
the operator O1.

Combining Eqs. (2.8)-(2.10) and (2.12) we obtain the relation between the
operator O1 in the W -regularization scheme and the one in the RI' scheme,

OW-reg
1 (MW ) =

{
1 + αem

4π

[
2
(

1− αs(µ)
4π

)
log

(
M2
W

µ2

)
+ CW-RI'

]}
ORI'

1 (µ) ,

(2.13)
which is valid at first order in αem and up to (and including) terms of O(αemαs(MW ))
in the strong coupling constant.

The calculation of the renormalized operator ORI'
1 (µ), computed non-perturbatively

on the lattice in the RI'-MOM scheme at all orders in αs and up to first order in
αem is the only missing step for the determination of OW-reg

1 (MW ) in Eq. (2.8). A
new strategy to renormalize lattice operators in QCD+QED fully including the non
perturbative dynamics of QCD, and QED at O(αem) will be presented in Chap. 3,
while in Chap. 4 we will show the details of the numerical analysis performed in
the electro-quenched approximation using gauge ensembles produced by the ETM
collaboration with Nf = 4 dynamical quarks.

2.4 Evaluation of the leptonic decay amplitude
At first order in αem and (md −mu)/ΛQCD the inclusive decay rate (2.2) can be
written as

Γ(P± → `±ν̄`[γ]) = ΓQCD
(
1 + δRP

)
+O

[
α2

em, (md −mu)2, αem(md −mu)
]
,

(2.14)
where ΓQCD is the tree-level decay rate given by

ΓQCD = G2
F

8π |Vq1q2 |
2 m2

`

M
(0)
P

(
1− m2

`

M
(0) 2
P

)2 ∣∣A(0)
P

∣∣2
= G2

F

8π |Vq1q2 |
2m2

`

(
1− m2

`

M
(0) 2
P

)2

f
(0) 2
P M

(0)
P , (2.15)

with M
(0)
P and f

(0)
P being the mass and decay constant of the charged P -meson

defined in isosymmetric QCD in the chosen scheme. The decay constant f (0)
P is

defined in terms of the matrix element of the QCD axial current A(0)
P as in Eq. (2.1).
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K+

s

u

ℓ+

νℓ

Figure 2.3. Feynman diagram for the process K+ → `+ν`. In the effective theory the
interaction is given by a local four-fermion operator denoted by the two full dots in
the figure.

The decay rate is obtained from the insertion of the lowest-order effective
Hamiltonian HW of Eq. (2.3), as depicted in the Feynman diagram of Fig. 2.3,
where the decay of a charged kaon is shown as an example. At lowest order in αem
the two full dots in the figure represent the two currents in the bare four-fermion
operator O1 in Eq. (2.4), whereas at order O(αem) they will denote the insertion of
the renormalized operator in the W -regularisation, OW-reg

1 .
In order to compare our results for the e.m. and strong IB corrections to those

obtained in Ref. [18] and adopted by the PDG [9, 55], however, we will use a modified
expression:

Γ(P± → `±ν̄`[γ]) = Γ(0) (1 + δRP )+O
[
α2

em, (md −mu)2, αem(md −mu)
]
, (2.16)

where Γ(0) is given by

Γ(0) = G2
F

8π |Vq1q2 |
2 m

2
`

M2
P

(
1− m2

`

M2
P

)2 ∣∣ĀP ∣∣2
= G2

F

8π |Vq1q2 |
2m2

`

(
1− m2

`

M2
P

)2

f
(0) 2
P MP , (2.17)

and MP this time is the physical mass of the charged P -meson, including both
e.m. and leading-order strong IB corrections. In the above Eq. (2.17) we have
defined the matrix element of the hadronic axial current between the vacuum and
the physical P ground state as

ĀP = pµP
MP

〈0| q̄2γµγ5q1 |P 〉 ≡ f (0)
P MP . (2.18)

The quantity δRP in Eq. (2.16) encodes both the e.m. and the strong IB leading-
order corrections to the tree-level decay rate. Its value depends on the prescription
used for the separation between the QED and QCD corrections, while the quantity

F2
P ≡

Γ(P± → `±ν̄`[γ])
G2
F

8π |Vq1q2 |2m
2
`

(
1− m2

`

M2
P

)2
MP

=
[
f

(0)
P

]2
(1 + δRP ) (2.19)

is prescription independent [46] to all orders in both αem and (md −mu).
The quantity Fπ may be used to set the lattice scale instead of the Ω baryon

mass. Indeed, the physical value Fphys
π can be obtained by taking the experimental

pion decay rate Γ(π− → µ−ν̄µ[γ]) = 3.8408(7) · 107 s−1 from the PDG [9] and the
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result for |Vud| = 0.97420(21) determined accurately from super-allowed β-decays
in Ref. [10]. Consequently, one may replace MΩ with Fπ (as the denominator of
the ratios R1,...,4 in Eqs. (1.46)), Mπ+ with Mπ0 in the ratio R1 (when working at
leading order in αem) and set the electron charge directly to its Thomson’s limit
(instead of using the ratio R5), namely

R1(aN ; gs, e,m) = aMπ0

aFπ
(aN ; gs, e,m) , (2.20)

R2(aN ; gs, e,m) = aMK0

aFπ
(aN ; gs, e,m)

R3(aN ; gs, e,m) = aMDs

aFπ
(aN ; gs, e,m) ,

R4(aN ; gs, e,m) = aMK+ − aMK0

aFπ
(aN ; gs, e,m) .

For the present study, however, we were unable to use MΩ to determine the lattice
spacing because the corresponding baryon correlators were unavailable. Numerical
calculations of MΩ by the ETM Collaboration are currently ongoing. The choice
of using Fπ instead to set the scale clearly prevents us from being able to predict
the value of |Vud|. This is one of the reasons why the use of hadronic schemes
with hadron masses as experimental inputs is strongly suggested for future lattice
calculations. However, as already explained above in Sec. 1.5, in this work we
renormalize the QCD theory using the same set of hadronic inputs adopted in the
analysis of quark-masses performed in Ref. [56], since the present calculations started
applying the RM123 method on previously generated isosymmetric QCD gauge
configurations from ETMC. The bare parameters of these QCD gauge ensembles
were fixed in Ref. [56] by using the hadronic scheme corresponding to

M (0),FLAG
π = 134.98 MeV (2.21)

M
(0),FLAG
K = 494.2 (3) MeV (2.22)
f (0),FLAG
π = 130.41 (20) MeV (2.23)

M
(0),FLAG
Ds

= 1.9690 (14) GeV (2.24)

where M (0)
Ds

was chosen to be equal to the experimental D+
s -meson mass [9]. Note

that in the absence of QED radiative corrections Fπ reduces to the conventional
definition of the pion decay constant f (0)

π . The superscript FLAG has been used
because the chosen values of three out of the four hadronic inputs had been suggested
in the previous editions of the FLAG review [1]. For this reason we refer to the
scheme defined from these inputs as the FLAG scheme.

The same input parameters (2.20) used in the FLAG scheme have been computed
in Ref. [7] also in the GRS scheme (corresponding to the MS scheme at µ = 2 GeV)
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obtaining2:

M (0),GRS
π = 135.0 (2) MeV , (2.29)

M
(0),GRS
K = 494.6 (1) MeV , (2.30)
f (0),GRS
π = 130.65 (12) MeV , (2.31)

M
(0),GRS
Ds

= 1.9667 (15) GeV . (2.32)

For the result of f (0),GRS
π , see Eq. (5.49) in Chap. 5 below. It follows that the values

of the inputs determined in the GRS scheme differ at most by ∼ 0.15% from the
corresponding values adopted in Ref. [56] for the isosymmetric QCD theory and
the differences are at the level of our statistical precision. Thus, the result of our
analysis of the scheme dependence can be summarized by the conclusion that the
FLAG and GRS schemes can be considered to be equivalent at the current level of
precision. Nevertheless, we have used the results of this analysis to estimate the
systematic error on our final determinations of the isospin breaking corrections δRP
induced by residual scheme uncertainties (see the discussion at the end of Chap. 5).
In light of this quantitative analysis, given the numerical equivalence of the two
schemes at the current level of precision, in the rest of the paper we shall compare
our results obtained in the GRS scheme with the results obtained by other groups
using the FLAG scheme and we shall not use superscripts to distinguish between
the two schemes.

The correction to the decay rate δRP , defined in Eq. (2.16), gets to kind of
contributions and can be written as

δRP = δR ren
P + δR ampl

P . (2.33)

The term δR ren
P comes from the e.m. corrections in the matching of the renormalized

weak four-fermion lattice operator to the W -regularization scheme, described by
Eq. (2.13), and from the (eventual) mixing of the operator O1 with other bare lattice
four-fermion operators in the case chiral symmetry breaking actions are used for
fermions. On the other hand, δR ampl

P comes from the strong IB and e.m. corrections
to the leptonic decay rate, computed with the insertion of the QCD-renormalized
weak four-fermion operator into the amplitude. We focus now on the calculation
of δR ampl

P and postpone the evaluation of δR ren
P to Chap. 5, after the discussion on

how to renormalize lattice operators non perturbatively in QCD+QED.

2These values differ slightly from those obtained in Ref. [26], since now we include the non-
factorizable corrections of order O(αemα

n
s ) (with n ≥ 1) to the mass renormalization constant (see

the coefficient Z fact
m in Eq. (2.51) and in Table 2.1 below). The updated results for Eqs. (8), (10),

(14) and (15) of Ref. [26] are reported in Ref. [7] and are given by

επ0 = 0.01 (4) , (2.25)
εK0 = 0.01 (2) , (2.26)

δMD+ + δMD0 = 1.7 (1.0) MeV , (2.27)
δMD+

s
= 2.3 (4) MeV . (2.28)
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The correction δR ampl
P , can be written as (see Ref. [6, 7])

δR ampl
P = αem

π
log

(
M2
Z

M2
W

)
+ 2 δ

[
AP

ĀP

]
+ δΓ(pt)(∆Eγ) (2.34)

= αem
π

log
(
M2
Z

M2
W

)
+ 2 δAP

A
(0)
P

− 2 δMP

M
(0)
P

+ δΓ(pt)(∆Eγ) ,

where

i) the term containing log(M2
Z/M

2
W ) comes from the short-distance matching

between the full theory (the Standard Model) and the effective theory in the
W -regularisation (see Eq. (2.7)) [11];

ii) the quantity δΓ(pt)
P (∆Eγ) represents the O(αem) correction to the tree-level

decay rate for a point-like meson including the contributions of the emissions
of both virtual and real photons (see Eq. (2.2)) evaluated using a photon mass
for the IR regulation. The cut-off on the final-state photon’s energy, ∆Eγ ,
must be sufficiently small for the point like-approximation to be valid. The
expression of δΓ(pt)

P (∆Eγ) can be read off from Eq. (51) of Ref. [14] and one
has explicitely

δΓ(pt)(∆Eγ) = αem
4π

(
3 log

(
m2
π

M2
W

)
− 8 log(1− r2

` )−
3r4
`

(1− r2
` )2 log(r2

` ) +

− 8 1 + r2
`

1− r2
`

Li2(1− r2
` ) + 13− 19 r2

`

2 (1− r2
` )

+ (2.35)

+ 6− 14 r2
` − 4(1 + r2

` ) log(1− r2
` )

1− r2
`

log(r2
` )
)

where r` = m`/MP ;

iii) δAP is the e.m. and strong IB correction to the decay amplitude P → `ν` with
the subtraction of the corresponding correction evaluated for a point-like meson
using the finite lattice volume as the infrared regulator. The subtraction term
is added back in δΓ(pt)

P (∆Eγ), see Eq. (2.2). We remind that such procedure
makes both δΓ(pt)

P (∆Eγ) and δAP infrared finite quantities and independent
on the specific infrared regularization;

iv) δMP encodes the e.m. and strong IB corrections to the mass of the P -meson,
MP = M

(0)
P + δMP . The correction proportional to 2 δMP /M

(0)
P is present

because of the relation between the amplitudes ĀP and A(0)
P , namely

ĀP = A
(0)
P

(
1 + δMP

M
(0)
P

)
. (2.36)

Since we adopt the qQED approximation, which neglects the effect of the sea-quark
electric charges, the calculation of δAP and δMP only requires the evaluation of
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connected diagrams. In the following we consider twisted-mass fermions, as in the
numerical calculation of Ref. [6, 7]. The diagrams to be evaluated are shown in
Figs. 2.3-2.7 for the case of K`2 decays. As already pointed out, at O(αem) the
renormalized operator, defined in the W -renormalization scheme, is inserted in the
diagram of Fig. 2.3. As for the diagrams of Figs. 2.4 - 2.7, which are already of order
O(αem) and O((md −mu)/ΛQCD), it is sufficient to insert the weak current operator
renormalized in QCD only.

In Eq. (2.35), δA ampl
P and δMP contain both the e.m. and the strong IB leading-
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(e)

Figure 2.4. Connected diagrams contributing at O(αem) to the K+ → `+ν` decay ampli-
tude, in which the photon is attached to quark lines: (a) exchange, (b, c) self-energy and
(d, e) tadpole diagrams. The labels are introduced to identify the individual diagrams
when describing their evaluation in the text.
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Figure 2.5. Connected diagrams contributing at O(αem) to the K+ → `+ν` decay ampli-
tude corresponding to the insertion of the pseudoscalar density related to the e.m. shift
of the critical mass, δmcrit

f , determined in Ref. [26].
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Figure 2.6. Connected diagrams contributing atO(αem) andO(md−mu) to theK+ → `+ν`
decay amplitude related to the insertion of the scalar density (see Ref. [26]).
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Figure 2.7. Connected diagrams contributing at O(αem) to the K+ → `+ν` decay ampli-
tude corresponding to photon exchanges involving the final-state lepton.

order corrections

δA ampl
P = δASIB

P +
∑

i=J,T,P,S
δAiP + δA`P + δA`,self

P , (2.37)

δMP = δMSIB
P +

∑
i=J,T,P,S

δM i
P . (2.38)

The quantity δASIB
P (δMSIB

P ) represents the strong IB corrections proportional
to md − mu and to the diagram of Fig. 2.6(b), while the other terms are QED
corrections coming from the insertions of the e.m. current and tadpole operators,
of the pseudoscalar and scalar densities (see Refs. [2, 3]). The term δAJP (δMJ

P ) is
generated by the diagrams of Fig. 2.4(a-c), δATP (δMT

P ) by the diagrams of Fig. 2.4(d-
e), δAPP (δMP

P ) by the diagrams of Fig. 2.5(a-b) and δASP (δMS
P ) by the diagrams

of Fig. 2.6(a-b). The term δA`P corresponds to the exchange of a photon between
the quarks and the final-state lepton and arises from the diagrams in Fig. 2.7(a-b).
The term δA`,self

P corresponds to the contribution to the amplitude from the lepton’s
wave function renormalization and arises from the self-energy diagram of Fig. 2.7(c).
Such correction can be in principle computed in perturbation theory, since the
hadronic amplitude factorizes and coincides with its tree-level value. Therefore, the
contribution of δA`,self

P cancels out in the difference Γ0(L)− Γpt
0 (L) in Eq. (2.2) and

could be omitted in the calculation (this cancellation happens in any regularization
scheme when using the same value of the decay constant f (0)

P ). Such cancellation
will be discussed later in Sections 4.3 and 5.2. The different insertions of the scalar
density encode the strong IB effects together with the counter terms necessary to fix
the masses of the quarks. We stress that the insertion of the pseudoscalar density
(diagrams in Fig. 2.5) is peculiar to twisted mass quarks and would be absent in
standard Wilson (improved) formulations of QCD.

In the following subsections we discuss the calculation of all the diagrams
contributing to δA ampl

P .
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2.4.1 Quark-quark photon exchange diagrams and scalar and pseu-
doscalar insertions

In the calculation of δAiP , with i = J, T, P, S, the contribution of the leptonic part of
the amplitude, namely [ū(pν`)γν(1−γ5)v(p`)] is factorized. Therefore, the corrections
δAiP can be evaluated through the study of purely hadronic lattice correlators.

Let us consider first the evaluation of the tree-level amplitude. Following Ref. [3],
the tree-level correlator can be defined as

C
(0)
P (t) ≡

∑
~x

〈0|T
{
JρW (0)φ†P (~x,−t)

}
|0〉 p

ρ
P

MP
. (2.39)

Here JρW (x) is the local version of the hadronic (V −A) weak current renormalized
in QCD only3

JρW (x) = qf2(x)γρ
[
ZQCD
V −ZQCD

A γ5
]
qf1(x) , (2.40)

and φ†P (~x,−t) = i qf1(~x,−t)γ5qf2(~x,−t) is the interpolating field for a P -meson
composed by two valence quarks f1 and f2 with charges e1e and e2e. The Wilson
r-parameters rf1 and rf2 are always chosen to be opposite rf1 = −rf2 . We will
denote in the following renormalization constants in the physical basis as “Z”, to
distinguish them from the RCs “Z” defined (and computed in Chap. 4) for operators
in the twisted basis. At large time distance t� a and (T − t)� a, i.e. when t and
T − t are sufficiently large to suppress the contributions from heavier states and
from the backward propagating P meson, one has

C
(0)
P (t)→ G

(0)
P A

(0)
P

2M (0)
P

(
e−M

(0)
P t − e−M

(0)
P (T−t)

)
, (2.41)

where A(0)
P is the QCD renormalized axial amplitude defined in Eq. (2.1) and

G
(0)
P ≡ 〈0|φP (0) |P (0)〉 is the coupling of the interpolating field of the P meson with

its ground state in isosymmetric QCD. In Eq. (2.41), the quantity A(0)
P corresponds

to the matrix element of the local axial current on the lattice and therefore it needs
to be renormalized, namely

δµ,0A
(0)
P ≡ Z

QCD
A 〈0| q̄2γµγ5q1 |P (0)〉 . (2.42)

The same renormalization constant ZQCD
A should be applied also to the e.m. correc-

tion δAP .
The IB corrections δAiP and δM i

P (i = J, T, P, S) can be extracted from the

3In our maximally twisted-mass setup, in which the Wilson r-parameters rf1 and rf2 are
always chosen to be opposite rf1 = −rf2 , the vector (axial) weak current in the physical basis
renormalizes multiplicatively with the RC ZA (ZV ) of the axial (vector) current for Wilson-like
fermions, i.e. ZV = ZA and ZA = ZV (see Sec. 5.1).
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following correlators:

δCJP (t)
4π = 1

2 αem
∑

~x,y1,y2

〈0|T
{
JρW (0) jem

µ (y1)jem
ν (y2) φ†P (~x,−t)

}
|0〉∆em

µν (y1, y2)
pρP
MP

, (2.43)

δCTP (t)
4π = αem

∑
~x,y

〈0|T
{
JρW (0) T em

µ (y) φ†P (~x,−t)
}
|0〉∆em

µµ(y, y)
pρP
MP

, (2.44)

δCPP (t)
4π = αem

∑
f=f1,f2

δmcrit
f ·

∑
~x,y

〈0|T
{
JρW (0) iqf (y)γ5qf (y) φ†P (~x,−t)

}
|0〉

pρP
MP

, (2.45)

δCSP (t)
4π = −αem

∑
f=f1,f2

mf
∆Zfm
ZQCD
m

·
∑
~x,y

〈0|T
{
JρW (0)

[
qf (y)qf (y)

]
φ†P (~x,−t)

}
|0〉

pρP
MP

, (2.46)

where ∆em
µν (y1, y2) is the photon propagator, JρW (x) is the (V − A) weak current

of Eq. (2.40), jem
µ is the (lattice) conserved e.m. current and T em

µ is the tadpole
operator4. In Eq. (2.46) ZQCD

m is the mass RC in pure QCD, which in the maximally
twisted-mass setup is given by ZQCD

m = 1/ZQCD
P , where ZQCD

P is the QCD RC
of the pseudoscalar density determined in Ref. [56] and in Chap. 4 of this thesis5.
The quantity ∆Zfm is the e.m. correction to the mass RC, which can be written in
QCD+QED as

ZQCD+QED
m =

(
1 + αem

4π ∆Zfm
)
ZQCD
m . (2.47)

Since Zm = 1/ZP , it follows that the correction ∆Zfm is related to the e.m. correction
of the pseudoscalar current RC as

∆Zfm = −e2
f ∆ZP , (2.48)

where ef is the fractional charge of the quark qf and ∆ZP is the e.m. correction to
the RC of the pseudoscalar current (evaluated with equal unitary charges). As it
will be discussed in great detail in the next chapter, the e.m. correction ∆ZP (or
equivalently ∆Zfm) can be decomposed as

∆ZP = ∆ZQED
P + ηP , (2.49)

where ∆ZQED
P is the pure QED contribution at leading order in αem and ηP takes

into account all the non-factorizable corrections of order O(αemαns ) with n ≥ 1. The
quantity ∆ZQED

P is given in the MS scheme at a renormalization scale µ by [57, 58]

∆ZQED
P (MS, µ) = 6 log(aµ)− 22.5954 . (2.50)

4The use of the conserved e.m. current guarantees the absence of additional contact terms in
the product jem

µ (y1)jem
ν (y2). For twisted mass fermions at maximal twist in the physical basis, the

conserved e.m. current and the tadpole operator read

jem
µ (y) =

∑
f

ef
2
[
q̄f (y)(γµ − iτ3γ5)Uµ(y)qf (y + aµ̂) + q̄f (y + aµ̂)(γµ + iτ3γ5)U†µ(y)qf (y)

]
T em
µ (y) =

∑
f

e2
f

2
[
q̄f (y)(γµ − iτ3γ5)Uµ(y)qf (y + aµ̂)− q̄f (y + aµ̂)(γµ + iτ3γ5)U†µ(y)qf (y)

]
.

5Notice that the pseudoscalar current in the physical basis renormalizes multiplicatively with
the RC ZP of the pseudoscalar current for Wilson-like fermions, i.e. ZP = ZP .
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On the other hand, the quantity ηP , which will be introduced and discussed in
Chap. 3, is computed non-perturbatively on the lattice in Chap. 4. It encodes
the QCD corrections to the “naive factorisation” approximation ∆Zfm = ∆ZQED f

m

introduced in Refs. [4, 26]. In Ref. [7] the e.m. correction ∆Zfm is expressed in the
alternative form

∆Zfm = ∆Zf QED
m · Z fact

m , (2.51)

where Z fact
m is a different way to quantify the violation of the naive factorization

approximation, corresponding to Z fact
m = 1. The values of the correction Z fact

m to
∆Zfm(MS, 2 GeV) for the three inverse lattice spacings β used in the calculation
are reported in Table 2.1. The values are obtained from the results of ηP , whose
calculation is carried out in the RI'-MOM scheme in Chap. 4 (see Table 4.3).
The two methods M1 and M2 correspond to different treatments of the O(a2µ2)
discretization effects and are described in Sec. 4.2. The results in Table 2.1 show
that the non-factorisable corrections to the mass RC ∆Zfm are significant, being of
O(40-60%).

Table 2.1. Values of the coefficient Zfact
m corresponding to the non-factorisable e.m. correc-

tion to the mass RC in the MS(2GeV) (see Eq. (2.51)), calculated for the three values of
the inverse coupling β adopted in this work. These values are obtained from the results
of ηP computed in the RI'-MOM scheme using the methods M1 and M2 and reported
in Table 4.3 (at the scale µ = 1/a).

β
Z fact
m (MS, 2 GeV)

M1 M2
1.90 1.629 (41) 1.637 (14)
1.95 1.514 (33) 1.585 (12)
2.10 1.459 (17) 1.462 (6)

In analogy with Eqs. (2.43) - (2.46), the terms [δAP ]SIB and [δMP ]SIB can be
extracted from the correlator

δCSIB
P (t) = −

∑
f=f1,f2

m̂f −mf

ZQCD
m

·
∑
~x,y

〈0|T
{
JρW (0)

[
qf (y)qf (y)

]
φ†P (~x,−t)

}
|0〉 p

ρ
P

MP
, (2.52)

where, following the notation of Ref. [26], we indicate with m̂f the renomalized mass
of the quark with flavour f in the full theory and with and mf the one renormalized
in isosymmetric QCD only. We stress again that the separation between QCD and
QED corrections is prescription dependent and in this work we adopt the GRS
prescription of Refs. [3, 6, 26], where

m̂u(MS, 2GeV) + m̂d(MS, 2GeV) = 2 m̂ud(MS, 2GeV) = 2mud(MS, 2GeV) ,
m̂s(MS, 2GeV) = ms(MS, 2GeV) , (2.53)
m̂c(MS, 2GeV) = mc(MS, 2GeV) .

Thus, in Eq. (2.52), the only relevant quark mass difference is m̂d − mud =
−(m̂u − mud), whose value in the (MS, 2GeV) scheme was found to be equal to
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1.19 (9) MeV [26] using as inputs the experimental values of the charged and neutral
kaon masses.

Given the correction δCiP (t), its large time behaviour (i.e. when t� a and
(T − t)� a) will be

δCiP (t) → δ

[
GiPA

i
P

2M i
P

] (
e−M

(0)
P t − e−M

(0)
P (T−t)

)
+ (2.54)

− G
(0)
P A

(0)
P

2M (0)
P

δM i
P

T

2

(
e−M

(0)
P t − e−M

(0)
P (T−t)

)
+

+ G
(0)
P A

(0)
P

2M (0)
P

δM i
P

(
T

2 − t
) (

e−M
(0)
P t − e−M

(0)
P (T−t)

)
.

Therefore, by combining Eqs. (2.41) and (2.55) one obtains at large time distances t
we obtain (i = J, T, P, S, SIB)

δCiP (t)
C

(0)
P (t)

→ δ[GiPAiP ]
G

(0)
P A

(0)
P

+ δM i
P

M
(0)
P

f(t) , (2.55)

with

f(t) =

M (0)
P

(
T

2 − t
) e−M

(0)
P t + e−M

(0)
P (T−t)

e−M
(0)
P t − e−M

(0)
P (T−t)

− 1−M (0)
P

T

2

 . (2.56)

The function f(t), which is related to the e.m. and strong IB corrections of the
meson mass, is almost linear in t. Thus, the correction to the P -meson mass
can be extracted from the slope of the ratio δCiP (t)/C(0)

P (t) and the quantity
δ[GiPAiP ] = δGiPA

(0)
P +G

(0)
P δAiP . As explained in Ref. [14], in order to obtain the

quantity δAiP the correction δGiP is separately determined by evaluating a correlator
similar to those of Eqs. (2.43)-(2.46), in which the weak operator JρW p

ρ
P /MP is

replaced by the P -meson interpolating field φP .
For illustration, in Fig. 2.8 we report the ratios δCiP /C

(0)
P for the charged kaon

(P = K) obtained in Ref. [7] at a fixed value of lattice spacing, volume and sea quark
mass. The top panel contains the ratio δCSIB

K (t)/C(0)
K (t), the ratio δCJK(t)/C(0)

K (t)
is shown in the middle panel and the ratios δCTK(t)/C(0)

K (t) and δCPK(t)/C(0)
K (t) are

presented in the bottom panel. We observe that the contributions δCTK(t)/C(0)
P (t)

and δCPK(t)/C(0)
P (t) are separately large, but strongly correlated, since the tadpole

insertion dominates the values of the e.m. shift of the critical mass δmcrit
f (see

Ref. [26]). In the chiral limit they would cancel, but at finite masses the sum is
small and linear in t. Because of the correlations, it can nevertheless be determined
quite precisely. Moreover, the time dependence of the ratio δCJK(t)/C(0)

K (t) is almost
linear in the time interval where the ground state is dominant.



46 2. QED corrections to hadronic decay rates

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0 10 20 30 40 50

scalar (u)

δ C
KSIB

(t
) /

 C
K(0

) (t
)

t / a

D20.48

M
π
 ~ 255 MeV

M
K
 ~ 535 MeV

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0 10 20 30 40 50

self energy (2b)+(2c)

exchange (2a)

J (2a)+(2b)+(2c)

δ 
C KJ (t

) 
/ 

C K(0
) (t

)

t / a

D20.48

M
π
 ~ 255 MeV

M
K
 ~ 535 MeV

-0.2

-0.1

0.0

0.1

0.2

0 10 20 30 40 50

P (3a)+(3b)

T (2d)+(2e)

sum

δ C
KP,T

(t
) /

 C
K(0

) (t
)

t / a

D20.48

M
π
 ~ 255 MeV

M
K
 ~ 535 MeV

a)

-0.004

-0.002

0.000

0.002

0.004

0 10 20 30 40 50

sum

t / a

b)

Figure 2.8. Top panel: The strong IB correction δCSIB
K (t)/C(0)

K (t) for the charged kaon
obtained on the ensemble D20.48 (see Appendix A of Ref. [7]). The solid line is the
“linear" fit (2.55) applied in the time interval where the ground-state is dominant. Middle
panel: contributions of the exchange (2.4a) and self-energy (2.4b)+(2.4c) diagrams. The
circles represent the sum (2.4a)+(2.4b)+(2.4c), i.e. the ratio δCJK(t)/C(0)

K (t). Bottom
panel: contributions of the tadpole operator δCTK(t)/C(0)

K (t), i.e. diagrams (2.4d)+(2.4e),
and of the e.m. shift of the critical mass δCPK(t)/C(0)

K (t), i.e. diagrams (2.5a)+(2.5b).
The sum δ[CTK(t) + CPK(t)]/C(0)

K (t), shown by the circles, is non vanishing and it is
determined quite precisely (see the right-hand plot where it is presented on an expanded
scale). Errors are statistical only.
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2.4.2 Crossed diagrams and lepton self-energy

The evaluation of the diagrams 2.7(a) - (b), corresponding to the term δA`P in
Eq. (2.37), can be obtained by studying the correlator [14]

δC`P (t) = −4παem
∑

~x,x1,x2

〈0|T
{
JρW (0)jem

µ (x1)φ†P (~x,−t)
}
|0〉∆em

µν (x1, x2)eE`t2−i~p`·~x2

· u(pν)γρ(1− γ5)S`(0, x2)γνv(p`)
[
v(p`)γσ(1− γ5)u(pν) p

σ
P

MP

]
, (2.57)

where S`(0, x2) stands for the free twisted-mass propagator of the charged lepton. In
the numerical analysis done in Ref. [7], it has been found convenient to saturate the
Dirac indices by inserting on the r.h.s. of Eq. (2.57) the factor [v(p`)γσ(1− γ5)u(pν)],
which represents the lowest order “conjugate" leptonic (V − A) amplitude, and
to sum over the lepton polarizations. In this way it is possible to study the time
behaviour of a single function δC`P (t).

The corresponding correlator at lowest order O(α0
em) is

C
`(0)
P (t) =

∑
~x

〈0|T
{
JρW (0)φ†P (~x,−t)

}
|0〉 u(pν)γρ(1−γ5)v(p`)

[
v(p`)γσ(1− γ5)u(pν) p

σ
P

MP

]
.

(2.58)
In Eqs. (2.57) and (2.58) the contraction between the weak hadronic current
JρW (0) [see Eq. (2.40)] and its leptonic (V −A) counterpart gives rise to two terms
corresponding to the product of either the temporal or spatial components of these
two weak currents, which are odd and even under time reversal, respectively. Thus,
on a lattice with finite time extension T , for t� a and (T − t)� a one has

δC`P (t) → G
(0)
P

2M (0)
P

4∑
σ=0

δA`,σP X`,σ
P

[
e−M

(0)
P t + sνe

−M(0)
P (T−t)

]
, (2.59)

where s0 = −1, s1,2,3 = 1 and

X`,σ
P = Tr

[
γσ(1− γ5)``γ0(1− γ5)νν

]
(2.60)

is the relevant leptonic trace evaluated on the lattice using for the charged lepton
the free twisted-mass propagator and for the neutrino the free Wilson propagator in
the P -meson rest frame, pP = (MP ,~0).

Similarly, for the lowest-order correlator one has

C
`(0)
P (t) → G

(0)
P A

(0)
P

2M (0)
P

X`,0
P

[
e−M

(0)
P t − e−M

(0)
P (T−t)

]
, (2.61)

where A(0)
P is the axial amplitude evaluated on the lattice in isosymmetric QCD

in the P -meson rest frame, to be renormalized with the QCD axial RC ZA in the
physical basis (see Eq. (2.42)).

The effect of the different signs of the backward-propagating signal in Eq. (2.59)
can be removed by introducing the following new correlators:

δC
`

P (t) ≡ 1
2

{
δC`P (t) + δC`P (t− 1)− δC`P (t+ 1)

eM
(0)
P − e−M

(0)
P

}
→

G
(0)
P

2M (0)
P

δA`P X
`,0
P e−M

(0)
P
t ,

C
`(0)
P (t) ≡ 1

2

{
C
`(0)
P (t) + C

`(0)
P (t− 1)− C`(0)

P (t+ 1)
eM

(0)
P − e−M

(0)
P

}
→

G
(0)
P

2M (0)
P

A
(0)
P X`,0

P e−M
(0)
P
t ,(2.62)
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where

δA`P = 1
X`,0
P

4∑
σ=0

δA`,σP X`,σ
P . (2.63)

Thus, the quantity δA`P /A
(0)
P can be extracted from the plateau of the ratio

δC
`
P (t)/C`(0)

P (t) at large time separations (t� a, (T − t)� a),

δC
`
P (t)

C
`(0)
P (t)

→ δA`P

A
(0)
P

. (2.64)

Note that the diagrams in Fig. 2.7(a)-(b) do not contribute to the electromagnetic
corrections to the masses of the mesons and therefore the ratio (2.64) has no slope
in t in contrast to the ratios (2.55).

In terms of the lattice momenta ap̃` and ap`, defined as [7]

ap̃` =
√ ∑
k=1,2,3

sin2 (ap`k) , ap` = 2
√√√√ ∑
k=1,2,3

sin2
(
ap`k

2

)
, (2.65)

the energy-momentum dispersion relations for the charged lepton and the neutrino
in the P -meson rest frame are given by

aẼ` = 2 arcsinh
[

1
2

√
a2m2

` + a2p̃2
` + a4p4

`/4
1 + a2p2

`/2

]
, aẼν = arcsinh(ap̃`) . (2.66)

The 3-momentum of the final-state lepton ~p` = −~pν is chosen to satisfy the equation

Ẽ` + Ẽν = M
(0)
P . (2.67)

for any given simulated P -meson mass M (0)
P . By using the above definitions, the

leptonic trace X`,0
P can be written as

X`,0
P = Tr

[
γ0(1− γ5)``γ0(1− γ5)νν

]
= 8ap̃`

[
sinh(aẼ`)− ap̃`

]
. (2.68)

The quality of the signal for the ratio δCµP (t)/Cµ(0)
P (t) is illustrated in Fig. 2.9

for charged kaon and pion decays into muons for the case of two different ensembles.

Finally, the calculation of the correction A`,self
P due to the diagram 2.7(c) is

straightforward, since it can be obtained by simply multiplying the lowest order
amplitude, A(0)

P , renormalized in pure QCD, by the one-loop lepton self-energy
evaluated on the lattice.

The evaluation of the correction δR ampl
P is completely determined from the study

of the correlators described in this Section. The additional correction δR ren
P to

the leptonic decay rate, instead, requires the determination of the operator ORI'
1 (µ)

in Eq. (2.13) renormalized non-pertubatively on the lattice in QCD+QED in the
RI'-MOM scheme. Therefore, in the next Chapter, we describe a novel formalism
to determine renormalization constants of lattice operators with the inclusion of
QED corrections at O(αem). The calculation of δR ren

P , and hence of δRP , is then
addressed in Chap. 5.
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Figure 2.9. Results for the ratio δCµP (t)/Cµ(0)
P (t), given by Eq. (2.64), for Kµ2 and πµ2

decays obtained from the gauge ensembles B55.32 (top panel) and D30.48 (bottom
panel) [7]. The vertical dashed lines indicate the time region used for the extraction of
the ratio δAµP /A
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3 | Non-perturbative renormali-
zation in QCD+QED

In this Chapter, we present a new strategy to renormalise lattice operators in
QCD+QED fully including the non perturbative dynamics of QCD, and QED
at O(αem). We show how to keep systematically into account all contributions
not separable between the two interactions, thus overcoming the factorization
approximation in which the mixed effects are neglected. A numerical analysis
in the electro-quenched approximation is carried out for quark bilinear operators and
for the case of the matrix elements relevant for K`2 process and will be presented
in Chap. 4. We will show that the effects of adding the mixed QCD+QED effects
in the renormalization constants (RCs) are estimated to amount to up 8% of the
overall QED corrections to the process. The procedure is presented here for the
RI'-MOM scheme, but with appropriate changes can be applied to other schemes
such as RI-SMOM.

When e.m. corrections at first order in αem are added to QCD, RCs can be written
in the form

Z =
(

1 + αem
4π ∆Z

)
ZQCD , (3.1)

where ZQCD is the RC computed in pure QCD (αem = 0) and ∆Z represents the
correction introduced by e.m. interactions. As it is well known, perturbation theory
works poorly on the lattice [59], so it is customary to recur to non-pertubative schemes
to compute the renormalization constants. For pure QCD this procedure is long-time
known, and several schemes are available, the most popular relying on variations of
RI-MOM [54], such as RI-SMOM [60]. On the other hand, the calculation of ∆Z
has been so far performed in the so-called factorization approximation, in which the
correction to the RC is simply evaluated as ∆Z ≡ ∆ZQED, namely the correction of
O(αem) to the RC computed in pure QED. This quantity can be easily obtained in
perturbation theory through the evaluation of one-loop diagrams, see for example
Refs. [57, 58] for what concerns the renormalization constants of bilinear operators.
Clearly the renormalization constants so computed take into account QCD and
QED renormalization separately, which at perturbative level amounts to considering
only the one-particle reducible diagrams like the one presented in Fig. 3.1(a), in
which gluon and photon loops can be separated by cutting a single fermionic line.
This approximation introduces systematic effects due to the missed non-factorizable
contributions to the RCs. In order to overcome the factorization approximation,



52 3. Non-perturbative renormalization in QCD+QED

(a) (b)

Figure 3.1. Examples of (a) factorizable and (b) non-factorizable diagrams in perturbative
QCD+QED at O(α2

sαem).

the renormalization condition must be imposed considering simultaneously both
interactions. In perturbation theory one would proceed by including the diagrams
like the one in Fig. 3.1(b). The scope of this Chapter is to present extensively a
novel framework for the non-perturbative calculation of RCs with the inclusion of
e.m. corrections at first order in αem, consistent with the RM123 approach used
for the calculation of the matrix element corrections (see Chap. 1). Such new
framework has been used for the first time in Ref. [7], where the method has been
briefly introduced in Sec. IV and in Appendix C. The presentation will recur to
RI'-MOM scheme for concreteness, but can be applied to other schemes (such as
RI-SMOM) with appropriate modifications. In the phenomenological papers [4,
26] the deviation from the factorization approximation has been included in the
systematic error, by defining a correction to renormalization constants as

∆Z ≡ Z fact ∆ZQED (3.2)

and introducing an estimate for the factorization-violation coefficient Z fact. The
factorization approximation corresponds to Z fact = 1 and large deviations from such
a value amount to large non-factorizable effects of QCD+QED. Another possible
way to quantify non-factorization of renormalization constants is by computing the
ratio R of the full QCD+QED RC and the pure QCD and QED ones,

R = (ZQED)−1Z(ZQCD)−1 , (3.3)

which encodes by definition all the non-perturbative contributions of order O(αemαns )
with n ≥ 1, other than the factorizable terms given by the product ZQEDZQCD. This
decomposition is especially convenient if together with QCD+QED, also pure QED
is evaluated numerically at finite lattice spacing by repeating closely the calculation
made in the full theory. In this case, in fact, usingR to determine the non-factorizable
contributions to the RCs allows to reduce the statistical fluctuations and systematic
uncertainties in their calculation. Indeed, by dividing the full QCD+QED Z by
the pure QCD and QED RCs, the ratio R is automatically free from QED cut-off
effects of O(αeman) and the pure QCD ones, thus avoiding the need to compute
such effects analytically. Furthermore, for those operators having a non-vanishing
anomalous dimension matrix, the pure QCD and the QED anomalous dimensions
at lowest order cancel out in the ratio, leaving only the contribution of the non-
factorizable mixed term γ

(1)
se of order O(αemαs). Lastly, the noise arising from the

stochastic representation of the photon propagator (see Sec. 3.4) greatly cancels
between numerator and denominator.
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In the following we present a new strategy to compute the non-factorizable
contributions to the correction ∆Z and its application to quark bilinear operators
and the four-fermion operators entering the calculation of the leptonic decay rates
of light-mesons. In our work the electro-quenched approximation is employed but
the same methodology can be applied, with appropriate changes, to the unquenched
case as well.

3.1 Renormalization conditions in QCD+QED
In this section we provide the general formalism to compute renormalization constants
of a given operator non-perturbatively in the RI'-MOM scheme, with the inclusion
of e.m. corrections of order O(αem). The same procedure can be easily adapted to
other renormalization schemes, such as RI-SMOM [60], by changing kinematical
conditions and with a proper choice of projectors.

3.1.1 RI'-MOM renormalization conditions
In the RI-MOM scheme RCs of operators are defined by imposing that suitable Green
functions, computed between external fermionic states with exceptional external
momenta (i.e. all external fields have equal momentum, p2

i = p2), in a fixed gauge,
coincide at a given scale µ with their tree-level values [54]. This condition can be
written in terms of the amputated and projected Green function of the operator,

ΓO(pa) = Tr [ΛO(pa)PO] , (3.4)

with PO being a suitable combination of Dirac matrices projecting the amputated
Green function ΛO(pa) on its tree-level value. The renormalization condition then
reads

ZΓO(µa)ΓO(µa) ≡ ZΓO(µa)ΓO(pa)|p2=µ2 = 1 , (3.5)

where
ZΓO(µa) = ZO(µa)

∏
f

Z
−1/2
f (µa) . (3.6)

In Eq. (3.6), ZO and Z1/2
f are respectively the operator and the fermion field RCs

necessary to renormalize the amputated Green function. The product is over all the
fermionic fields entering the operator and renormalizing under the action of QCD
and/or QED, namely quarks (qi) and charged leptons (`i). The RC ZO is defined as

ORI'(µ) = ZO(µa)Obare(a) (3.7)

and in the presence of operator mixing is a matrix. To remain as general as possible,
we will treat ZO as a generic matrix unless otherwise specified. The RC Zf is
proportional to the identity matrix, i.e. [Ẑf ]ij = Zf δij .

In the RI'-MOM scheme the fermion field RC is defined as

Zf = − i

12 Tr
[
6p 〈Sf (p)〉−1

p2

]
p2=µ2

, (3.8)
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where 〈Sf (p)〉 is the traslational invariant fermion propagator in momentum space
averaged over the gauge configurations and the trace is done over color and spin
indices. On a fixed gauge configuration, the propagator in momentum space is
defined as

Sf (p) =
∫

d4xSf (x, 0) e−ip·x . (3.9)

In QCD+QED the RCs Zqi and ZO depend in general both on the strong
and e.m. coupling constants, while for leptons Z`i only gets corrections from e.m.
interactions and can be in principle easily computed in perturbation theory. Since
neutrinos do not interact neither strongly nor electromagnetically, it follows that
Zν` = 1.

3.1.2 Beyond factorization approximation
We find it particularly convenient to decompose any renormalization constant Z in
the terms of the ratio R introduced in Eq. (3.3),

Z = ZQED
[
(ZQED)−1Z(ZQCD)−1

]
ZQCD ≡ ZQEDRZQCD , (3.10)

where ZQCD is the RC, in general a matrix, in pure QCD (corresponding to the case
αem = 0),

ZQCD =
∏
f

[
ZQCD
f (µa)

]−1/2
[

ΓQCD
O (pa)

∣∣∣
p2=µ2

]−1
, (3.11)

and
ZQED ≡ 1 + αem

4π ∆ZQED (3.12)

is the pure, perturbative QED mixing matrix (corresponding to αs = 0) at first order
in αem. The ratio R can be expanded in terms of αem as well,

R = (ZQED)−1Z(ZQCD)−1 ≡ 1 + αem
4π η , (3.13)

so that, at the first order in αem, the RCs can be written as

Z =
[
1 + αem

4π
(
∆ZQED + η

)]
ZQCD

≡
(

1 + αem
4π ∆Z

)
ZQCD , (3.14)

where we have defined
∆Z = ∆ZQED + η . (3.15)

The first term in Eq. (3.15), ∆ZQED, represents the pure QED contribution to the
RC at order O(αem), whereas η contains the O(αem) non-factorizable QCD+QED
corrections. The case η = 0 corresponds to the factorization approximation in
which the RC simply reduces to Z = ZQEDZQCD. We stress that the quantities
appearing in Eq. (3.10) are in general non-commuting matrices, which reduce to
1× 1 matrices in the case of non-mixing operators, and thus the order of the factors
must be consistently handled. The introduction of the non-factorization estimator η
is particularly useful. Indeed, the pure QCD and the pure O(αem) QED anomalous
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dimensions cancel in the ratio, so that the scale dependence of η is related only to
the non-factorizable mixed anomalous dimension γ(1)

se of O(αemαs). The anomalous
dimension γ(1)

se has been computed for the specific operators studied in this work
and the details are given in Chapter 7.

Moreover, leading QCD and QED cut-off effects cancel in the ratio, provided
that pure QED is computed on the lattice with the same regularization used for the
QCD+QED calculation. In fact, at one loop in lattice perturbation theory, the RCs
computed in pure QCD, in pure QED and in the full theory would have respectively
the form

ZQED = 1 + αem
4π ∆ZQED

(0) +O(αema
2) ,

ZQCD = 1 + αs
4π ∆ZQCD

(0) +O(αsa
2) , (3.16)

Z = 1 + αem
4π ∆ZQED

(0) + αs
4π ∆ZQCD

(0) + αemαs
(4π)2 ∆ZQED

(0) ∆ZQCD
(0) + αem

4π η(0)

+O(αema
2, αsa

2, αemαsa
2) ,

where the subscript (0) denotes the contribution to the RC at order O(a0). From
Eq. (3.13) it follows that η is automatically free from pure QCD and pure QED
cut-off effects, retaining only subleading corrections of O(αemαsa2), namely

η = 4π
αem

(R− 1) = η(0) +O(αemαsa
2) . (3.17)

The result remains valid also when ZQCD is computed non-perturbatively, its contri-
bution being completely cancelled in the ratio.
The introduction of η therefore makes the extraction of e.m. corrections to RCs
cleaner and more precise than the direct calculation of the quantity ∆Z(QED). As
will be discussed later in Sec. 3.4, further improvement can be achieved by using
stochastic photon propagators in the computation of ∆Z and ∆ZQED.

Once η is determined nonperturbatively, the full RC Z can obtained as

Z =
[
1 + αem

4π
(
∆ZQED

an + η
)]

ZQCD , (3.18)

where this time ∆ZQED
an is computed analytically at one-loop in perturbation theory.

This quantity is known for both bilinear operators [57] and the four fermion oper-
ators studied in this work [14]. The measure of non-factorization of the RC Z fact,
introduced in Eq. (3.2), is then given by

Z fact = 1 + η (∆ZQED
an )−1 . (3.19)

3.1.3 Ingredients of the calculation
We are interested in computing non-perturbatively the non-factorization estimator
η for the RC of a given operator. From the above discussion, it is clear that in order
to compute η, the correction ∆Z and ∆ZQED have to be first computed on the
lattice in QCD+QED and in pure QED respectively. Being the RI-MOM condition
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in Eq. (3.5) valid at each order in both αs and αem, we can obtain the condition for
the e.m. correction to the RCs by expanding it in terms of αem.

We now proceed to derive the correction to the RC of a generic composite
operator O. By expressing ZΓO as in Eq. (3.14) and using the RI-MOM condition
evaluated in pure QCD, the O(αem) expansion of Eq. (3.5) reads

ZΓO(µa) ΓO(pa)|p2=µ2 =
[
1 + αem

4π ∆ZΓO(µa)
]
ZQCD

ΓO (µa)×

×
[
ΓQCD
O (µa) + αem

4π ∆ΓO(µa)
]

= 1 + αem
4π

[
∆ZΓO(µa) + ZQCD

ΓO (µa)∆ΓO(µa)
]
(3.20)

≡ 1 .

The RI-MOM renormalization condition is then satisfied at O(αem) by imposing
that

∆ZΓO(µa) = −ZQCD
ΓO (µa)∆ΓO(µa) . (3.21)

This relation can be expressed in terms of the e.m. corrections to ZO and Zf
expanding the definition of ZΓO in Eq. (3.6), thus obtaining the O(αem) correction
to the RC of the operator O,

∆ZO(µa) = −
∏
f

[
ZQCD
f (µa)

]−1/2
ZQCD
O (µa) ∆ΓO(µa) + 1

2
∑
f

∆Zf (µa) . (3.22)

To summarize, the O(αem) correction ∆ZO is a combination of the corrections to
the fermion field RCs ∆Zf , the corrections to the projected Green function ∆ΓO
and the pure QCD RCs.

This applies also to ∆ZQED
O , where all the ingredients must be evaluated in the

absence of QCD, namely

∆ZQED
O (µa) = −∆ΓQED

O (µa) + 1
2
∑
f

∆ZQED
f (µa) . (3.23)

We stress that the corrections ∆Zf and ∆ZQED
f are proportional to the identity

matrix, and therefore they contribute only to the diagonal entries of ∆ZO and
∆ZQED

O respectively.
Now we discuss how to compute the e.m. corrections to the fermion field RCs,

∆Zf , and to the amputated and projected Green function of a generic composite
operator, ∆ΓO. The calculation of ∆ΓO for the specific cases of bilinear operators
and the four-fermion operator O1 mediating light-meson leptonic decays will be
discussed later in Sec. 3.5 and Sec. 3.6.

3.2 Renormalization of fermion fields
The corrections to the RCs of fermion fields are fundamental ingredients for the
calculation of ∆ZO, as shown in Eq. (3.22). In this section we focus on the renorma-
lization of quark fields, which require a non-perturbative calculation. The O(αem)
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RCs of charged lepton fields are instead computable in perturbation theory, while
neutrinos are irrelevant in the calculation since they are neutral with respect to both
strong and e.m. interactions.

Let us define the full propagator of a quark of flavour q as

Sq(pa) = SQCD(pa) + αem
4π ∆Sq(pa) , (3.24)

where SQCD(pa) ≡
[
SQCD

]AB
αβ

(pa) is the pure QCD quark propagator and ∆Sq(pa)
is the sum of the O(αem) electromagnetic corrections to the quark propagator, both
evaluated in a given gluon field background with fixed gauge. These corrections
depend on the fractional electric charge of the propagating quark, eq, which can
however be factorized in the calculation. For Wilson fermions, the e.m. correction to
the quark propagator in the electro-quenched approximation, in which dynamical sea
quarks are considered as neutral with respect to electromagnetism, can be written as

∆Sq(pa) = + + [mw −m0
w]

≡ ∆Sself
q (pa) + ∆ST

q (pa) + [mw −m0
w] ∆SS(pa) (3.25)

where we have exhibited explicitly the counter-term for the quark mass, which can
be rewritten as [mw −m0

w] ≡ e2
q δmw, together with the self-energy and tadpole

corrections. Details on the calculation of ∆Sq as a sequential propagator and the
stochastic representation of the photon propagator are discussed in Sec. 3.4. Once
averaged over the gauge configurations, the inverse quark propagator reads

〈Sq(pa)〉−1 ≡ 〈SQCD(pa)〉−1 + αem
4π ∆Σq(pa) , (3.26)

where we have defined the amputated one-particle irreducible two-point vertex

∆Σq(pa) = − 〈SQCD(pa)〉−1 〈∆Sq(pa)〉 〈SQCD(pa)〉−1 . (3.27)

From Eq. (3.8) it follows that the correction to the quark field RC in the RI'-
MOM scheme is given by

∆Zq(µa) = − i

12
(
ZQCD
q (µa)

)−1
Tr
[ 6p∆Σq(pa)

p2

]
p2=µ2

, (3.28)

with
ZQCD
q (µa) = − i

12 Tr
[
6p 〈SQCD(pa)〉−1

p2

]
p2=µ2

. (3.29)

In order to avoid discretization effects in the calculation of Zq, whose precision is
crucial for an accurate determination of the RCs of composite operators, we find it
more practical to substitute the projector ( 6p/p2) in the RI'-MOM conditions (3.28)
and (3.29) with (γν/p̃ν) and define Zq as

ZQCD
q (µa) = − i

12Np

∑
ν

′
Tr
[
γν 〈SQCD(pa)〉−1

p̃ν

]
p̃2=µ2

, (3.30)
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where
p̃ν ≡

1
a

sin(pνa) (3.31)

and the sum
∑ ′ is over the Np non-vanishing components of the four-momentum p̃.

In this way, since the tree-level lattice quark propagator, in the massless theory, is
given by

Sfree
q (p) = −i 6p̃

p̃2 , (3.32)

it follows that Z free
q = 1 in the free theory, without discretization errors. The

prescription adopted in Eq. (3.30) has been first proposed in Ref. [61] as an alternative
to the usual RI'-MOM definition (3.29). The two choices differ by discretization
effects of order O(a2), but it has been observed that Eq. (3.30) reduces O(4)-breaking
effects, thus making the numerical calculation of Zq more clean.

3.3 Corrections to the amputated and projected Green
function

We now address the calculation of the e.m. correction to the amputated and projected
Green function of a generic composite operator, ∆ΓO, which is the other essential
ingredient for the calculation of the O(αem) contribution to the RC of the operator,
∆ZO. From the definition of ∆ΓO in Eq. (3.4), it follows that it can be obtained
from the correction at O(αem) to the amputated Green function by projecting it on
the tree-level structure of the operator O, namely

∆ΓO(pa) = Tr [∆ΛO(pa)PO] . (3.33)

The projector PO depends on the operator inserted in the Green function and must
be defined in such a way that Tr

[
Λtree
O PO

]
= 1 at tree-level. Nevertheless, the choice

of PO is not unique and different choices produce different discretization effects
in the RCs. We stress that, given a set of n bare composite operators {Oi}, with
amputated Green functions ∆ΛOi , it is possible that under the action of QCD and
QED interactions the amputated Green function of Oi gives a non-vanishing result
when projected on the tree-level Dirac structure of a different operator Oj with the
projector POj . Therefore, the correction to the amputated and projected Green
function has to be considered in general as a n× n matrix.

The amputated Green function ΛO(pa) is obtained from the Green function
GO(pa) by removing the external legs with the inverse propagators 〈Sf (pa)〉−1.
Hence, at O(αem), the e.m. corrections to the amputated Green function comes either
from the corrections to the Green function ∆GO(pa), or from the e.m. corrections
to the inverse quark propagator (i.e. ∆Σf (pa) of Eq. (3.27)). In the first case case,
∆GO(pa) is obtained by evaluating all possible corrections at O(αem) to the QCD
Green function: in addition to the e.m. corrections to individual propagators, also
the exchange of a photon between pairs of charged fermions must be included. The
calculation of these diagrams relies on the evaluation of the propagator ∆SAf in
Fig. 3.2, representing the interaction of a photon with a fermion line. The calculation
of ∆ΛO for quark bilinear operators and the weak four-fermion operator O1 defined
in Eq. (2.4) is carried out in Sec. 3.5 and Sec. 3.6 respectively.
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Figure 3.2. Representation of the sequential fermion propagator ∆SAf with the insertion
of a photon field.

Before closing this section, we anticipate a subtle feature of Green functions of
operators involving pseudoscalar currents. When working with exceptional kine-
matics, as in the RI-MOM scheme, the zero momentum transfer (q2 = 0) does not
prevent the contribution of infrared poles due to the coupling of the current to
the would-be Goldstone boson. Such Goldstone poles go as inverse power of the
quark mass and vanishes at large momenta as 1/p2 in pure QCD [54] and the usual
way to remove them is to fit the amputated and projected Green function at fixed
external momentum with a term proportional to 1/M2

P , where MP ≡ MP (µ1, µ2)
is the mass of the pseudoscalar meson composed of valence quarks with masses µ1
and µ2 (see also Refs. [62, 63]). When including QED corrections, Goldstone poles
occurring in QCD generate double poles in the correction to the Green function of
the pseudoscalar operator and therefore the fit Ansatz has to be properly modified.
Details on the chiral extrapolation of bilinear and four-fermion Green functions in
QCD+QED will be provided in the numerical analysis, see Chap. 4.

3.4 The strategy for a QCD+QED calculation

In this work we consider QED corrections at O(αem), within the electro-quenched
approximation in which the sea quarks are considered electrically neutral. Among
the 1-loop diagrams appearing when expanding the path integral in powers of αem,
those in which a photon is exchanged by quark lines have a numerical cost that scales
badly with the volume (∼ V 2). To make the calculation feasible and avoid computing
explicitly the integral over the beginning and end of the photon propagator, the cost
of which would be exceedingly too large for realistic volumes, the use of stochastic
approaches is necessary. We adopt here a technique to compute such diagrams
similar to the one used in Ref. [26], with an improvement of the numerical cost.
By observing the diagrams in Eq. (3.25), and analogous diagrams appearing in the
calculation of the corrections to the Green functions (see Sec. 3.5 and Sec. 3.6),
one can notice that the building blocks of the calculation in QCD+QED are 6
propagators: the pure QCD quark propagator (SQCD), the QCD propagator with
the insertion of a single photon (∆SA in Fig. 3.2) and the propagators contributing
to ∆Sq, namely the ones with the insertion of the scalar density (∆SS), of the
tadpole operator (∆ST) and the self-energy correction (∆Sself). The approach we
used in this work to compute such diagrams relies on the stochastic definition of the
photon propagator in Sec. 1.2.
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3.4.1 Sequential quark propagators
The stochastic definition of the photon propagator in Sec. (1.2) can be exploited to
reduce the calculation of diagrams with the exchange of a photon to the calculation of
sequential propagators. In addition to the pure QCD quark propagator SQCD(x, 0),
four additional sequential propagators are needed for Wilson fermions (see Eq. (3.25)),
namely

∆SS(x, 0) = −
∑
y

SQCD(x, y) 1SQCD(y, 0) , (3.34)

∆ST
q (x, 0) =

∑
y

SQCD(x, y)Tq(y)SQCD(y, 0) , (3.35)

∆SAq (x, 0) =
∑
y

SQCD(x, y)V µ
q (y)Aµ(y)SQCD(y, 0) , (3.36)

∆Sself
q (x, 0) =

∑
y

SQCD(x, y)V µ
q (y)Aµ(y) ∆SAq (y, 0) , (3.37)

where V µ
q (y) ≡ eq V µ(y) is the conserved vector current and Tq(y) ≡ e2

q T
µ(y)Gµµ(y, y)

the tadpole vertex, specific to the chosen lattice regularization1. Following the ap-
proach of Ref. [26], the calculation of such propagators would require the solution of
five Dirac equations:∑

y

D(x, y)SQCD(y, 0) = 1 δ(x− 0) , (3.38)
∑
y

D(x, y) ∆SS(y, 0) = −1SQCD(x, 0) , (3.39)
∑
y

D(x, y) ∆ST
q (y, 0) = Tq(x)SQCD(x, 0) , (3.40)

∑
y

D(x, y) ∆SAq (y, 0) = V µ
q (x)Aµ(x)SQCD(x, 0) , (3.41)

∑
y

D(x, y) ∆Sself
q (y, 0) = V µ

q (x)Aµ(x) ∆SAq (x, 0) , (3.42)

where D(x, y) is the QCD Dirac operator. However, it is useful to remark that due
to linearity of Dirac equation it is always possible to directly compute the sum of
(∆ST

q + ∆Sself
q ) entering ∆Sq in Eq. (3.25) by solving the equation∑

y

D(x, y)
(
∆ST

q + ∆Sself
q

)
(y, 0) = Tq(x)SQCD(x, 0) + V µ

q (x)Aµ(x) ∆SAq (x, 0) .

(3.43)
In general, the mass counterterm [mw − m0

w] = e2
q δmw in Eq. (3.25) must be

determined by imposing a suitable renormalization condition as a part of the
calculation of QED corrections, as discussed in Sec. 4.1.2. However, if the value
of the counterterm is already known, it is possible to compute directly the full
correction to the propagator, ∆Sq in Eq. (3.25), by solving the Dirac equation∑

y

D(x, y)∆Sq(y, 0) = Φq(x, 0) , (3.44)

1The definitions of V µ(y) and Tµ(y) are given in Eq. (37) of Ref. [3] for the Twisted Mass action
in the physical basis at maximal twist.
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where the sequential source Φq(x, 0) is given by

Φq(x, 0) ≡ V µ
q (x)Aµ(x) ∆SAq (x, 0) +

(
Tq(x)− [mw −m0

w] 1
)
SQCD(x, 0) . (3.45)

Dirac equations are solved in a specific gluon and photon gauge configuration, and the
Green functions computed in such backgrounds. The average over different photon
and gluon configurations leads to the desired e.m. correction to the Green function.
Since averages over gluon and photon configurations commute, it is not needed to
carry out the two averages independently. In practice, for each gluon configuration,
we have employed a single photon configuration, and performed the two averages
simultaneously. A schematic representation of the procedure adopted to compute
the e.m. correction to the quark propagator ∆Sq is reported in Fig. 3.3, where
include also the insertion of the pseudoscalar current typical of the twisted-mass
regularization, which will be discussed in Sec. 4.1.

SOURCE

prop

scalar photon

proppseudo

photon

prop

tadpole

Figure 3.3. Schematic representation of the construction of the propagator ∆Sq. The
nodes labeled as “prop” correspond to an inversion of the Dirac operator, that produces
respectively (starting from the top) the QCD propagator SQCD (orange), the sequential
propagator ∆SAq (green) and the complete correction ∆Sq (purple). Here we include the
insertion of the pseudoscalar current typical of the twisted-mass regularization, which
will be discussed in Sec. 4.1.

3.4.2 Pure QED calculation
We have shown how in QCD+QED the basic ingredients for the calculation are
just three propagator, SQCD, ∆SA and ∆Sq, each obtained with an inversion of the
Dirac operator. The same ingredients are needed in the pure QED analysis and
these are obtained by following the same steps described above with the substitution
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SQCD → Sfree in Eqs. (3.34)-(3.37) and (3.45), Sfree being the quark propagator in
the free theory.

Since the non-factorizable correction to RCs is defined according to Eq. (3.15)
as the difference

η = ∆Z −∆ZQED , (3.46)

it is highly convenient to compute ∆Z and ∆ZQED individually in such a way
that their statistical uncertainties are maximally correlated. This can be achieved
by computing the two quantities using the same stochastic photon fields. To our
experience, such a procedure yields a reduction of the statistical uncertainty on η by
approximatively a factor 5, as it will be illustrated in Chap. 4.

3.5 Renormalization of quark bilinear operators
We discuss now the renormalization of lattice quark bilinear operators. Let us
consider the local, flavour non-singlet quark field bilinear operators of the form

OΓ ≡ q̄2 Γ q1 , (3.47)

where Γ is a matrix of the Clifford algebra2, Γ = 1, γ5, γµ, γµγ5, σµν , which we denote
according to their Lorentz symmetry as S, P, V,A, T , respectively. The fields q1
(ingoing) and q2 (outgoing) are considered here to be generic quark fields in a given
lattice regularization of QCD with masses µq1 and µq2 respectively. In our numerical
analysis, described in Chap. 4, we adopt Twisted Mass fermions in the twisted basis,
with opposite Wilson parameters r1 = −r2. Moreover, the two quarks are considered
having equal electric fractional charge, namely eq1 = eq2 = 1.
For a bilinear operator, the renormalization condition (3.5) yields

ZOΓ = Z
1/2
q1 Z

1/2
q2

ΓOΓ

, (3.48)

where Zq1,2 are the RCs of the quark fields computed as in Eq. (3.8) and ΓQCD
OΓ

is
the amputated, projected one-particle irreducible vertex, expressed in terms of the
amputated Green function ΛOΓ as in Eq. (3.4). The pure QCD RCs of quark bilinear
operators have been obtained in Ref. [56] using the same ETMC gauge configurations
with Nf = 4 degenerate flavors of sea quarks used in this work. However, the QCD
calculation in Ref. [56] differs in the number of ensembles used and the numerical
procedure adopted, which will be described in Chap. 4.
The e.m. correction ∆ZOΓ can be obtained from Eq. (3.22) and reads

∆ZOΓ = −(ZQCD
q1 )−1/2(ZQCD

q2 )−1/2 ZQCD
OΓ

∆ΓOΓ + 1
2 (∆Zq1 + ∆Zq2) , (3.49)

where ZQCD
q1 = ZQCD

q2 in pure QCD and

∆ΓOΓ = Tr[∆ΛOΓ POΓ ] . (3.50)
2We use Euclidean Dirac matrices in the chiral representation, in which γ5 is diagonal and

γµ = γ†µ = γ−1
µ .
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The set of projectors POΓ used in Eq. (3.50) is chosen in such a way that

Tr[Λtree
OΓ POΓ ] = Tr[ΓPOΓ ] = 1 , (3.51)

the trace acting on spin and colour indices. For bilinear operators we adopt the
usual set of projectors

POΓ = Γ†

LΓ
(3.52)

where LΓ ≡ Tr[Γ Γ†] ensures the correct normalization of the trace at tree-level. In
particular, for bilinear operators we get LΓ = 12NΓ, where the factor 12 comes from
the trace of color and spin identity matrices and NΓ = {1, 1, 4, 4, 6} is the number
of independent Lorentz components of the matrix Γ = {S, P, V,A, T} coming from
the sum over the repeated Lorentz indices in the product Γ Γ†.

Since bilinear operators do not mix with each other neither in the presence of
electromagnetic interactions, the RCs are real numbers and not matrices.

In order to compute the e.m. correction to the amputated Green function, ∆ΛOΓ

in Eq. (3.50), we need first to construct the Green function of the operator OΓ
between external quark fields with equal momenta p2

1 = p2
2 = p2. The Green function

in pure QCD in momentum space is given by

GQCD
OΓ

(pa) = 〈SQCD
q2 (pa) Γ γ5S

QCD
q1

†(pa)γ5〉 , (3.53)

where we have used the γ5-hermiticity Si(x, y) = γ5Si(y, x)†γ5 and 〈· · · 〉 stands for
the average over the gauge configurations. The two quark propagators computed
in pure QCD are labelled, as well as their corresponding RCs, with a different
flavour index to remind that in the intermediate steps of the calculation, i.e. before
any average or chiral extrapolation, they are distinguished by the quark mass and,
eventually, by the Wilson parameter (r1 = −r2).

At order O(αem), the diagrams that contribute are those in which:

• one photon is emitted from the ingoing quark and absorbed by the outgoing
one,

• either the ingoing or the outgoing quark propagator gets an order O(αem)
correction.

We can write such corrections as

∆GOΓ(pa) =
〈

+ +
〉

(3.54)

≡ ∆Gexc
OΓ (pa) + ∆Gin

OΓ(pa) + ∆Gout
OΓ (pa) ,

where

∆Gexc
OΓ (pa) =

〈
∆SAq2(pa) Γ γ5

(
∆SAq1(pa)

)†
γ5

〉
, (3.55)

∆Gin
OΓ(pa) =

〈
∆Sq2(pa) Γ γ5

(
SQCD
q1 (pa)

)†
γ5

〉
, (3.56)

∆Gout
OΓ (pa) =

〈
SQCD
q2 (pa) Γ γ5 (∆Sq1(pa))† γ5

〉
. (3.57)
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The propagator ∆SA is the propagator coupled to the photon field through the
conserved vector current and its calculation is discussed in Sec. 3.4. In the com-
bination of the two propagators ∆SAqi in Eq. (3.55), the average over the photon
field configurations realizes the appropriate photon propagator. We remind that the
average over the photon field configurations is done simultaneously with the one
over the gluon configurations (see Sec. 3.4). Two kinds of corrections contribute
to the amputated Green function: either the e.m. correction ∆GOΓ is amputated
with QCD propagators, or the QCD Green function is amputated with the e.m.
corrections to the inverse propagator. Thus we have

∆ΛOΓ(pa) = ∆Σq2(pa)GQCD
OΓ

(pa) γ5 〈SQCD
q1

†(pa)〉−1 γ5 + (3.58)

+ 〈SQCD
q2 (pa)〉−1GQCD

OΓ
(pa) γ5 ∆Σ†q1(pa) γ5 +

+ 〈SQCD
q2 (pa)〉−1 ∆GOΓ(pa) γ5〈SQCD

q1

†(pa)〉−1 γ5 . (3.59)

3.6 Renormalization of the weak operator O1

In this section we discuss the non-perturbative QCD+QED renormalization in the
RI'-MOM scheme of the semi-leptonic four-fermion operator

O1 = q2γ
µ(1− γ5)q1 ν`γµ(1− γ5)` , (3.60)

that enters the weak effective Hamiltonian in Eq. (2.3) describing the leptonic decay
of a light-meson. As discussed in Sec. 2.2, the non-perturbative renormalization of O1
in the RI'-MOM scheme is part of a two-steps process in which the operator is first
renormalized on the lattice and then perturbatively matched to the W -regularization
scheme in which the weak effective Hamiltonian is renormalized. Here we give the
details on the non-perturbative lattice calculation.

When we include QCD and e.m. corrections atO(αem), since Wilson-like fermions
explicitly break chiral symmetry, it follows that the operator O1 on the lattice mixes
with other 4 lattice operators with different chirality.

The complete basis for a left-handed neutrino is given by:

Obare
1 = q2γ

µ(1− γ5)q1 ν`γµ(1− γ5)` ,
Obare

2 = q2γ
µ(1 + γ5)q1 ν`γµ(1− γ5)` ,

Obare
3 = q2(1− γ5)q1 ν`(1 + γ5)` , (3.61)

Obare
4 = q2(1 + γ5)q1 ν`(1 + γ5)` ,

Obare
5 = q2σ

µν(1 + γ5)q1 ν`σµν(1 + γ5)` .

The complete basis for a generic neutrino is made up of ten operators, the five addi-
tional operators being obtained from O1 −O5 by the exchange (1− γ5)↔ (1− γ5) .
Since the neutrino is electrically neutral its chirality is conserved and the operators
O1 − O5 do not mix under renormalization with the remaining 5 operators and
invariance under parity transformations ensures that the two 5× 5 renormalization
matrices are equal. In the following we focus the discussion on the five operators of
Eq. (3.61), which are a complete basis for a left-handed neutrino.
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The renormalized operators ~ORI'(µ), with ~O = (O1, . . . , O5), can be written in
terms of bare lattice operators ~Obare(a) as

~ORI'(µ) = ZO(aµ) ~Obare(a) , (3.62)

where ZO(aµ) is a 5 × 5 renormalization matrix. We note that in pure QCD the
operator O1 mixes only with O2, with scale independent coefficients, whereas the
full 5× 5 renormalization matrix is necessary in general when e.m. corrections are
included. If instead of using Wilson-like fermions, we used a lattice formulation with
good chiral properties, such as domain wall fermions, only Obare

1 (a) would appear
on the right-hand side of Eq. (3.62), which transforms as the (8, 1) representation
under the SU(3)L × SU(3)R chiral symmetry for quarks.

In the following it will be useful to define the Dirac structure associated to the
operators

Oi = (q̄2Xi q1) (ν̄` Yi `) , (3.63)

as Γi = Xi ⊗ Yi , namely

Γ1 = γµ(1− γ5)⊗ γµ(1− γ5) , Γ2 = γµ(1 + γ5)⊗ γµ(1− γ5) ,
Γ3 = (1− γ5)⊗ (1 + γ5) , Γ4 = (1 + γ5)⊗ (1 + γ5) , (3.64)

Γ5 = σµ ν(1 + γ5)⊗ σµ ν(1 + γ5) .

The renormalization matrix ZO satisfies the renormalization condition

ZO(µa)ik ΓO(µa)kj = δij

√
Zq1(µa)Zq2(µa)Z`(µa) , (3.65)

where
ΓO(µa) ij = Tr

[
ΛOi(pa)POj

]
p2=µ2

(3.66)

and ΛOi(pa) is the amputated Green function of the operator Oi with external
momenta p. We choose to project the Green functions by tracing over the colour
and spin indices of quarks and the spin indices of leptons separately. Therefore, the
projectors POi = PXi ⊗ PYi are defined in such a way that at tree-level

Tr
[
XiPXj

]
= Tr

[
YiPYj

]
= δij , (3.67)

Tr
[
Λtree
Oi

POj

]
= Tr

[
XiPXj

]
Tr
[
YiPYj

]
= δij . (3.68)

For the Dirac structures Γi = Xi ⊗ Yi reported in Eq. (3.64), we adopt the set of
projectors

PXi ≡
X†i
LXi

, PYi ≡
Y †i
LYi

, (3.69)

where LXi ≡ Tr[XiX
†
i ] and LYi ≡ Tr[Yi Y †i ].

In the absence of QED interactions, the calculation is simplified by the factoriza-
tion of the Green function into quark and lepton bilinear vertices. In this case we
can simply project the two-fermion operators to obtain

ΓQCD
O (µa) ij = Tr

[
ΛQCD
Xi

(pa)PXj
]

Tr
[
ΛQCD
Yi

(pa)PYj
]
p2=µ2

(3.70)

= Tr
[
ΛQCD
Xi

(pa)PXj
]
p2=µ2

,
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where Tr
[
ΛQCD
Yi

(pa)PYj
]

= Tr
[
Yi PYj

]
= δij since the lepton propagators exactly

cancel out and

ΛQCD
Xi

(pa) = 〈SQCD
q2 (pa)〉−1 〈SQCD

q2 (pa) Xi γ5 S
QCD
q1

†(pa) γ5〉 γ5 〈SQCD
q1

†(pa)〉−1 γ5 .
(3.71)

Combining ΓQCD
O with the quark RC ZQCD

q defined in Eq. (3.29), it is easy to show
that the renormalization matrix ZO in the absence of QED interactions reduces to
the block diagonal matrix

ZQCD
O =



ZQCD
+ ZQCD

− 0 0 0
ZQCD
− ZQCD

+ 0 0 0
0 0 ZQCD

+ ZQCD
− 0

0 0 ZQCD
− ZQCD

+ 0
0 0 0 0 ZQCD

T


(3.72)

where

ZQCD
± = ZQCD

V ± ZQCD
A

2 , ZQCD
± = ZQCD

S ± ZQCD
P

2 , (3.73)

with ZQCD
OΓ

are the QCD RCs of the bilinear operators OΓ defined in Eq. (3.47).
As a consequence, we notice that pure QCD corrections only induce the mixing
of the operator O1 with the operator O2, with scale independent coefficients since
the quark vector and axial vector currents are protected by Ward identities in the
massless limit. The mixing of O1 produces the renormalized QCD operators

Oχ1 = (ZQCD
O

~Obare)1 = q̄2γ
µ
(
ZQCD
V − ZQCD

A γ5
)
q1 ν̄`γµ(1− γ5)` , (3.74)

Oχ2 = (ZQCD
O

~Obare)2 = q̄2γ
µ
(
ZQCD
V + ZQCD

A γ5
)
q1 ν̄`γµ(1− γ5)` , (3.75)

which, similarly to the corresponding continuum operators, belong, respectively, to
the (8, 1) and (1, 8) chiral representations with respect to a rotation of the quark
fields [64] .
When including QED at O(αem), the Green function can no longer be factorized,
due to the appearance of crossed diagrams in which a photon is exchanged between
a quark and the charged lepton. The e.m. corrections, neglecting terms of O(α2

em),
follow from Eqs. (3.22) and (3.33)

∆ZO = −(ZQCD
q1 )−1/2(ZQCD

q2 )−1/2 ZQCD
O Tr[∆ΛO PO] + 1

2 (∆Zq1 + ∆Zq2 + ∆Z`) ,

(3.76)
where ∆Z` has purely electromagnetic origin and can be computed in perturbation
theory. As in the case of bilinear operators, the correction to the amputated Green
function gets two kinds of contributions and is given by

∆ΛOi(pa) = ∆Σq2(pa)GQCD
Oi

(pa) γ5 〈SQCD
q1

†(pa)〉−1 (S`†(pa))−1 γ5 + (3.77)

+ 〈SQCD
q2 (pa)〉−1GQCD

Oi
(pa) γ5 ∆Σ†q1(pa) (S`†(pa))−1 γ5 +

+ 〈SQCD
q2 (pa)〉−1GQCD

Oi
(pa) γ5〈SQCD

q1

†(pa)〉−1∆Σ†`(pa) γ5

+ 〈SQCD
q2 (pa)〉−1 ∆GOi(pa) γ5〈SQCD

q1

†(pa)〉−1 (S`†(pa))−1 γ5 ,
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where S−1
` is the inverse charged lepton propagator in the absence of QED interactions

and ∆Σ` its e.m. correction, computed in analogy with Eq. (3.27). Neutrino’s
propagator plays no role in the calculation and is therefore considered already
amputated both in GQCD

Oi
and ∆GOi .

The e.m. correction ∆GOi can be represented diagrammatically as

∆GOi(pa) =
〈

+ + +

+ + +
〉

≡ ∆Gexc
Oi (pa) + ∆G¬

Oi(pa) + ∆G­
Oi(pa) +

+ ∆G`Oi(pa) + ∆Gin
Oi(pa) + ∆Gout

Oi (pa) .

Such corrections depend on the fermion charges: the charge of the lepton entering
the Lagrangian is e` = −1 and the fractional charges of the quarks are eu = 2/3
for up-like quarks and ed = −1/3 for down-like quarks. The fermionic lines on the
left-hand side of the diagrams in Eq. (3.78) represent the ingoing and outgoing light
quarks. On the right-hand side, the neutrino propagator is drawn for illustration but
not actually included in the calculation. The terms ∆Gexc,¬,­,`

Oi
in Eq. (3.78) can be

easily related to the Green functions of bilinear operators computed in Sec. 3.5. The
two additional diagrams ∆Gin,out

Oi
, representing the exchange of a photon between

the charged lepton and a quark, can be computed using the sequential propagators
defined in Sec 3.4,

∆Gin
Oi(pa) =

〈
SQCD
q2 (pa)Xi γ5(∆SAq1(pa))†γ5 ⊗ Yi γ5(∆SA` (pa))†γ5

〉
, (3.78)

∆Gout
Oi (pa) =

〈
∆SAq2(pa)Xi γ5(SQCD

q1 (pa))†γ5 ⊗ Yi γ5(∆SA` (pa))†γ5
〉
, (3.79)

where the average 〈· · ·〉 refers both to QCD and QED gauge field configurations and
the neutrino external propagator is already amputated.

3.7 A hint of the RI-SMOM scheme
In practice it is not always easy to satisfy the bound imposed by the renormalization
window ΛQCD � µ � 1/a in which the RI-MOM scheme works. The condition
µ� ΛQCD ensures that perturbation theory is valid, but when spontaneous symmetry
breaking occurs, as in the case of QCD, a large value of µ may not be sufficient,
because of the presence of the Goldstone boson, the pion in our case. At low
momentum transfer, q = p1 − p2, Green functions can receive a non-perturbative
contribution from the pion pole. It has been proven in [54] that this contribution
is proportional to 1/p2 = 1/µ2, even when q2 = 0. In order to reduce the infrared
chiral-symmetry breaking effects one should compute the RI-MOM renormalization
constants at a very high scale. On the other hand, one is faced with the problem of
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discretization errors if the value of µ is too high. One way to reduce this problem
is to choose the kinematics without channels of exceptional momenta, i.e. with
q = p1 − p2 6= 0. One such choice is a variant of the RI-MOM scheme, called
RI-SMOM [60, 65]. The scheme consists in the choice of “symmetric” external quark
momenta such that

p2
1 = p2

2 = q2 = µ2 and q = p1 − p2 6= 0 . (3.80)

In this case the chiral symmetry breaking effects are better behaved and vanish with
powers of order 1/p6 [60].

Another property of the RI-SMOM scheme is that the Ward-Takahashi identity
(WTI) is satisfied by both the axial and the vector current, in contrast with the
RI-MOM scheme in which the WTI for the axial current only holds at large µ2.

Although the powerful features of the RI-SMOM scheme, in this work the
renormalization procedure has been performed in the RI-MOM scheme. The reason
of this choice is related to the difficulty in the implementation of the condition (3.80)
on the lattice. In fact, if one requires for the momenta p1 and p2 to satisfy anti-
periodic boundary conditions along the temporal direction, there is no way to obtain
a temporal anti-periodic momentum q. The chiral-symmetry breaking effects which
appear due to the pion contribution to the Feynman diagrams have to be properly
taken into account and removed, as will be illustrated in Chap. 4.
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4 | Numerical Analysis of RCs
in QCD+QED

4.1 Lattice Setup

4.1.1 ETMC Nf = 4 configurations

In this section we discuss the numerical setup adopted to test the framework proposed
to compute RCs of operators non-perturbatively on the lattice at all orders in QCD
and first order in QED. We consider as a reference target the calculation of the
leptonic decay rates for light mesons [7], which employs Nf = 2 + 1 + 1 ensembles
with degenerate light-quarks (u, d) and almost physical mass strange and charm
quarks. Since RI'-MOM is a mass independent scheme, the RCs are to be defined
in the massless limit. Ensembles with fixed strange and charm sea quark masses
are not well suited. We use therefore dedicated gauge configurations with Nf = 4
degenerate dynamical quarks produced by the ETM Collaboration [66, 67], with
different values of valence and sea quark masses in order to have a controlled and
reliable extrapolation to the chiral limit of the RC-estimators. Due to instabilities
in the tuning to maximal twist, the Nf = 4 ensembles have been produced out of
maximal twist and hence without an automatic cancellation of O(a) cut-off effects.
However, it is still possible to achieve the O(a) improvement through the so-called
θ-average method, introduced in Ref. [68] and based on averaging results obtained
at opposite values of twist angle θ (and hence opposite PCAC quark masses). This
procedure clearly requires a doubling of the ensembles, produced with the same
renormalized quark mass parameters but opposite angle θ. We will refer in the
following to the two sets of ensembles with the labels “p” or “m” according to the
sign of the angle θ. The simulations have been performed at three different values of
the inverse lattice coupling, namely β = {1.90, 1.95, 2.10}, corresponding to inverse
lattice spacings a−1 ' {2.23, 2.42, 3.19} GeV. The ensembles used in this work for
the QCD+QED analysis, are a large subset of the original ones used in Ref. [56]
and the details are reported in Table 4.1. With respect to the analysis performed in
Ref. [56], the ensembles A2 and A3 at β = 1.90 are not used in the present analysis
because they were unavailable. The gluon action used in QCD is the improved
Iwasaki action, while the pure QED analysis has been performed using the Wilson
gauge action with gauge links set to 1. We choose to work in the Landau gauge
for gluons, as it is customary for RI'-MOM, and the same choice is adopted for
photons. For this work we have used Nconf = 150 gauge configurations generated



70 4. Numerical Analysis of RCs in QCD+QED

Table 4.1. Details of the lattice setup for the QCD+QED analysis. Here L4 ≡ T and
L1,2,3 ≡ L.

aµsea κsea amsea
PCAC aµval κval amval

PCAC

β = 1.90 (L = 24, T = 48) , a−1 = 2.23 GeV
A4m 0.0080 0.163476 -0.0390(01) {0.0060, 0.0080, 0.0120, 0.162113 -0.0142(02)
A4p 0.162689 0.0398(01) 0.0170, 0.0210,0.0260} 0.164817 +0.0147(02)
A1m 0.0080 0.163206 -0.0273(02) {0.0060, 0.0080, 0.0120, 0.162549 -0.0163(02)
A1p 0.162876 +0.0275(04) 0.0170, 0.0210,0.0260} 0.163881 +0.0159(02)

β = 1.95 (L = 24, T = 48) , a−1 = 2.42 GeV
B1m 0.0085 0.161739 -0.0413(02) {0.0085, 0.0150, 0.0203, 0.160754 -0.0216(02)
B1p 0.160389 +0.0425(02) 0.0252, 0.0298} 0.162145 +0.0195(02)
B7m 0.0085 0.161585 -0.0353(01) {0.0085, 0.0150, 0.0203, 0.160681 -0.0180(02)
B7p 0.160524 +0.0361(01) 0.0252, 0.0298} 0.161925 +0.0181(01)
B8m 0.0020 0.161585 -0.0363(01) {0.0085, 0.0150, 0.0203, 0.160681 -0.0194(01)
B8p 0.160524 +0.0363(01) 0.0252, 0.0298} 0.161925 +0.0183(02)
B3m 0.0180 0.161229 -0.0160(02) {0.0060,0.0085,0.0120,0.0150, 0.161229 -0.0160(02)
B3p 0.160826 +0.0163(02) 0.0180,0.0203,0.0252,0.0298} 0.160826 +0.0162(02)
B2m 0.0085 0.161229 -0.0209(02) {0.0085, 0.0150, 0.0203, 0.161229 -0.0213(02)
B2p 0.160826 +0.0191(02) 0.0252, 0.0298} 0.160826 +0.0191(02)
B4m 0.0085 0.161095 -0.0146(02) {0.0060,0.0085,0.0120,0.0150, 0.161095 -0.0146(02)
B4p 0.160870 +0.0151(02) 0.0180,0.0203,0.0252,0.0298} 0.160870 +0.0151(02)

β = 2.10 (L = 32, T = 64) , a−1 = 3.19 GeV
C5m 0.0078 0.156291 -0.00821(11) {0.0048,0.0078,0.0119, 0.156291 -0.0082(01)
C5p 0.155949 +0.00823(08) 0.0190,0.0242,0.0293} 0.155949 +0.0082(01)
C4m 0.0064 0.156250 -0.00682(13) {0.0039,0.0078,0.0119, 0.156250 -0.0068(01)
C4p 0.155983 +0.00685(12) 0.0190,0.0242,0.0293} 0.155983 +0.0069(01)
C3m 0.0046 0.156209 -0.00585(08) {0.0025,0.0046,0.0090,0.0152, 0.156209 -0.0059(01)
C3p 0.156017 +0.00559(14) 0.0201,0.0249,0.0297} 0.156017 +0.0056(01)
C2m 0.0030 0.156157 -0.00403(14) {0.0013,0.0030,0.0080,0.0143, 0.156157 -0.0040(01)
C2p 0.156042 +0.00421(13) 0.0195,0.0247,0.0298} 0.156042 +0.0042(01)

by Monte Carlo simulations and statistical errors have been evaluated using the
jackknife procedure (for details on the jackknife method we refer to Refs. [69–71]).

For each ensemble in Table 4.1, each mass (or combination of masses in the case
of composite operators) and each gauge configuration we compute the estimators
of the RCs at values of momenta, pµ = (2π/Lµ)nµ, with components lying in the
following intervals

~n = ([0, 3] , [0, 3] , [0, 3] , [0, 7]) , for β = 1.95,

~n = ([0, 5] , [0, 5] , [0, 5] , [0, 9]) , for β = 1.90 and 2.10 , (4.1)

with Lµ denoting the lattice size in the direction µ. Anti-periodic boundary conditions
on the quark fields in the time direction are adopted and they are implemented by a
shift of the time component of the four-momentum by the constant ∆p4 = π/L4.
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The four-momenta have been selected by imposing a “democratic” momentum cut
defined by

∆4(p) ≡
∑
µ p̃

4
µ

(
∑
µ p̃

2
µ)2 < 0.29, (4.2)

where p̃ is defined in Eq. (3.31), thus minimizing the contribution of Lorentz non-
invariant discretization effects. In order to increase the statistics, the restriction
on the momenta has been loosened to ∆4(p) < 2.0 when all the components of
the vector lie in the intervals nµ = [0, 1] and nµ = [1, 2] and, in addition, a bigger
list of momenta has been generated by starting from the “democratically” filtered
ones and considering all the momenta obtained by a reflection across one of the
four axes. All the quantities of interest have been calculated using the extended
list of momenta and then averaged over the equivalent momenta. The choice of
anti-periodic boundary conditions guarantees that zero modes of quark propagators
do not appear in the massless limit, being the minimum momentum equal to the
shift ∆p4 = π/L4.

When using Twisted Mass fermions, the quark mass µq appearing in such
regularization undergoes renormalization as well. Therefore, the correction to the
propagator ∆Sq in Eq. (3.25) includes an additional term and in the twisted basis it
reads as

∆Sq(pa) = + + [mw −m0
w] + [µq − µ0]

≡ ∆Sself
q (pa) + ∆ST

q (pa) + [mw −m0
w] ∆SS(pa) + [µq − µ0] ∆SP(pa) ,

where [µq − µ0] ≡ e2
q δµq and

∆SP(x, 0) = ∓ i
∑
y

SQCD(x, y) γ5 S
QCD(y, 0) , (4.3)

the sign ∓ depending on the component of the twisted quark doublet chosen. The
expression of ∆Sq can be compared with the one reported in Eq. (1.45) and obtained
in Ref. [3]. Notice that the results of Ref. [3] have been obtained using the Twisted
Mass action at maximal twist and in the physical basis, this explaining the difference
between the mass counterterms defined here in Eq. (4.3) and those in Eq. (1.45)
above. We stress here that the difference between twisted and physical bases has
to be carefully taken into account in the calculation of RCs and matrix elements.
Indeed, RCs of twisted mass operators computed in the twisted basis do not in
general coincide with those of twisted mass operators defined in the physical basis.
This implies that the RCs entering the calculation of physical observables, which
are computed in the physical basis, have to be properly related to those obtained
in the twisted basis. The relation between RCs in the two bases, for the bilinear
and four-fermion operators considered in this work, are discussed in Sec. 5.1. In the
following, RCs are computed for operators in the twisted basis.

4.1.2 Tuning of the mass counterterms
The automatic O(a) improvement in the Twisted Mass regularization of LQCD can
be obtained by tuning the quark mass and the twisted mass to the maximal twist
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configuration. By defining the twisting angle as

tanω = µ̂q
m̂w

= Zµ µq
Zm (mw −mcr)

, (4.4)

where m̂w and µ̂q are the renormalized quark and twisted masses respectively, the
maximal twist corresponds to the choice ω = π/2 in which the renormalized quark
mass m̂w vanishes. It is common practice to use the complementary angle θ to
quantify the deviation from the maximal twist, namely θ = π/2− ω. In Eq. (4.4)
the additive renormalization of the bare quark mass due to the chiral symmetry
breaking is made explicit. It follows that the O(a) improvement can be achieved just
by tuning the bare quark mass mw to its critical value mcr. An equivalent approach
is to find the value of the bare quark mass such that mPCAC vanishes. The Nf = 4
gauge ensembles used in this work are generated out of the maximal twist due to
instabilities of the simulation and therefore one has to recur to a different strategy to
achieve the O(a) improvement. Since O(a) effects are odd with respect to the twist
angle θ, pairs of ensembles have been produced with opposite θ angles (θp = −θm)
and the cancellation of the discretization effects in the iso-symmetric QCD analysis is
obtained once the RCs, computed within the two sets of ensembles, are averaged [68].
The relation between the renormalized quark and twisted masses in the two sets of
ensembles is schematically depicted in Fig. 4.1, the red squares corresponding to
the configuration in pure QCD (θp = −θm). When introducing the QED interaction
we must ensure that the symmetry condition θ′p = −θ′m is preserved. The shift in
the additive (QED) renormalization is the same in the two sets of ensembles (p and
m) and therefore, in the absence of appropriate counterterms, the twist angles get
modified in a non-symmetric way (θ′p 6= −θ′m), as schematically depicted in Fig. 4.1.

In order to restore the equality and exploit the θ-average to achieve O(a) im-
provement we need to properly tune the e.m. corrections to the masses. A possible

Figure 4.1. Relation between the renormalized quark and twisted masses before the
introduction of counterms. In pure QCD (red squares), the angles are tuned to be equal
and opposite (θp = −θm). In QCD+QED (blue dots), the shift of mw induced by e.m.
corrections modifies the angles in a non-symmetric way (θ′p 6= −θ′m).
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way is to match the renormalized quark masses of the QCD and QCD+QED theory.
This is achieved by imposing that the form factors Σ2 and Σ3 of the QCD quark
propagator,

(SQCD(ap))−1 = −i6pΣ1(ap) + Σ2(ap) + γ5 Σ3(ap) (4.5)

coincide in the limit p2 → 0 with those in the full theory, thus by imposing that
their QED corrections vanish in such limit, namely

lim
p2→0

∆Σ2(ap) = 1
12 lim

p2→0
Tr [∆Σq 1] = 0 , lim

p2→0
∆Σ3 = 1

12 lim
p2→0

Tr [∆Σq γ5] = 0 ,

(4.6)
with ∆Σq defined in Eq. (3.27). The needed counterterms are thus obtained by
solving, for each set of ensembles, the system of equations

lim
p2→0

(
∆Σself+T

2 + δmw ∆ΣS
2 + δµq ∆ΣP

2
)

= 0

lim
p2→0

(
∆Σself+T

3 + δmw ∆ΣS
3 + δµq ∆ΣP

3
)

= 0
, (4.7)

where the components ∆Σself+T,S,P
2,3 are related to the e.m. corrections to the quark

propagator defined in Eq. (4.3).
This procedure has been proven to work nicely in the pure QED analysis, in

which Wilson fermions have been used. In this case Σ3 is absent in the propagator
and the Wilson mass counterterm is simply given by

δmw = −∆Σself+T
2

∆ΣS
2

=
e2
q

12 Tr
[
S−1

free

(
∆Sself+T

)
S−1

free

]
. (4.8)

By taking the limit a2p2 → 0, the quantity δmw results to be in good agreement
with the corresponding value computed at one loop in lattice perturbation theory,
namely δmpert

w = −e2
q · 0.325714 [72], as shown in Fig. 4.2.

4.2 Numerical Procedure

The procedure adopted in the present analysis follows the one described in Ref. [61],
with appropriate changes due to the different gauge ensembles used.

The core of the non-perturbative calculation of RCs in QCD+QED is the evalu-
ation of the non-factorizable contribution η (see Eq. (3.15)), which can be obtained
according to Eq. (3.46) as the difference between the e.m. correction ∆Z computed
on the lattice in the full QCD+QED theory and the analogue correction ∆ZQED

evaluated in pure QED. As already mentioned above, ∆ZQED can be in principle
computed analytically in perturbation theory. However, in this work we decide
to compute it numerically on the lattice. This has the clear advantage that, as
explained in Sec. 3.1.2, by computing ∆ZQED with the same lattice setup used for
the calculation of ∆Z (but with gauge links set to 1), it is possible to make η free
from all pure QCD and pure O(αem) QED cut-off effects. Moreover, the use of
the same stochastic photon fields in the calculation of the two corrections ∆Z(QED)
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Figure 4.2. Comparison between the mass counterterm δmw obtained in pure QED using
the tuning in Eq. (4.6) and the one obtained in lattice perturbation theory in Ref. [72].

yields a significant reduction of statistical uncertainty on η. Therefore, two different
analyses are required: one in the full theory and one in pure QED.

In this Section we describe all steps necessary to compute the RCs, their e.m.
corrections and the non-factorizable part η, starting from propagators and Green
functions. All steps are labelled with capital letters and a summarizing flow chart of
the complete analysis is depicted in Fig. 4.3.

Lattice estimator of the RCs are computed from appropriate propagators and
Green functions using the RI'-MOM conditions defined in Sec. 3.1 for each lattice
coupling β, momentum p, sea quark mass, value of the Wilson parameter r, θ angle
and valence quark mass (for Zq) or combination of masses (in the case of RCs of
composite operators). Therefore, the basic ingredients of our calculation are lattice
RC estimators of the form

ZQCD
q

(
β, θ, µsea, µval, r, p2

)
, (4.9)

∆Zq
(
β, θ, µsea, µval, r, p2

)
, (4.10)

ΓQCD
O

(
β, θ, µsea,

{
µval

1 , µval
2 , . . .

}
, {r1, r2, . . . } , p2

)
, (4.11)

∆ΓO
(
β, θ, µsea,

{
µval

1 , µval
2 , . . .

}
, {r1, r2, . . . } , p2

)
. (4.12)

In the pure QED calculation, given the absence of non-perturbative dynamics, the
same ingredients are computed in the free theory (see Sec. 3.4) and directly in the
massless limit1 with a fixed value of the Wilson parameter (r = 1), in order to
avoid additional irrelevant steps in the calculation. Furthermore, in the free-theory
analysis there is no dependence on the gauge coupling β and the angle θ either.

1The appearance of zero modes of fermion propagators is prevented by the anti-periodic boundary
conditions adopted, the minimum momentum being equal to the shift ∆p4 = π/T .
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QCD+QED

QED

⌘

A B C D E F G H

Figure 4.3. Flow chart of the complete analysis for the non-perturbative calculation of
RCs in QCD+QED. All steps of the numerical analysis are labelled with capital letters
A-H, as defined in Sec. 4.2. The three branches of the analysis (full QCD+QED, pure
QED and calculation of η) are depicted to show the sequence of all steps.

Therefore, the RC estimators have the form

∆ZQED
q

(
p2
)
, ∆ΓQED

O

(
p2
)
. (4.13)

The same arguments hold for the lepton self-energy ∆Z`, but its actual calculation
will be avoided in the study of leptonic decay rates, as it will be described in Sec. 4.3.1
and 5.2.

After each step described below, the RCs ZO, its corrections in QCD+QED and
in pure QED, ∆Z(QED)

O , and the non-factorizable RC ηO are computed according to
the RI-MOM conditions in Sec. 3.1.

A. Average on equivalent momenta Given the momentum p = (p1, p2, p3, p4),
fifteen extra equivalent momenta configurations can be computed on the lattice by
considering the copies of p obtained with a reflection about one axis (Z2 symmetry),
i.e. all momenta having components (±p1,±p2,±p3,±p4). The RC estimators
computed at such momenta are therefore equivalent with each other and can be
averaged to reduce statistical uncertainty. Moreover, on an hypercubic lattice one can
also exploit H(4) symmetry, corresponding to 90◦ rotations about an axis. However,
on our L3×T lattices, the symmetry to be considered is the subgroup H(3)L ∈ H(4)
of spatial 90◦ rotations, since the lattice extent in temporal direction is twice longer
than in spatial ones. Therefore, the symmetry employed in our analysis for the
average of equivalent momenta is

Ĥ(4) ≡ H(3)L × [Z2]4 . (4.14)

In previous analyses [56, 61], a different choice was adopted instead. Equivalence
classes were indeed identified by the value of p̃2, which is a naive lattice version of the
O(4) Lorentz symmetry, but it does not correspond to any symmetry on the lattice.
Note that given two momenta p1 and p2 having p̃2

1 = p̃2
2, they are not necessarily

Ĥ(4)-equivalent, e.g. n1 = (6, 4, 4, 4) and n2 = (6, 3, 4, 5)2. Since the O(4) rotation
symmetry is broken down to Ĥ(4) hypercubic symmetry, there are lattice artifacts
which are only invariant under Ĥ(4) but not under O(4). Therefore, the average
of estimators in equivalence classes different from those obtained using Eq. (4.14),

2 The vectors n = (nt, nx, ny, nz) are related to p as p0 = 2π(n0 + 0.5)/T and pi = 2πni/L
when using anti-periodic boundary conditions on time.
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yields a wrong treatment of such Lorentz non-invariant discretization effects.

Lattice estimators in different equivalence classes are averaged, thus obtaining

ZA
q

(
β, θ, µsea, µval, p2

)
= 1
Np

∑
pi∼p

Zq
(
β, θ, µsea, µval, p2

i

)
, (4.15)

where Np is the number of equivalent momenta in the equivalence class of p. The
same form holds for all other ingredients.

B. Average on Wilson parameter r In order to further improve the statistical
accuracy of RCs, we have averaged the results obtained from correlation functions
with equal quark masses but different values of Wilson parameters. It results that,
for example,

ZB
q

(
β, θ, µsea, µval, p2

)
≡ 1

2
[
ZA
q

(
β, θ, µsea, µval, ru, p

2
)

+ ZA
q

(
β, θ, µsea, µval, rd, p

2
)]

,

(4.16)
where ZA

q is the quark RC estimator evaluated at the previous Step A and ru,d are
the two possible values of the Wilson parameter. The procedure used for composite
operators is the same as for Zq. The operators studied in this work are composed
by two quarks and hence vertices will depend on four indices (µval

1 , r1)(µval
2 , r2). The

dependence on r is removed in this case by averaging over the equivalent combinations
of µval and r, where the equivalence is meant in the sense that the combinations

(µval
A , ru)(µval

B , ru) ∼ (µval
B , ru)(µval

A , ru) ∼ (µval
A , rd)(µval

B , rd) ∼ (µval
B , rd)(µval

A , rd)
(4.17)

correspond to the same effective mass. Here µval
A and µval

B are two arbitrary values
of the valence quark masses.

In pure QED the calculation is purely perturbative and propagators are generated
in the free theory. In this analysis, we decide to fix the value of the Wilson parameter,
r = 1. Such conventional choice corresponds to certain cut-off effects that solve the
problem of fermion doubling, pushing the undesired copies to higher scales, and
vanish in the continuum limit. The same choice is adopted for the lepton as well,
r` = 1, both in the pure QED and the QCD+QED analyses.

C. Valence chiral extrapolation The RC estimators so far computed are still
mass-dependent quantities. The RI-MOM scheme is instead a mass independent
renormalization scheme, thus an extrapolation of the results to the chiral limit, i.e.
to the limit in which mq = 0, must be performed. Once extrapolated to the chiral
limit, RCs only depend on the subtraction scale p2 = µ2, the coupling constant
β and the angle θ. The validity of the RI-MOM approach relies on the fact that
non perturbative contributions to Green functions vanish asymptotically at large
p2 [54] so, in this region (as long as p2 < 1/a2 to keep discretization effects under
control), Green functions are expected to be smooth functions of the quark masses.
However, particular care must be taken when psuedoscalar currents are involved,
e.g. in the calculation of the bilinear vertex ΓP of the operator OP = q̄2γ5q1, since
in this case, due to the coupling with the Goldstone boson (GB), the leading power
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suppressed contribution ∼ 1/p2 is divergent in the chiral limit and the condition
µ� ΛQCD may not be enough. The existence of this GB-pole contribution can be
understood as follows. Let us consider the Green function constructed from bilinear
operators with incoming and outgoing quarks having different momenta, p and p′
respectively, and let define q = p− p′ the momentum transfer. At asymptotically
large p2 scales, non perturbative effects giving contributions potentially divergent in
the chiral limit to the Green function do vanish and the latter turns out to have a
polynomial dependence on the quark masses. However, at finite values of p2, the
contributions to the spectral decomposition of these Green functions from one GB
intermediate state with momentum q and massMP give rise to terms proportional to
(q2 +M2

P )−1 suppressed by some power of 1/p2. Such non-perturbative contributions
to the Green function, although suppressed by a factor 1/p2, are divergent in the
chiral limit when using exceptional momenta (p = p′ and hence q2 = 0) and therefore
they must be disentangled and removed. Moreover, for twisted mass fermions, the
explicit breaking of parity at finite lattice spacing can induce a coupling of the GB
also with the scalar operator OS = q̄2q1, but it is suppressed by O(a2) and its effects
are almost negligible, as it will be shown in Sec. 4.3.

In pure QCD, the chiral limit in the valence sector is achieved through a fit of
the amputated and projected Green functions, in a fixed gauge ensemble and at
fixed momentum, using the linear Ansatz

ΓQCD
O = a

(0)
O + b

(0)
O M2

P , (4.18)

where MP ≡MP (µ1, µ2) is the mass of the pseudoscalar meson composed of valence
quarks with masses µ1 and µ2 and computed in pure QCD, ΓQCD

O is the amputated
and projected Green function of an operator O that does not involve pseudoscalar or
scalar currents and {a(0)

O , b
(0)
O } are the fit parameters. The same linear fit ansatz is

used for the valence chiral extrapolation of ZQCD
q , but in this case the variable of the

fit is the effective mass M2
P (µ, µ) constructed from two quarks with equal valence

masses. The GB-pole contamination in vertex functions involving pseudoscalar (P )
or scalar (S) currents is removed using the following alternative fit Ansatz

ΓQCD
O = a

(0)
O + b

(0)
O M2

P + c
(0)
O

M2
P

, (4.19)

where O = P, S and the additional parameter c(0)
O is the residue at the pole.

When including QED in the calculation, Eqs. (4.18) and (4.19) have to be
modified to take into account the e.m. corrections to the meson mass3,[

M2
P

]QCD+QED
= M2

P + αem
4π ∆M2

P . (4.20)

Considering the Ansatz of Eq. (4.18) in QCD+QED and expanding it in terms of
αem one obtains

∆ΓO = a
(1)
O + b

(1)
O M2

P + b
(0)
O ∆M2

P , (4.21)

3Strong IB corrections to the meson mass can be neglected here, since they vanish in the chiral
limit.
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while, in the case of Eq. (4.19), the GB poles occurring in QCD generate double
poles in the correction to the Green functions ∆ΓP (S) and the fit Ansatz has to be
modified into

∆ΓO = a
(1)
O + b

(1)
O M2

P + c
(1)
O

M2
P

+ b
(0)
O ∆M2

P − c
(0)
O

∆M2
P

M4
P

, (4.22)

with O = P, S. In Eqs. (4.21) and (4.22) only the coefficients a(1)
O , b(1)

O and c(1)
O have

to be fitted, since the values of b(0)
O and c(0)

O are known from the fit in pure QCD
of Eqs. (4.18) or (4.19). When the amputated and projected vertices and their e.m.
corrections are matrices due to operator mixing, the fit is performed on each of their
components and the above equations have to be understood as component-wise.

We remind that the pure QED calculation is done, on the other hand, directly in
the chiral limit, since no hadronic contamination or GB-pole contribution arise, and
hence no chiral extrapolation is needed. The charged lepton is computed directly in
the massless limit as well.

In conclusion, the extrapolated RC estimators in the limit µval → 0 are obtained
from the fit as [

ZQCD
q

]C (
β, θ, µsea, p2

)
≡
[
a(0)
q

]B (
β, θ, µsea, p2

)
, (4.23)[

∆Zq
]C (

β, θ, µsea, p2
)
≡
[
a(1)
q

]B (
β, θ, µsea, p2

)
, (4.24)

where
[
a

(0)
q
]B and

[
a

(1)
q
]B are the parameters of the fit performed on the data

computed at the previous Step B.
After the valence chiral extrapolation, the quantities ∆Z and ∆ZQED, computed

respectively in the full theory and in pure QED, are combined to form the non-
factorizable RC η as defined in Eq. (3.46), namely

[
η
]C (

β, θ, µsea, p2
)
≡
[
∆Z

]C (
β, θ, µsea, p2

)
−
[
∆ZQED]C (p2

)
. (4.25)

The electromagnetic correction to the squared mass ∆M2
P in the above equations,

can be rewritten as
∆M2

P ≡ 2MP ∆MP (4.26)

and the quantity ∆MP has been determined following the procedure of Ref. [26].

D. Perturbative evolution Once the RCs have been extrapolated to the (valence)
chiral limit, we investigate their dependence on the renormalization scale by evolving,
at fixed coupling β, the RCs to a reference scale. This operation is necessary to
discern whether the scale dependence of the RC comes from the anomalous dimension
of the operator or it is due to lattice artifacts. The evolution of RCs is done using
the evolution operator Û computed in perturbation theory and discussed in detail
later in Chapter 6. The evolution matrix relates renormalized operators evaluated
at two different scales and it is defined as

~OR(µ2) = Û(µ2, µ1;αem) ~OR(µ1) . (4.27)
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Since scale dependence of the renormalized operator is encoded in its renormalization
constant, namely ~OR(µ) = ZO(µ) ~OB, it follows that RCs evolve accordingly as

Z(µ2) = Û(µ2, µ1;αem) Z(µ1) . (4.28)

The perturbative evolution is applied to RCs and not to the amputated and projected
Green functions. Therefore, the ingredients computed in the previous Step C are
combined to form the RCs according to RI'-MOM conditions in Sec. 3.1 and the
analysis proceeds with the quantities ZQCD, ∆Z(QED) and η.

When including e.m. corrections, RCs are defined according to Eq. (3.14) as

Z(µ) = ZQCD(µ) + αem
4π ∆ZQED(µ)ZQCD(µ) + αem

4π η(µ)ZQCD(µ) , (4.29)

where ZQCD, ∆ZQED and η are in general non-commuting matrices. The definition
of Z is crucial for a consistent evolution of the non-factorizable contribution η, since
it depends on whether Z is defined as in Eq. (3.14) or with ZQCD multiplied on the
left. In this work we adopt the convention of Eq. (3.14) with ZQCD multiplied on
the right. Inserting the evolution operator (see Eq. (6.50))

Û(µ2, µ1;αem) = ÛQCD(µ2, µ1)+αem
4π ∆Û1(µ2, µ1)+αemαs(µ1)

(4π)2 ∆Û2(µ2, µ1) (4.30)

into Eq. (4.28) we obtain the following evolution rules4

ZQCD(µ2) = ÛQCD(µ2, µ1)ZQCD(µ1) , (4.34)

∆ZQED(µ2) = ∆ZQED(µ1) + ∆ÛQED
1 (µ2, µ1) , (4.35)

η(µ2) = ÛQCD(µ2, µ1) η(µ1)
[
ÛQCD(µ1, µ2)

]−1
+ (4.36)

+ ÛQCD(µ2, µ1) ∆ZQED(µ1)
[
ÛQCD(µ2, µ1)

]−1
+

− ∆ZQED(µ1) + ∆Û1(µ2, µ1)
[
ÛQCD(µ2, µ1)

]−1
+

− ∆Û1(µ2, µ1) + αs(µ1)
4π ∆Û2(µ2, µ1)

[
ÛQCD(µ2, µ1)

]−1
.

4If one defines instead e.m. corrections to RCs as

Z = ZQCD
(

1 + αem

4π ∆ZQED + αem

4π η̃
)
, (4.31)

then the non-factorizable RC η̃ would evolve as

η̃(µ2) = η̃(µ1) + αs(µ1)
4π [ZQCD(µ1)]−1 [UQCD(µ2, µ1)]−1 ∆U2(µ2, µ1)ZQCD(µ1) + (4.32)

+ [ZQCD(µ1)]−1 [UQCD(µ2, µ1)]−1 ∆U1(µ2, µ1)ZQCD(µ1)−∆U1(µ2, µ1) .

The relation between η̃ and η is the following:

η̃ = [ZQCD]−1 (η + ∆ZQED) ZQCD −∆ZQED , (4.33)

from which it is evident that the two definitions are equivalent in the case of non-mixing operators.
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If operators do not mix under renormalization, as in the case of bilinear operators,
the evolution for η gets the simpler form

ηO(µ2) = ηO(µ1) + ∆U1(µ2, µ1) [UQCD(µ2, µ1)]−1 (4.37)

− ∆U1(µ2, µ1) + αs(µ1)
4π ∆U2(µ2, µ1) [UQCD(µ2, µ1)]−1 ,

where this time UQCD, ∆U1 and ∆U2 are scalar functions, as well as ηO. Notice
that the pure QED correction ∆ZQED contributes to the evolution of η only in the
case of mixing operators, while it is absent in Eq. (4.37)5. As described in Chap. 3,
the quantity η = ∆Z − ∆ZQED is automatically free from pure QCD and pure
QED cut-off effects and is only affected by subleading terms of order O(αemαsa2).
Furthermore, since we have computed the corrections ∆Z and ∆ZQED using the same
stochastic photon fields, we have significantly reduced the statistical uncertainty of η
due to the photon sampling. In order to avoid the re-introduction of such effects in
the evolution of η, we implement the perturbative evolution substituting in Eq. (4.36)
the quantity ∆ZQED, which is computed on the lattice, with the corresponding
analytical result ∆ZQED

an computed at one-loop in perturbation theory.
The evolution matrix ∆Û1 depends on the one-loop QED anomalous dimension

of the operator, γ̂(0)
e , while ∆Û2 depends also on the one-loop strong anomalous

dimension γ̂(0)
s and the mixed anomalous dimension γ̂(1)

se of O(αsαem). The computa-
tion of such anomalous dimensions for the operators studied in this work is discussed
in Chapter 7. On the other hand, the QCD evolution matrix ÛQCD involves the
strong anomalous dimensions, which are known at different orders in αs depending
on the operator. The specific operators studied in this work are quark bilinear
operators and the semi-leptonic operator O1 entering the weak effective Hamiltonian
of Eq. (2.3). In the latter case, since in the absence of e.m. corrections the leptonic
part of the four-fermion operator does not contribute to the calculation of RCs, the
strong anomalous dimensions are easily related to those of bilinear operators. These
have been computed in the RI' scheme up to four loops for Zq, ZP and ZS (in the
Landau gauge) in Ref. [73] and up to three loops for ZT in Ref. [74]. The other
bilinears, namely ZA and ZV , do not have strong anomalous dimensions due to the
QCD Ward identities valid at all orders of αs. The calculation of the four-loop QCD
evolution matrix of non-mixing operators is discussed in Chap. 6.

Since η evolves in a different way with respect to ∆ZQED and ZQCD, the analysis
splits up into a third branch, as schematically depicted in Fig. 4.3, in which we focus
on the calculation of η.
We choose to evolve RCs computed at different values of (ap)2 to the reference
scale µ0 = 1/a. Therefore, the RC estimators

[
ZO
]D are obtained by applying the

evolution operator Û(1/a2, p2;αem) to the RC estimators
[
ZO
]C obtained at the

previous step, according to the evolution rules in Eqs. (4.34)-(4.36).

E. Perturbative subtraction of O(g2a2) cut-off effects In the numerical calcu-
lation, the RCs evolved to the reference scale µ0 = 1/a still have a dependence on the

5The contribution of ∆ZQED is absent in the evolution of η̃, in both the mixing and non-mixing
cases.
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Table 4.2. Parameters used for the evaluation of the perturbative expansion of quark
propagator and amputated bilinear/four-fermion vertices, corresponding to the lattice
setup of this work: improved Iwasaki action for gluons, Wilson gauge action for photons,
both in Landau gauge (λ = 0), and twisted mass action at maximal twist for quarks.

Analysis CF c0 c1 c3 cSW λ

QCD 4/3 3.648 −0.331 0 0 0
QED 1 1.0 0 0 0 0

renormalization scale a2p2 at which they have been initially computed. Such residual
dependence signals the presence of either O(a2) discretization effects or higher-order
perturbative corrections not included in the evolution function Û(1/a2, p2;αem). In
order to reduce discretization effects on the RCs we can analytically subtract from
the perturbative O(a2) contributions. They have been computed at one loop in
lattice perturbation theory in Ref. [75] for the quark propagator and the amputated
Green functions of bilinear operators, and in Ref. [76] for four-fermion operators.
The calculations of Refs. [75, 76] employ the Wilson/clover action for massless
fermions and the Symanzik improved action for gluons. Their results exhibit a
rather nontrivial dependence on the external momentum (p), and they are explicit
functions of the color factor (CF ), gauge parameter (λ), lattice spacing (a), clover
coefficient (cSW) and coupling constant (g); furthermore, most numerical coefficients
depend on the Symanzik parameters of the gluon action (ci). We notice that the
same perturbative results can be used to subtract cut-off effects to RCs computed
in pure QCD and in pure QED, with appropriate changes of the parameters and
coupling constants. The results of Refs. [75, 76] are valid for twisted mass fermions
at maximal twist and the maximal twist configuration, in our case, is achieved
through the θ-average of the RC estimators. Given the linearity of the average, we
can apply the perturbative subtraction separately to the RC estimators evaluated
at opposite θ angles, i.e. before the average, obtaining the same final result. The
values of the parameters used in the analysis, according to our lattice setup, are
shown in Table 4.2. We observe that the perturbative corrections to RCs in the
RI'-MOM scheme start at order O(αsa2) in QCD and O(αema2) in QED. As a
consequence, the non-factorizable part of the RCs η is free from pure QCD and QED
cut-off effects and is only affected by subleading corrections of order O(αsαema2).
The subtraction of such discretization effects would require a two-loop calculation in
lattice perturbation theory with different couplings, which (to our knowledge) is not
present in the literature. Therefore, we do not apply any perturbative subtraction
on η.

Using the RI' renormalization conditions on the results of Refs. [75, 76], we
determine the O(αsa2) and O(αema2) corrections to ZQCD

O and ∆ZQED
O respectively,

namely FQCD
O and FQED

O , and we compute the subtracted RC estimators as follows

[
ZQCD
O

]E (
β, θ, µsea, p2

)
=
[
ZQCD
O

]D (
β, θ, µsea, p2

)
− α

(0)
s

4π F
QCD
O (β, p)[

∆ZQED
O

]E (
β, θ, µsea, p2

)
=
[
∆ZQED

O

]D (
β, θ, µsea, p2

)
−FQED

O (β, p)[
ηO
]E (

β, θ, µsea, p2
)

=
[
ηO
]D (

β, θ, µsea, p2
)
. (4.38)
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Here the coupling α(0)
s is the boosted coupling proposed in Refs. [59, 77] and defined

as
α(0)

s = 1
4π

g2
0

〈W 1×1〉
, (4.39)

where g2
0 ≡ 6/β is the standard lattice coupling and 〈W 1×1〉 is the value of the

plaquette, computed non-perturbatively and averaged on the gauge configurations.

F. Evaluation of residual cut-off effects In order to account for the residual
discretization effects in the calculation of the RCs, we follow two different approaches:

• Extrapolation method (M1) After subtraction of the O(a2) at one loop in
perturbation theory, according to Eq. (4.38), we extrapolate the RCs linearly
to a2p2 → 0. Specifically we fit the RCs computed at the Step E in the large
momentum region

1.0 . a2p̃2 . 3.0 (4.40)

with the fit Ansatz

[ZO]E
(
β, θ, µsea, p2

)
= [ZO]FM1 (β, θ, µsea) + λO a2p̃2 , (4.41)

and we take the intercept [ZO]F (β, θ, µsea) as the new result for the RC
estimator. We refer to this method as M1.

• Interpolation method (M2) In this approach we do not attempt any additional
subtraction of discretization effects, besides the perturbative one. The final esti-
mates of RCs are obtained by taking directly the results of [ZO]E

(
β, θ, µsea, p2)

at a fixed value of p̃2, namely p̃2
ref = 13 GeV2 . In practice, this is done

by fitting the RCs to a constant in a small momentum interval around p̃2
ref ,

determined by its 5 nearest neighbours. Therefore, symbolically we have that

[ZO]FM2 (β, θ, µsea) = [ZO]E
(
β, θ, µsea, p2

)∣∣∣
p̃2=p̃2

ref
. (4.42)

The idea behind this approach is that, once RCs are combined with bare
quantities, so as to construct the physical observables of interest, the residual
O(a2) effects, which are present in both RCs and bare quantities, will be
extrapolated away in the continuum limit. We refer to this method as M2.

G. Combined sea chiral extrapolation The RC estimators so far computed
still have a dependence on the sea quark mass. The RCs are usually extrapolated
with a linear fit in (M sea

P )2, in a similar way as in the valence sector. In our analysis,
however, we only have two ensembles available at β = 1.90, namely A4 and A5 (see
Table 4.1), and a linear fit on just two points is not reliable. In order to overcome
this problem, we exploit the facts that the dependence on the pseudoscalar sea meson
mass (or, equivalently, on the sea quark masses) is in general very mild and that it
does not vary sensibly with the coupling β. Therefore, we perform a combined chiral
extrapolation in which we force the slope to be the same for all three β’s, with the
fit Ansatz

[ZO]F (β, θ, µsea) = aO(β, θ) + bfixed
O (M sea

P )2 . (4.43)
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The chirally extrapolated RC estimators are then obtained from the intercept of the
fit, namely

[ZO]G (β, θ) = aO(β, θ) . (4.44)

Since in the pure QED analysis, fermion propagators are generated already in the
massless limit, this step is skipped in that case.

H. Average on the twist angle θ The last step of the calculation is the average
on the twist angle θ, which is necessary to achieve the O(a) improvement of RCs
out of maximal twist, which is proven in Ref. [56, 68].

Finally, the results for the RCs are obtained as

ZO(β) ≡ [ZO]H(β) = 1
2
(
[ZO]G (β, θp) + [ZO]G (β, θm)

)
. (4.45)

4.3 Numerical results
In this section we present the numerical results of the QCD+QED RI'-MOM analysis
of renormalization constants for quark bilinear operators in Eq. (3.47) and the semi-
leptonic weak operators in Eq. (3.61) involved in the calculation of light-meson
leptonic decay rates.
The RCs are extracted following the procedure outlined in the previous Section 4.2
and with the lattice setup described in Sec. 4.1. We remind that the above procedure
is specific for the Nf = 4 gauge configurations produced by ETMC and used in this
work, which require, among others, an average over the twist angle θ to achieve the
O(a) improvement of lattice correlators. We review here all steps of the analysis
showing their application to the calculation of RCs of bilinear and weak four-fermion
operators.

The RCs and their e.m. corrections are computed in the RI'-MOM scheme applying
the renormalization conditions derived up to O(αem) in Chap. 3.1. They have
been evaluated at different renormalization scales µ2 = p2, where p is the lattice
four-momentum of the external fermion fields. The first step (step A) of the analysis
consists in averaging results obtained at values of p equivalent under the (exact)
Ĥ(4) discrete lattice symmetry, consisting in 90◦ rotations of spatial components of
a four-vector and its reflection along the temporal axis. The effect of such operation
is shown in Fig. 4.4, where we show the results for the RCs ∆Zq, ∆ZP and ∆Z11
computed in QCD+QED and in QED. The average, as expected, yields a reduction
of the statistical uncertainty. The Ĥ(4)-averages are obtained at fixed masses and
values of the Wilson r parameter. In order to remove the dependence on the Wilson
parameter, RCs obtained at opposite values of r (r = ±1) are averaged (step B). The
dependence on the valence quark masses in then removed by extrapolating the RCs
(step C) to the chiral limit, with a fit ansatz that takes into account the eventual
presence of a Goldstone pole contamination to the amputated and projected vertex.
As explained in the previous section, Goldstone poles (∼ 1/M2

P ) occurring in QCD
vertices, induce double poles (∼ 1/M4

P ) in the corresponding e.m. corrections. The
valence chiral extrapolation at fixed a momentum scale (ap̃)2 ∼ 1 is reported in
Figs. 4.5 and 4.6 for a subset of bilinear and semi-leptonic vertices, respectively.
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Figure 4.4. [A] Average of equivalent momenta: electromagnetic corrections to the RCs
Zq, ZP and Z11 evaluated in the full QCD+QED theory (left panels) and in pure QED
(right panels) for the ensemble B2m (see Table 4.1). Results obtained for the complete
set of momenta (see Sec. 4.1.1) are reported in light colours, while dark points correspond
to the Ĥ(4) averaged RCs.

While the dependence onM2
P is perfectly linear for ΓV , Γ12 and their e.m. corrections,

the presence of GB contributions is instead evident in the extrapolation of ΓP and
Γ33, which are constructed from pseudoscalar currents. It is interesting to notice
the behaviour of the scalar vertex ΓS in Fig. 4.5: the operator OS appears to be
mildly coupled with the GB, due to the explicit breaking of parity at finite lattice
spacing induced by the twisted mass regularization. However, the coefficient of the
pole is much more suppressed with respect to the case of the pseudoscalar vertex.
Indeed, for the ensemble B2m and at (ap̃)2 = 1.06 we find (in lattice units):

c
(0)
S

∣∣
B2m, (ap̃)2∼1 = −6 (2) · 10−4 and c

(0)
P

∣∣
B2m, (ap̃)2∼1 = 16 (1) · 10−3 . (4.46)
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Figure 4.5. [C] Valence chiral extrapolation of a subset of bilinear vertices (ΓV , ΓP and
ΓS) and their e.m. corrections at fixed momentum (ap̃)2 ' 1.06 and for the ensemble
B2m. The empty (blue) dots represent the data obtained at Step B, while the full (black)
dot is the extrapolation at MP = 0. The curve obtained fitting the data is reported in
light blue (“fit”) and, when the GB contamination is present, we also show the linear
(orange) curve obtained removing the pole (“w/o GB”).

Although very small, we decide to keep the coefficient cS in the fit Ansatz since
it yields a better χ2 value. Once the RCs, computed in both QCD+QED and
in QED, are extrapolated to the chiral limit, they are used to construct the non-
factorizable parameter η according to Eq. (3.46). In Fig. 4.7 we show the result of this
operation for the four-fermion RCs η11 and η12, which are essential ingredients for
the calculation of e.m. corrections to light-meson leptonic decay rates (see Chap. 5).
As discussed in Sec. 3.4, the RCs ∆Z and ∆ZQED have been computed using the
same stochastic photon fields, in such a way that their statistical uncertainties are
maximally correlated. This increases, as a consequence, the numerical precision of η:
the relative statistical uncertainty is reduced by approximately a factor ∼ 2 − 10
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Figure 4.6. [C] Valence chiral extrapolation of a subset of semileptonic vertices (Γ12 and
Γ33) and their e.m. corrections at fixed momentum (ap̃)2 ' 1.06 and for the ensemble
B2m. The empty (blue) dots represent the data obtained at Step B, while the full (black)
dot is the extrapolation at MP = 0. The curve obtained fitting the data is reported in
light blue (“fit”) and, when the GB contamination is present, we also show the linear
(orange) curve obtained removing the pole (“w/o GB”).

depending on the operator insertion. The effect of such reduction is reported in
Fig. 4.8, where we compare the results of η11, η33, ηV and ηP computed with
either correlated or uncorrelated photon fields. We notice that the reduction of the
statistical uncertainty is more enhanced in the case of RCs of operators involving
either vector, axial-vector or tensor currents. Scale dependent RCs are then evolved
to the reference scale µ = 1/a (step D), in order to better study the impact of
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Figure 4.7. Determination of the non-factorizable RCs η11 and η12 in the ensemble B2m.
The e.m. corrections ∆Z (red) and ∆ZQED (blue) are also reported in the plots.
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Figure 4.8. Results of η11, η33, ηV and ηP computed with either correlated (black dots) or
uncorrelated (orange dots) photon fields [ensemble B2m]. The statistical uncertainty is
significantly reduced. Such effect appears to be more pronounced when vector currents
are involved (see left panels).

discretization effects, which would result in an eventual residual dependence on the
renormalization scale. In the pure QCD and QED calculations, the subtraction
of O(αsa2) and O(αema2) cut-off effects can be done by using lattice perturbation
theory (step E). On the other hand, an analogue subtraction is impossible for η since
a two-loop calculation of O(αsαema2) corrections is not available in the literature.
The application of these operations to the scale-dependent RCs ZP and Z33 is shown
in Fig. 4.9. The residual dependence on the renormalization scale a2p2 is ascribed
to higher order cut-off effects and, in the case of scale non-invariant quantities (such
as ZP and Z33 in Fig. 4.9), to the effect of higher order anomalous dimensions non
included in the perturbative calculations. In the high-momentum region (ap̃)2 & 1,
however, the scale-dependence appears to be linear and therefore it can be attributed
to residual O(a2) effects. In order to account for such effects we extract the RCs by
applying the methods M1 and M2 described above in Section 4.2 (step F). As an
example, we report in Fig. 4.10 the application of the two methods to the RCs ηP
and η12 within the ensemble C2m. Once the RCs are determined in each ensemble,
we remove their dependence on the sea quark masses by fitting the data (step G).
Due to the problem outlined in the previous section, relative to the availability
of only two ensembles for the coarsest lattice spacing β = 1.90, we performed a
combined chiral extrapolation by requiring the slope to be equal for all three β’s.
The linear extrapolation in (M sea

P )2 of the RC η12 is reported in Fig. 4.11 for the
two values of the twist angle θ. The extrapolated values are finally averaged on the
angle θ (step H).
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In the following subsections we report the final results of the non-perturbative
RCs of the bilinear and semileptonic four-fermion operators, evaluated at the scale
µ = 1/a following the procedure described in the last two sections. We only show
the results of the non-factorizable corrections η. As regards the QCD RCs, we adopt
the values obtained in Ref. [56] since they have been computed using two additional
ensembles at the coarsest lattice spacing β = 1.90 with respect to our analysis. On
the other hand, the lattice determinations of QED RCs at O(αem) are not actually
used in the calculation: they can be computed in continuum perturbation theory
without discretization effects.
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4.3.1 Results for quark bilinear operators

Table 4.3. Results of the non-factorizable RCs η for the quark field and the bilinear
operators of Eq. (3.47), evaluated in the RI'-MOM scheme at the scale µ = 1/a. The
number in parentheses is the statistical uncertainty on the last significant digit.

β Method ηq ηV ηA ηS ηP ηT

1.90 M1 0.0062 (11) -0.0153 (17) 0.0142 (16) -0.0029 (29) -0.0921 (58) 0.0068 (15)
M2 -0.0001 (5) -0.0306 (8) 0.0011 (10) -0.0093 (14) -0.0934 (17) -0.0115 (8)

1.95 M1 0.0082 (7) -0.0127 (17) 0.0127 (12) -0.0113 (21) -0.0766 (47) 0.0069 (13)
M2 0.0003 (5) -0.0271 (7) 0.0020 (7) -0.0093 (14) -0.0873 (16) -0.0086 (7)

2.10 M1 0.0064 (3) -0.0123 (8) 0.0091 (6) -0.0140 (11) -0.0708 (24) 0.0052 (6)
M2 0.0031 (3) -0.0186 (4) 0.0042 (4) -0.0120 (6) -0.0712 (8) -0.0024 (4)

4.3.2 Results for semileptonic weak-operators

Table 4.4. Results of the non-factorizable RCs η for semileptonic four-fermion operators
of Eq. (3.61), evaluated in the RI'-MOM scheme at the scale µ = 1/a. The number in
parentheses is the statistical uncertainty on the last significant digit.

β Method η̂

M1


5.16 (61) 5.72 (13) 4.39 (76) −7.11 (77) −0.22 (7)
5.60 (12) 5.87 (52) −6.44 (61) 5.05 (80) 0.19 (3)
−0.70 (4) 0.23 (9) −4.4 (27) 18.1 (27) 0.04 (1)
0.21 (10) −0.73 (4) 16.7 (36) −1.5 (35) −0.01 (1)
−8.06 (91) −4.5 (11) 0.07 (60) −12.6 (11) 3.60 (63)

 · 10−3

1.90

M2


3.99 (32) 3.45 (15) 3.70 (23) −8.49 (15) 0.13 (3)
3.22 (9) 3.08 (34) −8.40 (19) 3.80 (23) 0.12 (2)
−0.63 (2) 1.02 (3) 8.97 (95) −1.31 (89) 0.021 (4)
1.05 (3) −0.63 (1) −1.47 (10) 8.6 (11) −0.97 (1)
−8.27 (37) −3.37 (47) −0.45 (19) 31.93 (39) 1.83 (32)

 · 10−3

M1


4.59 (43) 5.16 (14) 4.95 (61) −6.00 (70) 0.04 (6)
5.10 (13) 6.03 (39) −5.16 (48) 5.62 (67) 0.27 (3)
−0.82 (4) 0.44 (9) 5.2 (20) 2.9 (21) 0.03 (1)
0.47 (8) −0.86 (3) 5.8 (23) 4.3 (19) 0.12 (1)
−5.45 (71) −4.93 (92) 1.25 (59) −18.6 (10) 4.20 (45)

 · 10−3

1.95

M2


3.48 (20) 3.46 (13) 3.65 (18) −7.63 (16) 0.05 (2)
3.20 (10) 2.90 (24) −7.63 (15) 3.73 (19) 0.11 (2)
−0.59 (1) 0.80 (2) 9.48 (68) −4.97 (73) 0.025 (3)
0.80 (3) −0.59 (1) −4.31 (69) 8.46 (67) −0.759 (4)
−8.13 (32) −3.45 (34) −0.30 (20) 21.80 (40) 1.59 (25)

 · 10−3

M1


3.65 (24) 4.01 (6) 3.61 (28) −4.77 (37) −0.06 (3)
3.75 (6) 4.58 (17) −4.36 (22) 3.96 (36) 0.15 (1)
−0.63 (2) 0.29 (3) 8.52 (82) −6.33 (80) 0.038 (3)
0.29 (4) −0.67 (2) −4.02 (92) 7.83 (91) 0.046 (6)
−4.93 (34) −3.36 (41) 0.27 (26) −10.92 (51) 3.22 (22)

 · 10−3

2.10

M2


3.17 (13) 3.36 (6) 3.23 (12) −5.40 (11) 0.01 (1)
3.11 (5) 3.30 (14) −5.28 (7) 3.34 (13) 0.12 (1)
−0.56 (1) 0.50 (1) 8.13 (35) −5.07 (33) 0.028 (2)
0.50 (2) −0.58 (1) −4.21 (33) 7.66 (36) −0.326 (3)
−6.04 (13) −3.22 (18) −0.06 (9) 4.25 (23) 2.13 (15)

 · 10−3
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5 | Light-meson leptonic decay
rates in QCD+QED: results

In Chapter 3 we have extensively presented a new technique to include QED
corrections at O(αem) to the non-perturbative evaluation of RCs of lattice operators.
Then in Chapter 4 we have applied such framework to quark bilinear operators
and the complete set of weak four-fermion operators entering the calculation of
light-meson leptonic decay rates. The numerical analysis has been performed in
the electro-quenched approximation using twisted mass fermions and Nf = 4 gauge
configurations produced by the ETM Collaboration.

According to Eq. (2.33), the IB correction to the leptonic decay rate δRP , defined
in Eq. (2.16), gets two kind of contributions, namely

δRP = δR ren
P + δR ampl

P . (5.1)

The term δR ampl
P is related to the strong IB and e.m. corrections to the decay rate,

evaluated with the insertion of the QCD-renormalized weak four fermion operator
into the amplitude. Its derivation from lattice correlators has been described in
Sec. 2.4. In this Chapter we describe the calculation of the term δR ren

P , which derives
instead from the e.m. corrections to the renormalization of the operator OW-reg

1 .
Before computing explicitely the term δR ren

P , we discuss how four-fermion operators
constructed with twisted mass fermions mix under renormalization due to chiral
symmetry breaking and clarify the relation between the twisted and physical bases.

5.1 Chirality mixing and Twisted Mass fermions
Physical amplitudes have been computed using twisted mass fermions at maximal
twist in the physical basis. On the other hand, the RCs of bilinear and four-fermion
operators have been computed in Chap. 4 using twisted mass fermions in the twisted
basis. The relevant observation is that the lattice action for twisted mass fermions
at maximal twist in the twisted basis only differs from the standard Wilson fermion
lattice action for the twisted rotation of the fermion mass term. The two actions
become identical in the chiral limit. It then follows that, in any mass-independent
renormalization scheme, the RCs for twisted mass operators in the twisted basis are
the same as those of the corresponding operators with standard Wilson fermions. It
is customary to denote these RCs, for a generic operator O, as ZO. They are valid
for both standard Wilson and twisted mass operators in the twisted basis and differ,
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in general, from the RCs for twisted mass operators in the physical basis, that we
denote as ZO.

At maximal twist the rotation from the twisted to the physical basis for both
quark and lepton fields is given by

qtw = 1√
2

(1 + iγ5rq) q , `tw = 1√
2

(1 + iγ5r`) ` , (5.2)

q̄tw = 1√
2
q̄ (1 + iγ5rq) , ¯̀tw = 1√

2
¯̀ (1 + iγ5r`) , (5.3)

where q and ` are the quark and lepton fields in the physical basis and rq and r` are
the corresponding r-parameters. In our simulations we use opposite values of the
r-parameter for the two valence quarks, r2 = −r1 (ri = ±1). The quark and lepton
bilinears then transform as

[q2γµ(1± γ5)q1]tw = ±ir1 [q2γµ(1± γ5)q1] ,
[q2(1± γ5)q1]tw = [q2(1± γ5)q1] , (5.4)

[q2σµν(1 + γ5)q1]tw = [q2σµν(1 + γ5)q1] ;

[νγµ(1− γ5)`]tw = 1√
2

(1− ir`) [νγµ(1− γ5)`] ,

[ν(1 + γ5)`]tw = 1√
2

(1 + ir`) [ν(1 + γ5)`] , (5.5)

[νσµν(1 + γ5)`]tw = 1√
2

(1 + ir`) [νσµν(1 + γ5)`] .

From Eqs. (5.4) one readily derives the relations between the quark vector and axial
vector current in the two basis,

(OV )tw = [q2γµq1]twisted = i r1 [q2γµγ5q1] = i r1OA ,

(OA)tw = [q2γµγ5q1]twisted = i r1 [q2γµq1] = i r1OV , (5.6)

with the other bilinear operators remaining unaltered, namely (OΓ)tw = OΓ, with
Γ = {S, P, T}. In turn, one determines the relation between the RCs in the two
basis

ÔV = ZV OV = −i r1 (ÔA)tw = −i r1 ZA (OA)tw = ZAOV ,

ÔA = ZAOV = −i r1 (ÔV )tw = −i r1 ZV (OV )tw = ZV OA , (5.7)

where the hat (̂ ) denotes the generic renormalized operator. One then sees from
Eq. (5.7) that the RC ZV of the vector current in the physical basis, with r1 = −r2,
is simply the RC of the axial current in the twisted basis, which in turn is just ZA
computed with Wilson fermions in the chiral limit. Analogously, ZA in the physical
basis, with r1 = −r2, corresponds to ZV computed with Wilson fermions in the
chiral limit. For the other bilinear operators it holds the identity ZΓ = ZΓ.

From the transformations (5.4) and (5.5) one can also derive the relations between
the four-fermion operators O1 −O5 of Eq. (3.61) in the physical and twisted basis,

[ ~O]tw = S · ~O (5.8)
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where

S = 1√
2


−i r1 (1− ir`) 0 0 0 0

0 +i r1 (1− ir`) 0 0 0
0 0 (1 + ir`) 0 0
0 0 0 (1 + ir`) 0
0 0 0 0 (1 + ir`)

 (5.9)

As a consequence, the set of operators ~O defined in the physical basis and renormalized
in the RI'-MOM scheme will be related to the corresponding bare ones as follows

~ORI' = S−1[ ~ORI']
tw = S−1 ZO

[
~O
]
tw = S−1 ZO S ~O (5.10)

≡ ZO ~O .

In particular, for the weak operator ORI'
1 in Eq. (2.13), one finds

ORI'
1 =

5∑
j=1
Z1j Oj = Z11O1 − Z12O2 − r

5∑
j=3

Z1jOj , (5.11)

with r ≡ r1r` = −r2r` . From Eq. (5.11) we deduce in particular that the mixing
coefficients of O1 with the operators O3,4,5 are odd in the parameter r, defined as
the product of the Wilson r parameters of the valence quarks and the lepton. Thus,
we can eliminate the mixing with these operators by simply averaging the numerical
results of the O(αem) amplitudes over the two possible values r = ±1. Moreover, the
matrix element of the operator O5 between a pseudoscalar meson and the vacuum
vanishes, so that the mixing with the operator O5 cannot contribute to the decay
rate.

Therefore, neglecting the mixing with operators O3,4,5, Eq. (5.11) for the renor-
malized operator ORI'

1 can be rewritten as

ORI'
1 (µ) =

[
1 + αem

4π
(
∆ZQED(µa)11 + η(µa, αs(1/a))11

) ]
Oχ1 (a)

− αem
4π

(
∆ZQED

12 + η(αs(1/a))12
)
Oχ2 (a) , (5.12)

where we have expanded the RCs at first order in αem and introduced the QCD-
renormalized operators in the physical basis

Oχ1 = (ZQCD
O

~O)1 = q̄2γ
µ
(
ZQCD
V −ZQCD

A γ5
)
q1 ν̄`γµ(1− γ5)` (5.13)

= q̄2γ
µ
(
ZQCD
A − ZQCD

V γ5
)
q1 ν̄`γµ(1− γ5)` ,

Oχ2 = (ZQCD
O

~O)2 = q̄2γ
µ
(
ZQCD
V + ZQCD

A γ5
)
q1 ν̄`γµ(1− γ5)` (5.14)

= q̄2γ
µ
(
ZQCD
A + ZQCD

V γ5
)
q1 ν̄`γµ(1− γ5)` .

In Eq. (5.12) we have explicitly indicated the dependence of the various terms on αs
and the renormalization scale µ. Since the mixing of the bona fide (8, 1) operator
Oχ1 with Oχ2 is a consequence of the explicit chiral symmetry breaking of Wilson-like
fermions on the lattice, the corresponding coefficient is due to lattice artefacts and
can only be a function of the lattice bare coupling constant αs(1/a) [64]. The RCs
ZQCD
V,A , ∆ZQED and η in the equations above are defined in the twisted basis.
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5.2 Calculation of δR ren
P

The correction to the decay rate δR ren
P can be computed in analogy with δR ampl

P as

δR ren
P = 2 δA

W
P

A
(0)
P

, (5.15)

where δAWP is the e.m. correction from both the matching of the four-fermion lattice
weak operator to the W -renormalization scheme and from the mixing with several
bare lattice four-fermion operators generated by the breaking of chiral symmetry with
the twisted-mass fermion action which we are using. The e.m. correction δAWP can
be evaluated inserting into the expression for the amplitude of the decay P → `ν, the
term of order αem of the renormalized operator OW-reg

1 (MW ). Combining Eqs. (2.13)
and (5.12) and choosing µ = 1/a as renormalization scale in the intermediate
RI'-MOM scheme, we obtain

OW-reg
1 (MW ) = Oχ1 (a) + αem

4π

[
2
(

1− αs(1/a)
4π

)
log

(
a2M2

W

)
+ CW-RI'

]
Oχ1 (a) +

+ αem
4π

[
∆ZQED

11 (1/a) + η11(αs(1/a))
]
Oχ1 (a)− (5.16)

− αem
4π

[
∆ZQED

12 + η12(αs(1/a))
]
Oχ2 (a) .

The matching coefficient CW-RI', as well as the pure QED corrections ∆ZQED
11,12 are

evaluated in perturbation theory at order O(α0
s ). In a generic covariant gauge we

have

CW-RI' = −5.7825 + 1.2373 ξ ,
∆ZQED

11 (1/a) = −9.7565− 1.2373 ξ , (5.17)
∆ZQED

12 = 0.5357 ,

where ξ is the photon gauge parameter, with ξ = 0 (1) in the Feynman (Landau)
gauge. It is worth noting that the renormalized operator in the W -regularization
scheme is gauge independent, at any order of perturbation theory. In particular, as
shown by Eq. (5.17), at first order in αem and at zero order in αs the gauge dependence
of the matching coefficient of Oχ1 cancels in the sum CW-RI' + ∆ZQED

11 = −15.539.
By contrast, for the matching coefficient of Oχ2 , the two terms ∆ZQED

12 and η12 are
separately gauge independent.

The e.m. correction δAW
P can be evaluated as follows,

δAW
P =

〈0|Tr
{
δOW-reg

1 (MW ) ¯̀γ0(1− γ5)ν
}
|P (0)〉

〈0|Tr
{
Oχ1 (a) ¯̀γ0(1− γ5)ν

}
|P (0)〉

A
(0)
P (5.18)

where δOW-reg
1 (MW ) ≡ OW-reg

1 (MW )−Oχ1 and A(0)
P is the QCD renormalized axial

current in Eq. (2.42). We then note that Oχ1 and Oχ2 entering Eq. (5.16) give opposite
contributions to the tree-level amplitude, i.e.

〈0|Tr
{
Oχ1 (a) ¯̀γ0(1− γ5)ν

}
|P (0)〉 = − 〈0|Tr

{
Oχ2 (a) ¯̀γ0(1− γ5)ν

}
|P (0)〉

= −A(0)
P X`,0

P . (5.19)



5.2 Calculation of δR ren
P 95

Therefore one obtains
δAWP = ZW-regA

(0)
P , (5.20)

with

ZW-reg = αem
4π

[
2
(

1− αs(1/a)
4π

)
log

(
a2M2

W

)
− 15.0033 + (5.21)

η11(αs(1/a)) + η12(αs(1/a))
]
.

As already noted, the contribution δAWP of the matching factor at order αem to the
decay amplitude, expressed by Eqs. (5.20) and (5.21), is gauge independent. It then
follows that also the order αem contribution of the bare diagrams to the amplitude,
expressed by the other terms in Eq. (2.37), is by itself gauge independent. Therefore,
we can numerically evaluate the two contributions separately by making different
choices for the gluon and the photon gauge in the two cases1. In particular, we have
chosen to compute the matching factor ZW-reg of Eq. (5.21) in the Landau gauge for
both gluons and photons, because this makes the RI' scheme equivalent to RI up to
higher orders in the perturbative expansions. On the other hand, in the calculation
of the physical amplitudes described in Sec. 2.4 (and already computed in Ref. [6]) a
stochastic photon generated in the Feynman gauge has been used, which has been
adopted also in the calculation of Γpt

0 (L) in Ref. [49].

5.2.1 Dealing with the lepton self-energy

As discussed in Ref. [14], when we compute the difference Γ0(L)−Γpt
0 (L) in Eq. (2.2)

at leading order in αem, the contribution from the lepton wave function RC cancels
out provided, of course, it is evaluated in both Γ0(L) and Γpt

0 (L) in the same
W-regularization scheme and in the same photon gauge. Since Γpt

0 (L) has been
computed in Ref. [49] by omitting the lepton wave function RC contribution in the
Feynman gauge, we have to subtract the analogous contribution from Eq. (5.21)
in the Feynman gauge. The QCD and QED corrections to the the lepton wave
function RC at O(αem) factorize, so that their contribution does not enter into the
non-perturbative determination of the matrix η, which only contains, by its definition,
non-factorisable QCD+QED contributions. Therefore, as discussed in Ref. [14], the
subtraction of the lepton wave function RC only requires the replacement of ZW-reg

in Eq. (5.21) by the subtracted matching factor

Z̃W-reg = ZW-reg − 1
2∆ZW-reg

` , (5.22)

where
∆ZW-reg

` = αem
4π

[
− log

(
a2M2

W

)
− 13.3524

]
. (5.23)

The final expression to be used in Eq. (5.15) is therefore

δAWP = Z̃W-regA
(0)
P , (5.24)

1It should be noted, however, that while ZW-reg of Eq. (5.21) is gauge independent at any order
of perturbation theory, its actual numerical value may display a residual gauge dependence due
to higher order terms in the non-perturbative determination of η11 which are neglected in the
perturbatively evaluated matching coefficient.



96 5. Light-meson leptonic decay rates in QCD+QED: results

with

Z̃W-reg = αem
4π

[(5
2 − 2 αs(1/a)

4π

)
log

(
a2M2

W

)
− 8.3271 + (5.25)

η11(αs(1/a)) + η12(αs(1/a))
]
.

To make contact with the factorization approximation introduced in Refs. [4,
26], we rewrite Eq. (5.25) as

Z̃W-reg ≡ Z fact · ZW-reg
η=0 (5.26)

where ZW-reg
η=0 is the result in the factorization approximation (i.e with η = 0 and

Z fact = 1),

ZW-reg
η=0 = αem

4π

[(5
2 − 2αs(1/a)

4π

)
log

(
a2M2

W

)
− 8.3271

]
, (5.27)

and Z fact is the factor correcting the result for Z̃W-reg to include the entries of the
matrix η determined in Chap. 4

Z fact ≡ 1 + αem
4π

η11(αs(1/a)) + η12(αs(1/a))
ZW-reg
η=0

. (5.28)

The values of the coefficients ZW-reg
η=0 and Z fact are collected in Table 5.1 for the

three values of the inverse coupling β adopted in this work and for µ = 1/a. We
remind that the two methods M1 and M2, introduced in Sec. 4.2, correspond to
different treatments of the O(a2µ2) discretisation effects in the computation of
η. The difference of the results obtained with these two methods will enter into
the systematic uncertainty labelled as ()input in Sec. 5.4 below. The results for
η11(αs(1/a)) and η12(αs(1/a)) are reported in Tab. 4.4. The results in Table 5.1
show that the factorization approximation is not justified, the non-factorizable
corrections being of order O(12-18%) for ZW-reg.

Table 5.1. Values of the coefficients ZW-reg
η=0 (see Eq. (5.27)) and Zfact (see Eq. (5.28))

calculated for the three values of the inverse coupling β adopted in this work and at the
scale µ = 1/a. The evaluation of the RCs in the RI'-MOM scheme has been carried out
in Chap. 4 using the methods M1 and M2.

β ZW-reg
η=0

Z fact

M1 M2
1.90 0.00542 (11) 1.184 (11) 1.126 (7)
1.95 0.00519 (10) 1.172 (9) 1.123 (5)
2.10 0.00440 (7) 1.160 (6) 1.136 (4)

We close this section by noting that Eq. (5.15) implies that the contribution to
δRP from the matching factor in Eq. (5.24) amounts to

δR ren
P = 2Z̃W-reg . (5.29)
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Such a term is mass independent and only depends on the operator mediating
the process. It follows that all the matching and mixing contributions to the
axial amplitude contributing to δRren

P cancel exactly in the difference between the
corrections corresponding to two different channels, e.g. δRren

K = δRren
π cancel in the

difference δRKπ = δRK − δRπ. A similar cancellation also occurs in the difference
between the corrections to the amplitudes corresponding to the meson P decaying
into two different final-state leptonic channels. In Ref. [6] this property has been
exploited to compute the leading IB correction to the ratio Γ(Kµ2)/Γ(πµ2). However,
the calculation of Ref. [6], although insensitive to δR ren

P , is affected by a systematical
uncertainty due to the factorization approximation adopted in the renormalization
of quark masses, which enters the calculation of δR ampl

P . As we have shown in
Table 2.1, non-factorizable contributions to the mass RC Zfm are significant and
therefore have to be included in the calculation.

5.3 Finite volume effects at order O(αem)

The subtraction Γ0(L)− Γpt
0 (L) in Eq. (2.2) cancels both the IR divergences and the

structure-independent FVEs, i.e. those of order O(1/L). The point-like decay rate
Γpt

0 (L) is given by
Γpt

0 (L) =
(

1 + 2αem
4π Y `

P (L)
)

Γtree
P , (5.30)

where

Y `
P (L) = bIR log(MPL) + b0 + b1

MPL
+ b2

(MPL)2 + b3
(MPL)3 +O(e−MPL) (5.31)

with the coefficients bj (j = IR, 0, 1, 2, 3) depending on the dimensionless ratio
m`/MP and given explicitly in Eq. (98) of Ref. [49] (see also Ref. [78]) after the
subtraction of the lepton self-energy contribution in the Feynman gauge. An
important result of Ref. [49] is that the structure-dependent FVEs start at order
O(1/(MPL)2). As a consequence the coefficients bIR,0,1 in the factor Y `

P (L) are
“universal", i.e. they are the same as in the full theory when the structure of the
meson P is considered2.

Therefore, Eq. (5.1) is replaced by

δRP = δR ren
P + δR ampl

P − 2Y `
P (L) , (5.32)

where δR ren
P is defined in Eq. (5.29) and δR ampl

P has been obtained above in Sec. 2.4.
The residual FVEs after the subtraction of the universal terms as in Eq. (5.32)
are illustrated in the plots in Fig. 5.1 for δRπ and δRK in the fully inclusive case,
i.e. where the energy of the final-state photon is integrated over the full phase
space. In this case ∆Eγ = ∆Emax,P

γ = MP (1−m2
µ/M

2
P )/2, which corresponds to

∆Emax,K
γ ' 235 MeV and ∆Emax,π

γ ' 29 MeV, respectively. With a muon as the
final state lepton, the contribution from photons with energy greater than about
20MeV is negligible and hence the point-like approximation is valid. In the top

2Notice that the decay rate in the full theory, Γ0(L), can be affected also by non-universal FVEs
of order O[1/(MPL)n] with n ≥ 4 that do not appear in Γpt0 (L).



98 5. Light-meson leptonic decay rates in QCD+QED: results

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

δR
P

a2 / L2

δR
K

δR
π

β = 1.90

M
π
 ~ 320 MeV

M
K
 ~ 580 MeV

A40.40
A40.32

A40.24
A40.20

y = m1 + m2 * M0
ErrorValue

0.000609350.011863m1 
0.51802-1.8588m2 

NA0.20222Chisq
NA0.99224R

y = m1 + m2 * M0
ErrorValue

0.000450820.0026638m1 
0.3863-2.6134m2 

NA11.012Chisq
NA0.89781R

(a) universal FVEs subtracted

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

δ R
P

a2 / L2

δR
K

δR
π

β = 1.90

M
π
 ~ 320 MeV

M
K
 ~ 580 MeV

A40.40

A40.32

A40.24

A40.20

y = m1 + m2 * M0
ErrorValue

0.00061340.01102m1 
0.51435-9.5971m2 

NA0.14729Chisq
NA0.99979R

y = m1 + m2 * M0
ErrorValue

0.000476730.0025085m1 
0.38568-6.3228m2 

NA5.0835Chisq
NA0.99067R

(b) universal FVEs and b
2

pt / (M
P
 L)2 subtracted

Figure 5.1. Results for the corrections δRπ and δRK for the gauge ensembles A40.20,
A40.24, A40.32 and A40.40 sharing the same lattice spacing, pion, kaon and muon
masses, but with different lattice sizes (see Appendix A of Ref. [7]). Top panel (a):
the universal FVEs, i.e. the terms up to order O(1/MPL) in Eq. (5.31), are subtracted
from each quantity. Bottom panel (b): the same as in (a), but in addition to
the subtraction of the universal terms, bpt

2 /(MPL)2 is also removed. Here bpt
2 is the

pointlike contribution to b2 in Eq. (5.31) [78]. The solid and dashed lines are linear
fits in 1/L2. The maximum photon energy ∆Eγ corresponds to the fully inclusive case
∆Eγ = ∆Emax,Pγ = MP (1−m2

µ/M
2
P )/2.

plot the universal FV corrections have been subtracted and so we would expect the
remaining effects to be of order O(1/(MPL)2) and this is indeed what we see. In
the bottom plot of Fig. 5.1, in addition to subtracting the universal FVEs, we also
subtract the contribution to the order O(1/(MPL)2) corrections from the point-like
contribution to b2, which can be found in Eq. (3.2) of Ref. [78]. We observe that
this additional subtraction does not reduce the O(1/(MPL)2) effects, underlining
the expectation that these effects are indeed structure dependent. It can be seen
that after subtraction of the universal terms the residual structure-dependent FVEs
are almost linear in 1/L2, which implies that the FVEs of order O(1/(MPL)3) are
quite small; indeed they are too small to be resolved with the present statistics. The
central value of δRP is thus obtained by subtracting the universal terms and fitting



5.4 Results for the charged pion and kaon decays into muons 99

the residual O(1/L2) corrections to

KP

(MPL)2 + K`
P

(E`PL)2 , (5.33)

where KP and K`
P are constant fitting parameters and E`P is the energy of the

charged lepton in the rest frame of the pseudoscalar P (see Eq. (5.34) below). Such
an ansatz is introduced to model the unknown dependence of b2 on the ratio m`/MP .
Indeed, for the four points in each of the plots of Fig. 5.1, m`/MP takes the same
value, but this is not true for all the ensembles used in the analysis. We estimate
the uncertainty due to the use of the ansatz in Eq. (5.33) by repeating the same
analysis, but on the data in which, in addition to subtracting the universal terms in
Eq. 5.31, we also subtract the term bpt

2 /(MPL)2. Since bpt
2 depends on m`/MP [78],

the result obtained with this additional subtraction is a little different from that
obtained with only the universal terms removed and we take the difference between
the two results as an estimate of the residual FV uncertainty.

5.4 Results for the charged pion and kaon decays into
muons

We are now in a position to extract the complete corrections δRP for the decays
π+ → µ+ν(γ) and K+ → µ+ν(γ). The results for the corrections δRπ and δRK
are shown in Fig. 5.2, where the “universal” FVEs up to order O(1/L) have been
subtracted from the lattice data (see the empty symbols) and all photon energies3

are included, the experimental data on π`2 and K`2 decays being fully inclusive.
Since the rates are fully inclusive in the real photon energy, structure dependent
(SD) contributions to real photon emission should be included. According to the
ChPT predictions of Ref. [79], however, these contributions are negligible for both
kaon and pion decays into muons, while the same does not hold as well for decays
into final-state electrons (see Ref. [14])4.

The combined chiral, continuum and infinite-volume extrapolations are performed
using the following SU(2)-inspired fitting function:

δRP = R
(0)
P +R

(χ)
P log(mud) +R

(1)
P mud +R

(2)
P m2

ud +DP a
2

+ KP

M2
PL

2 + K`
P

(E`P )2L2 + δΓpt(∆Emax,P
γ ) , (5.34)

where mud = µud/ZP and µud is the bare (twisted) mass (values in Appendix A of
Ref. [7]), E`P is the lepton energy in the P -meson rest frame, R(0),(1),(2)

P , DP , KP

and K`
P are free parameters of the fit. In Eq. (5.34) the chiral coefficient R(χ)

P is

3i.e. ∆Eγ = ∆Emax,P
γ = MP (1−m2

µ/M
2
P )/2.

4Recently, a dedicated lattice study of the real photon emission amplitudes in light and heavy
P -meson leptonic decays has been carried out [47, 48]. In Ref. [48], the authors have shown that by
using lattice QCD, even with moderate statistics, it is possible to predict with good precision the
SD form factors relevant for P → `νγ decays for both light and heavy mesons and that it is also
possible to extract their momentum dependence. See also Ref. [80] for similar ongoing calculations.
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known for both pion and kaon decays from Ref. [81]; in QED the coefficients are

R(χ)
π = αem

4π (3− 2X ) , R
(χ)
K = −αem

4π X , (5.35)

while in qQED they are

R(χ)
π = αem

4π

(
3− 10

9 X
)
, R

(χ)
K = −αem

4π
8
9X , (5.36)

where X is obtained from the chiral limit of the O(αem) correction to M2
π± (namely

δM2
π± = 4παemXf2

0 +O(mud), f0 being the QCD low energy constant). The value
of X has been computed in the analysis of Ref. [26] and amounts to X = 0.658(40).

Using Eq. 5.34 we have fitted the data for δRπ and δRK using a χ2-minimization
procedure with an uncorrelated χ2, obtaining values of χ2/d.o.f. always around 0.9.
The quality of our fits is illustrated in Fig. 5.2. It can be seen that the residual
SD FVEs are still visible in the data and well reproduced by our fitting ansatz in
Eq. (5.34). Discretisation effects on the other hand, only play a minor role.

At the physical pion mass in the continuum and infinite-volume limits we obtain

δRphys
π = +0.0153 (16)stat+fit (4)input (3)chiral (6)FV E (2)disc (6)qQED

= +0.0153 (19) , (5.37)
δRphys

K = +0.0024 (6)stat+fit (3)input (1)chiral (3)FV E (2)disc (6)qQED
= +0.0024 (10) , (5.38)

where

• ()stat+fit indicates the uncertainty induced by the statistical Monte Carlo
errors of the simulations and its propagation in the fitting procedure;

• ()input is the error coming from the uncertainties of the input parameters of
the quark-mass analysis of Ref. [56] and of the non-perturbative RCs;

• ()chiral is the difference between including or excluding the chiral logarithm in
Eq. (5.34), i.e. taking Rχ 6= 0 or Rχ = 0;

• ()FV E is the difference between the analyses of the data corresponding to the
FVE subtractions up to the order O(1/L) alone or by also subtracting the
term proportional to bpt

2 /(MPL)2 (see Fig. 5.1 and the discussion at the end
of Sec. 5.3);

• ()disc is the uncertainty coming from including (D 6= 0) or excluding (setting
D = 0) the discretisation term proportional to a2 in Eq. (5.34);

• ()qQED is our estimate of the uncertainty of the QED quenching. This is
obtained using the ansatz (5.34) with the coefficient Rχ of the chiral log fixed
either at the value (5.36), which corresponds to the qQED approximation, or
at the value (5.35), which includes the effects of the up, down and strange
sea-quark charges [81]. The change both in δRphys

π and in δRphys
K is ' 0.0003,

which has been already added in the central values given by Eqs. (5.37) and
(5.38). To be conservative, we use twice this value for our estimate of the
qQED uncertainty.
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Figure 5.2. Results for the corrections δRπ (top panel) and δRK (bottom panel)
obtained after the subtraction of the “universal” FVE terms up to order O(1/L) in
Eq. (5.31) (empty markers). The full markers correspond to the lattice data corrected by
the residual FVEs obtained in the case of the fitting function (5.34) including the chiral
log. The dashed lines are the (central) results in the infinite volume limit at each value of
the lattice spacing, while the shaded areas identify the results in the continuum limit at
the level of one standard deviation. The crosses represent the values δRphys

π and δRphys
K

extrapolated at the physical point mphys
ud (MS, 2 GeV) = 3.70 (17) MeV [56]. The blue

dotted lines correspond to the values δRphys
π = 0.0176 (21) and δRphys

K = 0.0064 (24),
obtained using ChPT [18] and adopted by the PDG [55].

Our results in Eqs. (5.37) - (5.38) can be compared with the ChPT predictions
δRphys

π = 0.0176(21) and δRphys
K = 0.0064(24) obtained in Ref. [18] and adopted by

the PDG [9, 55]. The difference is within one standard deviation for δRphys
π , while

it is larger for δRphys
K . Note that the precision of our determination of δRphys

π is
comparable to the one obtained in ChPT, while our determination of δRphys

K has a
much better accuracy compared to that obtained using ChPT; the improvement in
precision is a factor of about 2.2. We stress that the level of precision of our pion
and kaon results depends crucially on the non-perturbative determination of the
chirality mixing, carried out in Chapters 3 and 4 by including simultaneously QED
at first order and QCD at all orders.
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As already stressed, the correction δRP and the QCD quantity f (0)
P separately

depend on the prescription used for the separation between QED and QCD correc-
tions [46]. Only the product f (0)

P

√
1 + δRP is independent of the prescription and

its value, multiplied by the relevant CKM matrix element, yields the P -meson decay
rate. We remind the reader that our results (5.37) - (5.38) are given in the GRS
prescription (see the dedicated discussion in sections 1.5.2 and 2.4) in which the
renormalized couplings and quark masses in the full theory and in isosymmetric
QCD coincide in the MS scheme at a scale of 2 GeV [8]. We remind the reader that,
to the current level of precision, this GRS scheme can be considered equivalent to
the FLAG scheme (see Sec. 2.4).
Taking the experimental values

Γ(π− → µ−ν̄µ[γ]) = 3.8408(7) · 107 s−1 , (5.39)
Γ(K− → µ−ν̄µ[γ]) = 5.134(11) · 107 s−1 (5.40)

from the PDG [9] and using our results in Eqs. (5.37)-(5.38), we obtain

f (0)
π |Vud| = 127.28 (2)exp (12)th MeV = 127.28 (12)MeV , (5.41)

f
(0)
K |Vus| = 35.23 (4)exp (2)th MeV = 35.23 (5)MeV , (5.42)

where the first error is the experimental uncertainty and the second is that from our
theoretical calculations. The result for the pion in Eq. (5.41) agrees within the errors
with the updated value f (0)

π |Vud| = 127.12(13)MeV [9], obtained by the PDG and
based on the model-dependent ChPT estimate of the e.m. corrections from Ref. [18].
Our result for the kaon in Eq. (5.42) however, is larger than the corresponding PDG
value f (0)

K |Vus| = 35.09(5)MeV [9], based on the ChPT calculation of Ref. [18], by
about 2 standard deviations.

As anticipated in the Introduction and discussed in detail in Sec. 2.4, we cannot
use the result (5.41) to determine the CKM matrix element |Vud|, since the pion decay
constant was used by ETMC [56] to set the lattice scale in isosymmetric QCD and
its value, f (0)

π = 130.41(20) MeV, was based on the determination of |Vud| obtained
from super-allowed β-decays in Ref. [82]. On the other hand, adopting the best
lattice determination of the QCD kaon decay constant5, f (0)

K = 156.11(21) MeV [1,
83–85], we find that Eq. (5.42) implies

|Vus| = 0.22567(26)exp (33)th = 0.22567 (42) , (5.43)

which is a result with the excellent precision of ' 0.2%.
Since the non-factorizable e.m. corrections to the mass RC (see the coefficient

Z fact
m in Table 2.1) were not included in Ref. [6], we update the estimate of the ratio

of the kaon and pion decay rates:

δRphys
Kπ = δRphys

K − δRphys
π = −0.0126 (14) . (5.44)

5The average value of fK± quoted by FLAG [1] includes the strong IB corrections. In order to
obtain f (0)

K therefore, we have subtracted this correction which is given explicitly in Refs. [83–85].
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Using the pion and kaon experimental decay rates we get

|Vus|
|Vud|

f
(0)
K

f
(0)
π

= 0.27683 (29)exp (20)th = 0.27683 (35) . (5.45)

Using the best Nf = 2 + 1 + 1 lattice determination of the ratio of the QCD kaon
and pion decay constants, f (0)

K /f
(0)
π = 1.1966 (18) [1, 83–85], we find

|Vus|
|Vud|

= 0.23135 (24)exp (39)th = 0.23135 (46) . (5.46)

Taking the updated value |Vud| = 0.97420 (21) from super-allowed nuclear beta
decays [10], Eq. (5.46) yields the following value for the CKM element |Vus|:

|Vus| = 0.22538 (24)exp (39)th = 0.22538 (46) , (5.47)

which agrees with our result (5.43) within the errors. Note that our result (5.47)
agrees with the latest estimate |Vus| = 0.2253(7), recently updated by the PDG [9],
but it improves the error by a factor of approximately 1.5.

Taking the values |Vub| = 0.00413(49) [9] and |Vud| = 0.97420(21) [10] our result in
Eq. (5.47) implies that the unitarity of the first-row of the CKM matrix is confirmed
to better than the per-mille level

|Vud|2 + |Vus|2 + |Vub|2 = 0.99988 (46) . (5.48)

With the same value |Vud| = 0.97420(21) from super-allowed nuclear beta de-
cays [10], our result (5.41) implies for the QCD pion decay constant (in the GRS
prescription) the following value

f (0)
π = 130.65 (12)exp+th (3)Vud MeV = 130.65 (12)MeV , (5.49)

which, as anticipated in Sec. 2.4, agrees within the errors with the value f (0)
π =

130.41 (20) MeV adopted in Ref. [56] to set the lattice scale in the isosymmetric
QCD theory. This demonstrates the equivalence of the GRS and PDG schemes
within the precision of our simulation.

In a recent paper [86] the hadronic contribution to the electroweak radiative
corrections to neutron and super-allowed nuclear β decays has been analyzed in
terms of dispersion relations and neutrino scattering data. With respect to the result
Vud = 0.97420(21) from Ref. [10] a significant shift in the central value and a reduction
of the uncertainty have been obtained, namely Vud = 0.97370(14) [86]. The impact
of the new value of Vud on our determinations of Vus and f (0)

π is Vus = 0.22526 (46)
and f (0)

π = 130.72 (12) MeV, i.e. well within the uncertainties shown in Eqs. (5.47)
and (5.49), respectively. On the contrary, the first-row CKM unitarity (5.48) will be
significantly modified into

|Vud|2 + |Vus|2 + |Vub|2 = 0.99885(34) , (5.50)

which would imply a ' 3.4σ tension with unitarity. The ' 3.4σ deviation, if
confirmed, is large enough to start taking new physics extensions of the SM seriously
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into account [87]. A confirmation of the new calculation of the radiative corrections
made in Ref. [86] is therefore urgently called for. The authors of Ref. [10] have
recently updated their analysis of super-allowed nuclear β decays in Ref. [88],
including new results for nucleus-independent radiative corrections [89, 90]. They
confirm an appreciable reduction in the unitarity sum of the first row of the CKM
matrix, yielding a possible tension with the SM. However, further new independent
determinations of Vud, perhaps from lattice QCD calculations of neutron β decay,
could shed a light on such inconsistency.

Before closing this section, we comment briefly about the comparison between our
result δRphys

K = 0.0024(10) and the corresponding model-dependent ChPT prediction
δRphys

K = 0.0064(24) from Ref. [18]. The latter is obtained by adding a model-
dependent QED correction of 0.0107(21) and a model-independent next-to-leading
strong IB contribution equal to −0.0043(12). Our result on the other hand, obtained
in the GRS prescription, stems from a QED correction equal to 0.0088(9) and a
strong IB term equal to −0.0064(7) (see also Ref. [26]). The difference between our
result and the ChPT prediction of Ref. [18] appears to be mainly due to a different
strong IB contribution. Thus, in the present Nf = 2 + 1 + 1 study, we confirm for
the strong IB term a discrepancy at the level of about 2 standard deviations, which
was already observed at Nf = 2 in Ref. [3].
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Part II

Perturbative calculations





107

6 | Perturbative evolution
in QCD+QED

In this Chapter we derive in full details the renormalization group evolution
(RGE) function for the renormalization constants at next-to-leading order (NLO)
in QCD+QED. The evolution function, which relates renormalization constants
evaluated at two different energy scales, has been used in the present work in Sec. 2.3
and Sec. 4.2. In the first case we evolved the operator ORI'

1 (µ), computed in the
RI'-MOM scheme at a given scale µ, to the scale MW , in order to match it to the
corresponding operator renormalized in the W -regularization scheme. In the second
case, instead, the evolution function enters the calculation of non-perturbative RCs
on the lattice since the RCs, evaluated at different renormalization scales µ2 = p2,
have to be evolved to a common reference scale µref in order to study their scale-
dependence. The use of the evolution function is different in the two cases. While
in the former case, the evolution function is applied to a single operator ORI'

1 (µ),
in the latter it is used on RCs which are in general matrices, since bare lattice
operators can mix under renormalization. In the following we will describe how to
compute the evolution function for a generic set of operators and we will consider
them mixing with each other under renormalization. The evolution function for
non-mixing operators can be trivially derived from the general case.
The following discussion follows the line of Refs. [12, 13], although in these papers
the authors compute the evolution matrix for Wilson coefficients of the ∆F = 1
effective Hamiltonian.

6.1 General formalism

Let us consider a set of renormalized composite operators ~OR and let define

~OR(µ) = Ẑ(µ) ~OB , (6.1)

where Ẑ(µ) is the renormalization matrix relating bare operators ~OB with renormal-
ized ones. Since ~OB do not depend on the renormalization scale µ, we have

d
d lnµ2

~OR(µ) = dẐ(µ)
d lnµ2

~OB = dẐ(µ)
d lnµ2 Ẑ−1(µ) ~OR(µ) . (6.2)

By defining

γ̂ = − dẐ
d lnµ Ẑ−1 (6.3)
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as the anomalous dimension matrix of the operators ~O, we obtain the following
renormalization group (RG) equation

d ~OR(µ)
d lnµ2 = − γ̂(αs, αem)

2
~OR(µ) . (6.4)

It is worth to underline that anomalous dimensions are commonly computed in
perturbation theory from the inverse renormalization constants Ẑ, defined as

~OB = Ẑ(µ) ~OR(µ). (6.5)

The anomalous dimension matrix can be expressed in terms of the matrix Ẑ as

γ̂ = Ẑ−1 dẐ
d lnµ (6.6)

and this relation will be used in Chap. 7 to perturbatively evaluate the anomalous
dimensions in QCD+QED for bilinear and semileptonic operators.

The RG equation (6.4) can be rewritten as

d ~OR(µ)
d lnµ2 =

(
∂

∂ lnµ2 + β(αs, αem) ∂

∂αs

)
~OR(µ) = − γ̂(αs, αem)

2
~OR(µ) , (6.7)

where we made the dependence of the strong coupling αs on the scale µ explicit,
neglected the running of αem and introduced the QCD beta function, which is defined
as

β(αs, αem) = dαs
d lnµ2 = −β0

α2
s

4π − β1
α3

s
(4π)2 − β

se
1
α2

sαem
(4π)2 , (6.8)

with

β0 = 11− 2
3Nf , β1 = 102− 38

3 Nf , βse1 = −8
9

(
Nu + Nd

4

)
, (6.9)

where Nf denotes the number of active flavours, and Nu and Nd denote the number
of uplike and downlike active quarks, respectively (Nu +Nd = Nf ). We stress that
to the order considered in this work also the e.m. correction of order O(α2

sαem) to
the QCD beta function, βse1 , should be in principle taken into account1. However,
we will show that the contribution of βse1 vanishes in the final result for the evolution
function.

The NLO anomalous dimension matrix can be expanded in powers of the coupling
constants as follows:

γ̂(αs, αem) = αs
4π γ̂

(0)
s + α2

s
(4π)2 γ̂

(1)
s + αem

4π γ̂(0)
e + αsαem

(4π)2 γ̂(1)
se + . . . , (6.10)

where the ellipsis stands for higher order terms in αs and αem. In the following we
only consider first order corrections in αem. On the other hand, higher order QCD
corrections up to O(α3

s ) will be taken into account later in Sec. 6.4.

1This terms has been neglected in Refs. [12, 13].
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Let define the evolution operator U(µ2, µ1) that evolves renormalized operators
from the scale µ1 to µ2 < µ1 as2

~OR(µ2) = Û(µ2, µ1;αem) ~OR(µ1) . (6.11)

By substituting Eq. (6.11) into the RG equation (6.7) we find(
∂

∂ lnµ2
2

+ β(αs(µ2), αem) ∂

∂αs

)
Û(µ2, µ1;αem) = − γ̂(αs(µ2), αem)

2 Û(µ2, µ1;αem) ,

(6.12)
with initial condition Û(µ1, µ1;αem) = 1̂. This differential equation for Û can be
converted into an integral equation and solved iteratively,

Û(µ2, µ1;αem) = Tαs exp
[
−
∫ αs(µ2)

αs(µ1)
dαs

γ̂(αs, αem)
2β(αs, αem)

]
, (6.13)

where the time ordered product Tαs has to be intended in terms of the Taylor
expansion of the exponential function with increasing coupling from right to left3.

The evolution matrix Û(µ2, µ1;αem) in Eq. (6.13) is consistent with the one
found in Refs. [12, 13] for the evolution of Wilson coefficients. In order to prove it,
we start by observing that an Effective Lagrangian is by construction µ-independent
and therefore ~CT (µ2) ~O(µ2) ≡ ~CT (µ1) ~O(µ1). Using the evolution matrix on ~O(µ2)
we get (µ2 < µ1)

~CT (µ2) ~O(µ2) = ~CT (µ2) Û(µ2, µ1;αem) ~O(µ1) (6.14)
≡ ~CT (µ1) ~O(µ1) . (6.15)

It follows that

~CT (µ2) =
[
ÛT (µ2, µ1;αem)

]−1
~CT (µ1) ≡ ÛC(µ2, µ1;αem) , (6.16)

where we have defined the evolution operator for the Wilson coefficients as ÛC(µ2, µ1;αem),
which using our result in Eq. (6.13) takes the form

ÛC(µ2, µ1;αem) = Tαs exp
[∫ αs(µ2)

αs(µ1)
dαs

γ̂T (αs, αem)
2β(αs, αem)

]

= Tg exp
[∫ g(µ2)

g(µ1)
dg γ̂

T (g, e)
β(g, e)

]
. (6.17)

Here we have used the relation
dαs
β(αs)

= 2 dg
β(g) (6.18)

2Restricting the evolution operator to run towards the IR avoids algebraic technicalities. The
running towards the UV can be obtained by taking [Û(µ2, µ1;αem)]−1.

3Explicitly, for a generic matrix function F̂ , one has

Tx exp

[∫ x+

x−

dx F̂ (x)

]
= 1̂ +

∫ x+

x−

dx F̂ (x) +
∫ x+

x−

dx1 F̂ (x1)
∫ x1

x−

dx2 F̂ (x2) + . . .
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between the beta function β(αs) defined in Eq. (6.8) and the one defined in terms of
g [13], namely

β(g) = dg
d lnµ . (6.19)

The expression for ÛC(µ2, µ1;αem) in Eq. (6.17) is exactly the one obtained in
Refs. [12, 13]. All formulas derived below can be then easily compared with those
obtained for Wilson coefficient in Refs. [12, 13] by substituting γ̂ → −γ̂T .

It is useful to rewrite the evolution matrix Û as

Û(µ2, µ1;αem) = Ŵ (µ2) Û (0)(µ2, µ1) Ŵ−1(µ1) , (6.20)

where the matrix

Û (0)(µ2, µ1) =
[
αs(µ2)
αs(µ1)

] γ̂(0)
s

2β0 (6.21)

is the leading order (LO) QCD evolution matrix and Ŵ (µ) is a generic unitary and
scale dependent matrix which takes into account higher order terms in αs and αem.
Hence, the definition of Ŵ (µ) depends on the orders one wants to include in the
perturbative expansion.
By differentiating Eqs. (6.13) and (6.20) with respect to αs(µ2) we obtain respectively

∂αsÛ = − γ̂(αs(µ2), αem)
2β(αs, αem)) · Û(µ2, µ1;αem)

= − γ̂(αs(µ2), αem)
2β(αs, αem)) · Ŵ (µ2) Û (0)(µ2, µ1)Ŵ−1(µ1) , (6.22)

∂αsÛ =
(
∂αsŴ (µ2) + Ŵ (µ2) γ̂

(0)
s

2β0

1
αs(µ2)

)
Û (0)(µ2, µ1)Ŵ−1(µ1) . (6.23)

and equating the right-hand sides we get the following equation for Ŵ (µ2),

∂αsŴ (µ2) + 1
αs(µ2)

[
Ŵ (µ2), γ̂

(0)
s

2β0

]
=
(
− γ̂(αs(µ2), αem)

2β(αs(µ2), αem) −
1

αs(µ2)
γ̂

(0)
s

2β0

)
Ŵ (µ2) .

(6.24)

6.2 Determination of the matrix Ŵ

Following Ref. [12], we define the matrix Ŵ as

Ŵ (µ2) =
(

1̂ + αem
4π K̂

)(
1̂ + αs(µ2)

4π Ĵ

)(
1̂ + αem

αs(µ2) P̂
)
, (6.25)

Ŵ−1(µ1) =
(

1̂− αem
αs(µ1) P̂

)(
1̂− αs(µ1)

4π Ĵ

)(
1̂− αem

4π K̂

)
. (6.26)
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In order to obtain the expression of K̂, Ĵ and P̂ we need to solve order by order
Eq. (6.24). The derivative of Ŵ (µ2) with respect to αs(µ2) gives in this case

∂αsŴ (µ2) = 1
4π

(
1̂ + αem

4π K̂

)
Ĵ

(
1̂ + αem

αs(µ2) P̂
)
−

− αem
α2

s (µ2)

(
1̂ + αem

4π K̂

)(
1̂ + αs(µ2)

4π Ĵ

)
P̂ . (6.27)

Eq. (6.24) can be easily solved multiplying it by αs(µ2) and expanding the ratio
γ̂s/β as

αs(µ2) γ̂s(αs(µ2), αem)
2β(αs(µ2), αem) ≈ − γ̂

(0)
s

2β0
+ αs(µ2)

4π

(
β1
2β2

0
γ̂(0)
s −

γ̂
(1)
s

2β0

)
− αem
αs(µ2)

γ̂
(0)
e

2β0
+

+αem
4π

(
β1
2β2

0
γ̂(0)
e + βse1

2β2
0
γ̂(0)
s −

γ̂
(1)
se

2β0

)
+ (6.28)

+O(α2
s , α

2
em, αsαem) .

Notice that the first term in Eq. (6.29) cancels with the second term appearing in
the r.h.s. of Eq. (6.24). We do not include higher order terms like O(αsαem) in the
expansion, because they require the knowledge of the anomalous dimension matrix
and the beta function at three loops. Equating order by order terms of Eqs. (6.24)
and (6.27) one obtains the following relations,

2Ĵ −
[
γ̂

(0)
s

β0
, Ĵ

]
= −β1

β2
0
γ̂(0)
s + γ̂

(1)
s

β0
, (6.29)

− 2P̂ −
[
γ̂

(0)
s

β0
, P̂

]
= γ̂

(0)
e

β0
, (6.30)

[
K̂, γ̂(0)

s

]
=
[
γ̂(0)
s , Ĵ P̂

]
+ 2β1P̂ −

β1
β0
P̂ γ̂(0)

s + γ̂(1)
s P̂ + γ̂(1)

se + γ̂(0)
e Ĵ − βse1

β0
γ̂(0)
s , (6.31)

in accordance with Eq. (14-16) of Ref. [12]. In order to solve the above equations it
is useful to work in the basis in which the matrix γ̂(0)

s is diagonal,(
γ̂(0)
s

)
D
≡ V̂ −1γ̂(0)

s V̂ = diag
(
γ

(0)
s,1 , . . . , γ

(0)
s,n

)
. (6.32)

In such basis the leading order QCD operator (6.21) becomes the diagonal matrix

R̂(0)(µ2, µ1) = V̂ −1 Û (0)(µ2, µ1) V̂ =
(
αs(µ2)
αs(µ1)

)~a
, with ~a = ~γ

(0)
s

2β0
. (6.33)

By defining also the following rotated matrices,

Ĝ ≡ V̂ −1γ̂
(1)
s V̂ , ŜJ ≡ V̂ −1Ĵ V̂ ,

M̂ (0) ≡ V̂ −1γ̂
(0)
e V̂ , ŜP ≡ V̂ −1P̂ V̂ , (6.34)

M̂ (1) ≡ V̂ −1γ̂
(1)
se V̂ , ŜK ≡ V̂ −1K̂ V̂ .
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we obtain from Eq. (6.29) the relation

2(ŜJ)ij −
1
β0

(ŜJ)ij
(
γ

(0)
s,i − γ

(0)
s,j

)
= −δij

β1
β2

0
γ

(0)
s,i + Ĝij

β0
, (6.35)

and hence
(ŜJ)ij = −δij ai

β1
β0

+ Ĝij
2β0(1− ai + aj)

. (6.36)

From Eq. (6.30) we obtain

2(ŜP )ij + 2(ŜP )ij(ai − aj) = −
M̂

(0)
ij

β0
, (6.37)

(ŜP )ij = − 1
2β0

M̂
(0)
ij

(1 + ai − aj)
. (6.38)

Analogously, from Eq. (6.31), by expliciting the matrix ŜP and using the definition
of ŜJ , we obtain

2β0(ŜK)ij(aj−ai) = −β1
β0
M̂

(0)
ij +M̂ (1)

ij −(ŜJ)ikM̂
(0)
kj +M̂ (0)

ik (ŜJ)kj−2βse1 δij ai , (6.39)

so that, if one defines the matrix

Ĥ ≡ V̂ −1
(
γ̂(1)
se −

β1
β0
γ̂(0)
e +

[
γ̂(0)
e , Ĵ

])
V̂ , (6.40)

the above equation reduces to

(ŜK)ij = 1
2β0

(
Ĥij − 2βse1 δij ai

)
(aj − ai)

. (6.41)

Notice that the matrix ŜK is singular for ai = aj , but this singularity cancels out in
the final expression for Û [µ2, µ1, αem], as we will show in the following.

6.3 Evolution matrix at NLO in QCD+QED

6.3.1 Pure QCD evolution matrix
The pure QCD evolution matrix at NLO in αs can be obtained from Eq. (6.20) and
Eqs. (6.25)-(6.26) by taking the limit αem → 0. Defining the NLO QCD operator in
analogy with Eq. (6.33) as

R̂QCD(µ2, µ1) = V̂ −1 ÛQCD(µ2, µ1) V̂ , (6.42)

one gets

R̂QCD
ij (µ2, µ1) ≡ R̂(0)

ij (µ2, µ1) + (ŜJ)ij
[
αs(µ2)

4π

(
αs(µ2)
αs(µ1)

)aj
− αs(µ1)

4π

(
αs(µ2)
αs(µ1)

)ai]
,

(6.43)
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where R̂(0) is defined in Eq. (6.33). The matrix ŜJ presents a singularity when
aj = ai − 1, in this case the (non-singular) evolution matrix R̂QCD

ij can be rewritten
as

R̂QCD
ij (µ2, µ1) = R̂

(0)
ij (µ2, µ1)+αs(µ1)

4π
Ĝij
2β0

(
αs(µ2)
αs(µ1)

)ai
log

(
αs(µ2)
αs(µ1)

)
[aj = ai−1] .

(6.44)

6.3.2 QED correction

When including QED corrections, the operator Û(µ2, µ1, αem), rotated in the basis
in which γ̂(0)

s is diagonal, can be written as

R̂(µ2, µ1;αem) = R̂QCD(µ2, µ1) + R̂QED(µ2, µ1;αem) , (6.45)

where
R̂QED = R̂QED

(αem/αs) + R̂QED
(αem) (6.46)

and R̂QED
(κ) contain terms of order O(κ). We find that

(
R̂QED

(αem/αs)

)
ij

= αem ×


M̂

(0)
ij

2β0(1+ai−aj)

[
1

αs(µ1)

(
αs(µ2)
αs(µ1)

)ai − 1
αs(µ2)

(
αs(µ2)
αs(µ1)

)aj]
M̂

(0)
ij

2β0
1

αs(µ1)

(
αs(µ2)
αs(µ1)

)ai log
(
αs(µ2)
αs(µ1)

)
[aj = ai + 1]

(6.47)

(
R̂QED

(αem)

)
ij

= αem
4π ×


(Ĥij−2βse1 δij ai)

2β0(ai−aj)

[(
αs(µ2)
αs(µ1)

)ai − (αs(µ2)
αs(µ1)

)aj]
(Ĥij−2βse1 δij ai)

2β0

(
αs(µ2)
αs(µ1)

)ai log
(
αs(µ2)
αs(µ1)

)
[aj = ai]

+

+ 1
4π
[
αs(µ2) ŜJ R̂QED

(αem/αs) − αs(µ1) R̂QED
(αem/αs)ŜJ

]
ij

(6.48)

6.3.3 Expanding the resummed logarithms
The formulas reported in previous sections can be simplified by using the two loops
recursive solution for the running of αs(µ2), namely

1
αs(µ2) = 1

αs(µ1) + β̂0
4π log

(
µ2

2
µ2

1

)
+ 1

4π
β1

β̂0
log

 4π
αs(µ2) + β1

β̂0
4π

αs(µ1) + β1
β̂0

 , (6.49)

where β̂0 ≡ β0 + αem
4π βse1 has been introduced in order to take into account first-order

e.m. corrections to the QCD beta function. Using Eq. (6.49) we can obtain the
evolution matrix at order O (αemαs log (µ2/µ1)), which has the form

Û(µ2, µ1;αem) = ÛQCD(µ2, µ1) + αem
4π ∆Û1(µ2, µ1) + αemαs(µ1)

(4π)2 ∆Û2(µ2, µ1) .

(6.50)
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The matrix ÛQCD is the NLO QCD evolution function, which is obtained by applying
Eq. (6.49) to R̂QCD in Eq. (6.43). The matrices ∆Û1 and ∆Û2 are given by

[
∆Û1(µ2, µ1)

]
ij

= −1
2
[
γ̂(0)
e

]
ij

log
(
µ2

2
µ2

1

)
, (6.51)

[
∆Û2(µ2, µ1)

]
ij

= −1
2
[
γ(1)
se

]
ij

log
(
µ2

2
µ2

1

)
(6.52)

+ 1
8(γ(0)

s,i + γ
(0)
s,j )

[
γ̂(0)
e

]
ij

(
log

(
µ2

2
µ2

1

))2

,

where γ(0)
s,i are the entries of the diagonalized matrix (γ̂(0)

s )D.
Notice that, when expanding the resummed logarithms at LO in QCD, since we

have used β̂0 instead of β0 in Eq. (6.49), a correction of order O(αsαem) will appear.
This amounts to

αemαs(µ1)
(4π2)

[
−1

2
βse1
β0

γ̂(0)
s log

(
µ2

2
µ2

1

)]
, (6.53)

but such contribution cancels exactly with a term coming from the expansion
of R̂QED

(αem) in Eq. (6.48). Therefore the contribution of βse1 , although appearing in
intermediate steps of the calculation, vanishes in the final result. The results obtained
in Eqs. (6.50), (6.51) and (6.52) hold also when µ2 > µ1, since

[
Û(µ2, µ1)

]−1
=

Û(µ1, µ2).

6.4 Evolution matrix in pure QCD
The pure QCD evolution matrix is known for most of the operators beyond NLO.
Here we discuss the calculation of UQCD in the case of non-mixing operators at
N3LO in αs. In pure QCD, the strong anomalous dimension and the β function can
be expanded in powers of αs as

γ(αs) =
∞∑
i=0

γ(i)
s

(
αs
4π

)i+1
, β(αs) = αs

∞∑
i=0

βi

(
αs
4π

)i+1
. (6.54)

It is common practice to express the evolution operator UQCD in terms of two
evolution functions c(µ1) and c(µ2), namely

UQCD(µ2, µ1) = c(µ2)
c(µ1) . (6.55)

To obtain the expression for c(µ), we can rewrite the evolution operator in Eq. (6.13)
(evaluated with αem = 0) as follows,

UQCD(µ2, µ1) = exp
[∫ αs(µ2)

αs(µ1)

dαs
αs

γ0
2β0αs

]
× exp

[
−
∫ αs(µ2)

αs(µ1)
dαs

(
γ(αs)
2β(αs)

− γ0
2β0αs

)]

=
[
αs(µ2)
αs(µ1)

] γ(0)
s

2β0
× exp

[
−
∫ αs(µ2)

αs(µ1)
dαs

(
γ(αs)
2β(αs)

− γ0
2β0αs

)]
, (6.56)
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where we have factorized the LO contribution U (0)(µ2, µ1) . The advantage of having
rewritten UQCD in this way is that now the integral in the exponential is finite as
either integration limit is taken to zero (αs(µ)→ 0 ⇔ µ→∞). As a consequence,
the function c(µ) can be defined as

c(µ) =
[
αs(µ)

4π

] γ(0)
s

2β0
× exp

[
−
∫ αs(µ)

0
dαs

(
γ(αs)
2β(αs)

− γ0
2β0

)]
. (6.57)

Inserting Eq. (6.54) into Eq. (6.57) and expanding the result of the integral in powers
of as ≡ αs/(4π), we obtain

c(µ) = [as(µ)]γ̄0
{

1 + (γ̄1 − β̄1γ̄0) as(µ) (6.58)

+ 1
2
[
(γ̄1 − β̄1γ̄0)2 + γ̄2 + β̄2

1 γ̄0 − β̄1γ̄1 − β̄2γ̄0
]
a2

s (µ)

+
[1

6(γ̄1 − β̄1γ̄0)3 + 1
2(γ̄1 − β̄1γ̄0)(γ̄2 + β̄2

1 γ̄0 − β̄1γ̄1 − β̄2γ̄0)

+ 1
3
(
γ̄3 − β̄3

1 γ̄0 + 2β̄1β̄2γ̄0 − β̄3γ̄0 + β̄2
1 γ̄1 − β̄2γ̄1 − β̄1γ̄2

)]
a3

s (µ)

+ O(a4
s )
}
,

where we have defined β̄i ≡ βi/β0 and γ̄i ≡ γ
(i)
s /(2β0). The four-loop QCD β-

function has been computed in the MS scheme in Ref. [91] and coefficients β2 and
β3 are given by

βMS
2 = 2857

2 − 5033
18 Nf + 325

54 N2
f ,

βMS
3 =

(149753
6 + 3564 ζ3

)
−
(1078361

162 + 6508
27 ζ3

)
Nf

+
(50065

162 + 6472
81 ζ3

)
N2
f + 1093

729 N3
f ,

(6.59)

where ζ is the Riemann zeta-function (ζ3 = 1.202056903 . . . ). The coefficients β2 and
β3 of the QCD β-function, and in general all βi with i ≥ 2, are scheme-dependent.
Strong anomalous dimensions beyond the LO are scheme-dependent quantities as
well, and have to be computed for the specific operator of interest. Therefore, the
evolution function c(µ) must be evaluated in the same scheme in which the RCs
are computed. In Sec. 4.2, we applied the evolution function to RCs of operators
renormalized in the RI' scheme. In this case, since the four loop RI' β-function
is equivalent to the four loop MS β-function in all gauges [74], the expression in
Eq. (6.58) can be used with γRI'(αs) computed in the RI'-MOM scheme and the
coefficients βi given in Eqs. (6.9) and (6.59).

The evaluation of the strong coupling constant at the scale µ is done using the
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following approximate analytical solution

αs(µ) = 4π
β0 log(µ2/Λ2)

[
1− β1

β2
0

log[log(µ2/Λ2)]
log(µ2/Λ2) + (6.60)

+ β2
1

β4
0 log2(µ2/Λ2)

((
log[log(µ2/Λ2)]

)2
− log[log(µ2/Λ2)]− 1 + β2β0

β2
1

)
+

+ β3
1

β6
0 log(µ2/Λ2)

(
−
(
log[log(µ2/Λ2)]

)3
+ 5

2
(
log[log(µ2/Λ2)]

)2
+

+ 2 log[log(µ2/Λ2)]− 1
2 − 3 β2β0

β2
1

log[log(µ2/Λ2)] + β3β2
0

2β3
1

)
+

+ O
(

(log[log(µ2/Λ2)])4

log(µ2/Λ2)

)]
,

where for Λ ≡ ΛQCD we have used the value quoted by the PDG [9] and computed
in the MS scheme for Nf = 4 flavours of quarks,

Λ(4)
MS = 0.292 GeV . (6.61)

Notice that the contribution of the e.m. correction βse1 to the QCD β-function
has been neglected in Eqs. (6.58) and (6.60) because such term is absent in the
electro-quenched theory adopted in the numerical analysis.
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7 | Two-loop anomalous dimen-
sions in QCD+QED

In this Chapter we describe the calculation of the anomalous dimension matrix
of a set of operators at NLO in QCD+QED. The anomalous dimension matrix
describes the evolution of a set of operators (and their mixing) when changing the
renormalization scale. It has been introduced in the previous Chapter 6 and used in
Part I of this thesis to evolve renormalization constants of bilinear and semileptonic
four-fermion operators from one scale to another. Here we give the details of the
calculation of the anomalous dimension matrix at two-loops in the MS-scheme in
the naive dimensional regularization (NDR) for the two sets of operators used in
this work. For details on dimensional regularization we refer to Refs. [92–95].
The anomalous dimension matrix for a generic set of operators ~O is defined from
the operator renormalization matrix as

γ̂ = Ẑ−1 dẐ
d lnµ (7.1)

where Ẑ is defined by the relation
~OB = Ẑ(µ) ~OR(µ). (7.2)

These correspond to the relations of Eqs. (6.5) and (6.6), but in the following we
will use the symbol Ẑ instead of Ẑ to simplify the notation. In a mass independent
renormalization scheme, such as the MS, the only µ-dependence of Ẑ(µ) resides in
the coupling constants. For this reason, we start this discussion by studying the
scale dependence of QCD and QED coupling constants in NDR with D = 4 − 2ε
dimensions. In order to maintain the action adimensional (in natural units), the
renormalized couplings must be related to the bare ones as

α0 = Zα αµ
2ε , (7.3)

where α0 and α are the bare and renormalized couplings respectively, Zα the
renormalization constant and µ the renormalization scale. It follows that, in NDR
the β-function for the coupling α has the form

dα
d lnµ2 ≡ β(α; ε) = d

d lnµ2

[
α0 Z

−1
α µ−2ε

]
= −εα− αsZα

dZα
d lnµ2

= −εα+ β(α) ,
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where we have exploited the µ-independence of the bare coupling constant α0
and called β(α) the β-function in D = 4 dimensions obtained in the limit ε → 0.
Therefore, for the QCD and QED coupling constants we have the following relations

β(αs, αem; ε) = −εαs + β(αs, αem) , (7.4)
βe(αem, αs; ε) = −εαem + βe(αem, αs) , (7.5)

where β(αs, αem) is the QCD β-function defined in Eq. (6.8) and βe(αem, αs) is the
analogue QED β-function in D = 4 dimensions. In our work we have neglected the
running of the electromagnetic coupling, i.e. we have adopted the approximation
βe(αem, αs) ∼ 0. However, from Eq. (7.5) we see that even using such approximation,
a residual scale dependence of αem(µ) is induced by the dimensional regularization
when D 6= 4, yielding

βe(αem; ε) = −εαem . (7.6)

7.1 The master formulae
We can use the above definitions to rewrite Eq. (7.1) as follows,

Ẑ · γ̂ = dẐ
d lnµ = 2β(αs, αem; ε) dẐ

dαs
+ 2βe(αem; ε) dẐ

dαem
. (7.7)

In the MS-scheme we have that RC matrices can be written as an expansion in
inverse powers of ε, namely

Ẑ = 1 +
∞∑
k=1

1
εk
Ẑk(αs, αem) . (7.8)

As a consequence, by inserting the ε-expansions of Eqs (7.4), (7.6) and (7.8) into
Eq. (7.7) and requiring γ̂ to be finite in the limit ε = 0 one obtains

γ̂ = −2αs
dẐ1
dαs
− 2αem

dẐ1
dαem

, (7.9)

where Ẑ1 = Ẑ1(αs, αem) is the coefficient of the single pole 1/ε of the RC matrix Ẑ.
At NLO the anomalous dimension matrix can be written as in Eq. (6.10), namely

γ̂(αs, αem) = αs
4π γ̂

(0)
s + α2

s
(4π)2 γ̂

(1)
s + αem

4π γ̂(0)
e + αsαem

(4π)2 γ̂(1)
se . (7.10)

In a similar way, Ẑ1 can be expanded in powers of the coupling constants

Ẑ1 =
∞∑
k=1

(
αs
4π

)k
Ẑ

(k)
1 + αem

4π Ẑ
(e)
1 + αsαem

(4π)2 Ẑ
(se)
1 . (7.11)

Each term in Eq. (7.11) can be evaluated from the computation of amputated Green
functions with the insertions of the operators ~O. Let us denote Γ(n)

B ( ~OB) and Γ(n)( ~O)
the bare and renormalized one-particle irreducible (1PI) Green functions with the
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inserions of the n-fermion operators ~O. They are in general matrices, since the
insertion of a single operator Oi into a given diagram results in a linear combination
of operators. The two green functions are related by

Γ(n)
B ( ~OB) =

[
n∏
i=1

Z
−1/2
ψi

]
Ẑ Γ(n)( ~O) (7.12)

≡ ZGF Γ(n)( ~O)

where Z1/2
ψ is the fermion field RC, Ẑ the RC matrix of the operators ~O and ZGF is

defined above. By expanding the RCs in the above equation in inverse powers of ε
as in Eq. (7.11) we get

Ẑ1 = 1
2

[
n∑
i=1

Zψi,1

]
1̂ + ẐGF,1 . (7.13)

Since the Green functions Γ(n)( ~O) are finite, the singularities in ZGF are found directly
from the calculation of the unrenormalized Green functions. At two-loops the matrix
Ẑ1 has to be computed subtracting 1/ε divergences of one-loop subdiagrams. The
anomalous dimension matrices for bilinear and the semileptonic operators in our
interest will be computed from n-point Green functions with n = 2 and n = 4
respectively and the calculation is described in Sec.7.4. The combination of Eq. (7.1)
and (7.13) allows one to obtain the following master formulae for the anomalous
dimension matrices in Eq. (7.10),

γ̂(0)
s = −2Z(1)

1 = −2
[

1
2

(
n∑
i=1

Z
(1)
ψi,1

)
1̂ + Ẑ

(1)
GF,1

]
, (7.14)

γ̂(0)
e = −2Z(e)

1 = −2
[

1
2

(
n∑
i=1

Z
(e)
ψi,1

)
1̂ + Ẑ

(e)
GF,1

]
, (7.15)

γ̂(1)
s = −4Z(2)

1 = −4
[

1
2

(
n∑
i=1

Z
(2)
ψi,1

)
1̂ + Ẑ

(2)
GF,1

]
, (7.16)

γ̂(1)
se = −4Z(se)

1 = −4
[

1
2

(
n∑
i=1

Z
(se)
ψi,1

)
1̂ + Ẑ

(se)
GF,1

]
. (7.17)

Clearly Z
(n)
ψ,1 = Z

(se)
ψ,1 = 0 for each n if the fermion ψ is a charged lepton. In

the case of neutrinos one also have Z(e)
ν,1 = 0. Before entering the discussion on

how to compute the Green functions at one- and two-loops, we should discuss a
complication arising in dimensional regularizations: the presence of the so-called
evanescent operators [96–98].

7.2 Evanescent operators
Evanescent operators (EOs) are independent operators which are present in D di-
mensions, but disappear in the physical basis of operators in four dimensions. Such
operators, which are an artifact of using dimensional regularization, must be taken
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carefully into account in the calculation of two-loop anomalous dimensions. Indeed,
in the intermediate steps of the calculation EOs can mix with physical operators
and affect the final result. One-loop diagrams might contain a 1/ε divergence pro-
portional to the matrix element of an evanescent operator, which is of O(ε) by
definition. While this does not affect one-loop anomalous dimensions, when inserted
as a subdiagram in a higher-loop diagram, such evanescent operators can generate
both UV divergent and finite contributions. These effects must be taken into ac-
count in order to correctly extract two-loop UV divergences and their associated
anomalous dimensions. For a detailed discussion of the mixing between physical and
evanescent operators see Refs. [96–99]. Therefore, we introduce non-singular terms
in the ε-expansion of RCs in order to be able to incorporate the effects of evanescent
operators, namely by expanding Ẑ as

Ẑ =
∞∑
k=1

(
αs
4π

)k
Ẑ(k) + αem

4π Ẑ(e) + αsαem
(4π)2 Ẑ(se) , (7.18)

we consider

Ẑ(k) =
k∑
i=0

Ẑ
(k)
i

εi
, Ẑ(e) =

1∑
i=0

Ẑ
(e)
i

εi
, Ẑ(se) =

2∑
i=0

Ẑ
(se)
i

εi
. (7.19)

Inserting such relations into Eq. (7.7) we derive the following relations

γ̂
(0)
s = −2εẐ(1) , γ̂

(0)
e = −2εẐ(e) ,

γ̂
(1)
s = −4εẐ(2) − 2β0Ẑ(1) + 2εẐ(1)Ẑ(1) , (7.20)

γ̂
(1)
se = −4εẐ(se) + 2ε

(
Ẑ(e)Ẑ(1) + Ẑ(1)Ẑ(e)

)
,

and hence

γ̂
(0)
s = −2Ẑ(1)

1 , γ̂
(0)
e = −2Ẑ(e)

1 ,

γ̂
(1)
s = −4Ẑ(2)

1 − 2β0Ẑ
(1)
0 + 2

(
Ẑ

(1)
0 Ẑ

(1)
1 + Ẑ

(1)
1 Ẑ

(1)
0

)
, (7.21)

γ̂
(1)
se = −4Ẑ(se)

1 + 2
(
Ẑ

(e)
1 Ẑ

(1)
0 + Ẑ

(e)
0 Ẑ

(1)
1 + Ẑ

(1)
1 Ẑ

(e)
0 + Ẑ

(1)
0 Ẑ

(e)
1

)
.

As we can see, one-loop anomalous dimensions are not affected by the presence of
EOs, while they enter the calculation of two-loop anomalous dimensions instead.
Indeed, the products of the matrices Ẑ(i)

j in Eq. (7.21) have to be done by summing
indices over the full set of operators, including EOs. We notice that the first terms
in the expressions of the two-loops anomalous dimension matrices γ̂(1)

s and γ̂
(1)
se

in Eq. (7.21) correspond to the master formulae of Eqs. (7.16) - (7.17), while the
remaining terms are the corrections we are looking for. Therefore, the inclusion of
EOs in the calculation results in the addition of a proper counterterm to the two loop
diagrams. Notice that the correction to the master formulae for two-loop anomalous
dimensions due to EOs is twice as smaller than the corresponding counter-terms
present in the main terms. Translated in the language of diagrams, this means that
in calculating γ(1)

s and γ(1)
se the contributions to the counter-diagrams involving an

evanescent operator should be multiplied by a factor 1/2.
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S0

S1 S2,3 S4 S5

 1

 3

 2

 4

V1 V2 V3

Figure 7.1. Current-current diagrams at one-loop.

7.3 Diagrams and counterterms
In this section we describe the explicit calculation of the anomalous dimension matrix
γ̂(αs, αem) from four fermion current-current diagrams, with a focus on the mixed
term γ̂

(1)
se of O(αsαem). The operators we are interested in are those described in

Part I of this thesis, namely quark bilinear operators and weak four-fermion operators
made of two quarks and a lepton-neutrino pair entering the lattice calculation of
leptonic decay rates of light mesons. We notice that anomalous dimensions for the
two sets of operators can be derived from the evaluation of the same set of current-
current diagrams, which are then combined in different ways and with different
colour and charge factors. The complete set of current-current diagrams at one-loop
are reported in Fig. 7.1, while the two-loops diagrams are collected in Fig. 7.2,
assuming curly lines to be, in general, non-abelian gauge bosons, e.g. gluons. The
blob appearing in diagrams V29,30,31 corresponds to the sum of a fermion, a gluon
and a ghost loop. Diagrams obtainable through up-down or left-right reflections from
those reported in Figs. 7.1 and 7.2 are not shown, but contribute to the multiplicity
of the diagrams. We will refer to the fermionic lines in the diagrams using the
enumeration reported in Fig. 7.1. In addition to current-current diagrams, we need
to compute also self-energy diagrams contributing to the fermionic RCs Zψ. Their
computation has been already done by several authors, see for example Refs. [12,
97], and it will be discussed later in this Section. The explicit calculation of the
anomalous dimensions described in the following has been carried out using Wolfram
Mathematica [100].

Bilinear operators In the case of bilinear operators defined in Eq. (3.47), anoma-
lous dimensions can be obtained from the diagrams with vertex corrections only.
We remind that, both in QCD and QED, bilinear operators do not mix with
each and therefore the anomalous dimension matrix reduces to a number. At one
loop only diagram V1 contributes to the QCD and QED anomalous dimensions,
while at two loops a subset of the diagrams in Fig. 7.2 has to be considered. The
pure QCD two-loop anomalous dimension γ

(1)
s gets contributions from the dia-

grams {V4, V7, V10, V13, V25, V29} at O(α2
s ), i.e. considering both bosons as gluons.

On the other hand, the mixed QCD+QED matrix γ(1)
se is obtained from O(αsαem)

diagrams. This means that only the subset of “abelian” diagrams {V4, V7, V10, V13}
has to be taken into account. Clearly, the nature of the two bosons has to be
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V4 V5 V6 V7 V8 V9

V10 V11 V12 V13 V14 V15

V16 V17 V18 V19 V20 V21

V22 V23 V24 V25 V26 V27

V28 V29 V30 V31

Figure 7.2. Current-current diagrams at two-loops. The directions of external momenta
are chosen as in Fig. 7.1.

distinguished in this case, thus doubling the multiplicity of the diagrams. In the
following we will focus only on the calculation of the matrix γ(1)

se , since the strong
anomalous dimensions are already known and have been computed in the RI' scheme
up to four loops for ZP and ZS (in the Landau gauge) in Ref. [73] and up to three
loops for ZT in Ref. [74]. We refer to such strong anomalous dimensions at order
O(αk+1

s ) as γ(k)
s,P , γ

(k)
s,S and γ

(k)
s,T respectively. The anomalous dimensions for the
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vector and axial vector current vanish at all order due to QCD Ward identities in
the massless limit. Furthermore, the pure QED one-loop anomalous dimension γ(0)

e

can be straightforwardly deduced from γ
(0)
s . Indeed, the exchange of a gluon with

a photon in diagram V1 simply results in a different overall colour factor, namely
(Γ = S, P, T )

γ
(0)
s,Γ = CF γ

(0)
e,Γ , (7.22)

with CF = (N2 − 1)/2N = 4/3. We remind that the bilinear operators used in this
work are considered to be made of quarks with unitary fractional electric charge,
namely eq1 = eq2 = 1.

Four-fermion operators Also in the case of the weak four-fermion operators in
Eq. (3.61) we have to deal only with a subset of diagrams. If we consider the upper
and lower fermions in Figs. 7.1 and 7.2 to be respectively quarks and leptons, then
it follows that strong anomalous dimensions receive contributions from the same
set of diagrams considered for bilinear operators, although with different operator
insertions. From Eq. (3.72) we deduce that the QCD anomalous dimension matrix
at order O(αk+1

s ) has the form

γ̂(k)
s = diag

(
0, 0, γ(k)

s,P , γ
(k)
s,P , γ

(k)
s,T

)
, (7.23)

the strong anomalous dimensions γs,P and γs,T being defined above. When computing
the matrices γ̂(0)

e and γ̂(1)
se , instead, one has to consider also diagrams with one photon

exchange between upper quarks and the charged lepton. The multiplicity of the
diagrams will have to be then consistently counted, recalling that the neutrino is
electrically neutral. The set of two-loop diagrams contributing at O(αsαem) is then
{V4, V7, V10 − V19, V22}.

In the following we report the calculation of the one-loop and two-loop diagrams in
NDR. We use as a benchmark for our calculation the one performed in Ref. [12], where
only the insertions of the operators γµ(1−γ5)⊗γµ(1−γ5) and γµ(1−γ5)⊗γµ(1+γ5)
have been considered.

Table 7.1. Set of operators and corresponding set of projectors adopted in our calculation.

Operators X ⊗ Y PX ⊗ PY

B
ili
ne

ar
s

OS 1⊗ 1 1⊗ 1
OV γµ ⊗ 1 γµ ⊗ 1
OP γ5 ⊗ 1 γ5 ⊗ 1
OA γµγ5 ⊗ 1 γµγ

5 ⊗ 1
OT σµν ⊗ 1 −σµν ⊗ 1

Fo
ur

fe
rm

io
ns O1 γµ(1− γ5)⊗ γµ(1− γ5) γν(1 + γ5)⊗ γν(1 + γ5)

O2 γµ(1 + γ5)⊗ γµ(1− γ5) (1 + γ5)⊗ (1− γ5)
O3 (1− γ5)⊗ (1 + γ5) γν(1 + γ5)⊗ γν(1− γ5)
O4 (1 + γ5)⊗ (1 + γ5) (1 + γ5)⊗ (1 + γ5)
O5 σµν(1 + γ5)⊗ σµν(1 + γ5) σαβ(1 + γ5)⊗ σαβ(1 + γ5)
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7.3.1 Current-current diagrams at one-loop
Let us consider the diagrams in Fig. 7.1, where the wavy lines can be due to a gluon
or a photon exchange. The difference will result in a different colour-charge factor.
We denote the Dirac structur of a generic four fermion operator

O = ψ̄2Xψ1 ψ̄4Y ψ3 (7.24)

with the short notation X ⊗ Y . The Dirac structures inserted in the vertices are
reported in Table 7.1. In the case of bilinear operators, we trasform them into
four-fermion operators with the trivial insertion of the Dirac identity matrix on the
additional fermionic line, i.e. (ψ̄41ψ3). In general, the insertion of an operator into a
given diagram at one or two loops results in a linear combination of basis operators
and hence the corresponding amputated Green function will be in general a matrix.
In order to compute the coefficients of such linear combination, we introduce a set
of projectors P ≡ PX ⊗ PY , consisting in a combination of Dirac gamma matrices.
The projectors adopted for the set of operators used in this work are reported in the
right column of Table 7.1. By denoting the 1PI Green function with the insertion of
the operator Oi as 〈Oi〉 we have in general that

〈Oi〉 = cij 〈Oj〉(0) , (7.25)

where the coefficients cij contains the divergences 1/εn contributing to the renorma-
lization constants we are interested in and 〈Oj〉(0) is the tree-level Green function of
the operator Oj . In order to extract the coefficient Cij we trace 〈Oi〉 with a projector
Pk,

Tr[〈Oi〉 Pk] = cij Tr[〈Oj〉(0)Pk] (7.26)
≡ cij Njk ,

where the trace is done over the Dirac indices and in D dimensions as follows

Nij = Tr[〈Oi〉(0) Pj ] ≡ Tr[XiPXjYiPYj ] . (7.27)

As a consequence, the coefficients of the linear combination are given by

cij = Tr[〈Oi〉 Pk] (N−1)kj ≡ Tr[〈Oi〉 Pk]Nkj . (7.28)

The normalization matrices N ≡ N−1 for bilinear operators (bil) and the weak
four-fermion operators (ff) result to be

Nbil =


1
4 0 0 0 0
0 1

16 + ε
32 0 0 0

0 0 1
4 0 0

0 0 0 1
16 + ε

32 0
0 0 0 0 1

48 + 7ε
288

 , (7.29)

Nff =


− 1

256 −
3ε

512 0 0 0 0
0 1

128 + ε
256 0 0 0

0 0 1
128 + ε

256 0 0
0 0 0 1

128 + ε
256 − 1

512 −
ε

512
0 0 0 − 1

512 −
ε

512 − 1
6144 −

13ε
36864

 . (7.30)



7.3 Diagrams and counterterms 125

It has to be stressed that the projection on the physical basis of four-fermion
operators does not take into account the contribution of EOs to the Green function
〈Oi〉. Therefore the coefficients cij obtained at two loops will require an appropriate
correction. We now discuss, as an example, the explicit calculation of the one-loop
diagram V2 in Fig. 7.1 with the insertion of the operator O1. By choosing equal
external momenta p and setting fermion masses to zero, the diagram V2 is given by

D(2)(O1) = ig2µ̄2εC(2)
∫ dDq

(2π)D
X1q/γµ ⊗ Y1q/γµ
(q2)2(p− q)2 (7.31)

= ig2µ̄2εC(2)
∫ dDq

(2π)D
qαqβ

(q2)2(p− q)2 {X1γαγ
µ ⊗ Y1γβγµ}

where the Feynman gauge for the boson has been chosen and

µ̄2 ≡ µ2 e
γE

4π (7.32)

defines the MS-scheme subtraction scale, which removes spurious terms in the
ε-expansion, which are simply artifacts of the dimensional regularization. Charge-
colour factors are contained in the coefficient C(2) and g is a generic coupling constant.
By solving the D-dimensional integral1 and expanding the result in powers of ε, the
diagram V2 takes the form

D(2)(O1) = − α

4π

(
µ2

−p2

)ε
C(2)

[ 1
4ε + 5

8

]
{X1γ

αγµ ⊗ Y1γαγµ} . (7.33)

In D dimensions, the string of gamma matrices in Eq. (7.33) cannot be reduced
to the physical insertion X1 ⊗ Y1, contrary to four dimensional case. Indeed, the
relation

γµγνγα = gµνγα − gµαγν + gναγν + iεµναβγ
βγ5 (7.34)

only holds in D = 4 dimensions, the Dirac algebra of gamma matrices becoming
formally infinite dimensional in a D = 4− 2ε dimensional space-time for arbitrary ε.
The problem is clearly the lack of an extension of the completely antisymmetric
tensor εµναβ away from D = 4. However we can parametrize the difference between a
higher product of gamma matrices and its four-dimensional limit with an evanescent
operator, namely

X1γ
αγµ ⊗ Y1γαγµ = 4(4− ε)X1 ⊗ Y1 + E(2) . (7.35)

As a consequence,

D(2)(O1) = − α

4π

(
µ2

−p2

)ε
C(2)

[ 1
4ε + 5

8

] {
4(4− ε)X1 ⊗ Y1 + E(2)

}
(7.36)

≡ D
(2)
bare(O1) +D

(2)
E (O1) .

1We do not report the explicit calculation of D-dimensional integrals, but refer to Ref. [101] for
a very good review on the subject.
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with

D
(2)
bare(O1) = α

4π

(
µ2

−p2

)ε
C(2)

[
−4
ε
− 9

]
X1 ⊗ Y1 (7.37)

D
(2)
E (O1) = α

4π

(
µ2

−p2

)ε
C(2)

[ 1
4ε + 5

8

]
E(2) . (7.38)

Notice that, when projecting the result of D(2) on the physical set of operators with
the projector P1, the contribution of D(2)

E vanishes. For diagrams V1 and V3 we
obtain analogous results

D(1)(O1) = α

4π

(
µ2

−p2

)ε
C(1)

[ 1
4ε + 5

8

] {
4(1− 2ε)X1 ⊗ Y1 + E(1)

}
(7.39)

D(3)(O1) = α

4π

(
µ2

−p2

)ε
C(3)

[ 1
4ε + 5

8

] {
4(1− 2ε)X1 ⊗ Y1 + E(3)

}
(7.40)

The coefficient preceding the tree-level insertions Xi ⊗ Yi in previous equations will
be different, in general, for each operator. By defining as F (n)

ij the coefficient of
the tree-level structure Xj ⊗ Yj obtained when the operator Oi is inserted in the
diagram Vn (n = 1, 2, 3), they can be explicitely computed as

F (1)
ij (ε) = Tr [γµγνXiγ

νγµPXk YiPYk ] Nkj ,

F (2)
ij (ε) = Tr [Xiγ

νγµPXk Yiγ
νγµPYk ] Nkj , (7.41)

F (3)
ij (ε) = Tr [Xiγ

νγµPXk γ
µγνYiPYk ] Nkj .

Obviously, such choice for the coefficients F (n)
ij is not unique. In principle we could

take them of the form F (0)
ij + aij ε, with arbitrary values of aij . Different values of

aij result in a different definition of the evanescent operators E(n).
The pole and finite terms coming from the calculation of diagrams V1,3 are

collected in Tables 7.2 and 7.3 respectively for the insertions of the bilinear operators
and the weak four fermion operators reported in Table 7.1. The corresponding
charge-colour factors and multiplicity are not shown. In the case of weak four-
fermion operator the 1PI Green function is a matrix and all elements not reported
in Table 7.3 are zero. Our results for O1,1 and O2,2 in Table 7.3 are in agreement
with those obtained in Ref. [12]. From Eqs. (7.36), (7.39) and (7.40), we can define
the counterterms

D
(1)
C (O1) = α

4πC
(i)
[ 1

4ε

] {
F (1)

11 (0)X1 ⊗ Y1
}
,

D
(2)
C (O1) = − α

4πC
(2)
[ 1

4ε

] {
F (2)

11 (0)X1 ⊗ Y1
}
, (7.42)

D
(3)
C (O1) = α

4πC
(3)
[ 1

4ε

] {
F (3)

11 (0)X1 ⊗ Y1
}
,

By subtracting the counterterms in Eq. (7.42) from the result of the calculation of
the diagrams in Fig. 7.1, we thus obtain the renormalized operator matrix elements
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Table 7.2. Singular and finite terms for diagrams in Fig. 7.1, with the insertion of bilinear
operators. Multiplicity and colour-charge factors are not reported and an overall factor
α/4π is understood.

Vn
OS , OP OV , OA OT

O(1/ε) O(1) O(1/ε) O(1) O(1/ε) O(1)
V1 4 6 1 1

2 0 0
V2 2 2 -1 -7

2 -2 -4
V3 4 6 1 1

2 0 0

Table 7.3. Singular and finite terms for diagrams in Fig. 7.1, with the insertion of weak
four-fermion operators. Multiplicity and colour-charge factors are not reported and an
overall factor α/4π is understood. The notation Oi,j means that the diagram with the
insertion of the operator Oi is projected on the Dirac structure of operator Oj .

Vn
O1,1 O2,2 O3,3 O4,4

O(1/ε) O(1) O(1/ε) O(1) O(1/ε) O(1) O(1/ε) O(1)
V1 1 1

2 1 1
2 4 6 4 6

V2 -4 -9 -1 -7
2 -1 -7

2 -1 -2
V3 1 1

2 4 6 1 1
2 1 2

Vn
O4,5 O5,4 O5,5

O(1/ε) O(1) O(1/ε) O(1) O(1/ε) O(1)
V1 0 0 0 0 0 0
V2 -1

4 -5
8 -12 -10 -3 -6

V3 -1
4 -5

8 -12 -10 3 4

expressed in terms of the tree-level ones. From the counterterms D(i)
C we extract the

contribution to the one-loop anomalous dimension, by taking the residues at the
pole 1/ε. Moreover, D(i)

C will be used in the two-loop calculation to compute the
two-loop counter-diagram.

7.3.2 Current-current diagrams at two loops
After the detailed study of the one-loop diagrams, we are ready to show the con-
struction of a “complete” two loop diagram, including all necessary counterterms. In
general, the computation of any diagram or sum of diagrams D, including the effect
of the corresponding first-order counterterms DC leads to a total result of the form

D−DC = α

4π

(
µ2

−p2

)2ε [
F

ε2
+ G

ε
+ · · ·

]
− α

4π

(
µ2

−p2

)ε [
FC
ε2

+ GC
ε

+ · · ·
]
, (7.43)

where only singular terms in the brackets were shown. The first term is the con-
tribution to the unrenormalized vertex function, without counterterm subtraction.
The second term comes from the insertion of first-order counterterms. Note that the
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power of µ2 in the counter-diagram is ε and not 2ε as in D, because the first order
counter-term (see for example Eq. (7.42)) does not contain the factor (µ2/p2)ε. In
order to obtain the renormalized vertices at two-loops the double and single poles
should be subtracted away from Eq. (7.43), by properly defining RCs. By expanding
the exponential in Eq. (7.43) we find for the pole part

(D −DC)poles = α

4π

[
F − FC
ε2

+ (2F − FC)`+ (G−GC)
ε

]
, (7.44)

with ` = log(µ2/(−p2)) . Since in the MS the RC cannot depend explicitely on `,
we have that diagram by diagram the relation FC = 2F must be satisfied. We have
verified that such relation holds for all the diagrams in Fig. 7.2. Therefore Eq. (7.44)
reduces to

(D −DC)poles = α

4π

[−F
ε2

+ G−GC
ε

]
. (7.45)

In the MS scheme, counterterms are usually obtained by retaining only the 1/ε parts
in the subdiagrams. There is, however, the subtlety related to the mixing in D 6= 4
of physical and evanescent operators, as discussed in the previous section. Therefore,
in addiction to the usual counter-diagram subtraction we will have to evaluate
the correction introduced by the insertion of evanescent operators in sub-divergent
diagrams. Let us consider as an example the diagram V5 of Fig. 7.2, where we insert
the operator O1. We denote as D(5) the double and single pole contribution from
this diagram. The external momenta are set all equal to p and their direction is the
same as in Fig. 7.1. This is computed similarly to the one-loop case, by using the
projection method. Strings of Dirac matrices, which are independent operators in D
dimensions, are projected on the physical operator basis. Then we solve the two-loop
D-dimensional integrals and expand the result in inverse powers of ε. The projection
method allows one to reduce the calculation of difficult tensor integrals to the
evaluation of few scalar ones. Once D(5) is computed, we subtract the corresponding
counter-diagrams. They are computed by substituting internal subdiagrams with the
suitable one-loop divergent counter-terms D(i)

C . In our case, the two-loop diagram V5
can be visualized as the convolution of two nested one-loop diagrams V2. Therefore
by taking the results of Eqs. (7.37) and (7.42), and neglecting for the moment the
contribution of EOs at one-loop, the counterdiagram D

(5)
C can be obtained as

D
(5)
C (O1) =

(
α

4π

)2
(
µ2

−p2

)ε
C(5)

[
−4
ε
− 9

](
−4
ε

)
X1 ⊗ Y1 (7.46)

=
(
α

4π

)2
(
µ2

−p2

)ε
C(5)

[16
ε2

+ 36
ε

]
X1 ⊗ Y1 ,

where C(5) is the colour-charge factor of D(5). We then calculate the contribution of
the evanescent operator to the counter-diagram by simply inserting the appropriate
structure E(n), defined as in Eq. (7.35), into the remaining one-loop sub-diagram
and projecting the result onto the physical operator basis. For diagram V5 we would
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obtain

D
(5)
E = α

4π

(
µ2

−p2

)ε
C(5)

[ 1
4ε + 5

8

]2
E(2)(X1γ

αγµ ⊗ Y1γαγµ) (7.47)

= α

4π

(
µ2

−p2

)ε
C(5)

[ 1
4ε + 5

8

]2
{X1γ

αγµγνγρ ⊗ Y1γαγµγνγρ

− [4(4− ε)]2 X1γ
αγµ ⊗ Y1γαγµ

}
= α

4π

(
µ2

−p2

)ε
C(5)

[
−6
ε

]
. (7.48)

We observe that the 1/ε2 singularity, as expected, is unaffected by the evanescent
contribution. The “complete” diagram is thus obtained by combining the tree
different contributions as

D(5) = D(5) −D(5)
C −

1
2D

(5)
E , (7.49)

where the factor 1/2 comes from the relation in Eq. (7.21). The contribution
proportional to the first coefficient of the beta function β0 in Eq. (7.21) is absent
for diagram V5. It will only give contribution for those diagrams which contain
an internal loop corresponding to the renormalization of αs, as for example V12.
The term ∼ β0 is automatically taken into account by subtractng the counterterm
corresponding to the renormalization of the strong vertex. In order to compare our
results with those obtained in Ref. [12] we find it useful to redefine the complete
diagram D(5) as follows

D(5) ≡ D(5) − C(5) + E(5) , (7.50)

where C(5) ≡ D(5)
C +D(5)

E corresponds to the result of the counter-diagram obtained by
substituting divergent sub-diagrams with counterterms, including those proportional
to EOs, as done by the authors of Ref. [12], and E(5) = D

(5)
E /2. In Tables A.1-A.10 of

Appendix A we report, in units of (α/4π)2, the double and single pole contributions
of all the two-loop current-current diagrams and the corresponding counterterms
for all possible operator insertions, specifying the contribution of EO counterterms
when present and using the notation of Eq. (7.50). The coupling α, although generic,
has to be read as αs in the case of non-abelian diagrams contributing to γ(1)

s only.
Our two-loop results for O1,1 and O2,2 in Tables A.4 and A.5 are in agreement with
those obtained in Ref. [12].

7.3.3 Self-energy diagrams at one and two loops
The calculation of the quark self-energy diagrams is much simpler and has already
been done by several authors (e.g. in Refs. [96, 97, 102]). We do not discuss the
calculation in detail, but report in Tables 7.4 and 7.5 the results of the different
diagrams at one and two loops shown in Figs. 7.3 and 7.4, respectively. In the
calculation of the non-abelian diagram S3 we include also the contribution of the
ghost field loop. In the last two columns of Tables 7.4 and 7.5 we also report the
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S0

S1 S2 S3 S4 S5

 1

 3

 2

 4

V1 V2 V3

Figure 7.3. Self-energy diagram at one loop.

S0

S1 S2 S3 S4 S5

 1

 3

 2

 4

V1 V2 V3

Figure 7.4. Quark self-energy diagram at two loops.

colour-charge factors of the diagrams, when evaluated at O(αs), O(αem), O(α2
s ) or

O(αsαem). They are expressed in terms of CF = (N2 − 1)/2N = 4/3, TF = 1/2,
CA = N and eq, where N = 3 is the number of colours, Nf the number of flavours
and eq the fractional charge of the fermion.

Table 7.4. Singular and finite terms for the diagram in Fig. 7.3. Colour-charge factors are
reported in the case of a O(αs) (Cs) or O(αem) (Ce) calculation. An overall factor α/4π
is understood.

Sn O(1/ε) O(1) Cs Ce
S0 -1 -1

2 CF e2
q

Table 7.5. Two-loop pole contributions of the self-energy diagrams in Fig. 7.4. Colour-
charge factors, inclusive of multiplicity, are reported in the case of either an O(α2

s ) (Cs)
or O(αsαem) (Cse) calculation. An overall factor (α/4π)2 is understood.

Sn
D C D

Cs Cse
O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε2) O(1/ε)

S1
1
2

3
4 1 1

2 -1
2

1
4 C2

F 2CF e2
q

S2 0 1 0 0 0 1 TFCFNf 0
S3 0 -5

4 0 0 0 -5
4 CACF 0

S4 -1 -1
2 -2 -1 1 1

2 C2
F −

CACF
2 2CF e2

q

S5 -3 -17
2 -6 -3 3 -11

2
CACF

2 0
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7.4 Anomalous dimension matrices

7.4.1 One-loop anomalous dimension matrix γ̂(0)
e

The one-loop QED anomalous dimension matrix γ̂
(0)
e can be straightforwardly

obtained by combining Eq. (7.15) and the results of the above sections. One-loop
results are already well known both for bilinear and four-fermion operators. However,
it is important to make a remark on the calculation of γ̂(0)

e when weak-four fermion
operators are studied and the lepton field renormalization is neglected. This is the
situation we face in the calculation of light-meson leptonic decay rates, as discussed
in Sections 4.3 and 5.2. For the weak-four fermion operators considered in Eq. (3.61),
Eq. (7.15) takes the form

γ̂(0)
e = −2

[1
2
(
Z

(e)
q1,1 + Z

(e)
q1,1 + Z

(e)
`,1

)
1̂ + Ẑ

(e)
GF,1

]
. (7.51)

where Z(e)
qi,1 = −e2

qi and Z
(e)
`,1 = −e2

` = −1 are the 1/ε poles of the quark and lepton
fields RCs respectively, evaluated at O(αem). For weak four-fermion operators and
including the lepton self-energy contribution, the result of γ̂(0)

e is

γ̂(0)
e =


−4 0 0 0 0
0 −2 0 0 0
0 0 4

3 0 0
0 0 0 4

3 −1
6

0 0 0 −8 −40
9

 . (7.52)

Notice that if the lepton renormalization is neglected in the calculation, then the
anomalous dimension γ(0)

e must be modified into

γ̃(0)
e ≡ γ̂(0)

e − 1 =


−5 0 0 0 0
0 −3 0 0 0
0 0 1

3 0 0
0 0 0 1

3 −1
6

0 0 0 −8 −49
9

 . (7.53)

For completeness, we report here also the results of γ(0)
e for Zq and quark bilinear

operators:

γ
(0)
e,q = 2 , γ

(0)
e,V = γ

(0)
e,A = 0 , (7.54)

γ
(0)
e,S = γ

(0)
e,P = −6 , γ

(0)
e,T = 2 .

7.4.2 Two-loop anomalous dimension matrix γ̂(1)
se

As discussed in Sec. 7.3, strong anomalous dimensions for the set of weak four-fermion
operators used in this work reduce to a combination of anomalous dimensions of
bilinear operators, which are known at three or four loops [73, 74]. Therefore, we
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focus now on the calculation of the mixed O(αsαem) contribution γ
(1)
se for both

bilinear and semi-leptonic operators. From the result of Eq. (7.17), we can write

γ̂(1)
se = −4

[
1
2

(
n∑
i=1

Z
(se)
ψi,1

)
1̂ + Ẑ

(se)
GF,1

]
, (7.55)

where n is the number of external fermions and the 1/ε divergences of the RCs
Z

(se)
ψi

and Ẑ(se)
GF are computed as in the previous section, i.e. by subtracting counter-

diagrams, including those related to EOs. For quark bilinear operators we have
that n = 2, while n = 4 for the semi-leptonic operators. We recall that for
bilinear operators we have eq1 = eq2 = 1, and for semi-leptonic operators eq1 = 2/3,
eq1 = −1/3, e` = −1 and eν = 0. The results for the fermionic RCs Z(se)

ψi,1 can
be obtained by summing the 1/ε results in the column D of Table 7.5, with the
appropriate colour-charge factors Cse. On the other hand, the matrix Ẑ(se)

GF,1 can be
computed from the 1/ε poles in column D of Tables A.1-A.3 for bilinear operators
and Tables A.4-A.10 for semi-leptonic ones. The colour-charge factors for two-
loop current-current diagrams involved in the O(αsαem) calculation are reported in
Table A.11.

By combining all the above results, we obtain the following anomalous dimensions
for the RCs of fermion fields and the quark bilinear operators defined in Eq. (3.47):

γ
(1)
se,q = −8 , γ

(1)
se,V = γ

(1)
se,A = 0 , (7.56)

γ
(1)
se,S = γ

(1)
se,P = −8 , γ

(1)
se,T = −152

3 .

On the other hand, for the weak four-fermion operators of Eq. (3.61), the anomalous
dimension matrix takes the form

γ̂(1)
se =


4 0 0 0 0
0 −4 0 0 0
0 0 484

9 0 0
0 0 0 412

9 −38
9

0 0 0 −928
9 −428

27

 . (7.57)

The result obtained for the first entry of γ̂(1)
se , namely [γ̂(1)

se ]11 = 4 is in agreement
with the one quoted in Ref. [103] . Notice that, in this case, the matrix γ̂

(1)
se is

insensitive to the omission of the lepton self-energy, since it only contributes at
O(αem).

7.5 Scheme dependence of the matrix γ̂(1)
se

Before closing this Chapter it is important to study the scheme-dependence of the
anomalous dimension matrix computed at NLO in QCD+QED. In general, different
renormalization prescriptions will define different renormalized operators. This is
clearly shown in Ref. [12], where anomalous dimensions have been computed in both
the NDR and the ’t Hooft-Veltman (HV) regularization schemes, which differ in the
treatment of γ5 in D dimensions. This dependence arises because the renormalization
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prescription involves an arbitrariness in the finite parts to be subtracted along with
the ultraviolet singularities. Let us define the renormalized one-loop matrix elements
as

〈 ~O〉 =
(

1 + αs
4π r̂ + αem

4π ŝ

)
〈 ~O〉(0) . (7.58)

If ẐA and ẐB are the renormalization matrices computed in two different schemes
A and B, then

ẐA = ẐB

(
1 + αs

4π ∆r̂ + αem
4π ∆ŝ

)
, (7.59)

where
∆r̂ ≡ (r̂)B − (r̂)A , ∆ŝ ≡ (ŝ)B − (ŝ)A . (7.60)

By inserting Eq. (7.59) into the definition of γ̂ in Eq. (7.1) and comparing terms
order by order we obtain the following relations between anomalous dimensions in
the two schemes. At one loop we find the well known results(

γ̂(0)
s

)
B

=
(
γ̂(0)
s

)
A
,

(
γ̂(0)
e

)
B

=
(
γ̂(0)
e

)
A
, (7.61)

denoting the scheme-independence of anomalous dimensions at LO in αs and αem.
At two loops we obtain instead the following relations:(

γ̂
(1)
s

)
B

=
(
γ̂

(1)
s

)
A
− 2β0∆r̂ +

[
γ̂

(0)
s ,∆r̂

]
, (7.62)(

γ̂
(1)
se

)
B

=
(
γ̂

(1)
se

)
A

+
[
γ̂

(0)
e ,∆r̂

]
+
[
γ̂

(0)
s ,∆ŝ

]
. (7.63)

From Eq. (7.63) follows that the anomalous dimension matrix γ̂(1)
se is scheme inde-

pendent in the two following cases:

• The set of operators do not mix under renormalization. In this case the one-
loop anomalous dimension matrices and the matrices ∆r̂ and ∆ŝ are diagonal
and hence as a consequence the commutators vanish;

• The one-loop QCD and QED anomalous dimensions vanish.

The former case applies to the quark bilinear operators of Eq. (3.47), since they do
not mix under renormalization. As a consequence, the anomalous dimensions (7.56)
have been used in the numerical analysis to evolve RCs, evaluated in the RI'-
MOM scheme, from one scale to another. The latter case applies instead, for
example, to the semi-leptonic four-fermion operator ORI'

1 appearing in Eq. (2.13),
which is renormalized non-perturbatively on the lattice in the RI'-MOM scheme.
Since one-loop anomalous dimensions vanish for such operator, then the anomalous
dimension [γ̂(1)

se ]11 computed above in the MS-scheme can be used in Eq. (2.12) to
evolve ORI'

1 to the scale µ = MW . Moreover, as in the case of bilinear operators,
the matrix (7.57) has been also used in the numerical analysis to evolve RCs of
four-fermion operators from one scale to another.
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8 | Future perspectives

In the second part of this thesis we have extensively discussed the perturbative
calculation of anomalous dimensions of composite operators at order O(αsαem) and
how they enter the renormalization group evolution at NLO in QCD+QED. We
focused on quark bilinear operators and the weak four-fermion operators involved in
the calculation of light-meson leptonic decay rates. However, the procedure presented
above and the Mathematica package produced for the calculation of anomalous
dimensions can be applied to different set of operators. A possible interesting
extension of the present work could be the application of the above procedure to
penguin operators. This has been done in Refs. [12, 13] for the case of the ∆F = 1
effective Hamiltonian within the Standard Model. However, penguin operators
can enter different kind of calculations and, among all, leptonic or semileptonic
decay of B mesons are of particular interest. Indeed, apparent tensions between
experimental data and SM predictions in B decays mediated by Flavour Changing
Neutral Currents have been found in the last few years (and recently reviewed in
Ref. [104]), hinting at a possible violation of Lepton Flavour Universality. Effects of
new physics beyond the SM can be studied using effective field theories, in which such
effects may manifest themselves either by modifying the Wilson coefficients of SM
operators or by generating new operators. Since semileptonic operators (made of two
quarks and two leptons), including semileptonic penguin operators, mediate decays
such as B → K(∗)`+`−, to which the R(∗)

K tension is related, they play an important
role in the study of the B-anomalies. The values of the Wilson coefficients of such
operators, defined within and beyond the SM, are usually extracted from global fit
analyses of observables related to several weak processes. Such analyses require the
knowledge of the operator mixing in the RG evolution from the electroweak scale
down to the typical scale of B physics. This is currently done at NNLO in QCD
and NLO in QED [105, 106] and a step forward would be the introduction of the
mixed QCD+QED anomalous dimension matrix in the RG evolution, including the
contribution of penguin operators. Since interactions beyond the SM can generate
new operators in the effective hamiltonian (e.g. scalar and tensor operators) [107]
one cannot rely just on the SM results of Refs. [12, 13] and a new systematic
calculation of penguin diagrams at O(αsαem) is necessary. The calculation is rather
more complicated with respect to current-current diagrams: in this case the set
of two-loops diagrams to be computed present one additional scale and require a
careful treatment of γ5 when using NDR. The extension of the Mathematica package
with the inclusion of penguin diagrams is currently ongoing.
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Conclusions

In this thesis work we have presented the details of the first lattice computation of
the leading e.m. and strong IB corrections to π+ → µ+νµ and K+ → µ+νµ leptonic
decay rates, following the method proposed in Ref. [14], that properly deals with the
infrared divergences appearing in the intermediate stages of the calculation. The
results are obtained using the gauge ensembles produced by the ETM Collaboration
with Nf = 2 + 1 + 1 dynamical quarks. A fundamental novel feature of this work is
the renormalization of the effective weak Hamiltonian with a consistent treatment
of the non-perturbative dynamics of QCD and the inclusion of first order QED
corrections. The effective Hamiltonian in the W -regularization scheme appropriate
for the calculation of leptonic decay rates is obtained from the bare lattice operators
in two stages. First of all, the lattice operators are renormalized non-perturbatively
on the lattice at O(αem) and to all orders in the strong coupling αs, including non-
factorizable contributions of O(αsαem) which were neglected in previous calculations.
This renormalization procedure is presented here within the RI'-MOM scheme,
although it is general and easily applicable to different renormalization schemes.
The RCs for quark bilinears and the weak four-fermion operators involved in the
calculation of the decay rates have been computed using Nf = 4 gauge configurations
produced by the ETM Collaboration. Because of the breaking of chiral symmetry in
the twisted mass formulation of QCD, one needs to take into account the mixing
under renormalization of the lattice four-fermion operators with other four-fermion
operators of different chirality. In the second step, we perform the matching from
the RI'-MOM scheme to the W -regularization scheme perturbatively. The matching
procedure to the W boson mass scale, as well as the evolution of RCs from one scale
to another in the numerical calculation, required the calculation of the two-loop
anomalous dimensions of the corresponding operators at O(αsαem), which we have
computed for the first time for the complete sets of quark bilinear and weak four-
fermion operators. By calculating and including the mixed anomalous dimension, we
have improved the residual truncation error of the matching to the W -regularization
from O(αemαs(1/a)) of Ref. [6, 14] to O(αemαs(MW )). Since the typical value of
1/a is of order O(2-4) GeV and MW ∼ 80 GeV, it follows that αs(MW ) < αs(1/a).
As a consequence, we expect that higher order corrections will be smaller at a larger
scale.

When computing IB “corrections” a definition of QCD without such corrections
is necessary. Since IB effects change hadronic masses and other physical quantities,
a prescription is needed to define QCD, whether isosymmetric or not, and in Sec. 1.5
we discuss this issue in detail. In particular, the correction δRP and the QCD
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quantity f (0)
P depend separately on the prescription used [46]. However, the product

f
(0)
P

√
1 + δRP is prescription independent and its value, multiplied by the relevant

CKM matrix element, yields the P -meson decay rate. In this work we have decided
to adopt the GRS prescription (see the dedicated discussion in 1.5.2 and 2.4) in
which the renormalized quark masses and couplings in the full QCD+QED theory
coincide in the MS at a scale of 2 GeV with the ones defined in isosymmetric QCD [8].
However, the use of “hadronic” schemes, in which QCD is defined by requiring that
a set of hadronic quantities take their physical value in QCD and in QCD+QED, is
suggested for future studies.

The main results of the calculation are presented in Sec. 5.4 together with a
detailed discussion of their implications. In summary, after extrapolation of the
data to the physical pion mass, and to the continuum and infinite-volume limits, the
isospin-breaking corrections to the leptonic decay rates can be written in the form:

Γ(π± → µ±ν`[γ]) ≡ (1 + δRphys
π ) Γ(0)(π± → µ±ν`)

= (1.0153± 0.0019) Γ(0)(π± → µ±ν`), (8.1)

Γ(K± → µ±ν`[γ]) ≡ (1 + δRphys
K ) Γ(0)(π± → µ±ν`)

= (1.0024± 0.0010) Γ(0)(K± → µ±ν`) , (8.2)

where Γ(0) is the leptonic decay rate at tree level in the GRS scheme (see Eqs. (5.37)
and (5.38)). These results can be compared with the ChPT predictions δRphys

π =
0.0176(21) and δRphys

K = 0.0064(24) obtained in Ref. [18] and adopted by the PDG [9,
55]. The difference is within one standard deviation for δRphys

π , while it is larger for
δRphys

K . We also underline that our result |Vus| = 0.22538(46) in Eq. (5.47), together
with the value of Vud determined in Ref. [10] and |Vub| from the PDG [9], implies
that the unitarity of the first row of the CKM matrix is satisfied at the per-mille level
(see Eq. (5.48)). In addition to testing the CKM unitarity, our results allows also to
update other stringent tests of the SM which have been done in the past [108–110],
that can provide new bounds on possible interactions allowed beyond the SM (see
for example Ref. [108], where the minimal supersymmetric extension of the SM is
taken into account).

The results obtained in our ab initio lattice calculation are at the moment the
most precise in the literature and they have been included in the review on leptonic
decays of charged pseudoscalar mesons by the PDG [9].

Although the work presented in this thesis has allowed to determine some IB
effects with unprecedented precision, still further important improvements and
developments are possible.

In our calculation of the relevant amplitudes, contributions from disconnected
diagrams and from diagrams present in unquenched QED have been neglected. The
only way to precisely quantify the systematic error associated to this approximation is
to actually compute the neglected contributions. A theoretical study that discusses
how twisted mass lattice QCD can be conveniently combined with the RM123
approach beyond the quenched-QED approximation is currently underway [111], as
well as numerical simulations.

Another source of systematic uncertainty is associated to the chiral extrapola-
tion. Only recently, thanks to the increased computational power, the first lattice
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computations at physical light quark mass have been presented. An important
improvement of the present work would consist in performing the same calculation
with simulations at the physical point. In this respect new ETMC gauge ensembles
at the physical pion mass will soon become available [112, 113].

As regards the calculation of the renormalization constants of lattice operators,
a possible improvement of the results presented in this thesis could be the use
of different renormalization schemes. In Sec. 3.7 we briefly describe the SMOM
scheme, in which the contamination of the Goldstone boson in pseudoscalar vertices
has a milder effect due to the non-exceptional kinematics. In this case, however,
anti-periodic boundary conditions in time cannot be adopted for fermions. Indeed,
such choice would not satisfy the SMOM condition on momenta p2

1 = p2
2 = (p1−p2)2.

As a consequence, pure QED simulations and the calculation of leptonic propagators
cannot be done in the massless limit, due to the contribution of fermionic zero modes.
Furthermore, it would be interesting to better investigate how small are the finite
volume effects (FVE) in the evaluation of RCs at O(αemαs) (the pure QED and
QCD FVEs are cancelled in the ratio that defines η), that we have neglected in
this work. This could be possible by reproducing the same analysis on two different
lattice volumes at a fixed value of the lattice spacing. This would definitively clarify
the issue raised in Ref. [29] about the uncertain separation of IR and UV divergences
when the (non-local) QEDL regularization of the photon is used. The Nf = 4 gauge
ensembles used in this work, however, have been generated with only one volume per
lattice spacing and thus do not allow for such a test. Nevertheless, an exploratory
analysis on the Nf = 2 + 1 + 1 gauge ensembles is ongoing and preliminary results
show a perfect agreement of the data obtained at different lattice volumes, this
implying that FVEs are actually negligible.

The procedure described above to compute the leading IB corrections to hadronic
processes, that we successfully applied to the calculation of light-meson leptonic
decay rates, can be in principle extended to other classes of processes.

In Ref. [114] a possible extension to the computation of radiative corrections to
semileptonic decay rates has been proposed, focusing on the K`3 decay. New issues
appears in this context, in particular the presence of unphysical terms which grow
exponentially with the time separation between the insertion of the weak Hamiltonian
and the sink for the final-state meson-lepton pair. Such terms must be identified
and subtracted. The method still needs to be implemented and tested numerically
and could lead to improved precision in the determination of the corresponding
CKM matrix elements and other tests of the SM. Moreover, the generality of the
strategy proposed in Chap. 3 for the QCD+QED calculation of the mixing matrix
of the lattice weak four-fermion operators, allows one to use the results obtained
in this work in many other contexts. Since renormalization is independent on the
external states, the same RCs can be used in semileptonic decays of light-mesons
and in (semi)leptonic decays of heavy particles such as D and B mesons.

The perturbative calculation of the mixed anomalous dimension γ̂se of order
O(αsαem) can be extended to different classes of operators. In Chap. 8 we briefly
discuss the case of penguin operators, which play an important role in (semi)leptonic
decays of B mesons. The contribution of penguin operators to the RG evolution at
order O(αsαem) is currently neglected. Their inclusion could in principle improve
the precision of the calculation and help to shed a light on the recently observed
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tensions between experimental data and SM predictions for physical observables
related to B decays. We are currently extending the Mathematica package that
computes anomalous dimension matrices with the inclusion of the contribution of
penguin diagrams at O(αsαem).
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A | Divergent part of two-loop
current-current diagrams

We report here the results of the two-loop current-current diagrams in Fig. 7.2
computed in the MS in NDR, with the insertion of the bilinear operators and the
weak four-fermion operators of Table 7.1. Multiplicity and charge-factors are not
shown and an overall (α/4π)2 factor is understood. Results are reported according to
the definition of the “complete” diagram given in Eq. (7.50) and adopted in Ref. [12].
For diagrams V29, V30 and V31, the results proportional to the number of colours N
(V N ) and flavours Nf (V f ) are reported separately.

A.1 Bilinear operators

Table A.1. Two-loop pole contributions for the subgroup of bilinear-like diagrams in
Fig. 7.2 with the insertion of operators OS and OP .

OS , OP

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 8 32 16 24 0 -8 8
V7 0 -2 0 0 0 0 -2
V10 2 4 4 6 0 -2 -2
V13 -2 -7 -4 -6 0 2 -1
V25 -6 -23 -12 -18 0 6 -5
V f

29 -2 -8 -4 -16
3 0 2 -8

3
V N

29
5
2 11 5 20

3 0 -5
2

13
3
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Table A.2. Two-loop pole contributions for the subgroup of bilinear-like diagrams in
Fig. 7.2 with the insertion of operators OV and OA.

OV , OA

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4

1
2

7
4 1 1

2 0 -1
2

5
4

V7 0 -2 0 0 0 0 -2
V10

1
2

5
4 1 1

2 0 -1
2

3
4

V13 -1
2 -5

4 -1 -1
2 0 1

2 -3
4

V25 -3
2 -17

4 -3 -3
2 0 3

2 -11
4

V f
29 0 -1 0 0 0 0 -1

V N
29 0 5

4 0 0 0 0 5
4

Table A.3. Two-loop pole contributions for the subgroup of bilinear-like diagrams in
Fig. 7.2 with the insertion of operators OV and OA.

OT

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 0 0 0 0 0 0 0
V7 0 2 0 0 0 0 2
V10 0 1 0 0 0 0 1
V13 0 0 0 0 0 0 0
V25 0 0 0 0 0 0 0
V f

29
2
3

4
9

4
3 0 0 -2

3
4
9

V N
29 -5

6 -8
9 -5

3 0 0 5
6 -8

9
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A.2 Weak four-fermions operators

Table A.4. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O1 and projected onto O1.

O1,1

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4

1
2

7
4 1 1

2 0 -1
2

5
4

V5 8 41 16 30 -3 -8 8
V6

1
2

7
4 1 1

2 0 -1
2

5
4

V7 0 -2 0 0 0 0 -2
V8 0 -2 0 0 0 0 -2
V9 0 -2 0 0 0 0 -2
V10

1
2

5
4 1 1

2 0 -1
2

3
4

V11 -2 -11
2 -4 -9 0 2 7

2
V12

1
2

5
4 1 1

2 0 -1
2

3
4

V13 -1
2 -5

4 -1 -1
2 0 1

2 -3
4

V14 2 17
2 4 9 0 -2 -1

2
V15 -1

2 -5
4 -1 -1

2 0 1
2 -3

4
V16 -2 -17

2 -4 -8 -3 2 -7
2

V17 -2 -11
2 -4 -9 0 2 7

2
V18

1
2 -7

4 1 -11
2 -3 -1

2
3
4

V19
1
2

5
4 1 1

2 0 -1
2

3
4

V20 -2 -17
2 -4 -15 -3 2 7

2
V21 -2 -11

2 -4 -2 0 2 -7
2

V22 1 1 2 1 0 -1 0
V23 16 66 32 60 -6 -16 0
V24 1 1 2 1 0 -1 0
V25 -3

2 -17
4 -3 -3

2 0 3
2 -11

4
V26 -6 -55

2 -12 -27 0 6 -1
2

V27
3
2

17
4 3 3

2 0 -3
2

11
4

V28 0 0 0 0 0 0 0
V f

29 0 -1 0 0 0 0 -1
V N

29 0 5
4 0 0 0 0 5

4
V f

30 2 10 4 28
3 0 -2 2

3
V N

30 -5
2 -27

2 -5 -35
3 0 5

2 -11
6

V f
31 0 -1 0 0 0 0 -1

V N
31 0 5

4 0 0 0 0 5
4
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Table A.5. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O2 and projected onto O2.

O2,2

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4

1
2

7
4 1 1

2 0 -1
2

5
4

V5
1
2

31
4 1 19

2 3 -1
2

5
4

V6 8 32 16 24 0 -8 8
V7 0 -2 0 0 0 0 -2
V8 0 -2 0 0 0 0 -2
V9 0 -2 0 0 0 0 -2
V10

1
2

5
4 1 1

2 0 -1
2

3
4

V11 -1
2 -11

4 -1 -7
2 0 1

2
3
4

V12 2 4 4 6 0 -2 -2
V13 -1

2 -5
4 -1 -1

2 0 1
2 -3

4
V14

1
2

11
4 1 7

2 0 -1
2 -3

4
V15 -2 -7 -4 -6 0 2 -1
V16 -1

2
1
4 -1 11

2 3 1
2 - 9

4
V17 -1

2 -11
4 -1 -7

2 0 1
2

3
4

V18 2 7 4 8 3 -2 2
V19 2 4 4 6 0 -2 -2
V20 -2 -7 -4 -8 3 2 4
V21 -2 -10 -4 -6 0 2 -4
V22 1 1 2 1 0 -1 0
V23 1 13 2 19 6 -1 0
V24 16 48 32 48 0 -16 0
V25 -3

2 -17
4 -3 -3

2 0 3
2 -11

4
V26 -3

2 -35
4 -3 -21

2 0 3
2

7
4

V27 6 23 12 18 0 -6 5
V28 0 0 0 0 0 0 0
V f

29 0 -1 0 0 0 0 -1
V N

29 0 5
4 0 0 0 0 5

4
V f

30 0 3 0 4 0 0 -1
V N

30 0 -15
4 0 -5 0 0 5

4
V f

31 -2 -8 -4 -16
3 0 2 -8

3
V N

31
5
2 11 5 20

3 0 -5
2

13
3
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Table A.6. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O3 and projected onto O3.

O3,3

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 8 32 16 24 0 -8 8
V5

1
2

31
4 1 19

2 3 -1
2

5
4

V6
1
2

7
4 1 1

2 0 -1
2

5
4

V7 0 -2 0 0 0 0 -2
V8 0 -2 0 0 0 0 -2
V9 0 -2 0 0 0 0 -2
V10 2 4 4 6 0 -2 -2
V11 -1

2 -11
4 -4 -14 0 7

2
45
4

V12
1
2

5
4 4 2 0 -7

2 -3
4

V13 -2 -7 -4 -6 0 2 -1
V14

1
2

11
4 1 7

2 0 -1
2 -3

4
V15 -1

2 -5
4 -1 -1

2 0 1
2 -3

4
V16 -2 -7 -4 0 3 2 -4
V17 -2 -10 -4 -14 0 2 4
V18 2 7 4 12 3 -2 -2
V19 2 4 4 2 0 -2 2
V20 -1

2
1
4 -1 5

2 3 1
2

3
4

V21 -1
2 -11

4 -1 -1
2 0 1

2 -9
4

V22 16 48 32 48 0 -16 0
V23 1 13 2 19 6 -1 0
V24 1 1 2 1 0 -1 0
V25 -6 -23 -12 -18 0 6 -5
V26 -3

2 -35
4 -3 -21

2 0 3
2

7
4

V27
3
2

17
4 3 3

2 0 -3
2

11
4

V28 0 0 0 0 0 0 0
V f

29 -2 -8 -4 -16
3 0 2 -8

3
V N

29
5
2 11 5 20

3 0 -5
2

13
3

V f
30 0 3 0 4 0 0 -1

V N
30 0 -15

4 0 -5 0 0 5
4

V f
31 0 -1 0 0 0 0 -1

V N
31 0 5

4 0 0 0 0 5
4
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Table A.7. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O4 and projected onto O4.

O4,4

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 8 32 16 24 0 -8 8
V5 2 9 1 9

2
5
4 1 23

4
V6 2 9 1 9

2
5
4 1 23

4
V7 0 -2 0 0 0 0 -2
V8 0 1 0 0 0 0 1
V9 0 1 0 0 0 0 1
V10 2 4 4 6 0 -2 -2
V11 -1

2 -2 -4 -8 0 7
2 6

V12
1
2 2 4 8 0 -7

2 -6
V13 -2 -7 -4 -6 0 2 -1
V14

1
2 2 1 2 0 -1

2 0
V15 -1

2 -2 -1 -2 0 1
2 0

V16 -2 -7 -4 -6 0 2 -1
V17 -2 -7 -4 -8 0 2 1
V18 2 7 4 6 0 -2 1
V19 2 7 4 8 0 -2 -1
V20 1 3 -1 1

2
5
4 2 15

4
V21 1 3 -1 1

2
5
4 2 15

4
V22 16 48 32 48 0 -16 0
V23 4 14 2 9 5

2 2 15
2

V24 4 14 2 9 5
2 2 15

2
V25 -6 -23 -12 -18 0 6 -5
V26 -3

2 -13
2 -3 -6 0 3

2 -1
2

V27
3
2

13
2 3 6 0 -3

2
1
2

V28 0 0 0 0 0 0 0
V f

29 -2 -8 -4 -16
3 0 2 -8

3
V N

29
5
2 11 5 20

3 0 -5
2

13
3

V f
30 0 2 0 2 0 0 0

V N
30 0 -5

2 0 -5
2 0 0 0

V f
31 0 -2 0 -2 0 0 0

V N
31 0 5

2 0 5
2 0 0 0
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Table A.8. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O4 and projected onto O5.

O4,5

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 0 0 0 0 0 0 0
V5

1
2

11
4

1
16 2 59

64
7
16

107
64

V6 -1
2 -5

2
1
16 -3

2 -53
64 - 9

16 -117
64

V7 0 0 0 0 0 0 0
V8 0 -1

4 0 0 0 0 -1
4

V9 0 1
4 0 0 0 0 1

4
V10 0 0 0 0 0 0 0
V11 -1

8 - 5
16 0 0 0 -1

8 - 5
16

V12 -1
8 - 5

16 0 0 0 -1
8 - 5

16
V13 0 0 0 0 0 0 0
V14

1
8

9
16

1
4

5
8 0 -1

8 - 1
16

V15
1
8

9
16

1
4

5
8 0 -1

8 - 1
16

V16 0 0 0 0 0 0 0
V17 -1

2 -2 0 0 0 -1
2 -2

V18 0 0 0 0 0 0 0
V19 -1

2 -2 0 0 0 -1
2 -2

V20
1
4

9
8

1
16 1 27

64
3
16

35
64

V21 -1
4 -7

8
1
16 -1

2 -21
64 - 5

16 -45
64

V22 0 0 0 0 0 0 0
V23 1 9

2
1
8 4 59

32
7
8

75
32

V24 -1 -4 1
8 -3 -53

32 -9
8 -85

32
V25 0 0 0 0 0 0 0
V26 -3

8 -29
16 -3

4 -15
8 0 3

8
1
16

V27 -3
8 -29

16 -3
4 -15

8 0 3
8

1
16

V28 0 0 0 0 0 0 0
V f

29 0 0 0 0 0 0 0
V N

29 0 0 0 0 0 0 0
V f

30
1
6

25
36

1
3

2
3 0 -1

6
1
36

V N
30 - 5

24 -137
144 - 5

12 -5
6 0 5

24 - 17
144

V f
31

1
6

25
36

1
3

2
3 0 -1

6
1
36

V N
31 - 5

24 -137
144 - 5

12 -5
6 0 5

24 - 17
144
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Table A.9. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O5 and projected onto O4.

O5,4

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 0 0 0 0 0 0 0
V5 24 68 144 208 44 -120 -96
V6 -24 -80 144 248 64 -168 -264
V7 0 0 0 0 0 0 0
V8 0 -12 0 0 0 0 -12
V9 0 12 0 0 0 0 12
V10 0 0 0 0 0 0 0
V11 -6 -5 0 0 0 -6 -5
V12 -6 -5 0 0 0 -6 -5
V13 0 0 0 0 0 0 0
V14 6 17 12 10 0 -6 7
V15 6 17 12 10 0 -6 7
V16 -24 -80 0 -40 -20 -24 -60
V17 0 0 0 0 0 0 0
V18 -24 -80 0 -40 -20 -24 -60
V19 0 0 0 0 0 0 0
V20 -12 -46 144 208 44 -156 -210
V21 12 34 144 248 64 -132 -150
V22 0 0 0 0 0 0 0
V23 48 88 288 416 88 -240 -240
V24 -48 -112 288 496 128 -336 -480
V25 0 0 0 0 0 0 0
V26 -18 -57 -36 -30 0 18 -27
V27 -18 -57 -36 -30 0 18 -27
V28 0 0 0 0 0 0 0
V f

29 0 0 0 0 0 0 0
V N

29 0 0 0 0 0 0 0
V f

30 8 20 16 16
3 0 -8 44

3
V N

30 -10 -29 -20 -20
3 0 10 -67

3
V f

31 8 20 16 16
3 0 -8 44

3
V N

31 -10 -29 -20 -20
3 0 10 -67

3
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Table A.10. Two-loop pole contributions for the current-current diagrams in Fig. 7.2 with
the insertion of operator O5 and projected onto O5.

O5,5

Vn
D C E D

O(1/ε2) O(1/ε) O(1/ε2) O(1/ε) O(1/ε) O(1/ε2) O(1/ε)
V4 0 0 0 0 0 0 0
V5 6 27 9 33

2 -3
4 -3 39

4
V6 6 23 9 29

2
5
4 -3 39

4
V7 0 2 0 0 0 0 2
V8 0 -1 0 0 0 0 -1
V9 0 -1 0 0 0 0 -1
V10 0 1 0 0 0 0 1
V11 -3

2 -4 0 0 0 -3
2 -4

V12
3
2 3 0 0 0 3

2 3
V13 0 0 0 0 0 0 0
V14

3
2 6 3 6 0 -3

2 0
V15 -3

2 -5 -3 -4 0 3
2 -1

V16 0 -2 0 -4 -2 0 0
V17 0 0 0 0 0 0 0
V18 0 -2 0 -4 -2 0 0
V19 0 0 0 0 0 0 0
V20 -3 -12 -9 -39

2 -3
4 6 27

4
V21 -3 -10 -9 -19

2
5
4 6 3

4
V22 0 0 0 0 0 0 0
V23 12 42 18 33 -3

2 -6 15
2

V24 12 34 18 29 5
2 -6 15

2
V25 0 0 0 0 0 0 0
V26 -9

2 -39
2 -9 -18 0 9

2 -3
2

V27
9
2

33
2 9 12 0 -9

2
9
2

V28 0 0 0 0 0 0 0
V f

29
2
3

4
9

4
3 0 0 -2

3
4
9

V N
29 -5

6 -8
9 -5

3 0 0 5
6 -8

9
V f

30
4
3

62
9

8
3 6 0 -4

3
8
9

V N
30 -5

3 -167
18 -10

3 -15
2 0 5

3 -16
9

V f
31 -4

3 -50
9 -8

3 -10
3 0 4

3 -20
9

V N
31

5
3

137
18

10
3

25
6 0 -5

3
31
9
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Table A.11. Colour-charge factors for the subset of two-loop diagrams in Fig. 7.2 con-
tributing at O(αsαem), inclusive of multiplicity.

Vn Cse

V4 2CF eq1eq2
V7 2CF eq1eq2
V10 CF (e2

q1 + e2
q2 + 2 eq1eq2)

V11 CF (eq1eq3 + eq2eq4)
V12 CF (eq1eq4 + eq2eq3)
V13 CF (e2

q1 + e2
q2 + 2 eq1eq2)

V14 CF (eq1eq3 + eq2eq4)
V15 CF (eq1eq4 + eq2eq3)
V16 CF (eq1eq3 + eq2eq4)
V17 CF (eq1eq3 + eq2eq4)
V18 CF (eq1eq4 + eq2eq3)
V19 CF (eq1eq4 + eq2eq3)
V22 CF eq3eq4
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