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Abstract

The automatic disambiguation of word senses, i.e. Word Sense Disambiguation, is a long-

standing task in the field of Natural Language Processing; an AI-complete problem which

took its first steps more than half a century ago, and which, to date, has apparently attained

human-like performances on standard evaluation benchmarks.

Unfortunately, the steady evolution that the task experienced over time in terms of sheer

performance has not been followed hand in hand by an adequate theoretical support, nor by

a careful error analysis. Furthermore, we believe that the lack of an exhaustive bird’s eye

view which accounts for the sort of high-end and unrealistic computational architectures

that systems will soon need in order to further refine their performances could lead the field

to a dead angle in a few years.

In essence, taking advantage from the current moment of great accomplishments and

renewed interest in the task, we argue that Word Sense Disambiguation is mature enough

for researchers to really observe the extent of the results hitherto obtained, evaluate what

is actually missing, and answer the much sought for question: “are current state-of-the-art

systems really able to effectively solve lexical ambiguity?”

Driven by the desire to become both architects and participants in this period of pon-

dering, we have identified a few macro areas representative of the challenges of automatic

disambiguation. From this point of view, in this thesis we propose experimental solutions

and empirical tools so as to bring to the attention of the Word Sense Disambiguation commu-

nity unusual and unexplored points of view. We hope these will represent a new perspective

through which to best observe the current state of disambiguation, as well as to foresee

future paths for the task to evolve on.

Specifically, 1q) prompted by the growing concern about the rise in performance being

closely linked to the demand for more and more unrealistic computational architectures

in all areas of application of Deep Learning related techniques, we 1a) provide evidence

for the undisclosed potential of approaches based on knowledge-bases, via the exploitation

of syntagmatic information. Moreover, 2q) driven by the dissatisfaction with the use of

cognitively-inaccurate, finite inventories of word senses in Word Sense Disambiguation, we

2a) introduce an approach based on Definition Modeling paradigms to generate contextual

definitions for target words and phrases, hence going beyond the limits set by specific

lexical-semantic inventories. Finally, 3q) moved by the desire to analyze the real implica-

tions beyond the idea of “machines performing disambiguation on par with their human

counterparts” we 3a) put forward a detailed analysis of the shared errors affecting current

state-of-the-art systems based on diverse approaches for Word Sense Disambiguation, and



vi

highlight, by means of a novel evaluation dataset tailored to represent common and critical

issues shared by all systems, performances way lower than those usually reported in the

current literature.
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pairs of lemmas – into an existing Lexical Knowledge Base biased towards paradig-

matic knowledge, proved to significantly boost performances of knowledge-based

systems, both in the English and multilingual settings. The huge impact brought

about by the inclusion of syntagmatic knowledge, along with the performance figures

growing steadily accordingly with the number of lexical-semantic relations added,

gives evidence of a sound and promising alternative to the use of Language Models in

supervised Word Sense Disambiguation.
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“Are current state-of-the-art systems actually able to solve lexical ambiguity?”

• Objective: perform a detailed error analysis of the state of the art in Word Sense Dis-
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Chapter 1

Background

Can computers be used to manipulate and figure out the meaning of written and spoken

natural language texts? The answer to this question is a matter of interest for the area of

research known as Natural Language Processing (NLP), where researchers aim to exploit

established paradigms from theoretical linguistics, neurobiology, computer science, psychol-

ogy and robotics in order to train machines to perform a set of multifaceted and useful tasks

(Chowdhary, 2020).

The number of downstream applications entailed by NLP is huge, with several fields

of studies involved, ranging from information retrieval and summarization, up to machine

translation, commonsense inference, and speech recognition. In recent years, the dominant

architecture for NLP applications has rapidly become the Transformer (Vaswani et al., 2017),

a deep learning model designed to handle sequential data processed in random order – hence

facilitating efficient parallel training – and able to easily scale according with training data

and model size.

The effectiveness of Transformers provoked a significant shift in the field, which led

researchers to dismiss alternative neural models such as convolutional and recurrent neural

networks (Wolf et al., 2019), so far lying at the foundation of state-of-the-art approaches

in many subfields of NLP. Moreover, the brand-new development of pre-trained language

models such as BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020) by means of

hitherto unreasonable amounts of training data has only been made possibile thanks to the

advent of Transformers.

Considering how (i) language models can be easily fine-tuned in order to perform diverse

natural language tasks, and (ii) one of the much sought for goals of NLP is to emulate the

human innate ability to identify the correct meaning of a word in context, it is no surprise

to witness the widespread use of Transformer architectures in one of the oldest and core

application of NLP, namely, Word Sense Disambiguation.
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Word Sense Disambiguation, the task of disambiguating a target in context by means of

picking a suitable word sense from a finite inventory of many (Navigli, 2009), lies at the

core of NLP, and has been deemed as an AI-complete open problem, i.e. a problem that – as

many other NLP tasks – requires several specific algorithms and the interaction of different

fields of studies to be tackled succesfully.

In this thesis we move from the current Transformed-based state of the art in Word

Sense Disambiguation (Hadiwinoto, Ng, and Gan, 2019; Vial, Lecouteux, and Schwab,

2019; Huang et al., 2019; Blevins and Zettlemoyer, 2020; Bevilacqua and Navigli, 2020)

and from the premises that language models seem to have brought WSD to surpass the line

traced by human performances, to put this assertion under analysis, and show that, by no

means, WSD can be considered a solved problem.
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Chapter 2

Word Sense Disambiguation

To infer the correct meaning of homonymous or polysemous words is a fundamental

operation for a communicative act to be successful, and a trivial one for most human

speakers. On the contrary, the same deed is so hard for a machine to carry out, to be

considered an AI-complete problem (Navigli, 2009). Consider the following examples:

1. The whole table was entertained.

2. I reserved a table at your favorite restaurant.

3. Please make sure to enter the data in the correct table.

Word Sense Disambiguation (henceforth WSD) is defined as the computational task

of automatically identifying meaning for words in contexts, typically, by picking the most

suitable word sense (expressed by means of a gloss, or dictionary definition) from a finite

inventory of many. Hence, given the input examples 1, 2 and 3 shown above, with the target

word table to be disambiguated, we would expect the following outputs:1

1. A company of people assembled at a table for a meal or game.

2. A piece of furniture with tableware for a meal laid out on it.

3. A set of data arranged in rows and columns.

In the following Sections, we will provide an overview of the WSD task, first, detailing

the most commonly employed sense inventories, sense-annotated corpora and evaluation

datasets available in the literature (Section 2.1). Secondly, we will retrace the task back to

its origins, also, summarizing the evolution of the state of the art until today (Section 2.2).
1Taken from the WordNet 3.0 sense inventory (Fellbaum, 1998).
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Finally, we will point out some of the major criticalities currently affecting WSD, along

with introducing the proposed solutions we are going to report in the subsequent Chapters

of this thesis as our main contributions (Section 2.3).

2.1 Preliminaries

In this Section we introduce the basic concepts and resources that will be used in this

Chapter, and throughout the whole thesis, with reference to WSD.

2.1.1 Sense Inventories

Treating WSD as a classification problem at a computational level has been the most widely

adopted strategy to tackle the task so far, with the vast majority of approaches to automatic

disambiguation leveraging strict word sense distinctions, as they appear in traditional sense

inventories. As of now, the most commonly employed sense inventories for English and

multilingual WSD are WordNet (Fellbaum, 1998) and BabelNet (Navigli and Ponzetto,

2012), respectively.

WordNet WordNet2 is a large lexical database of English in which distinct concepts

are organized by means of groups (sets) of cognitive synonyms called synsets (Fellbaum,

1998). Each of the circa 117, 000 synsets contained in WordNet (as of its 3.0 release)

comprises a set of lemmas sharing the same part of speech, along with a brief definition

and, occasionally, one or more usage example (see Figure 2.1). All of the lemmas in a given

synset are considered synonyms to denote the specific concept that is expressed by means of

the accompanying definition.

Moreover, being interlinked via semantic relations such as hyperonymy (e.g., between

the concept for periodic table and the concept for table) or meronymy (e.g. between row

and table), synsets can be seen as nodes in a semantic network (see Figure 2.2).

BabelNet Similarly to WordNet, BabelNet (Navigli and Ponzetto, 2012) resembles an

enhanced thesaurus, grouping and interlinking specific senses of words by means of sets

of synonyms (in this case, called Babel synsets), but it can be considered a superset of

WordNet, in that its network is obtained by automatically integrating information from

several resources such as Wikipedia, Wiktionary, the Open Multilingual WordNet (Bond

and Foster, 2013), and, in fact, WordNet itself.
2http://wordnetweb.princeton.edu/perl/webwn

http://wordnetweb.princeton.edu/perl/webwn
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Figure 2.1. Content of the WordNet sense inventory for the word race.

At the time of writing, the BabelNet network (in its 4.0 version3) contains about 16
million unique concepts, including both common dictionary concepts and named entities

(i.e. real-world objects, such as persons, locations or organizations). Compared to WordNet,

BabelNet provides lexicographic and encyclopedic coverage of terms in 284 languages, due

to the inherently multilingual nature of the resources it includes (e.g. Wikipedia), along with

the aid of automatic translations of concepts (see Figure 2.3).

2.1.2 Sense-annotated Corpora

As will be thoroughly detailed in Section 2.2, the most widespread approaches to WSD

exploit machine learning techniques to train a sense classifier on sense-annotated data. In

what follows, we describe the largest and most-widely employed corpora of such labeled

data, namely, SemCor (Miller et al., 1993) and the Princeton WordNet Gloss Corpus4

(henceforth, PWNG).
3https://babelnet.org/
4https://wordnetcode.princeton.edu/glosstag.shtml

https://babelnet.org/
https://wordnetcode.princeton.edu/glosstag.shtml
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Figure 2.2. Excerpt of the WordNet semantic network (image taken from Al-Saeedan and Menai

(2015)).

SemCor SemCor (Miller et al., 1993) is a subset of the Brown Corpus (Francis and Kucera,

1979). It consists of 352 texts whose open-class words have been disambiguated according

to the WordNet sense inventory,5 for a figure of 226, 036 annotated instances. As of now,

SemCor is still the most widely employed corpus for WSD6 in supervised disambiguation

settings (Loureiro and Jorge, 2019; Huang et al., 2019).

The Princeton WordNet Gloss Corpus In the Princeton WordNet Gloss Corpus (PWNG),

first released in 2008,7 the content words in the definitions (here referred to as “glosses”)

of WordNet’s synsets have been semi-automatically disambiguated against the WordNet

sense inventory version 3.0. The resulting annotated corpus today comprises 449, 355
disambiguated instances (118, 856 of which, automatically tagged). Despite having seen

a much more limited usage in comparison to SemCor, still, PWNG has had a significant

impact on WSD performances, both in knowledge-based (Agirre, de Lacalle, and Soroa,
5Out of the whole 352 documents, 186 texts present annotations for verbs only.
6Despite having been originally annotated according to the 1.5 version of the WordNet inventory, mappings

to the most recent releases of WordNet exist, hence, automatically bringing SemCor annotations up to date.
7http://wordnetcode.princeton.edu/glosstag.shtml

http://wordnetcode.princeton.edu/glosstag.shtml
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Figure 2.3. Babel synset for Ferdinand de Saussure in BabelNet (Italian and English lexicalizations).

2014), as well as in fully supervised settings (Bevilacqua and Navigli, 2020).

2.1.3 Evaluation

As is the case with other NLP tasks, WSD has a long-standing tradition of evaluation

exercises aimed at determining which systems perform best. Particularly, the Senseval (now

SemEval) evaluation campaign, which took place for the first time in 1998 (Kilgarriff, 1998),

nowadays still represents the best reference to observe the evolution and trends of the field.

In the following, we briefly report details for every Senseval/SemEval edition that dealt with

the task of automatic Word Sense Disambiguation:

Senseval-1 The first edition of Senseval consisted of a simple lexical-sample task – i.e.

one in which a system is asked to disambiguate a specific set of target words, typically, one

per sentence – for the English, French and Italian languages, according to the HECTOR

sense inventory (Atkins, 1992).

Senseval-2 In the occasion of the second Senseval evaluation campaign (Edmonds and

Cotton, 2001), the WordNet lexical database (Fellbaum, 1998) became the de facto standard
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sense inventory for WSD. Both a lexical-sample and an all-words disambiguation task – i.e.

one in which a system is asked to provide answers for each content word in a given text –

were organized for 12 languages.

Senseval-3 Since the adoption of WordNet, other evaluation exercises for WSD have been

devised, with Senseval-3 being the first in time. Particularly, this edition of the Senseval

competition took place in 2004 and consisted of 14 tasks for 7 distinct languages, including

previously unseen exercises such as semantic role labeling and gloss disambiguation, along

with the traditional lexical sample (Mihalcea, Chklovski, and Kilgarriff, 2004) and all-words

fine-grained WSD (Snyder and Palmer, 2004) tasks.

SemEval-2007 The SemEval-2007 competition witnessed the organization of 18 unique

tasks, including semantic analysis exercises unrelated to WSD (which prompted the name

switch from Senseval to SemEval). Among the available tasks, WSD was featured both

explicitly (via traditional evaluation exercises such as lexical sample and all-words dis-

ambiguation) and, for the first time, implicitly, via new tasks such as lexical substitution

(McCarthy and Navigli, 2009) and word sense induction (Agirre and Soroa, 2007). Worth

noticing, SemEval-2007 also represented the first attempt at assessing the impact of the

sense granularity in existing inventories on WSD performance, particularly, by means of

distinguishing coarser sense distinctions (Navigli, Litkowski, and Hargraves, 2007) versus

traditional fine-grained sense boundaries (Pradhan et al., 2007).

SemEval-2010 In line with the edition held in 2007, SemEval-2010 comprised 18 tasks

ranging from cross-lingual lexical substitution to coreference resolution. In the field of

WSD, the SemEval-2010 task 17 (Agirre et al., 2010) addressed the issues entailed by testing

over texts characterized by utterly generic domains by proposing a test corpus focused on a

single, specific domain.

SemEval-2013 Out of the 14 tasks organized for the SemEval-2013 competition, WSD

has been dealt with through the SemEval-2013 task 12 (Navigli, Jurgens, and Vannella,

2013), whose test set consisted of 13 articles obtained from three editions of the workshop

on Statistical Machine Translation (WSMT)8 and covering domains ranging from sports to

financial news. Particularly, this task represented the first attempt at producing a traditional

WSD evaluation exercise in a multilingual environment, by exploiting the BabelNet sense

inventory.
8http://www.statmt.org

http://www.statmt.org
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SemEval-2015 The SemEval-2015 task 13 (Moro and Navigli, 2015), with four docu-

ments collected from the OPUS project9 in three specific domains (biomedical, maths and

computers, and social issues), was the only task, among the 17 available, which dealt with

WSD, this time, by proposing a joint integration with the Entity Linking task.

On a final note, it is necessary to note how the aforementioned evaluation exercises, held

in a time span of 17 years, produced datasets which lacked coherency in terms of format,

construction guidelines and sense inventory choice, hence, making WSD evaluation hardly

fair. To overcome these issues, Raganato, Camacho-Collados, and Navigli (2017) introduced

a common evaluation framework which standardized five all-words WSD datasets (Edmonds

and Cotton, 2001; Snyder and Palmer, 2004; Pradhan et al., 2007; Navigli, Jurgens, and

Vannella, 2013; Moro and Navigli, 2015) and two training corpora (Miller et al., 1993;

Taghipour and Ng, 2015) in order to allow for fair quantitative and qualitative comparisons

between systems. The framework is currently employed by all of the state-of-the-art WSD

systems (Huang et al., 2019; Vial, Lecouteux, and Schwab, 2019; Blevins and Zettlemoyer,

2020; Bevilacqua and Navigli, 2020) and therefore will represent our reference evaluation

standard throughout this whole dissertation.

2.2 A Brief History of WSD

First introduced in the context of Machine Translation by Weaver (1955), Word Sense

Disambiguation (WSD), i.e. the task of determining the correct meaning of a word in context,

was initially addressed merely as a component of a more extensive text understanding

problem. Moreover, WSD was right away hindered by the constraining lack of available

resources that would have bestowed the task a distinct nature and domain of application.

In light of the above, the following decades saw the flourishing of machine-readable

dictionaries and sense-annotated corpora which, in turn, led to the development of advanced

techniques and algorithms, such as the dictionary-based approach of (Lesk, 1986), which

exploited the overlap between bag of words in the sentence containing the target word to

be disambiguated and the bag of words in the definitions for the different senses of the

same target word. Still, the birth of modern WSD was not going to occur before the 1990s,

when the two key resources for the task were released, namely, the WordNet sense inventory

(Miller et al., 1990; Fellbaum, 1998) and the SemCor sense-annotated corpus (Miller et al.,

1993).

If, on the one hand, WordNet encouraged further work revolving around the structure of
9http://opus.nlpl.eu/

http://opus.nlpl.eu/
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a lexical knowledge base (LKB), on the other, SemCor promptly triggered the development

of supervised approaches requiring an extensive amount of training data (see also Sections

2.1.1 and 2.1.2).

Another significant turning point in WSD took place thanks to the introduction of the

BabelNet sense inventory (Navigli and Ponzetto, 2012), which managed to release the task

from the constraint of English as a single language and allowed for studies on semantic

similarities shared across different languages, moreover, combining traditional dictionary

knowledge and encyclopedic knowledge into a single resource.

The increased availability of high-quality, multilingual lexical-semantic resources pro-

voked a renewed interest towards knowledge-based approaches to WSD, i.e. approaches

that exploit the structure of LKBs to determine the correct sense of a word in context

(Agirre, de Lacalle, and Soroa, 2014; Moro, Raganato, and Navigli, 2014). However, despite

dropping the requirement for huge amounts of training data, and despite being scalable to

multilingual environments (thanks to resources such as, e.g. BabelNet), knowledge-based

approaches always fell behind their supervised counterparts in terms of sheer performances.

An exemplary of a successful supervised model from the early 2010s is represented by

IMS (Zhong and Ng, 2010), which made use of a linear kernel Support Vector Machine

(SVM) as a classifier. In fact, according to the common evaluation of framework that was

later devised by Raganato, Camacho-Collados, and Navigli (2017), performances on the

concatenation of all of the available evaluation datasets for the best configuration of IMS

showed an overall score of 69.6 in terms of F1 score (F-Measure), while the best knowledge-

based system available as of 2014, namely, UKB (Agirre, de Lacalle, and Soroa, 2014),

attained a score of 67.3 (cfr. also Agirre, López de Lacalle, and Soroa (2018)).

The gap between knowledge-based and supervised system performances has been further

widened in recent years thanks to the advent of neural networks and language models in the

field of Natural Language Processing (NLP) (Devlin et al., 2019). In fact, the automatic

learning of features and the use of latent, contextualized representations to encode words in

contexts enabled supervised systems to come close (Huang et al., 2019) or even surpass, for

the first time, the 80% performance ceiling (Bevilacqua and Navigli, 2020), so far considered

to be representative of human-like performance (Edmonds and Kilgarriff, 2002; Palmer,

Dang, and Fellbaum, 2007).

2.3 Open Problems

Despite having finally attained performances comparable to those of human annotators,

whose inter-annotator agreement has long been considered as an upper bound for the task
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(Chklovski and Mihalcea, 2003; Snyder and Palmer, 2004; Palmer, Dang, and Fellbaum,

2007), WSD is still a long way from being a solved problem. In fact, several of the most

significant issues that are long known to the research community (Navigli, 2009) have not

been dealt with yet, and the current hype over unprecedented performances could conceal

the existing difficulties.

With this thesis, we do not aim to provide a fully exhaustive survey and a set of ready-

made solutions to tackle all of the existing problems in WSD. Rather, we identify and bring

to public attention three focused, often neglected, and pivotal issues which, along with

the proposed strategies to address them, can on their own pave the way for more aware,

cognitively accurate, and hence effective lines of research on WSD. Such directions will:

1. avoid the need for increasingly prohibitive computational architectures;

2. dispose of finite inventories of discrete word senses;

3. compensate the lack of an adequate error analysis for state-of-the-art WSD systems.

In what follows, we will thus introduce and detail each of these three core issues (Sections

2.3.1, 2.3.2 and 2.3.3), along with providing, for completeness, further information con-

cerning the other open problems in WSD as reported in the available literature (Section

2.3.4).

2.3.1 Prohibitive Computational Requirements

Current Issue The widespread use of Deep Learning (DL) techniques in NLP and, more

broadly, in AI, has been for a long time paired with an exponentially growing demand for

high-end computational infrastructures (Thompson et al., 2020). The correlation between

such pricey architectures and system performances has been exhaustively demonstrated

(Soltanolkotabi, Javanmard, and Lee, 2018), and impacts fields ranging from image classi-

fication and object detection (Barbu et al., 2019) to machine translation and named entity

recognition (Bhatia et al., 2019).

The main reason behind DL being inherently more dependent on computational re-

quirements than other approaches lies in the role of the so-called overparametrization

phenomenon (Xie et al., 2020) and how this grows as more training data gets used as a

means to boost performances; in a way, it can be said that what makes DL-based architec-

tures so ductile and apt to perform different and novel tasks, is also what makes the same

architectures so dramatically costly. Bearing in mind how the most preached and successful

approaches in WSD are also relying on DL algorithms and techniques (Nithyanandan and

Raseek, 2019), along with the fact that researchers are foreseeing a future in which more
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computationally-efficient machine learning techniques are needed10 is definitely a case in

point of an impactful open problem in the field.

This is by no means the first time that DL faces such a constraint, with neural networks

being affected since 1960 (Minsky and Papert, 2017), and as of 2009, before the introduction

of GPUs and ASICs sped-up processes by a factor of 35,11 researchers still had to resort to

smaller-scale models and smaller training sets. In fact, the progress is already continuing

along dangerous lines, with the burdensome requirement of running models for more time,

and on more machines. The steep technical and economical “cliff” is getting climbed by a

few powerful companies which have the resources to keep out “smaller players” from the

race, to the point of effectively being the only players.

An extreme example is the machine translation system named “Evolved Transformer”,

which costed millions dollars to run, and took roughly 2 million GPU hours to be trained

(So, Liang, and Le, 2019). More recently, OpenAI published the largest language model

ever trained: GPT-3. With an impressive figure of 175 billion parameters, this model would

require almost 5 millions of dollars and roughly 355 years to be trained on the cheapest

GPU cloud (a Tesla v100) currently available on the market.

On another note, with the computational power required to train the most powerful AI

models increased by 300, 000 times since 2012,12 the carbon emissions produced to this end

have become alarmingly high. As a matter of example for this “Red-AI” – as opposed to a

more eco-friendly Green-AI –, it is estimated that training and developing a single machine

translation model with neural architecture search can lead to the production of circa 626, 000
lbs of CO2 (Strubell, Ganesh, and McCallum, 2019).

Proposed Solution In light of the above, and even though we are aware that known

theories of DL have yet to fully explore the efficiency of supervised models (Gambetta

and Sheldon, 2019), we aim to demonstrate that a paradigm shift is not only possible, but

that it may come at a fairly low price, both in terms of effort, environmental requirements

and computational infrastructures. Particularly, in Chapter 3, we will turn our attention

back to the knowledge-based approaches for WSD, with a focus on the structure of the

most commonly employed resources, and note that the simple injection of syntagmatic

knowledge into semantic networks with a strong bias towards paradigmatic knowledge,

enables knowledge-based WSD systems to attain raw performance boosts with respect to
10It is worthwile noting that, with the size of language models growing by a factor of 10 per year, the growth

in GPU memory is rapidly falling behind (Amodei and Hernandez, 2018)
11https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

tesla-p100/pdf/tesla-application-performance-guide-us-nv-r18-web.pdf
12https://openai.com/blog/ai-and-compute/

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/tesla-application-performance-guide-us-nv-r18-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/tesla-application-performance-guide-us-nv-r18-web.pdf
https://openai.com/blog/ai-and-compute/
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state-of-the-art systems up to 20.2% on standard multilingual evaluation benchmarks (see

3.1).

Despite far from enabling performances similar to those of supervised models belonging

to the language model era (Blevins and Zettlemoyer, 2020; Bevilacqua and Navigli, 2020),

we believe that the studies we are going to report in Chapter 3 (Maru et al., 2019; Scozzafava

et al., 2020) trace a significant path. On the one hand, they show that knowledge-bases have

been largely neglected, to the point of lacking essential semantic features, and hence leaving

room for further progress as more analyses are conducted. On the other, they demonstrate

that the wide gap in terms of performance with respect to supervised models can (and, in

view of the foregoing, should) indeed be narrowed.

2.3.2 Word Senses as Discrete Entities

Current Issue Despite the longstanding warnings on the inaccurate nature of discrete word

sense boundaries (Kilgarriff, 1997), researchers dealing with Word Sense Disambiguation

still make extensive use of finite inventories of word meanings to tackle the task, both in

knowledge-based (Agirre, de Lacalle, and Soroa, 2014; Scarlini, Pasini, and Navigli, 2020),

and in supervised settings (Kumar et al., 2019; Huang et al., 2019).

Word senses have been posited to share a prototypical, fuzzy nature (Rosch and Mervis,

1975), to lie within a radial space (Brugman and Lakoff, 1988; Tyler and Evans, 2001),

to involve cognitive priming processes (Meyer and Schvaneveldt, 1971; Brown, 1979),

to be dependent on the intention of the speakers, and to be subject to conceptual blends

(Fauconnier and Turner, 2008). According to Hanks (2000), senses are mere “meaning

potentials”, i.e. collections of features that are triggered in relation to the surrounding context.

Pustejovsky (1991), on the other hand, suggested a compositional, generative approach, in

which senses are related by logical operations which capture semantic regularities. Earlier

on, Ruhl (1989) put forward its monosemy position, claiming that words have unitary

meanings which assume ad hoc functions (not stored in memory) based on their contexts of

use. Finally, the exemplar model of categorisation (Medin and Schaffer, 1978; Nosofsky,

2011) argues that word meanings can be seen as points in dynamic, multidimensional spaces.

In this perspective, each dimension represents a relevant perceptual feature of a given word,

and word “exemplars” which are plotted closer are assumed to be similar.

To make matters even worse for WSD, as Kilgarriff (2007) argued, understanding of

words is peculiar to each individual speaker. Also, one can have a strong awareness of a

specific meaning of a given word, despite lacking knowledge of the extent of that same

word’s range of polysemy (Talmy, 2000). All of this provides a sound justification as to

why inter-annotator agreement figures for Word Sense Disambiguation never managed to
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surpass the 80% threshold identified in the literature (Edmonds and Kilgarriff, 2002; Navigli,

Litkowski, and Hargraves, 2007; Palmer, Dang, and Fellbaum, 2007) and, furthermore,

undermines the reliability entailed by manually-crafted inventories and “gold standard”

evaluation datasets (Ramsey, 2017).

In sum, the absence of clear boundaries between word senses, as well as the lack

of consensus scholars share when it comes to provide a unified theory of word meaning

representation, are fundamental reasons behind the extreme difficulty of dealing with WSD

(Jackson, 2019).

For the purpose of illustration, consider the example (1 a), as reported in Lakoff (1987):

(1) (a) How many windows are there in your room?

The WordNet sense inventory lists eight different senses for the word window, with the

two best fitting the example in (1 a) being (2 a) and (2 b), respectively (see below).

(2) (a) A framework of wood or metal that contains a glass windowpane and is built

into a wall or roof to admit light or air.

(b) A pane of glass in a window.

However, the word window here does not seem to refer explicitly to any of these two

senses, but rather, to a combination of both.

Here, it is also worth mentioning the part of the literature whose efforts dealt with reduc-

ing the often redundant granularity of traditional sense inventories by means of clustering

similar senses (Hovy et al., 2006; Snow et al., 2007) in an attempt to concurrently (i) keep

the disambiguation apt at distinguishing word senses which are more clearly separated, and

(ii) enabling higher inter-annotator figures, hence preventing systems from being penalized

by idiosyncratic gold annotation choices in test sets.

And yet, although the reduction of the granularity of the word senses coincides with

higher performances by the systems involved (Zhong, Ng, and Chan, 2008; Lacerra et al.,

2020), “looser” and better distinct senses are no less affected than their more granular

counterparts from having rigid boundaries between them, and from being constrained by the

immutability of their inventories.

Proposed Solution With the work we introduce in Chapter 4, we overcome these limi-

tations by proposing a unified approach to computational lexical semantics that exploits

the paradigm of Definition Modeling (DM), i.e. the task of generating a gloss13 from
13To ensure better readability, here we will use the term “gloss” as a synonym of the traditional dictionary

“definition”.
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static or contextual embeddings (Noraset et al., 2017). Particularly, the generation of a

description (definiens) which perfectly fits the contextual meaning of a given word or phrase

(definiendum), being not constrained to word senses as taken from traditional inventories,

represents an easy and effective way to prevent a system from dealing with the issues we

detailed above.

We named our generation model Generationary – as a portmanteau of the words genera-

tion and dictionary –, and the reasons behind this choice lie in the fact that, by means of our

approach, we are not only able to tackle Definition Modeling effectively, but also to deal

with discriminative tasks such as WSD or the most recently introduced Word-in-Context

(Pilehvar and Camacho-Collados, 2019, WiC).

What makes Generationary really stand out in comparison with previous approaches

in DM (Gadetsky, Yakubovskiy, and Vetrov, 2018) is its ability to provide contextual

definitions for targets of any size, from words, to phrases, to whole sentences. Hence,

with the definiendum being represented by an arbitrary span, we can easily gloss free word

combinations (e.g. clumsy apology or nutty complexion), which are a case in point of

items rarely found in traditional dictionaries. Moreover, treating the target as a span also

allows for the exploitation of the huge amount of knowledge contained in a pre-trained

Encoder-Decoder model, i.e. BART (Lewis et al., 2019), which, in our scenario, is crucial

to boost performances on the DM task, as well as on WSD and WiC.

On a final note, relying on generation – and disposing with the usage of a given sense

inventory – enables the use of multiple lexicographic resources at once as training data. As

a result, we can build a very resilient model, apt at providing better generalization over

different tasks.

2.3.3 Inadequate Error Analysis

As we saw in Section 2.2, the origins of WSD can be traced back to the 1950s, and,

notwithstanding a fluctuating trend of interest (Bar-Hillel, 1960), it continued to grow and

evolve until now (Huang et al., 2019; Blevins and Zettlemoyer, 2020; Bevilacqua and

Navigli, 2020). Consequently, and with a few, focused exceptions (Loureiro et al., 2020), it

comes as a surprise that no comprehensive error analysis has been carried out to investigate

the real nature of system performance in WSD.

The task has received little attention in recent years, with the last traditional evaluation

exercise available dating back to 2015 (Moro and Navigli, 2015), but the introduction of the

paradigm of Definition Modeling to WSD (Bevilacqua, Maru, and Navigli, 2020), as well

as the peak performances attained due to better disambiguation of rare senses (Blevins and

Zettlemoyer, 2020) and neural approaches exploiting relational knowledge (Bevilacqua and
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Navigli, 2020) are injecting new life to the field.

We believe that the renewed interest that the task is experiencing should also steer

researchers to produce more insightful analyses which will in turn prevent blind runs toward

increasing performance figures. To this end, it makes sense to raise questions such as “what

does it mean that a system is able to disambiguate with an accuracy of 80%?” or “what does

it mean for a system to have attained the human inter-annotator agreement accuracy?”

As a matter of fact, the system performance might just be a reflection of its ability to

reproduce the behaviour of a few human annotators and hence, to reproduce their individual

choices, rather than an actual ability to generalize and correctly infer the right answer.

To the best of our knowledge, an exhaustive error analysis is missing in the literature so

far; particularly, one which accounts for:

1. the existence of a shared set of errors among state-of-the-art WSD systems, i.e. the

existence of a set of apparently non-disambiguable instances;

2. the lexical-semantic nature of such instances, and the existence of common error

patterns among them.

We aim to provide an answer to the aforementioned questions with the work that we

introduce in Chapter 5,14 an analysis which shows that state-of-the-art systems in WSD

share an impressive 7.4% quota of errors with respect to the standard evaluation benchmarks

for English. Moreover, we provide evidence for a dramatic performance drop of more than

25 points in F1 score for the best system when instances annotated with the most frequent

sense in WordNet are filtered out from the evaluation datasets, and of more than 35 points

when instances in the training set are also filtered out.

To sustain our findings, we propose a sound experimental setting and produce an entirely

new and fresh evaluation dataset which reproduces the conditions we identified as being the

most difficult for current state-of-the-art systems. This new dataset, 42D (pron. [for·ti·tude])

is thus designed to provide an useful testbed for WSD applications, one that is devised

to stress systems and to aid the evaluation of their resilience and flexibility. Additionally,

this fair-sized dataset for English WSD is a welcome addition to the traditional evaluation

exercise package, the first in 5 years, and also, the first to systematically cover 42 different

semantic domains.
14The Chapter describes the foundational work for our article, here codenamed as Under the Mask of Word

Sense Disambiguation: a Tale of Puzzling Performances, to be submitted at top-tier journal during Q1 2021.
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2.3.4 Other Open Problems

To have an even more exhaustive picture of the WSD scene, in this Section we report a list

of other open problems currently affecting the task according to the literature.

Knowledge Acquisition Bottleneck One of the longtime issues concerning WSD is the

so-called knowledge acquisition bottleneck (Gale, Church, and Yarowsky, 1992). Particu-

larly, with knowledge acquisition botteneck (Pasini, 2020) we refer to the set of problems

entailed by gathering annotated information to feed systems (especially supervised systems,

given their need for sense-annotated training data). These problems stems from the fact that,

in order to effectively exploit the content of a given sense inventory, a training set should

contain an adequate number of tagged instances for all of the word senses therein contained,

and one that reflects the standard Zipfian skewness (McCarthy et al., 2007). Given the huge

efforts required to produce such resources, it is no surprise that, as of now, the few manually

annotated datasets available deal with English only (Miller et al., 1993; Hovy et al., 2006).

In order to mitigate the aforementioned issues, semi-automatic (Ng, Wang, and Chan,

2003), as well as fully-automatic methods (Camacho Collados, Pilehvar, and Navigli, 2016;

Pasini and Navigli, 2017; Delli Bovi et al., 2017; Scarlini, Pasini, and Navigli, 2019) to

create sense-annotated “silver” data have been devised, both exploiting parallel (Taghipour

and Ng, 2015) and monolingual corpora (Raganato, Delli Bovi, and Navigli, 2016; Barba

et al., 2020).

Low-resource Languages’ Coverage Strictly related to the issue of the knowledge acqui-

sition bottleneck, the paucity of training data in many languages is reflected in the absence

of adequate and standardized test tools to assess the quality of systems dealing with low-

resource languages, i.e. languages for which few or no machine-readable dictionaries and

sense-annotated data exist.

As a matter of fact, the current evaluation benchmark for WSD (Raganato, Camacho-

Collados, and Navigli, 2017) supports datasets in English only, whereas the amended

version of the multilingual evaluation exercises SemEval-2013 and SemEval-201515 allows

for testing on German, Spanish, French, and Italian only. Additionally – and related to the

issue entailed by assuming word senses have discrete boundaries – is the issue of employing

the same inventory to multiple languages, thus expecting sense granularity to be perfectly

transversal, whereas literature has provided extended evidence for cases of polysemous

morphemes being collapsed into a single morpheme of another language (Talmy, 2000) and
15Made available at https://github.com/SapienzaNLP/mwsd-datasets.

https://github.com/ SapienzaNLP/mwsd-datasets
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for culturally denoted word senses that are peculiar to single dialects or languages (Hovy

and Purschke, 2018).

Language Grounding On a final note, it is worth reporting how most of traditional WSD

– similarly to the vast majority of NLP-related tasks – has been carried out without taking

into account multi-modality, thus preventing language grounding, and hence having words

being “circularly” defined by means of other words (Bender and Koller, 2020).

In substance, it can be argued that WSD has fully embraced an objectivist, algorithmic

view of cognition and thought, one that Lakoff (1988) would describe as fully disembodied

and involving the manipulation of abstract and meaningless symbols. Even if these symbols

– in being mathematically precise – can be advantageous at a computational level,16 they

completely fall short of representing the kind of experience of reality that stems from having

bodies and sensory-motor capacities. If meaning should – as objectivists maintain – solely

concern the relation between abstract symbols and external reality, we would not be able

to represent thoughts processes requiring the projection of reality to abstraction, by means

of mechanisms such as metaphor, or categorization, which are crucial in determining the

polysemy of lexical items (Dirven and Verspoor, 1998; Malmkjaer, 2005).

Once we recognize how semantic relations between meanings of words only exist by

virtue of human perceptual abilities, the way this affects WSD is hence striking, for different

senses of a same word may not share any common property, but can be related in a perfectly

identifiable way.

16Or to be listed in an enumerative fashion in traditional repositories of human knowledge, such as dictionaries.
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Chapter 3

Structured Syntagmatic Information
Enhancing Knowledge-based WSD

As stated in Section 2.3, our first study will bring us to inquire into the unexplored potential

of knowledge bases, as well as on their related approaches and techniques. This, in turn, will

lead us to reconsider such approaches as potentially valid alternatives to their supervised

counterparts, both in terms of sheer performance and computational requirements.

In fact, as a major alternative to supervised WSD, knowledge-based approaches drop the

requirement for large amounts of training data and high-end computational infrastructures

by drawing on rich Lexical Knowledge Bases (LKB) such as WordNet (Fellbaum, 1998),

and allow scaling to multiple languages effortlessly, thanks to multilingual resources such as

BabelNet (Navigli and Ponzetto, 2012).

It is widely acknowledged that the performance of a knowledge-based WSD system

is strongly correlated with the structure of the LKB employed (Boyd-Graber et al., 2006;

Lemnitzer, Wunsch, and Gupta, 2008; Navigli and Lapata, 2010; Ponzetto and Navigli,

2010). Indeed, the knowledge available within LKBs reflects the fact that words can be

linked via two types of semantic relations: paradigmatic relations – i.e. the most frequently

encountered relations in LKBs – concern the substitution of lexical units, and determine to

which level in a hierarchy a language unit belongs by semantic analogy with units similar

to it; conversely, syntagmatic relations concern the positioning of such units, by linking

elements belonging to the same hierarchical level (e.g. words), which appear in the same

context (e.g. a sentence). As a case in point, a paradigmatic relation exists, independently

of a given context, between the words farmn and workplacen (where a farm is a type of

workplace), whereas a syntagmatic relation is entertained between the words workv and

farmn, e.g. in the sentence ‘her husband works in a farm as a labourer.’
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While LKBs tend to focus on the paradigmatic dimension of language, such resources

fall short in respect of syntagmatic relations, which are also crucial for sense disambiguation

due to interconnecting co-occurring words (Navigli and Lapata, 2010; Kolesnikova and

Gelbukh, 2012).

In light of the above, we believe that exploiting syntagmatic information is an encour-

aging research focus to be pursued in an effort to close the gap between knowledge-based

and supervised Word Sense Disambiguation performance. In this Chapter, we provide

further evidence that the nature of LKBs impacts on system performance: particularly, we

show how the injection of syntagmatic relations – in the form of disambiguated pairs of

co-occurring words – into an existing LKB biased towards paradigmatic knowledge enables

knowledge-based systems to boost their efficiency drastically.

In what follows, we introduce SyntagNet (Maru et al., 2019), a novel resource consisting

of manually disambiguated lexical-semantic combinations1 (Section 3.1). By capturing sense

distinctions evoked by syntagmatic relations, SyntagNet enables knowledge-based WSD

systems to establish a new state of the art which, moreover, rivals the performances attained

by pre-BERT (Devlin et al., 2019) supervised approaches. Moreover, we follow this direction

and put forward a next-generation knowledge-based WSD system, SyntagRank (Scozzafava

et al., 2020), which we make available via a Web interface and a RESTful API (Section 3.2).

SyntagRank leverages the disambiguated pairs of co-occurring words included in SyntagNet

to perform state-of-the-art knowledge-based WSD in a multilingual setting. Our service

provides both a user-friendly interface, available at http://syntagnet.org/, and

a RESTful endpoint to query the system programmatically (accessible at http://api.

syntagnet.org/).

3.1 SyntagNet

Current research in knowledge-based Word Sense Disambiguation indicates that perfor-

mances depend heavily on the Lexical Knowledge Base employed. Moreover, LKBs tend to

have a strong bias towards paradigmatic relations, to the point of being almost completely

devoid of syntagmatic knowledge. In this Section we address this deficiency and present, for

the first time, a manually-curated large-scale lexical-semantic combination database which

associates pairs of concepts with pairs of co-occurring words. Importantly, we prove the ef-

fectiveness of our resource by achieving the state of the art in multilingual knowledge-based
1Here, we will use the term “lexical combination” to refer to both lexical collocations and free word

associations (without considering idiomatic expressions) and the term “lexical-semantic combination” to refer

to sense-annotated lexical combinations.

http://syntagnet.org/
http://api.syntagnet.org/
http://api.syntagnet.org/
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WSD and by matching pre-BERT supervised WSD performances when integrated into an

LKB made up of WordNet and the Princeton WordNet Gloss Corpus.

3.1.1 Related Work

Several studies on knowledge-based algorithms have indicated that the LKB structure is

of vital importance in determining the accuracy of sense disambiguation. In particular, it

has been demonstrated that WSD performance improves dramatically when employing an

LKB with a larger number of high-quality lexical-semantic relations, i.e. more connections

between concepts (Boyd-Graber et al., 2006; Lemnitzer, Wunsch, and Gupta, 2008; Ponzetto

and Navigli, 2010). During the last two decades, a certain amount of work has been carried

out aimed at enriching LKBs with new lexical-semantic relations. To this end, knowledge

has been (semi-)automatically extracted from large collections of data and integrated into

lexical resources such as WordNet.

As far as semi-automatic approaches are concerned, Mihalcea and Moldovan (2001)

conceived eXtended WordNet, a resource providing disambiguated glosses by means of a

classification ensemble combined with human supervision. A set of manually disambiguated

glosses, called the Princeton WordNet Gloss Corpus (PWNG), which inherently included

syntagmatic content, was subsequently also made available in 2008 (see also 2.1.2).

The rationale behind the creation of such resources was substantiated in a knowledge-

based WSD study conducted by Navigli and Lapata (2010), who hypothesized an improve-

ment in performance by several points when enriching a semantic network with tens of

lexical-semantic relations for each target word sense. To achieve this demanding goal,

endeavors in the literature focused on the fully-automatic production of semantic combi-

nations, such as those obtained by disambiguating topic signatures (Cuadros and Rigau,

2008; Cuadros, Padró, and Rigau, 2012, KnowNet and deepKnowNet) or by disentangling

the concepts in ConceptNet (Chen and Liu, 2011). In fact, ConceptNet, among many

other resources aimed at representing common-sense or associative knowledge such as the

Small World of Words lexicon (De Deyne, Navarro, and Storms, 2013) or the RezoJDM

Knowledge Base for the French language (Cousot and Lafourcade, 2017), cannot be directly

exploited for WSD purposes by virtue of the lack of sense-annotated concepts accounting

for polysemy and homonymy in it.

More recently, Espinosa-Anke et al. (2016) aimed at automatically enriching WordNet

with collocational information by leveraging the relations between sense-level embedding

spaces (ColWordNet), while Simov, Osenova, and Popov (2016) addressed the enhancement

of LKBs by exploiting relations over semantically-annotated corpora as contextual informa-

tion. To the same end, Simov et al. (2018) employed grammatical role embeddings to gather
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new syntagmatic relations. The lack of syntagmatic information in semantic networks was

also tackled by the extension of a lexical database by means of phrasets, i.e. sets of free

combinations of words recurrently used to express a concept (Bentivogli and Pianta, 2004).

Unfortunately, due to their (semi-)automatic nature, the aforementioned resources could

not inherently offer wide coverage and high precision at the same time. Compared to other

resources geared towards knowledge-based WSD, the novel resource we contribute in this

work features:

a) wide coverage with a broad spectrum of possible lexical combinations, and

b) high precision thanks to being entirely manually curated.

3.1.2 A Wide-coverage Lexical-semantic Combination Resource

In this Section, we present SyntagNet, a knowledge resource created starting from lexical

combinations extracted from the English Wikipedia2 and the British National Corpus (BNC)

(Leech, 1992), and manually disambiguated according to the WordNet 3.0 sense inventory.

3.1.2.1 Methodology

Lexical combination extraction First of all, we employed the Stanford CoreNLP pipeline

(Manning et al., 2014) to extract the dependency trees3 for all the sentences in both Wikipedia

and the BNC. Then, in order to identify relevant combinations, we determined the strength of

correlation between pairs of PoS-tagged, lemmatized content words4 w1, w2, co-occurring

within a sliding window of 3 words. Each candidate pair (w1, w2) was weighted using

Dice’s coefficient multiplied by a logarithmic factor of the co-occurrence frequency:

score(w1, w2) = log2(1 + nw1w2) 2nw1w2

nw1 + nw2

(3.1)

where nwi (i ∈ {1, 2}) is the frequency of wi and nw1w2 is the frequency of the two words

co-occurring within a window.

Three filters were then applied in order to slim down the list of pairs:

1. we filtered out English stopwords according to the Natural Language Toolkit (Loper

and Bird, 2002, NLTK 3.4);

2. we discarded combinations between verbs and verbs;
2November 2018 English Wikipedia dump.
3According to the Universal Dependencies v2 (https://universaldependencies.org/u/dep/

all.html).
4Restricted to nouns and verbs in the WordNet dictionary.

https://universaldependencies.org/u/dep/all.html
https://universaldependencies.org/u/dep/all.html
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word 1 word 2 score sense 1 sense 2

runv programn 18.07 run19
v (carry out a process or program) program7

n (a sequence of instructions)

runv racen 11.55 run37
v (compete in a race) race2

n (a contest of speed)

runv farmn 3.50 run4
v (direct or control) farm1

n (workplace with farm buildings)

Table 3.1. Examples of high-ranking lexical (left) and semantic (right) combinations, where each

lemma’s subscript and superscript indicate its part of speech and sense number, respectively, in

WordNet.

3. we discarded combinations not linked by any of the five most frequent dependencies in

our list, namely: compound, dobj (direct object), iobj (indirect object), nsubj

(nominal subject) and nmod (nominal modifier).

Finally, we ranked the resulting lexical combination list according to the geometric mean

between i) the logarithmic Dice scores and ii) the frequency count of a pair in a given PoS

tag/dependency combination. We show some examples with w1 = runv, together with their

final correlation score in Table 3.1 (left).

We then repeated the whole process described above, with the following changes:

i) we set a sliding window of 6 words;

ii) we removed the constraint on the dependency selection;

iii) we filtered out all pairs already occurring within the first list;

iv) we selected only items attested in multiple English monolingual and collocation

dictionaries.

Manual Disambiguation We asked eight annotators to manually disambiguate the top-

ranking 20, 000 lexical combinations from the first list and 58, 000 lexical combinations

from the second list, i.e. to associate each word in a pair (w1, w2) with its most appropriate

senses in WordNet (in Table 3.1 (right) we show the senses chosen by the annotators for the

corresponding lexical combinations).

The eight annotators shared a background in linguistics (Master’s Degree with a min-

imum C1 English proficiency level) and were well acquainted with WordNet. In order to

facilitate the annotation process, we provided each annotator with a unique batch of lexical

combinations in a simple interface; for each pair, the annotators visualized all the synsets for

each word of the combination (along with WordNet definitions and examples), and a context
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type #NN #NV #total

Lexical combinations 25,568 52,432 78,000

Semantic combinations 26,770 61,249 88,019

Unique lemmas 10,218 3,786 14,004

Unique synsets 14,204 6,422 20,626

Table 3.2. Data for SyntagNet 1.0. Rows: type of data. Columns: number of NOUN-NOUN combi-

nations (#NN), number of NOUN-VERB combinations (#NV), total number of combinations

(#total).

of up to 25 random sentences in which the combination was extracted. The annotators

were asked to input the sense numbers associated with their chosen synsets for both the

words in a given pair. Since the combinations can carry different meanings depending on

the context, the annotators were allowed to assign multiple senses to the same word in a

given combination (e.g. judge in the “public official” sense vs. the “evaluator” sense in the

(judgen, decidev) lexical combination).

As a further measure to ensure quality, the annotators were also asked to skip the

annotation of lexical combinations

i) carrying mistakes due to the automatic parsing process;

ii) for which none of the available senses in WordNet would fit the context, (e.g. (causev,

floodingn) with floodingn being monosemous in WordNet and carrying the “implosion

therapy” meaning, but not the “water inundation” one);

iii) reflecting idiomatic expressions, (e.g. (jumpv, gunn) as in the “jump the gun” idiom);

iv) which were multi-word Named Entities. (e.g. (crystaln, palacen) referring to the area

in South London or to the English professional football club).

Overall, the annotators covered 78, 000 lexical combinations, and obtained 88, 019
semantic combinations linking 20, 626 WordNet 3.0 nodes, i.e. unique synsets, with a

relation edge (for a full data overview, see Table 3.2).

We periodically timed the annotators by considering the number of annotations produced

on a daily basis, obtaining an average value of 42 disambiguated combinations per hour (1

minute and 26 seconds per word pair). Overall, the annotation process took a period of 9

months. To determine the reliability of the annotations, we calculated the minimum inter-

annotator agreement between pairs of annotators on a random sample of 500 combinations.
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For each of the 500 lexical combinations used to compute the inter-annotator agreement, the

annotators were exceptionally asked to disambiguate the two target words in all of the 25
sentences provided, thus leading to a figure of 25, 000 single instances disambiguated per

annotator, resulting in a substantial agreement (κ = 0.71). Moreover, we found that most of

the disagreement instances arose out of valid alternative tags, rather than factual errors, due

to the fine granularity of the WordNet sense inventory.

3.1.3 Experimental Setup

We now present the setup of our evaluation, carried out to assess the effectiveness of

SyntagNet when employed for knowledge-based WSD.

Disambiguation algorithm We performed our experiments employing UKB,5 (Agirre,

de Lacalle, and Soroa, 2014) a state-of-the-art system for knowledge-based WSD, which

applies the Personalized Page Rank (PPR) algorithm (Haveliwala, 2002) to an input LKB.

We used its PPRw2w single-sentence context disambiguation method, which initializes the

PPR vector using the context of the target word in a given sentence, while excluding the

contribution of the target word itself.

The outcome of the PPR is a probability distribution over the WordNet synsets, based

on the initialization provided by the sentence context. The central idea of this approach is to

let the neighboring words determine which sense – among those listed for the target word in

the WordNet sense inventory – has more pertinence to the context. Also, in order to account

for the fact that some senses of a given polysemous word are more frequent than others,

UKB weights the relations within the graph according to the rate with which a specific sense

occurs as a tagged instance in various semantically annotated corpora. This information is

represented by a frequency counter into the dictionary file which maps the lexical-semantic

relations between lemmas and senses in WordNet.6

Evaluation benchmarks and measures We used five test sets standardized with WordNet

3.0 (Raganato, Camacho-Collados, and Navigli, 2017) including the English all-words tasks

from Senseval-2 (Edmonds and Cotton, 2001), Senseval-3 (Snyder and Palmer, 2004),

SemEval-2007 (Pradhan et al., 2007), SemEval-2013 (Navigli, Jurgens, and Vannella, 2013)

and SemEval-2015 (Moro and Navigli, 2015). To run experiments on multilingual WSD, we

used the last two of the foregoing datasets, which also include German, Spanish, French and
5Version 3.2 (http://ixa2.si.ehu.es/ukb/)
6For a fuller discussion of PPR, see Sections 3.2.2 and 3.2.3.2, later in this Chapter.

http://ixa2.si.ehu.es/ukb/
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resource #relations

WNG (baseline) 671,779

WNG+KnowNet20 +520,682

WNG+deepKnowNet95d +522,880

WNG+BabelNet 4.0 +9,447,341

WNG+eXtended WordNet +551,551

WNG+ColWordNet +8,424

WNG+SyntagNet +88,019

Table 3.3. Number of relations (right) added to the WNG (WordNet+PWNG) baseline (top) from

each different resource (left).

Italian, employing, as sense inventory, the synset lexicalizations provided in BabelNet 4.0.7

Whereas UKB uses WordNet to gather the lemma-sense associations for English, in order

to perform multilingual tests, language-specific inventories for each language are needed.

Thus, we made use of the BabelNet 4.0 inventory to gather, for each WordNet synset, the

corresponding synset lexicalizations in other languages. As a means to ensure high quality

at this stage, we avoided lexicalizations coming from automatic translations. Furthermore,

for each lexicalization entry in a given language, we assigned a confidence score to each

of its synsets, taking into account the number of resources in BabelNet providing that

specific lexicalization. Consequently, we were able to produce a sense dictionary matching

the structure of the one provided with UKB, preserving the information concerning sense

frequencies.8

As customary, we computed precision, recall and F1, which in our case coincided, due

to UKB always outputting a sense for each target word.

LKBs For the purposes of our evaluation we measured the performance obtained with

UKB when combined with different LKBs. As our baseline we used WordNet + PWNG,

which is the best configuration of UKB according to its authors. We also evaluated the

following LKBs when integrated separately on top of our baseline:
7http://babelnet.org
8Later in this Chapter (Section 3.2.3.2), we will employ again a similar strategy to simulate word sense

distribution.

http://babelnet.org
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resource Sens2 Sens3 Sem07 Sem13 Sem15 All

WNG (baseline) 69.2 65.9 54.9 66.8 70.7 67.1

WNG+KnowNet20 67.2 65.8 53.8 67.3 71.5 66.6

WNG+deepKnowNet95d 66.9 64.9 53.6 66.9 71.6 66.2

WNG+BabelNet 4.0 67.5 64.1 53.0 67.6 66.9 65.6

WNG+eXtended WordNet 67.7 65.7 52.3 67.6 71.0 66.7

WNG+ColWordNet 69.2 65.9 54.1 66.7 70.7 67.1

WNG+SyntagNet 71.2 71.6 59.6 72.4 75.6 71.5

Table 3.4. F1 scores (%) for English all-words fine-grained WSD. Each row displays results scored

by a specific resource combined with the WNG (WordNet+PWNG) baseline. Statistically-

significant differences, according to a χ2 test (p < 0.01), compared to the baseline (first row),

are underlined.

i) the best configurations of KnowNet9 and deepKnowNet10,

ii) the subgraph of BabelNet 4.0 induced by WordNet 3.0,

iii) eXtended WordNet11,

iv) ColWordNet12,

v) SyntagNet (cf. Section 3.1.1).

All of the aforementioned LKBs (whose size in terms of lexical-semantic relations is shown

in Table 3.3) are available for download.

3.1.4 Experimental Results

English WSD As shown in Table 3.4, SyntagNet enabled UKB to achieve the best results

in the English all-words disambiguation tasks, attaining 4.4 overall points above the WNG

baseline, which is the only statistically-significant improvement across LKBs. Furthermore,

results for the individual datasets exhibit statistically-significant improvements over the

baseline on two out of five datasets. We attribute this result to the fully manual nature of
9http://adimen.si.ehu.es/web/KnowNet

10http://adimen.si.ehu.es/web/deepKnowNet
11http://www.hlt.utdallas.edu/~xwn/
12http://bitbucket.org/luisespinosa/cwn/

http://adimen.si.ehu.es/web/KnowNet
http://adimen.si.ehu.es/web/deepKnowNet
http://www.hlt.utdallas.edu/~xwn/
http://bitbucket.org/luisespinosa/cwn/
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SyntagNet, in contrast to the noisy character of the other LKBs. As a matter of example,

most BabelNet relations come from Wikipedia links, which introduces noise and rarely cap-

tures relations between verbs and nouns. On the other hand, SyntagNet captures syntagmatic

relations systematically: as attested in Table 3.3, BabelNet provides 9, 447, 331 relations;

SyntagNet instead contributes only 88, 019, while performing considerably better. A further

justification of our results comes from an analysis we performed on relation samples from

the various LKBs: we collected 500 random relations for each LKB we experimented with,

and manually tagged each of them as syntagmatic or paradigmatic, revealing that their syn-

tagmatic contribution ranges from 39% (deepKnowNet) to 54% (eXtended WordNet). The

fully syntagmatic nature of SyntagNet, instead, effectively blends in with the complementary

information available in the baseline (63% of the relations in WNG are paradigmatic).

Table 3.5 compares UKB + SyntagNet against the best pre-BERT supervised English

WSD systems (Yuan et al., 2016; Melacci, Globo, and Rigutini, 2018; Uslu et al., 2018):

none of the differences across datasets between the best performing supervised system

and SyntagNet is statistically significant according to a χ2 test (p < 0.01), meaning that

SyntagNet enables knowledge-based WSD to rival supervised approaches that do not rely

on pre-trained language models.

Finally, to better contextualize these results in a comprehensive comparison framework

that shows the extent of the huge discrepancy that still exists between approaches based

on LMs and knowledge-based systems, we report in the same Table the results for two

of the state-of-the-art approaches for English WSD that currently employ LMs in their

architectures (Blevins and Zettlemoyer, 2020; Bevilacqua and Navigli, 2020).

Multilingual WSD As regards our multilingual evaluation, SyntagNet enabled UKB to

attain the best overall result (see Table 3.6), which is a statistically-significant improvement

of 2.1 points over the baseline. With respect to the comparison against the best systems13

(Table 3.7), SyntagNet provides a statistically-relevant boost of 4.6 points in relation to

the aggregate score of the compared systems (second to last row), attaining state-of-the-art

results on five out of the six datasets taken into account. Similarly to the English setting, in

order to show the extent of the wide performance gap between knowledge-based systems

and systems based on LMs, we also report in Table 3.7 results against a state-of-the-art

system for multilingual WSD (Bevilacqua and Navigli, 2020).
13As of the time of writing.
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system Sens2 Sens3 Sem07 Sem13 Sem15 All

LSTMLP• 73.8 71.8 63.5 69.5 72.6 71.5
IMSC2V+PR∞ 73.8 71.9 63.3 68.2 72.8 71.2

fastSense4 73.5 73.5 62.4 66.2 73.2 71.1

UKB+SyntagNet 71.2 71.6 59.6 72.4 75.6 71.5

BEM 79.4 77.4 74.5 79.7 81.7 79.0

EWISER 80.8 79.0 75.2 80.7 81.8 80.1

Table 3.5. F1 scores (%) of UKB+SyntagNet (middle) against the best pre-BERT supervised systems

(top) and LM-based systems (italics, bottom) for English all-words WSD. Reported systems

(pre-BERT, top): • Yuan et al. (2016),∞ Melacci, Globo, and Rigutini (2018), 4 Uslu et al.

(2018). Reported LM-based systems (italics, bottom, first to last): Blevins and Zettlemoyer

(2020), Bevilacqua and Navigli (2020). Statistically-significant differences against our results

are reported for pre-BERT systems only, and are underlined according to a χ2 test, p < 0.01.

3.1.5 Impact of LKB Size

Finally, we graphed the increase in WSD performance obtained when progressively enriching

the baseline UKB graph with random samples of 10, 000 SyntagNet relations at each step.

As illustrated in Figure 3.1, the improvements in the English and multilingual settings,

respectively, present a growing trend according to a linear regression analysis of the data.

This demonstrates that our relations are high-quality and effective for WSD, while leaving

room for further improvement as more relations are added in the future.

3.2 SyntagRank

In order to make the results shown in Section 3.1 accessible to the research community, we

introduce a Web interface for SyntagRank (Scozzafava et al., 2020), our next-generation

knowledge-based multilingual WSD system, which applies the Personalized PageRank

(PPR) algorithm (Haveliwala, 2002) to an LKB made up of WordNet, PWNG and the

lexical-semantic syntagmatic combinations available in the SyntagNet resource. SyntagRank

constitutes a fundamental addition to the family of knowledge-based systems for multilingual

WSD, especially, given that (i) it is the first to systematically employ a Lexical Knowledge

Base containing explicit and high-quality syntagmatic relations, and (ii) it is freely available
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resource ITS13 ESS13 DES13 FRS13 ITS15 ESS15 All

WNG (WordNet+PWNG) 71.4 71.2 68.0 69.6 62.2 58.1 67.2

WNG+KnowNet20 71.6 73.1 68.3 70.4 61.4 59.9 67.9

WNG+deepKnowNet95d 71.4 71.9 67.7 70.5 62.4 58.7 67.5

WNG+BabelNet 4.0 73.8 71.6 69.9 67.1 62.4 57.8 67.6

WNG+eXtended WordNet 72.4 71.8 68.5 69.3 62.4 58.9 67.7

WNG+ColWordNet 71.4 71.0 68.0 69.3 61.9 57.8 67.0

WNG+SyntagNet 74.2 73.4 66.9 72.7 65.0 61.2 69.3

Table 3.6. F1 scores (%) for multilingual all-words fine-grained WSD. Each row displays results

scored by a specific resource combined with the WNG (WordNet+PWNG) baseline. Statistically-

significant differences, according to a χ2 test (p < 0.01), compared to the baseline (first row),

are underlined.

online via a user-friendly interface available at http://syntagnet.org/.14

3.2.1 Lexical Knowledge Bases

The disambiguation algorithm employed by SyntagRank relies on an underlying LKB, which

can be seen as a graph made up of nodes and links that represent concepts and semantic

relations, respectively (see Section 2.1.1). Particularly, SyntagRank’s reference graph is the

result of the union of three different LKBs:

1. WordNet (see Section 2.1.1);

2. PWNG (see Section 2.1.2);

3. SyntagNet (see Section 3.1).

3.2.2 Personalized PageRank

The algorithm employed by SyntagRank is the Personalized PageRank (PPR), a variant

of the standard PageRank that was first introduced by Brin and Page (1998), and that has

already been applied for WSD purposes (Agirre and Soroa, 2009; Agirre, de Lacalle, and

Soroa, 2014).
14Besides the user interface, SyntagRank can also be accessed via a RESTful endpoint at http://api.

syntagnet.org/.

http://syntagnet.org/
http://api.syntagnet.org/
http://api.syntagnet.org/
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system ITS13 ESS13 DES13 FRS13 ITS15 ESS15 All

BLSTM† 62.0 66.4 69.2 55.5 - - -

UMCC-DLSI? 65.8 71.0 62.1 60.5 - - -

T-O-M◦ 68.2 66.9 63.2 60.5 - - -

SUDOKU-RUN1� - - - - 59.9 56.0 -

SUDOKU-RUN2� - - - - 56.9 57.1 -

Best system‡ 68.2 71.0 69.2 60.5 59.9 57.1 64.7

UKB+SyntagNet 74.2 73.4 66.9 72.7 65.0 61.2 69.3

EWISER 77.7 78.8 80.9 83.6 71.8 69.5 77.5

Table 3.7. F1 scores (%) of UKB+SyntagNet (middle) against the best systems for pre-BERT (top)

and LM-based (italics, bottom) multilingual all-words WSD. Reported systems (pre-BERT, top):

† Raganato, Delli Bovi, and Navigli (2017), ? Gutiérrez Vázquez et al. (2010), ◦ Pasini and

Navigli (2017), �Manion (2015), ‡ result obtained by aggregating the outputs of the best systems

for each dataset. Reported LM-based system (italics, bottom): Bevilacqua and Navigli (2020).

Statistically-significant differences of pre-BERT systems against our results are underlined

according to a χ2 test, p < 0.01.

In the original PageRank, a graph is traveled from node to node in order to determine

the probability that each node has to be reached, starting from another point in the same

graph. The relative weight of each node is thus balanced at first and then, by means of

several iterations over the graph (also called walks), each node sees its weight adjusted

accordingly with the number of ingoing and outgoing connections. In the Personalized

PageRank instead, the weight is not distributed equally among all nodes at first, but the initial

probability mass is shared by a finite set of nodes, each representing a target word to be

disambiguated. The outcome of the PPR algorithm of SyntagRank is therefore represented

by a single vector which encodes the probability distributions for each node in the graph, as

obtained by starting from a restricted set of nodes.

PPR Implementation Details The damping factor used by SyntagRank is 0.85. The

number of iterations (walks) that the algorithm carries out over the graph is instead tied to a

threshold. Specifically, as soon as the variation between the scores of any node in the graph

(computed at two successive iterations) falls below 10−4, SyntagRank stops performing

further iterations.
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Figure 3.1. Impact of growing samples of SyntagNet over the baseline on overall F1 for English

(EN F1 line) and multilingual (ML F1 line) evaluation datasets.

3.2.3 System Architecture

Despite the fact that PPR has already been explored as a possible means to tackle knowledge-

based disambiguation (Agirre and Soroa, 2009; Agirre, de Lacalle, and Soroa, 2014),

SyntagRank represents an optimized and completely rebuilt system with respect to its prede-

cessors, furthermore, enabling unprecedented performances in a multilingual environment

thanks to the exploitation of syntagmatic knowledge.

The architecture of SyntagRank (Figure 3.2) can be explained by means of three different

modules, i.e. stages of processing: (i) the multilingual NLP pipeline, (ii) the candidate

retrieval stage, and (iii) the disambiguator module.

3.2.3.1 Multilingual NLP Pipeline

The first module of SyntagRank is represented by a multilingual NLP pipeline, by means of

which the system can process plain, raw data. In fact, when the user inputs an unprocessed
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Figure 3.2. Architecture diagram of SyntagRank.

text, SyntagRank uses its multilingual pipeline so as to pre-process it via tokenization,

sentence splitting, lemmatization and PoS tagging.

Currently, the system can process texts in five different languages, namely, English,

French, German, Spanish, and Italian. According to the input language, SyntagRank will

employ one or more of the following resources:

• the Stanford CoreNLP suite (Manning et al., 2014);

• TreeTagger (Schmid, 1995);

• the models provided by The Italian NLP Tool (Palmero Aprosio and Moretti, 2016,

TINT).
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3.2.3.2 The Candidate Retrieval Stage

English After pre-processing the input by means of the multilingual NLP pipeline (see

Section 3.2.3.1), SyntagRank proceeds with identifying the set of WordNet synsets (can-

didates) for which a lexicalization coincident with one of the content words in the input

context exists. At this stage, each content word in the input context, in turn, becomes a

target word to be disambiguated by the system. The set of collected synsets gets reduced

accordingly, in line with the word-to-word heuristics detailed in Agirre, de Lacalle, and

Soroa (2014) (see also Section 3.1.3). Specifically, in order to prevent the most frequent

sense of the target word to affect the probability distribution of the graph (see also Calvo and

Gelbukh (2015)), the synsets belonging to the target word are temporarily removed from the

set. As a result, the set of collected concepts C, which will represent the starting nodes of

the PPR algorithm, will include only the synsets of the content words that are not the target

word itself.

In order to reduce execution times significantly, we pre-computed PPR vectors for each

node in SyntagRank’s graph. According to the Linearity Theorem of Jeh and Widom (2003)

in fact, the PPR vector computed starting from C is equivalent to the weighted average of

the PPR vectors calculated using each of the nodes in C as single starting points. In light of

this, SyntagRank can obtain the final PPR vector for an input sentence just by performing

the weighted average of the pre-computed vectors for the content word concepts. Thus, the

PPR vector for a precise context (i.e. an input sentence) is calculated simply by determining

the weighted average of the pre-computed PPR vectors for each of its nodes.

The weight factor p(w, s), for each candidate s associated with a content word w, is

computed as follows:

p(w, s) = 1
N ∗ |sensesw|

freqws (3.2)

where N is the number of content words in the input sentence and sensesw is the set of

sense candidates associated with w. In addition, since already discussed in the literature

(Calvo and Gelbukh, 2015; Postma et al., 2016; Pasini, Scozzafava, and Scarlini, 2020)

we accounted for the bias that knowledge-based system share towards the most frequent

word senses (according to their rank in WordNet, and, consequently, to their distribution in

SemCor), by including the parameter freqws, i.e the normalized value resulting from the

number of occurrences for a given word sense in SemCor, divided by the total number of

occurrences for all the senses of the same word.

Multilingual So far, we detailed the candidate retrieval process for the English language,

for which the WordNet 3.0 inventory is employed. Still, when it comes to other languages,
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even though synsets – being representative of concepts – are often assumed to be approxi-

mately language agnostic,15 SyntagRank needs to map words from different languages to

WordNet concepts in order to perform disambiguation. To this end, we exploit BabelNet

(see Section 2.1.1), which provides alignments for our four non-English working languages

(French, German, Spanish and Italian) to WordNet 3.0 synsets.

BabelNet alignments are though induced through automatic methods, hence their quality

might often be inadequate for our purpose. Also, the lack of a sense-annotated corpus – such

as SemCor – for languages different from English makes the computation of the freqws
parameter we introduced earlier in this Section impossible. Our solution to deal with both of

these issues concurrently is to replace the freqws value with a normalized confidence score

that we assigned to each of the resources from which BabelNet retrieves its lexicalizations

(e.g. OmegaWiki or Wikidata), based on the quality of such lexicalizations, as determined

by an in-house qualitative study we conducted. As a result, SyntagRank can exploit the

average confidence score among all the resources providing a given lexicalization, instead

of the standard freqws value (see also Section 3.1.3).

3.2.3.3 Disambiguator

At this stage, SyntagRank has already collected the PPR vectors for each candidate and

computed their weighted average as described in Section 3.2.3.2. Thus, the disambiguator

module mainly serves to associate a word sense with a given target in context, simply by

browsing through the probability values determined by the averaged PPR vector in order to

select – as the final system prediction – the sense with the highest value.

3.2.4 Web Interface

The Web interface of SyntagRank, accessible at http://syntagnet.org/, is shown

in Figure 3.3. Below, we detail each of its components.

A. Query The Web interface allows the user to input raw text in the query field (either

single words, phrases, or whole sentences). If the input matches an entry in the SyntagNet

database (see Section 3.1), the interface switches to the SyntagNet Explorer (see below,

Section 3.2.4.1). Otherwise, SyntagRank proceeds to disambiguate the query.

B. Language Selection The user can select one among the five languages currently sup-

ported by SyntagRank to type the query in, namely, English, German, French, Spanish and
15Even though, as also reported in Section 2.3.4, word sense granularity can significantly differ from language

to language.

http://syntagnet.org/
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Figure 3.3. User interface of SyntagRank when the Italian language is selected and the sentence

‘Edison inventò la lampadina’ (Edison invented the light bulb) is typed as input query. Disam-

biguation results are displayed in extended view by default. Overlaying letters over the image

are detailed in Section 3.2.4.

Italian.

C. Disambiguated Sentence The disambiguation results are displayed with tokens high-

lighted in different colors for Concepts (blue) and Named Entities (orange).

D. Disambiguated Token Each content word that SyntagRank disambiguates is accom-

panied by a tooltip which shows the image, word sense, and definition, as retrieved from the

corresponding entry in BabelNet 4.0.

E. View Selection The disambiguated sentence can be explored either in extended or in

compact form. In the extended view, the sentence is displayed as a horizontal slider, and all

the tooltip information is visible. Using the compact view instead, tooltip information is

hidden, and is only shown when the mouse cursor hovers over a content word.

3.2.4.1 SyntagNet Explorer

The Web interface at http://syntagnet.org/ provides both access to the Synta-

gRank knowledge-based disambiguation system, but also to the full SyntagNet resource

of lexical-semantic combinations. In fact, by typing into the query bar a word or MWE

http://syntagnet.org/
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Figure 3.4. User interface of the SyntagNet Explorer when the English word mouse is typed as input

query.

which is present in SyntagNet16 (an autocomplete function will provide the user with search

suggestions), the interface will switch to the SyntagNet Explorer (Figure 3.4). The Syn-

tagNet Explorer displays a list of boxes, each containing a sense of the input word/MWE.

Senses in the list are ordered according to (i) PoS tag and (ii) sense frequency (in line with

BabelNet 4.0). On the left side (blue background), the boxes show information for word

senses, along with PoS tags, sense definitions and illustrations. By clicking on a sense

name, the corresponding BabelNet entry will open in a separate tab. On the right side

(white background), all the lexical-semantic items (collocates) linked with the corresponding

word senses via SyntagNet are listed. Further information about collocates is provided by

hovering the mouse over each item. Finally, clicking on a collocate will start a new query

with the selected word.
16At the time of writing, the SyntagNet Explorer is available for the English language only.
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System S2 S3 S07 S13 S15 All

Babelfy 67.0 63.5 51.6 66.4 70.3 65.5

UKB 68.8 66.1 53.0 68.8 70.3 67.3

SyntagRank 71.6 72.0 59.3 72.2 75.8 71.7

Table 3.8. F1 scores (%) for English all-words fine-grained WSD. Statistically-significant differences

against our results are underlined according to a χ2 test, p < 0.01. Results under “All” refer to

the concatenation of the English datasets.

System ITS13 ESS13 DES13 FRS13 ITS15 ESS15 All

Babelfy 66.6 69.5 69.4 56.9 - - -

SyntagRank 72.1 74.1 76.4 70.3 69.0 63.4 71.2

Table 3.9. F1 scores (%) for multilingual all-words fine-grained WSD. Statistically-significant

differences against our results are underlined according to a χ2 test, p < 0.01. Results under

“All” refer to the concatenation of the multilingual datasets.

3.2.4.2 RESTful API

SyntagRank can also be queried programmatically via RESTful API. The main difference

with the interface we described in Section 3.2.4 lies in the fact that our API allows the

user to input already pre-processed text, as well as performing standard, plain text queries.

Exhaustive details concerning the usage and parameters description for our RESTful API

can be found at http://syntagnet.org/api-documentation.

3.2.5 Evaluation

Similarly to the experiments we conducted with UKB and Syntagnet (see Section 3.1.3), we

tested the performance of SyntagRank on the five English all-words WSD evaluation datasets

standardized according to WordNet 3.0 in the framework of Raganato, Camacho-Collados,

and Navigli (2017), i.e. Senseval-2 (Edmonds and Cotton, 2001), Senseval-3 (Snyder and

Palmer, 2004), SemEval-2007 (Pradhan et al., 2007), SemEval-2013 (Navigli, Jurgens,

and Vannella, 2013), and SemEval-2015 (Moro and Navigli, 2015). This time, to appraise

SyntagRank in a multilingual setting, we used the German, Spanish, French and Italian

annotations available in the amended version of the SemEval-2013 and SemEval-2015

http://syntagnet.org/api-documentation
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evaluation datasets,17 which is accordant with the BabelNet API 4.0.1 graph and enables

testing on a larger number of instances than hitherto.

We report F1 scores for SyntagRank in the English (Table 3.8), and multilingual (Table

3.9) settings, along with providing comparisons to the best configurations of two distinct

graph-based disambiguation systems, namely, Babelfy (Moro, Raganato, and Navigli, 2014)

and UKB (Agirre, de Lacalle, and Soroa, 2014).

As can be seen, the performances attained by SyntagRank largely surpass those of its

competitors18 on both the English and multilingual settings. These results once more testify

to the significant impact that syntagmatic relations carry with respect to disambiguation

performance, particularly, when a PPR algorithm is employed to walk on a graph in which

nodes are not exclusively connected by means of paradigmatic relations.

3.3 Conclusion

In this Chapter we presented (a) SyntagNet, a new, wide-coverage, manually-curated re-

source of lexical-semantic combinations (see Table 3.10 for an excerpt of disambiguated

lexical combinations featured in the resource) and (b) SyntagRank, our state-of-the-art

knowledge-based system for multilingual Word Sense Disambiguation using syntagmatic

information, along with providing information concerning the use of SyntagRank’s Web

interface and RESTful API, accessible at http://syntagnet.org/ and http://

api.syntagnet.org, respectively.

Wrapping up this Chapter, the injection of syntagmatic knowledge into an LKB biased

towards paradigmatic relations has proven a key in enabling knowledge-based systems to

significantly boost their performances, to the point of rivaling the pre-BERT supervised

system on English, and surpassing the overall performance of multilingual systems by

several points. Despite still far from enabling the performances of their supervised coun-

terparts, we have also shown how additional syntagmatic relations could have the power to

make knowledge-based systems even more effective, eventually turning them into a viable

alternative to supervised systems; an alternative that will, at the same time, curb the need for

prohibitive and environmentally perilous infrastructures.

17Made available at https://github.com/SapienzaNLP/mwsd-datasets.
18For the purpose of these experiments, we set a threshold T = 0.4 for the PPR values of any given sense;

for values failing to reach the threshold, the most frequent sense (according to WordNet) was chosen instead as

the result of the disambiguation.

http://syntagnet.org/
http://api.syntagnet.org
http://api.syntagnet.org
https://github.com/SapienzaNLP/mwsd-datasets
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words abbeyn foundv
senses A monastery ruled by an abbot Set up or found

context He later founded the Abbey of Monte Cassino.

words ceilingn determinev
senses An upper limit on what is allowed Fix conclusively or authoritatively

context In order to determine the price ceiling on these products [...]

words floorn sean
senses The bottom surface of a body of water A division of an ocean

context Sunlight does not penetrate to the sea floor [...]

words gemn glitterv
senses A crystalline rock polished for jewelry Be shiny, as if wet

context The gem glittered nobly in the sunbeams.

words loadn elevatorn
senses Weight to be borne or conveyed Lifting device

context When the load is too much for an elevator to hold [...]

words mobn shoutv
senses A disorderly crowd of people Utter in a loud voice

context A Somali mob shouts anti-UN slogans [...]

words obeliskn raisev
senses A stone pillar Construct, build or erect

context Egyptians might have raised massive obelisks [...]

words reactionn provokev
senses A bodily process due to a stimulus Call forth (responses)

context The doctors are hoping to provoke a reaction.

words tean cupn
senses A beverage The quantity a cup will hold

context How many cups of tea have you been drinking lately?

words vibrationn causev
senses A shaky motion Give rise to

context A rotating component will cause vibration [...]

Table 3.10. An excerpt of 10 disambiguated lexical combinations taken from SyntagNet. Each

block shows: lemmas for the lexical combination along with part of speech indication in

subscript (words); shortened version of WordNet 3.0 glosses for the senses associated with

the lemmas in a given lexical combination (senses); and a sample context in which the

lexical-semantic combination occurs (context).
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Chapter 4

Recasting Word Sense
Disambiguation via Contextual
Definition Generation

In the previous Chapter, we provided evidence for the lack of structured and comprehensive

information making up existing LKBs, thus providing a means to effectively narrow the gap

between knowledge-based architectures and supervised systems which call for increasingly

prohibitive computational infrastructures (see also 2.3.1).

Nonetheless, despite being a milestone on its own, the work we described in Chapter

3, as much as any other work carried out by employing traditional knowledge bases such

as WordNet, is not exempt from the burden of having to deal with a strictly enumerative

approach and hence, to resort to finite inventories of discrete word senses (see 2.3.2).

In this Chapter, we show that it is unnecessary to embrace a discrete view of word

senses in order to automatically determine the contextual meaning of an ambiguous target in

context.

As a matter of fact, in our model, Generationary, we use an innovative span-based

encoding scheme, which we employ in order to fine-tune an English pre-trained Encoder-

Decoder system to generate definitions. Despite disposing of finite sense inventories, we

provide evidence that our model can be employed effectively: in fact, Generationary is able

to outdo the current state of the art in a generative task such as Definition Modeling while,

at the same time, reaching and surpassing the performances of state-of-the-art systems in

fully discriminative tasks such as Word Sense Disambiguation and Word-in-Context.

Moreover, we show how Generationary attains huge improvements on several zero-shot

test beds – including a new dataset of definitions for adjective-noun phrases – due to the
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exploitation of training data from multiple inventories at once.

The main contributions of our approach can be summarized as follows:

1. we propose the use of a single conditional generation architecture to perform English

DM, WSD and WiC;

2. while dropping the need of choosing from a predefined sense inventory, our model

achieves competitive to state-of-the-art results;

3. thanks to our encoding scheme, we can represent the definiendum as a span in the

context, thus enabling definition generation for arbitrary-sized phrases, and seamless

usage of BART (Lewis et al., 2019), a pre-trained Encoder-Decoder system;

4. we release a new evaluation dataset to rate glosses for adjective-noun phrases.

We envision many possible applications for Generationary, such as aiding text com-

prehension, especially for second-language learners, or extending the coverage of existing

dictionaries.

4.1 Related Work

The original goal of Definition Modeling (DM) was to generate a human-readable natural

language definition to make the content of static word embeddings explicit (Noraset et al.,

2017).1

In order to take into account polysemy, several approaches for DM later investigated the

usage of sense embeddings (Gadetsky, Yakubovskiy, and Vetrov, 2018; Chang et al., 2018;

Zhu et al., 2019), but none of these works actively exploited the actual contexts in which the

word senses appear. Others have made a fuller use of the sentence surrounding the target,

with the goal of explaining the meaning of a word or phrase, as embedded in its local context

(Ni and Wang, 2017; Mickus, Paperno, and Constant, 2019; Ishiwatari et al., 2019). However,

these approaches have never explicitly dealt with WSD, and showed limits with respect to

the marking of the target in the context encoder, preventing an effective exploitation of the

context, and making DM overly reliant on static embeddings or surface form information.

For example, in the model of Ni and Wang (2017), the encoder is unaware of the contextual

target, whereas Mickus, Paperno, and Constant (2019) use a marker embedding to represent

targets limited to single tokens.

Finally, Ishiwatari et al. (2019) replace the target with a placeholder, and the burden

of representing it is left to a character-level encoder and to static embeddings. This last
1With one single exception (Yang et al., 2020), DM has been so far concerned only with the English language.



4.2 Generationary 43

approach is interesting, in that it is the only one that can handle multi-word targets; how-

ever, it combines token embeddings via order-invariant sum, thus being suboptimal for

differentiating instances such as pet house and house pet.

Recent approaches have explored the use of large-scale pre-trained models to score

definitions with respect to a usage context. For example, Chang and Chen (2019) proposed

to recast DM as a definition ranking problem. A similar idea has been applied in WSD by

Huang et al. (2019), leading to state-of-the-art results. However, both of these approaches

fall back to the assumption of discrete sense boundaries, therefore being unable to define

targets outside of a predefined inventory.

With Generationary, by contrast, we are the first to use a single Encoder-Decoder model

to perform diverse lexical-semantic tasks such as DM, WSD and WiC. Moreover, we address

the issue of encoding the target in context by using a simple, yet effective encoding scheme,

which makes use of special tokens to mark the target span, producing a complete and joint

encoding of the context, without the need for other components. This allows the effective

usage of a pre-trained model, which we fine-tune to generate a gloss given the context.

4.2 Generationary

Due to its aptness at generating glosses for arbitrary-sized spans of text in context, Gen-

erationary represents a completely new approach to computational lexical semantics, one

that has a wider scope than its predecessors, and one that provides a unified method to

concurrently overcome the limits of both a generative task such as DM and those of a

discriminative task such as WSD.

With respect to DM, our full sequence-to-sequence framing of the task enables us to deal

with units having different compositional complexity, from single words, to compounds and

phrases. Thus, Generationary can gloss a definiendum that is not found in dictionaries, such

as starry sky, with the appropriate definiens, e.g.: ‘The sky as it appears at night, especially

when lit by stars’.

As regards WSD, instead, we are no longer bound by the long-standing limits of

predefined sense inventories. Thus, it is possible to give (i) a meaningful answer for words

that are not in the inventory, and (ii) one that fits the meaning and the granularity required

by a given context better than any sense in the inventory. Consider the following:

(3) (a) Why cannot we teach our children to read, write and reckon?

(b) Mark or trace on a surface.

(c) To be able to mark coherent letters.
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The target word in (3 a) is associated2 with the gold gloss (3 b) from WordNet (Fellbaum,

1998), the most used sense inventory in WSD. However, Generationary arguably provides a

better gloss (3 c). In what follows, we detail our approach.

4.2.1 Gloss Generation

In this work we address the task of mapping an occurrence of a target word or phrase t (in a

context c) to its meaning, by reducing it to that of generating a textual gloss g which defines

〈c, t〉. The target t is a span in c, i.e. a pair of indices 〈i, j〉 corresponding to the first and the

last token which make up the target in c.

Formally, we propose to apply the standard sequence-to-sequence conditional generation

formulation, in which the probability of a gloss, given a context-target pair, is computed by

factorising it auto-regressively:

P (g|c, t) =
|g|∏
k=1

P (gk|g0:k−1, c, t) (4.1)

where gk is the kth token of g and g0 is a special start token. By means of this, we can

readily perform contextual DM, as well as “static” DM, i.e. when the target encompasses

the whole context (t = 〈1, |c|〉). Additionally, as we will see, we can do WSD and WiC

by using either the token distribution of the model, or the glosses generated by standard

decoding (Section 4.2.2).

To learn the function in Eq. (4.1), we employ a recent Encoder-Decoder model, i.e.

BART (Lewis et al., 2019), which is pre-trained to reconstruct text spans on massive amounts

of data. The use of a pre-trained model is particularly important in our case, as successfully

generating a gloss for a wide range of different context-target pairs requires a model which

can wield vast amounts of semantic and encyclopedic knowledge. BART can be fine-tuned

to perform specific kinds of conditional generation by minimizing the cross-entropy loss on

new training input-output pairs.

In our approach we give as input to BART a 〈c, t〉 pair, and train to produce the corre-

sponding gold gloss g, with 〈c, t〉 and g being gathered from various sources (see Section

4.3.1). We devise a simple encoding scheme that allows us to make the model aware of the

target boundaries, without architectural modifications to BART. Particularly, we encode 〈c, t〉
pairs as sequences of subword tokens in which the boundaries of the t span in c are marked

by two special tokens, i.e. <define> and </define>. For example, the sentence I felt

like the fifth wheel, with the phrase fifth wheel as the target, will be encoded as I felt

like the <define> fifth wheel </define>. We fine-tune BART to generate
2According to the human annotators of the Senseval-2 WSD evaluation dataset (Edmonds and Cotton, 2001).
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the corresponding gloss g: (idiomatic, informal) Anything superfluous

or unnecessary.

4.2.2 Discriminative Sense Scoring

In this Section we introduce three distinct techniques by means of which Generationary

tackles discriminative tasks without additional training.

4.2.2.1 Gloss Probability Scoring

As we recall, the formulation that we use in Eq. (4.1) enables the model to give the

probability of some gloss given the context. Thus, if we have readily available glosses, given

the one-to-one sense-to-definition mapping available in WordNet 3.0, we can associate each

definition with a probability score by using the same teacher forcing input feeding strategy

that is used for training, i.e. using as input the next gold token instead of one sampled from

the next token distribution.

With Eq. (4.1) we are able to compute the probability of a certain gloss g given a pair

〈c, t〉. Thus, we can perform classification by picking the sense which is associated with the

gloss with the highest probability. Formally, we select:

ŝ = argmax
s∈St

P (G(s)|c, t) (4.2)

where St ⊂ S is the set of applicable senses for target t from the full inventory S, and

G : S → G is a function mapping senses to glosses (G, G, S and St are determined by the

reference dictionary).

To perform standard WSD with WordNet we can just map the sense to the definition

associated with its synset. Note that this approach is quite inefficient, as n = |{G(s)|s ∈ S}|
probabilities have to be computed – resulting in a quadratic complexity similar to gloss-based

discriminative approaches such as GlossBERT (Huang et al., 2019).

4.2.2.2 Gloss Similarity Scoring

In NLG there is a disconnect between model probability and model performance, the

latter often determined by measures such as BLEU (Papineni et al., 2002). In short, often

times a better search in the hypothesis space, i.e. the use of more beams, leads to worse

scores according to the evaluation metric, e.g. by effect of empty or uninformative outputs

(Stahlberg and Byrne, 2019), to which the model assigns relatively high probabilities.

The usage of model gloss probability does not take into account the definitions that

are actually generated. Thus, we adopt a simple best match approach where we compute
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similarity scores between the system-generated gloss and the glosses associated with the

candidates, and we predict the candidate with the highest similarity. We employ a cosine

similarity between the gloss vectors produced via the recently introduced Sentence-BERT

model (Reimers and Gurevych, 2019, SBERT) which, relying on contextual vectors rather

than string matches, counteracts the problem that valid glosses show a relatively high degree

of freedom with respect to the conditioning context, and select a predicted sense ŝ as follows:

ŝ = argmax
s∈St

sim(ĝ,G(s)) (4.3)

where ĝ is the most probable output found by beam-search decoding, and sim is the SBERT

similarity.

4.2.2.3 Gloss Similarity Scoring with MBRR

Using just the most probable sequence in the decoding process for the best match search is

suboptimal, as more probability mass might be cumulatively assigned to a cluster of very

similar outputs. To take this into account, we propose the use of a simple approach inspired

by Minimum Bayes Risk Reranking (Kumar and Byrne, 2004, MBRR), which considers the

mutual (dis)similarity within the set Ĝ of k generated outputs decoded with beam search.

This is done by rescoring each output as the sum of the dissimilarities over all k outputs,

weighted by their conditional probability, as follows:

ĝ = argmin
ĝi∈Ĝ

∑
ĝj∈Ĝ

(1− sim(ĝi, ĝj))P (ĝj |c, t) (4.4)

The new prediction ĝ is then plugged into Eq. (4.3) as in simple similarity-based scoring.

4.3 Datasets

4.3.1 Dictionary Gloss Datasets

We now move on to describe the datasets which we use to train Generationary models by

fine-tuning BART. Each dataset includes 〈c, t, g〉 triples, which are used as our input and

output for training.

CHA (Chang and Chen, 2019) is an online dataset3 of examples and definitions from

oxforddictionaries.com.

It comes with two settings, each with its own train/dev/test splits: in the Seen setting

(CHAS), definitions in the training set are also present in the test set, while the Unseen

setting (CHAU ) has a zero-shot test of lemmas not featured in the training set.
3miulab.myDS.me:5001/sharing/lWPBRc8hG

http://oxforddictionaries.com
http://miulab.myDS.me:5001/sharing/lWPBRc8hG
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instances unique glosses
dataset train dev test train dev test

CHAS 555,695 78,550 151,306 78,105 32,953 37,400
CHAU 530,374 70,401 15,959 73,104 29,540 3958
SEM 333,633 - - 116,698 - -

UNI 1,832,302 - - 947,524 - -

Table 4.1. Training instances and number of unique glosses in the datasets used.

SEM is a dataset built by exploiting the SemCor corpus (Miller et al., 1993) – which is

manually tagged with WordNet senses – to associate sentence-level contexts with definitions.

We filtered out NER-like sense annotations (e.g. those mapping proper names such as Frank

Lloyd Wright to the general sense of person). Moreover, to improve coverage, since not

all WordNet senses appear in SemCor, we used synonymy information to build additional

contexts, e.g. <define> separate, part, split </define>→ go one’s

own way; move apart.

UNI is the concatenation of the train splits of SEM and CHA, plus the following: (i) a

cleaned-up January 2020 dump of Wiktionary, from which circular definitions (e.g. starting

with synonym of ) were filtered out, and (ii) the training split containing data from the

GNU Collaborative International Dictionary of English (GCIDE), included in the dataset of

Noraset et al. (2017), which features only “static” pairs, in which the context coincides with

the word to be defined.

We have used CHA and SEM as they were employed by state-of-the-art approaches to

DM (Chang and Chen, 2019) and WSD (Huang et al., 2019). With UNI, instead, we have

brought together diverse sense inventories to create a dataset that is less dependent on the

idiosyncrasies of each of its sources. We report data in Table 4.1.

4.3.2 The Hei++ Evaluation Dataset

Free phrases (e.g. exotic cuisine) are not commonly encountered in traditional dictionaries.

Considering how they can represent a key case of items which are not featured in standard

training sets, along with the fact that no dataset to test the quality of definition generation

on such items currently exists, we devised Hei++: a dataset which associates human-made

definitions with adjective-noun phrases.

With Hei++ we can assess Generationary’s ability to generate glosses, in a zero-shot
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setting, for items which are not featured in the training set.

As a first step in building Hei++, we retrieved the test split of the HeiPLAS dataset

(Hartung, 2016),4 which we chose as our starting point since it contains commonly used

adjective-noun phrases. After removing duplicates and discarding ill-formed phrases, we

asked an expert lexicographer to write a single definition for each adjective-noun pair,

choosing the most salient sense (according to the intuition of the lexicographer) in the event

of an ambiguous phrase (e.g. new car, a phrase that can refer both to a newly manufactured

car, or to a recently bought car). At the end of the annotation process, we obtained a dataset

made up of 713 adjective-noun phrases with their definitions to be used as a gold standard.

4.4 Quantitative Experiments

In what follows, we perform a threefold automatic evaluation to test the strengths of

Generationary in different settings.

On the one hand, we assess its ability to produce suitable definitions by testing the

generation quality on the DM setting (Section 4.4.1). On the other, we aim to further

appraise how well the generated outputs describe the contextual meaning, by evaluating the

performance they bring about on the discriminative benchmarks of WSD (Section 4.4.2)

and WiC (Section 4.4.3). Additionally, we report a full description of hyperparameters in

Section 4.4.4.

4.4.1 Definition Modeling

In this experiment we use different NLG measures to automatically assess how well gener-

ated definitions match gold glosses.

We evaluate on the Seen (CHAS) and Unseen (CHAU ) test splits of CHA, which is

the largest contextual DM benchmark released so far. Moreover, we report results on our

Hei++ (HEI) dataset of adjective-noun phrases. We did not include results on the datasets

of Noraset et al. (2017) and Gadetsky, Yakubovskiy, and Vetrov (2018), as the first only

includes targets with no surrounding context, and the second is largely included in CHA.5

4www.cl.uni-heidelberg.de/~hartung/data
5Results on these datasets are reported in Appendix A.1.

http://www.cl.uni-heidelberg.de/~hartung/data
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4.4.1.1 Systems

For each evaluation dataset D we test two Generationary models: one trained on the

corresponding train split (Gen-D), and one trained on UNI (Gen-UNI).6

We compare against (i) a random baseline obtained by predicting, for each test item, a

random definition taken from the same test set; (ii) the model of Ishiwatari et al. (2019),

which we have re-trained on the same data as Generationary (Ishiwatari-D), and (iii) the

state-of-the-art approach of Chang and Chen (2019) (Chang).

On HEI, which has no training split, we only evaluate Gen-UNI and the random baseline,

since Ishiwatari-UNI generates strings consisting of mostly unknown word placeholders

(<unk>), and Chang and Chen (2019) cannot handle multi-word targets.

4.4.1.2 Measures

Previous approaches have employed both perplexity (PPL) and string-matching measures

(e.g. BLEU) for scoring DM systems. PPL is very appropriate as in DM, there are many

possible “good” answers.7 PPL, however, produces a score just on the basis of a pre-existing

gold definition, by collecting teacher forcing probabilities, without taking into account any

actual output generated through beam-search decoding, thus not assessing the quality of the

generation.

To evaluate the latter, BLEU and ROUGE-L (Lin, 2004) are also reported. Note, however,

that these two measures are based on simple string matches which, in many cases, are not

good indicators of output quality. To counteract this problem, we also report results with

METEOR (Banerjee and Lavie, 2005) – which uses stemming and WordNet synonyms –

and BERTScore (Zhang et al., 2019), which uses vector-based contextual similarities.8

Finally, to present a complete comparison against the ranking-based approach of Chang

and Chen (2019), we report results (precision@k) on their retrieval task of recovering the

correct definition, for the target in context, from the whole inventory of 79,030 unique

glosses in their dataset. We rank definitions by applying the MBRR plus cosine similarity

strategy described in Section 4.2.2.3.

4.4.1.3 Results

As shown in Table 4.2, Generationary models outperform competitors in every setting.

On CHAS , our specialized model (Gen-CHAS) shows much better results than Gen-UNI,
6To ensure a fair comparison, when evaluating on the Unseen setting of CHA, we have removed lemmas

appearing in the CHAU test set from the UNI training set.
7See Appendix A.2 for details on perplexity computation.
8See Appendix A.3 for configuration details.
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model ppl↓ BL↑ R-L↑ MT↑ BS↑

C
H

A
S

Random - 0.2 10.8 3.2 68.1
Chang - 74.7 78.3 - -

Ishiwatari-CHAS* - 6.2 28.2 11.1 74.2
Ishiwatari-UNI* - 3.0 23.2 8.2 72.6
Gen-CHAS 1.2 76.2 78.9 54.8 93.0
Gen-UNI 1.4 66.9 72.0 47.0 90.7

C
H

A
U

Random - 0.3 11.0 3.2 68.2
Chang - 7.1 19.3 - -

Ishiwatari-CHAU* - 2.1 19.9 7.1 71.7
Ishiwatari-UNI* - 2.1 19.7 6.7 71.5
Gen-CHAU 20.3 8.1 28.7 12.7 76.7
Gen-UNI 15.4 8.8 29.4 13.5 76.8

H
E

I Random - 1.6 12.7 0.4 73.4
Gen-UNI 16.0 6.3 26.3 15.1 78.9

Table 4.2. DM evaluation results. Columns: perplexity, BLEU, Rouge-L, METEOR, BERTScore

(ppl/BL/R-L/MT/BS). Row groups are mutually comparable (bold = best). ↑/↓: higher/lower is

better. *: re-trained.

because NLG measures give high scores to glosses which are lexically similar to the gold,

while multi-inventory training will instead expose the model to many other, differently

formulated, but equally valid definitions. Note, moreover, that our Gen-CHAS model

outperforms both Ishiwatari et al. (2019) and Chang and Chen (2019), even though the latter,

being a ranking model, is obviously at an advantage, since it gets a perfect score when it

ranks the gold definition first.

In CHAU we observe that the Gen-UNI model reaches higher performances than Gen-

CHAU , indicating that, when ‘overfitting’ on the inventory is factored out, multi-inventory

training enables the model to generalize better on a zero-shot setting. Furthermore, figures

for HEI are in the same ballpark as those on CHAU , demonstrating that Generationary can

easily deal, not only with unseen lemmas, but also with entirely different kinds of target.

Additionally, we report the results of the precision@k evaluation in Table 4.3 when

macro-averaging on lemmas (left) and senses (right). Figures on the two different splits of

CHA show very different trends.

On the CHAS setting, in which the definitions in the test set are also in the training set,

the base model from Chang and Chen (2019) achieves, in most cases, the highest recovery
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model
P@k (lemmas) P@k (senses)
1 5 10 1 5 10

C
H

A
S

Chang (base) 74.8 83.3 85.5 63.3 74.0 77.1
Chang (large) 73.9 82.6 84.9 62.4 73.2 76.3
Gen-CHAS 73.0 77.7 79.4 67.9 72.9 74.7
Gen-UNI 63.0 70.2 72.7 55.5 63.1 65.8

C
H

A
U

Chang (base) 3.3 9.6 14.4 2.3 7.4 11.4
Chang (large) 3.5 10.5 15.6 2.5 8.2 12.4
Gen-CHAU 7.8 19.9 25.5 6.5 16.8 22.0
Gen-UNI 9.3 21.3 27.7 7.4 18.0 23.8

Table 4.3. Macro precision@k (lemmas and senses) on the retrieval task of Chang and Chen (2019).

Row groups are mutually comparable (bold = best).

model S2 S3 S7 S13 S15 ALL ALL− 0-shot N V A R

LMMS2348 76.3 75.6 68.1 75.1 77.0 75.4 75.9* 66.3* 78.0* 64.0* 80.7* 83.5*

GlossBERT 77.7 75.9 72.1 76.8 79.3 77.0 77.2* 68.7* 79.7* 66.5* 79.3* 85.5*

Gen-SEM (Prob.) 76.9 73.7 69.2 74.6 78.2 75.3 75.7 60.6 77.5 65.0 78.4 87.6
Gen-SEM (Sim.) 77.5 76.4 71.6 76.8 77.4 76.7 77.0 63.3 80.1 64.8 79.1 85.0
Gen-SEM (MBRR) 78.0 75.4 71.9 77.0 77.6 76.7 77.0 65.0 79.9 64.8 79.2 86.4
Gen-UNI (MBRR) 77.8 73.7 68.8 78.3 77.6 76.3 76.8 73.0 79.8 63.3 80.1 84.7

Table 4.4. Results on the WSD evaluation. Row groups: (1) previous approaches; (2) Generationary.

Columns: datasets in the evaluation framework (S2 to S15), ALL w/ and w/o the dev set

(ALL/ALL−), zero-shot set (0-shot), and results by PoS on ALL (N/V/A/R). F1 is reported.

Bold: best. *: re-computed with the original code.

rate. However, with k = 1, which is the most realistic case, Gen-CHAS outperforms the

competitor by 4.6 points when macro-averaging on senses, i.e. items with the same gold

definition.

On the more challenging zero-shot CHAU setting, both Generationary models strongly

outperform Chang (large), more than doubling the performance on k = 1 and showing an

improvement of more than 75% on k = 10. Gen-UNI, that was underperforming Gen-CHAS

in the Seen setting, now achieves better results across the board, since it can exploit the

supervision of a wide array of different glosses from multiple inventories.
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4.4.2 WSD Evaluation

Even though Generationary drops the need for a fixed sense inventory, we still want to assess

its capabilities in a fully-discriminative setting such as that of WSD. The reason is simple:

we want to show how dropping strict sense boundaries does not undermine performances in

a traditional “pick-one-among-many” type of task either.

We test on the five datasets collected in the evaluation framework of Raganato, Camacho-

Collados, and Navigli (2017), namely: Senseval-2 (Edmonds and Cotton, 2001), Senseval-3

(Snyder and Palmer, 2004), SemEval-2007 (Pradhan et al., 2007), SemEval-2013 (Navigli,

Jurgens, and Vannella, 2013), SemEval-2015 (Moro and Navigli, 2015), which are annotated

with WordNet 3.0 senses.

We denote with ALL and ALL− the concatenation of all evaluation datasets, including

or excluding, respectively, SemEval-2007, which is our development set for this experiment.

Moreover, we test on the subset of ALL− containing instances whose lemmas are not

covered in SemCor (0-shot).

4.4.2.1 Systems

To choose a possible sense from WordNet and perform WSD, we evaluate the techniques

presented in Section 4.2.2, i.e. probability scoring (Prob.), simple similarity scoring (Sim.),

and similarity scoring with MBRR.

We evaluate our Gen-SEM, which is trained on examples specifically tagged according

to the WordNet inventory, and Gen-UNI, which includes definitions from many different in-

ventories. We compare against recent WSD approaches which make use of gloss knowledge,

i.e. LMMS (Loureiro and Jorge, 2019) and the state-of-the-art approach of GlossBERT

(Huang et al., 2019).

From a technical point of view, LMMS (Loureiro and Jorge, 2019) creates sense-level

embeddings covering the whole WordNet inventory, so as to enable a simple Nearest

Neighbors model to perform state-of-the-art disambiguation. GlossBERT (Huang et al.,

2019), on the other hand, proposes the construction of context-gloss pairs to recast WSD

as a sentence-pair classification task. To do so, the authors fine-tune the pre-trained BERT

(Devlin et al., 2019) model with SemCor, in an attempt to have a supervised neural system

exploit gloss knowledge at best.

As regards LMMS, we include the best model reported in the original paper for our

experimental setup, i.e. LMMS2348 (BERT), and retrieve all the reproduction materials

from https://github.com/danlou/LMMS. The model we employ features the

concatenation of (i) BERT contextual embeddings created from SemCor, (ii) dictionary

https://github.com/danlou/LMMS
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embeddings for all word senses in WordNet, and (iii) fastText embeddings (Bojanowski

et al., 2017), for an overall figure of 2, 348 embedding dimensions.

With respect to our experimental setup of GlossBERT, we use its best configuration,

namely GlossBERT(Sent-CLS-WS), which uses context-gloss pairs with weak supervision

as input and a classification label which highlights the target word. We implement the

original system, as available at https://github.com/HSLCY/GlossBERT.

4.4.2.2 Results

We report the results of the WSD evaluation in Table 4.4.

The MBRR scoring strategy proves to be the most versatile, with Gen-SEM (MBRR)

achieving a higher F1 than Gen-SEM (Prob.) on almost every dataset, and outperforming

Gen-SEM (Sim.) on the 0-shot set. As both Sim. and MBRR outscore Prob., it is clear that

generating a gloss and ranking candidates with similarity is a better strategy than directly

ranking with model probability, which leaves room for further improvements as better

similarity measures are developed.

On another note, Gen-SEM (MBRR) achieves performances which are overall compara-

ble with those of the state of the art (GlossBERT) without having been explicitly trained

to perform WSD. Compared to Gen-SEM (MBRR), Gen-UNI (MBRR) sacrifices 0.4 and

0.2 points on, respectively, ALL and ALL−, but obtains 8 points more on the zero-shot

set, also improving over GlossBERT by 4.3 points. This demonstrates that, when using

Generationary with data from multiple inventories, (i) performances remain in the same

ballpark as those of a state-of-the-art system, and (ii) much improved generalizability is

achieved, as shown by the state-of-the-art results on the zero-shot setting.

4.4.3 Word-in-Context

In the task of Word-in-Context (WiC) Pilehvar and Camacho-Collados (2019), predefined

sense inventories are not required and meaning identification is reduced to a binary problem

in which, given two contexts, both featuring an occurrence of the same lemma, a model

has to predict whether the two targets have the same meaning. We compare against Chang

and Chen (2019), which is the only DM approach reporting results for WiC, following their

setting in which no task-specific training is performed and the training set for the task is

used for testing. Results are reported for both Gen-CHAS , which is trained on the same data

as Chang and Chen (2019), and Gen-UNI.9

9In this experiment we have excluded Wiktionary, which was used to build the WiC dataset, from the UNI

training set.

https://github.com/HSLCY/GlossBERT
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To perform the task, for each pair in the WiC dataset we generate two sets, γ and γ′,

each of 10 glosses, for the two respective sentences in the pair. Then, for each generated

gloss ĝ ∈ γ, we compute the score zĝ as the mean SBERT similarity between ĝ and the 10
generated glosses in γ′. Analogously, we compute zĝ′ as the mean similarity between ĝ′ ∈ γ′

and the glosses in γ. For each gloss g we normalize zg by subtracting an approximate mean

similarity of g with random glosses, computed as the mean similarity between g and all

other unrelated glosses in the batch. If the mean score (
∑
ĝ∈γ zĝ +

∑
ĝ′∈γ′ zĝ′)/20 exceeds

a threshold t (tuned on the dev set), we predict that a WiC pair shares the same sense.

Gen-CHAS , with an accuracy of 69.2, outperforms Chang and Chen (2019), which

achieves 68.6, demonstrating the strength of our approach in this setting. Moreover, Gen-

UNI, which attains a result of 71.1, outscores both Gen-CHAS and the competitor, once

again bearing witness to the versatility of training on multiple inventories.

4.4.4 Reproducibility Details

To train our models we employ the fairseq library. Generationary has the same number

of parameters as BART Lewis et al. (2019), i.e. ca. 458M. For fine-tuning, we use the same

hyperparameters used in Lewis et al. (2019) for summarization,10 except that:

• the learning rate is set to 5× 10−5 on the basis of preliminary experiments;

• due to memory concerns, we feed the input in batches of 1024 tokens, updating every

16 iterations;

• we use inverse square root learning rate scheduling, which does not require to set a

maximum number of iterations a priori;

• we double the number of warmup steps to 1000.

Training is performed for at most 50 epochs. We employ a single NVIDIA GeForce RTX

2080 Ti GPU to perform all the reported experiments, with average runtimes per epoch of

BART fine-tuning ranging from ca. 50 minutes (Gen-SEM) to >120 minutes (Gen-UNI).

On the DM task, we evaluate on the best epoch, i.e. the one with the lowest cross-entropy

loss on the dev set, with no hyperparameter tuning. On the WSD task, instead, we perform

minimal hyperparameter tuning, with search trials just on beam size (testing with values of

1, 10, 25, and 50), choosing as the best configuration the one with the highest F1 on our dev

set, SemEval-2007; with simple similarity scoring, the best Gen-SEM has a beam size of 10,
10https://github.com/pytorch/fairseq/blob/master/examples/bart/README.

summarization.md

https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
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while, with MBRR similarity scoring, the best Gen-SEM had a beam size of 25. We have

used only MBRR with Gen-UNI, with a beam size of 10, resulting in the best performance

on the development set. On the WiC task we have only performed tuning of the threshold on

the dev set, by trying every value in range between the lowest and the highest z score, with

a minimum step of 0.025. We compute similarities in batches of 125 pairs.

For training and prediction of the models of Ishiwatari et al. (2019), we use the code

provided by the authors.11 We use the same hyperparameters, except that we increase the

vocabulary size to 39,000, which results in much improved performances on our benchmarks.

4.5 Qualitative Experiment

Given that the ability of Generationary to produce fluent and meaningful definitions is its

key asset, in addition to the automatic evaluation reported in Section 4.4, we devised a

qualitative experiment on two distinct datasets we constructed.

While previous experiments shed light upon the quality of Generationary in comparison

with other automatic systems, now, we employ human annotators to compare definitions

produced with our approach against glosses written by human lexicographers. The datasets

that we use in this experiment are (i) our Hei++ dataset of definitions for adjective-nouns

phrases (Section 4.3.2) and (ii) SamplEval, i.e. a sample of 1000 random instances made up

of 200 items12 for each of the five WSD datasets included in ALL (see Section 4.4.2), with

at most one instance per sense.

With Hei++ we assess the ability of Generationary to accurately gloss complex expres-

sions, such as free phrases (e.g. wrong medicine or hot forehead), that are rarely covered

by traditional dictionaries. With SamplEval, instead, we test whether generated glosses can

improve over gold definitions associated with gold senses in WordNet.

4.5.1 Annotators and Annotation Scheme

For each context-target pair in Hei++ and SamplEval we have two definitions: a gold one,

written by a lexicographer (in Table 4.5 we provide an excerpt of 20 random entries sampled

from the Hei++ dataset), and one generated by Gen-UNI, which is not tied to any specific

inventory and has proven the most versatile model across tasks.

We hired three annotators with Master’s Degree in Linguistics and effective operational

proficiency in English and, in a similar fashion to Erk and McCarthy (2009), we asked them

to assign a graded value to the definitions based on their pertinence to describe the target
11https://github.com/shonosuke/ishiwatari-naacl2019
12We did not sample instances annotated with many senses.

https://github.com/shonosuke/ishiwatari-naacl2019
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phrase definition

small-time actor An actor of minor importance.

implicit anger Anger that remains unexpressed.

domestic animal An animal that is raised or adapted to live at home.

powerful argument An argument that is very convincing.

narrow bridge A bridge with a narrow deck.

new car A recently bought car.

abnormal circumstance A circumstance that deviates from what is ordinary.

noble deed An act that is admirable and motivated by compassion.

powerful drug A drug that has a powerful effect.

short flight A flight that reaches its destination in a brief time.

big group A group comprising a large number of members.

good joke A joke that is considered funny and witty.

short month Any month containing less than 31 calendar days.

natural phenomenon Any phenomenon brought about by a natural cause.

free port A port in which goods are exempt from customs duty.

formal requirement A requirement set out by prescribed norms.

empty seat An available seat that can be occupied (e.g. in a theatre).

hot stove A stove with fuel burning, dangerous to touch.

adequate training Training that achieves its intended purpose.

new year The year to come.

Table 4.5. Random sample of 20 entries collected from Hei++. Columns, left to right: adjective-noun

phrase, as originally featured in HeiPLAS (Hartung, 2016); gold definition provided by our

lexicographer.

t in c, according to a five-level Likert scale. In Table 4.6 we show one of the annotation

examples that were provided to the annotators to be used as interpretation guidelines.

Definitions for each sentence were presented in shuffled order. The ITA was substantial,

with an average pairwise Cohen’s κ of 0.69 (SamplEval) and 0.67 (Hei++).

4.5.2 Results

As can be seen in Table 4.7, the quality of Generationary glosses in the SamplEval dataset

is comparable to those drawn from WordNet. Note that, although it would be expected
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Was he going to be saddled with a creep for a bar-buddy?

1
Wrong gloss. May refer to a homonym of the target.

A heating element in an electric fire.

2
Wrong gloss. Captures the domain of the target.

A counter where you can obtain food or drink.

3
Correct gloss. Utterly vague and generic.

A person with whom you are acquainted.

4
Correct gloss. Fits the context, but misses some details.

A close friend who accompanies his buddies in their activities.

5
Correct gloss. Perfectly describes the target in its context.

A friend who you frequent bars with.

Table 4.6. Annotation guidelines excerpt. Rows: Likert score, explanation and example definition

for target.

dataset gold Gen. ≥
Hei++ 4.43 3.58 29.9

SamplEval 3.75 3.62 51.3

Table 4.7. Qualitative evaluation results. Columns: dataset, average Likert for gold and Generation-

ary, % of Generationary scores equal or better than gold (≥).

for gold annotations to come close to the top of the scale, this is not the case, as they

received an average score of 3.75 out of 5, demonstrating the suboptimal nature of “ready-

made” meaning distinctions. We report analogous scores on the Hei++ dataset. The gap

with respect to gold definitions here is wider, probably because (i) Generationary is not

specifically trained on complex expressions and (ii) the gold score is higher since phrases

are less ambiguous than single words.

Interestingly, the annotators rated Generationary glosses at least as high as their gold

counterparts on 51.3% and on 29.9% of the total cases on SamplEval and Hei++, respec-

tively; a result that provides evidence for the reliability of Generationary definitions as valid

alternatives to glosses taken from established inventories of discrete word senses.
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4.6 Generation Examples

In Table 4.8 we show a sample of definitions generated via our Gen-UNI model for various

spans in context.13 As can be seen, the glosses ĝ1 and ĝ2 (extracted from SamplEval and

Hei++, respectively) demonstrate that Generationary can indeed provide better, more specific

definitions than gold standard ones.

The following reported examples show the strength of our model on contexts which

do not resemble those it is trained on: Generationary is proficient at (i) handling fixed or

semi-fixed idioms of different lengths (ĝ3, ĝ4) and (ii) defining non-conventional words and

phrases (ĝ5, ĝ6); interestingly, Generationary is also able to (iii) provide high-level expla-

nations for whole figurative contexts (ĝ7, ĝ8), which goes well beyond what is commonly

referred to as glossing. This might result in interesting applications beyond the scope of

this work, e.g. for paraphrase generation and metaphor interpretation (Rai and Chakraverty,

2020).

c1 [. . . ] I scooted them into the dog run.

ĝ1 Cause to move along by pushing.

g1 Run or move very quickly or hastily.

c2 Exotic cuisine.

ĝ2 A style of cooking that is out of the ordinary and unusual (as if from another country).

g2 Cuisine involving unfamiliar foods.

c3 He was never the same after the accident.

ĝ3 Indicates that a person has lost the good qualities that were present before the accident.

c4 Sam is in a better place now.

ĝ4 A phrase used to express that one has learned about another’s death.

c5 Yesterday I had to undergo a beardectomy.

ĝ5 The surgical removal of the beard.

c6 You’ve got a hard coconut to smash here, Dr. Yang!

ĝ6 Something difficult to deal with.

c7 The mind is haunted by the ghosts of the past.

ĝ7 People’s memories of the past are still present in their mind, even after they have ceased to exist.

c8 The fault, dear Brutus, is not in our stars, but in ourselves.

ĝ8 The responsibility for a problem lies with the people who cannot see it themselves.

Table 4.8. Sample of Generationary definitions (ĝ) for several targets in context (c). g: gold

definition.

13See Appendix A.4 for further samples of generated glosses.
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4.7 Error Analysis

To have a broader picture of the quality of the outputs produced by means of Generation-

ary, we perform behavioural testing for our Gen-UNI model, in the spirit of Ribeiro et al.

(2020). As a result, we can identify two main trends behind failures to generate an appro-

priate contextual definition, which we refer to as disambiguation errors and hallucinations,

respectively.

Disambiguation errors When the model predicts a perfectly good definition for the target,

but one that fits another common context of occurrence, a disambiguation error arises. For

instance, given the 〈c, t〉 pair in (4 a), with the word pupil as the target, the model fails to

identify the “aperture in the iris of the eye” sense, and instead produces an output gloss

which is compatible with the meaning of the homograph (4 b):

(4) (a) The teacher stared into the pupils of her pupil.

(b) A person receiving instruction, especially in a school.

Hallucinations Other errors stem from the fact that the model can only rely on the

knowledge about possible definienda that it is able to store in the parameters during the

pre-training and training stages. Thus, if the contextual knowledge is not sufficient to

extrapolate a definition, the model – which is required to always generate an output – will

hallucinate an answer on the basis of contextual clues, incurring the risk of introducing

non-factualities. This particularly concerns named entities and domain-specific concepts,

but the clearest examples can be seen with targets that do not correspond to any existing,

fictional or non-fictional entity. For example, given the input sentence (5):

(5) Squeaky McDuck wasn’t happy about it,

the model outputs the following:

(6) The title character in the “Squeaky Squeakety-Squeakiness” cartoon series.

In this case, the model picked the cue of the cartoonish Squeaky McDuck character,

and hallucinated the name of a plausible cartoon series for it. Note that neither Squeaky

McDuck nor the cartoon series actually exist.

4.8 Conclusion

With this Chapter, we showed that generating a definition can be a viable alternative to

the traditional use of sense inventories in computational lexical semantics, and one that
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better reflects the non-discrete nature of word meaning. We introduced Generationary, an

approach to automatic definition generation which, thanks to a flexible encoding scheme,

can (i) encode targets of arbitrary length, and (ii) exploit the vast amount of knowledge

encoded in the BART pre-trained Encoder-Decode, through fine-tuning.

From two points of view, Generationary represents a unified approach: first, it exploits

multiple inventories at once, hence going beyond the quirks of each one; second, it is

able to tackle both generative (Definition Modeling) and discriminative tasks (Word Sense

Disambiguation and Word-in-Context), obtaining competitive or state-of-the-art results, with

particularly strong performances on zero-shot settings. Finally, human evaluation showed

that Generationary is often able to provide a definition that is on a par with or better than

one written by a lexicographer.

We make the code needed to reproduce the experiments, along with a new evalu-

ation dataset of definitions for adjective-noun phrases (Hei++), available at http://

generationary.org.

http://generationary.org
http://generationary.org
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Chapter 5

Dissecting the State of the Art

Since the very beginning of this dissertation, we aimed to provide answers to a few, focused,

and often overlooked problems affecting Word Sense Disambiguation. First, in Chapter

3, we provided evidence for the benefits of injecting syntagmatic knowledge into existing

LKBs, and secondly, in Chapter 4, we introduced a revolutionary way of recasting WSD, so

as to get rid of the constraints imposed by finite sense inventories. Moving forward, one of

the three questions we posed in Section 2.3 still remains unanswered: “can state-of-the-art

systems for WSD actually disambiguate?”

In what follows, we will answer this question and, to this end, we will start by briefly

reviewing the already available literature. In fact, during recent years, a few Natural

Language Processing tasks have apparently achieved and surpassed the estimated human

performance to the point of being regarded as solved (Rajpurkar et al., 2016; Wang et al.,

2019). Even Word Sense Disambiguation, the task of automatically selecting the proper

sense for an ambiguous word in context (Navigli, 2009), has seen brand-new systems achieve

F1 scores near or above 80 (Blevins and Zettlemoyer, 2020; Bevilacqua and Navigli, 2020),

a value long considered to be a hard ceiling in being representative of the agreement between

human annotators (Edmonds and Kilgarriff, 2002; Navigli, Litkowski, and Hargraves, 2007;

Palmer, Dang, and Fellbaum, 2007).

But what does it really mean to match or even surpass human performance? We could

legitimately expect systems capable of carrying out a task to the extent of being indistin-

guishable from its human counterparts, but as soon as the real capabilities of such systems

are investigated beyond a mere accuracy score, their shortcomings become immediately

apparent (Zhou et al., 2020). Studies criticizing the use of sheer accuracy figures as the only

possible measures to evaluate system performance are increasing in the literature (Ribeiro,

Singh, and Guestrin, 2016; Belinkov and Bisk, 2018; Ribeiro et al., 2020; Card et al., 2020),

and the picture that emerges is anything but that of “solved” tasks (Rajpurkar, Jia, and Liang,
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2018). In actual fact, evidence suggests that systems are not able to perform human-like

generalization at all, but are simply getting better at overfitting the training data by learning

surface patterns devoid of semantics (Weissenborn, Wiese, and Seiffe, 2017; Bender and

Koller, 2020).

The work introduced in this Chapter somehow follows this trail and acts as an analysis

tool in demonstrating how traditional evaluation measures such as the F1 score in the

context of WSD could be misleading factors that fail to reflect the actual capabilities of a

system and, therefore, should not be simply taken at face value. Particularly, we begin by

selecting an heterogeneous set of systems for English WSD that employ sense embeddings

(Loureiro and Jorge, 2019), neural-based classification models (Huang et al., 2019; Blevins

and Zettlemoyer, 2020; Bevilacqua and Navigli, 2020), graph-based (Scozzafava et al.,

2020) or generative approaches (Bevilacqua, Maru, and Navigli, 2020) to attain current

state-of-the-art results in terms of F1 score. We then proceed to test these systems by

means of a series of ablation experiments conducted on traditional Senseval (Edmonds

and Cotton, 2001; Snyder and Palmer, 2004) and SemEval test sets (Pradhan et al., 2007;

Navigli, Jurgens, and Vannella, 2013; Moro and Navigli, 2015) and on their concatenation

(Raganato, Camacho-Collados, and Navigli, 2017), as well as identifying and analyzing

qualitatively the set of instances that none of the aforementioned systems can disambiguate:

an impressive 7.4% quota out of the whole set of gold annotations.

As a result of this analysis, we highlight three main reasons why state-of-the-art per-

formance does not coincide with actual disambiguation capability. On the one hand, we

provide sound empirical support to the literature claiming that (i) all systems, regardless

of the approach used, suffer from a critical bias towards the most frequent word senses

(Calvo and Gelbukh, 2015; Postma et al., 2016; Raganato, Camacho-Collados, and Navigli,

2017) and – in the case of trained models – towards the instances featured in the training

set (Loureiro et al., 2020). On the other hand, our analysis evidences how (ii) different

annotation guidelines for tagging “gold standards”, along with the idiosyncratic understand-

ing of word meanings by different annotators (Kilgarriff, 2007; Passonneau et al., 2010),

can be root causes of numerous disambiguation errors on the part of automatic systems.

Finally, harming current performance figures, are (iii) all the errors inherent in the commonly

employed test sets, ranging from disambiguation mistakes committed by the annotators, up

to faulty PoS-tag labels and lack of a proper number of multiple answers in the gold test

sets.

Moreover, as a means to further validate our findings, and in order to prevent our analyses

from reflecting artifacts which might only belong to already existing datasets, we created a

fresh test set: “42D” (pron. [for·ti·tude]).
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42D is a manually-annotated evaluation dataset for English WSD, encompassing the

wide range of 42 domains covered in BabelNet 4.0 (Navigli and Ponzetto, 2012) with labeled

paragraphs taken from the British National Corpus (Leech, 1992, BNC).1 The purpose of

42D is to act as a very difficult testing ground, a so-called challenge set (Belinkov and Glass,

2019), representative of the cases that put the automatic disambiguation systems to the most

severe test. For this reason, none of the word senses appearing in 42D – which have been

assigned according to the WordNet 3.0 inventory (Fellbaum, 1998) – are featured in the

most-widely employed training set for WSD, i.e. SemCor (Miller et al., 1993), nor do they

appear as first senses according to the distribution of WordNet itself, which ranks senses

according to their frequency counts within sense-tagged corpora.

System performance on 42D shows comparable trends with the ablation studies con-

ducted on traditional evaluation sets, thus supplying further evidence concerning the actual

and alarming impact of biases towards training data and sense skewness in WSD.

42D represents a fresh test-bed, and the first that will be made available to the research

community after a five-year hiatus since SemEval-2015 (Moro and Navigli, 2015).2 Despite

being an evaluation exercise based on the use of the F1 score, 42D portraits a very different

picture of traditional system performance given the same evaluation measure, and hence

represents a complementary evaluation tool compared to the existing ones, useful for

observing the resilience of systems in contexts that are currently arduous for automatic

disambiguation, and yet utterly ordinary in natural language.

5.1 Systems at Issue

In an attempt to make our analysis as across-the-board as possible, we have simultaneously

examined six of the most relevant systems for automatic disambiguation, an assortment

which currently constitutes a rather exhaustive spectrum of the approaches to perform state-

of-the-art in WSD. Below, we introduce and detail each of these six systems along with

describing an additional random baseline (in Section 5.1.1) which we will use to establish a

further comparison in some of our experimental settings.

BEM (Blevins and Zettlemoyer, 2020) is a bi-encoder model that embeds the target

word (with its context) and its sense definitions – concurrently and independently – in the

same representation space. The two encoders are thus optimized together, in a way that
1This work complies with the BNC Licence for paragraphs and other fragments, as endorsed by the BNC

staff via the official inquiry mail ota@bodleian.ox.ac.uk on October 15, 2019. For further information,

see also http://www.natcorp.ox.ac.uk/faq.xml?ID=licensing.
2Upon journal acceptance of the article this Chapter provides the foundation for.

ota@bodleian.ox.ac.uk
http://www.natcorp.ox.ac.uk/faq.xml?ID=licensing
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allows BEM to carry out disambiguation simply by assigning the label of the nearest sense

embedding to a given target word embedding. A key feature of BEM, which is trained on

SemCor (Miller et al., 1993), is its significant error reduction capabilities with respect to

low-frequency word senses. For the purposes of this work, we implemented the original,

full BEM model, freely-available at https://github.com/facebookresearch/

wsd-biencoders.

EWISER (Bevilacqua and Navigli, 2020) is a neural supervised architecture for WSD

that is able to exploit not only pre-trained synset embeddings – in a purely supervised

fashion –, but also the relational information included in widely-used lexical knowledge

bases, hence enabling the network to predict synsets outside the training set. Particularly,

EWISER brings together structured and unstructured knowledge in a unique architecture for

WSD where (i) implicit knowledge, in the form of synset embeddings, is used to initialize

the output embeddings, and (ii) explicit knowledge, in the form of relational knowledge

integrated via a WordNet adjacency matrix, is concurrently added on top of the same baseline

neural classifier. In our analysis, we implemented the best performing model reported in the

original paper, i.e. EWISERhyper,3 which is trained on several resources at once, namely,

SemCor, the set of the untagged WordNet glosses, the tagged glosses of the Princeton

WordNet Gloss Corpus, and WordNet examples as well. All data is freely-available at

https://github.com/SapienzaNLP/ewiser.

Generationary (Bevilacqua, Maru, and Navigli, 2020) is the generative approach to

WSD that we authored, and that has been introduced in Chapter 4. For the purpose of the

following experiments, we employed its Gen-UNI (MBRR) configuration, as detailed in

Section 4.3.1.

GlossBERT (Huang et al., 2019) is the system we already introduced in Section 4.4.2.1,

here used in the same, aforementioned configuration.

LMMS (Loureiro and Jorge, 2019) is the system we already introduced in Section

4.4.2.1, here used in the same, aforementioned configuration.

SyntagRank (Scozzafava et al., 2020) is the current state-of-the-art system for English

knowledge-based WSD, and one of the main contribution of this thesis. We conducted the

experiments in this Chapter using the setting described in Section 3.2.5.
3For the remainder of this Chapter, we will refer to this model simply as EWISER.

https://github.com/facebookresearch/wsd-biencoders
https://github.com/facebookresearch/wsd-biencoders
https://github.com/SapienzaNLP/ewiser
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5.1.1 Random System Baseline

In addition to the systems just described, during the experiments we also employ a random

baseline to provide a further term of comparison indicative of the significance of the results.

Specifically, our random baseline is represented by a simple system that randomly selects

one of the possible senses for each instance in the test sets. Its results are reported as the

average of 1, 000 runs, together with their relative sample standard deviation.

5.2 Analysis of Traditional Benchmarks

The first step in our investigation, aimed at determining how commonly-used evaluation

measures for WSD can be misleading and not indicative of the systems’ real disambiguation

capacity, starts from traditional evaluation benchmarks. Hence, to begin with, we first

observe the variations in terms of F1 score when the systems under analysis are tested on

ablations of well-established evaluation exercises.

Specifically, in Section 5.2.1 we take into consideration the concatenation of the test

sets (ALL) reported by Raganato, Camacho-Collados, and Navigli (2017), and empirically

verify the impact of two critical factors affecting the performance of the systems: (i) the

bias towards the most frequent word sense, and (ii) the bias towards the data featured in the

training set.

Next, in Section 5.2.2, we identify the subset of ALL that none of the systems investi-

gated is currently able to disambiguate, and analyze its characteristics by means of a precise

qualitative analysis.

5.2.1 Quantitative Analysis

To carry out our quantitative analysis, we simply test the systems listed in Section 5.1 on

three different settings, i.e. ablations of the ALL test set, which represents our baseline.

Following, we report details for each setting:

1. SemCor: in this setting, we filtered out from ALL every test instance which featured

at least one gold sense annotation that was also featured in the SemCor training set.

2. WN1st: in this setting, we instead filtered out from ALL every test instance which

featured at least one gold sense annotation that appears in WordNet 3.0 as first sense.

As a consequence, this ablation set also filters out all monosemous instances.

3. SemCor+WN1st: in this setting, we filtered out from ALL every test instance which

featured at least one gold sense annotation appearing either in SemCor, or in WordNet
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ablation #inst (mono) random ± sstd BEM EWISER Gener. Gloss. LMMS Syntag.

- 7253 (1301) 36.3 ± 0.44 79.0 80.1 76.3 76.9 75.4 71.7

SC 1138 (448) 53.5 ± 0.94 67.1 70.4 68.6 62.2 61.7 61.0

WN1st 2525 (0) 19.6 ± 0.73 50.5 54.7 48.4 45.0 52.6 29.5

SC+WN1st 562 (0) 25.5 ± 1.72 41.3 43.6 41.6 29.7 28.3 26.5

Table 5.1. Ablation experiments on the concatenation of the datasets (ALL), as reported in Raganato,

Camacho-Collados, and Navigli (2017). Columns, left to right: subset of annotations removed

from ALL (ablation), where SC is SemCor; total number of annotations (#inst) of which

monosemous instances are indicated between round brackets (mono); F1 score for a random

baseline and its sample standard deviation (random ± sstd); F1 scores for BEM, EWISER,

Generationary (Gener.), GlossBERT (Gloss.), LMMS and SyntagRank (Syntag.). Bold is best.

3.0 as first sense. As for the WN1st ablation, this setting too does not include

monosemous instances.

5.2.1.1 Results

Results for our ablation experiments on ALL are shown in Table 5.1.

In the SemCor ablation (SC) the impact of the data present in the training set is immedi-

ately evident, despite the higher proportion of monosemous instances (which are normally

taken into account when computing F1 scores) compared to ALL. This effect is best miti-

gated by Generationary, which uses many other training data and loses the least points with

respect to ALL (7.7), but curiously affects also SyntagRank, which is a knowledge-based

system, and therefore is not trained on SemCor. This outcome probably stems from the fact

that 4, 152 instances from ALL appear simultaneously in SemCor, as well as being also

listed as most frequent senses according to WordNet, hence representing notoriously more

interlinked nodes in the knowledge-base graph (Calvo and Gelbukh, 2015).

The WN1st setting is even more impactful, and although all systems have no difficulty

in outperforming the random baseline, none come close to an F1 score of 60 points, not even

EWISER, whose score of 54.7 makes it the best performer in this setting.

Finally, in the SemCor+WN1st hybrid setting (SC+WN1st), consisting of 562 instances,

only three systems significantly surpass the random baseline, while GlossBERT, LMMS and

SyntagRank lie dangerously close to it.

On the one hand, therefore, these simple ablation studies show us empirically that no

system is currently able to generalize outside the training set, a fact highlighted among other



5.2 Analysis of Traditional Benchmarks 67

things by the fact that the random baseline shows an inverse trend with respect to every other

system, since it has less difficulty in solving the SemCor+WN1st setting, where it attains a

mean score of 25.5 with a sample standard deviation of 1.72, but attains only 19.6 points in

the one that excludes only the WN1st. On the other hand, these results provide evidence that

the disambiguation performance is much lower than the one normally reported, especially

when the system cannot rely on its knowledge of the most frequent sense, be it because of

the sense distribution learned in the training set, or because of the structure of the graph

employed.

5.2.2 A Model-agnostic Hard Core

Beyond demonstrating once more how WSD systems are prone to significant biases, it is

also interesting to analyze in detail if critical cases in traditional test sets exist, such that

none of the current state-of-the-art systems is able to provide a correct answer for. We have

therefore identified the intersection of the errors made by our six systems on ALL, and

obtained a subset made up of 536 instances, i.e. a 7.4% quota of the whole dataset, and

proceeded to study it in order to understand the reasons behind the apparent impossibility of

solving this “model-agnostic hard core”.

5.2.2.1 Observations

At first glance, the subset of shared errors (hereafter, ALLSE) provides further support for

the results already shown in Section 5.2.1.1. ALLSE , in fact, seems to exemplify to a large

extent the most critical conditions for current disambiguation systems. As shown in Figure

5.1, the average percentage of times systems predict a sense seen in SemCor rises from

87.7% on ALL to 95.3% on ALLSE , while the gold annotations containing at least one

word sense featured in SemCor for the same instances drop from 84.3% to 62.9%.

Even more noticeable is the case of WN1st senses, where the system predictions remain

rather linear, going from 72.3% to 66.7%, but the gold annotations show an impressive drop

from 65.2% on ALL, to 2.2% on ALLSE .

These trends therefore seem to highlight how the decrease in terms of instances annotated

with WN1st senses in the gold answers does not correspond to a decrease in the predictions

of the systems. Moreover when dealing with senses featured in SemCor, system predictions

and gold answers follow opposite trends: the higher the number of gold answers that do not

feature SemCor senses, the more the systems will predict word senses seen in the training

set.



68 5. Dissecting the State of the Art

Figure 5.1. Trendlines showing the change in the percentage of senses belonging to SemCor (blue

lines) or to WN1st (red lines), both for the average number of system predictions (dashed lines)

and gold annotations (solid lines), in the ALL dataset (left) and in the subset of the shared errors

on ALL (right), respectively.

Diachronic Evaluation In an attempt to substantiate the results shown in Figure 5.1, we

carried out a further investigation considering additional systems besides the ones already

described in Section 5.1. In particular, we verified the impact on ALLSE given the inclusion

of predictions from three more systems that constituted the state of the art in WSD at the

time when the common evaluation framework of Raganato, Camacho-Collados, and Navigli

(2017) was released, namely:

• Babelfy (Moro, Raganato, and Navigli, 2014);

• Context2Vec (Melamud, Goldberger, and Dagan, 2016), in its setting trained both on

SemCor and on OMSTI (Taghipour and Ng, 2015);

• IMS+embeddings (Iacobacci, Pilehvar, and Navigli, 2016) in its setting trained on

SemCor and OMSTI which uses all IMS original default features (Zhong and Ng,

2010) and excludes surrounding words.

As shown in the Table 5.2, a quota of shared errors is resolved thanks to the inclusion

of new systems in the comparison, bringing the size of ALLSE from 536 instances to 413.
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setting #inst avg system gold

ALLSE(SC) 536 95.3% 62.9%

ALLSE+(SC) 413 96.3% 58.8%

-123 +1.0% -4.1%

ALLSE(WN1st) 536 66.7% 2.2%

ALLSE+(WN1st) 413 66.0% 0.2%

-123 -0.7% -2.0%

Table 5.2. Percentages variation for SemCor and WN1st predictions when further systems are

introduced in the comparison. Columns, left to right: setting; number of instances; mean predic-

tion percentage for the original six systems in our comparison; percentage of gold annotations.

Middle and last row show variations from the original shared error subset (ALLSE) to the shared

error subset when further systems are taken into account (ALLSE+).

Interestingly, this new subset of shared errors (henceforth ALLSE+) highlights the trends

already noted in Section 5.2.2.1. Essentially, the higher the number of systems included in

the comparison, the bigger the proportion of gold annotations that are not WN1st senses,

nor featured in SemCor, in the subset of their shared errors.

5.2.2.2 Qualitative Error Analysis

Determining the reasons why a particular subset of instances taken from traditional WSD

evaluation benchmarks is so hard to disambiguate requires an additional level of analysis: an

error assessment aimed at identifying the possible presence of regular error patterns. Such

an analysis do not, to the best of our knowledge, exist in the available literature, and we

strongly believe it could be useful for understanding the path forward to improve Word

Sense Disambiguation applications.

In this regard, we asked an expert lexicographer with extensive knowledge of WordNet

and high proficiency in English to individually analyze each instance in the ALLSE subset,

starting from the contexts and target words appearing in the original datasets, and comparing

the predictions of all the systems investigated in Section 5.1 with the annotations present in

the gold standard for the same instances. Specifically, we asked the lexicographer to mark

each instance among the 536 present in ALLSE with one of the following labels:

• <factual>, which indicates that all systems provided predictions which are factual
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errors, whereas the gold annotations correctly fit the ambiguous target in context;

• <multi>, which indicates that the annotators who devised the gold standard could

have assigned multiple senses to disambiguate the target in context, with the constraint

that one of this additional sense annotation would have allowed at least one of the

systems to solve the instance;4

• <ge_pos>, which indicates an error in the original test set, in this case, a PoS-tagging

error;

• <ge_dis>, which indicates an error in the original test set, in this case, a wrong sense

selection by the annotators;

• <ge_mis>, which indicates an error in the original test set, in this case a sub-optimal

sense choice due to the lack of a proper sense in the WordNet inventory;

• <ge_t/l>, which indicates an error in the original test set, in this case, a lemmatization

or a tokenization error.

In addition to the qualitative error analysis on ALLSE , we asked our lexicographer

to perform the same analysis also on random samples of the same size as ALLSE , but

taken from the set of remaining instances in ALL without shared errors (ALLNS) and from

SemCor.5

Results of this qualitative assessment are shown in Table 5.3 and suggest a different

picture from the one highlighted so far. In this case, in fact, the idea we get is that of

underestimated system performances, and the only factor that remains common with the

analyses in Section 5.2.1 and 5.2.2, respectively, is therefore the imprecise nature of the

results we currently use to assess WSD systems.

As a matter of fact, the ALLSE subset shows a very high number of errors inherent in

the original test set (118) which, together with cases in which multiple annotations would

have been beneficial to the systems (176), makes up a figure greater than that of “real” errors,

which have been labeled as factual on just 242 occurrences. Fortunately, this proportion

does not affect the ALLNS setting in the same way, and a total figure of 70 annotations were

labeled as either gold errors or possible multiple annotations. Also, it is worth noting how

the sample taken from the training set itself, SemCor, is not devoid of errors. Here, in fact,
4For further studies dealing with multiple sense annotations and graded sense assignments for WSD, see Erk

and McCarthy (2009) and Erk, McCarthy, and Gaylord (2009).
5Before sampling SemCor, in order to maintain full comparability with the other samples, we discarded

annotations of auxiliary verbs and Named Entities annotated with generic lemmas (person, location and

organization) and relative senses.
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setting #inst sample amb+m sks factual multi ge_pos ge_dis ge_mis ge_t/l ge_tot

ALLSE 536 536 9.4 401 242 176 16 66 28 8 118

ALLNS 6,717 536 5.5 499 151 45 4 9 6 6 25

SemCor 226,036 536 6.5 504 - - 5 19 2 0 26

Table 5.3. Qualitative error analysis breakdown. Each row shows a different setting: the shared

errors on ALL (ALLSE), the set of remaining instances of ALL not included in the shared errors

(ALLNS), and SemCor. Columns, left to right: setting; number of instances (#inst); sample

size (sample); ambiguity including monosemous instances (amb+m); unique sense keys (sks);

factual errors of the investigated systems (factual); number of instances for which multiple gold

annotations could have been provided (multi); PoS tagging errors in the gold standard (ge_pos);

disambiguation errors in the gold standard (ge_dis); gold errors due to missing senses in the

WordNet inventory (ge_mis); tokenization or lemmatization errors in the gold standard (ge_t/l);

total number of errors in the gold standard (ge_tot).

the analysis has been aimed only at identifying errors on the part of the original annotators,

and an overall number of 26 total errors have been identified, therefore making up the 4.9%

of the 536 investigated instances.

In Table 5.4 we finally provide an excerpt of instances that the lexicographer marked

according to the labels described above.

The case of the verb “say” A further interesting datum has also emerged from the close

observation of the error instances, one which indicates that the personal interpretation of the

meaning of an ambiguous word in context by different annotators could not only have an

impact on inter-annotator agreement figures, but be a root cause for several errors committed

by disambiguation systems.

In fact, contextual information is known to be of fundamental importance for humans in

the act of disambiguating a word (Chatterjee et al., 2012), but working with a finite inventory

of word senses forces the annotator to fit a personal interpretation of meaning into at least

one of the senses provided for in the inventory, which therefore acts as a filter. This operation

can be anything but linear, and can turn into one of the fundamental causes of low agreement

figures between different annotators (Passonneau et al., 2010; Martínez Alonso et al., 2015;

Oba et al., 2020). As a case in point, eye tracking studies have shown that annotator fixation

times, before a disambiguation choice is made, are extremely long on the list of glosses

provided by the inventory (Joshi, Kanojia, and Bhattacharyya, 2013). Indeed, together with

the examples and words that make up a synset, glosses represent the most important clues
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LSI factual (ALLSE) semeval2007.d000.s016.t005

c-t [...] recent increase in the number of persons living below the poverty level.

gold lead a certain kind of life; live in a certain style

sys inhabit or live in; be an inhabitant of

LSI multi (ALLSE) semeval2007.d000.s028.t008

c-t [...] self-serving groups that "know a good thing when they see it" [...]

gold a vaguely specified concern

LMMS a special situation

LSI ge_pos (ALLSE) senseval2.d001.s045.t001

c-t He assumed the missing [VERB] piece contained a gene [...]

LSI ge_dis (ALLNS) semeval2013.d003.s013.t002

c-t [...] which have cultivated close ties with the Iraqi Oil Ministry [...]

gold the finish of a contest in which the score is tied and the winner is undecided

Syntag. a social or business relationship

LSI ge_mis (ALLSE) semeval2015.d001.s051.t004

c-t You can set several graphs on the same view.

gold outward appearance

LSI ge_t/l (ALLSE) senseval3.d001.s013.t011

c-t [...] to prevent other legislators from "bringing home the bacon"

Table 5.4. Excerpt of labels assigned while carrying out the error analysis. Each block can show:

label type, subset, and original instance identifier (LSI); original context and target (c-t);

WordNet gloss for the sense chosen as gold answer (gold); gloss for the sense chosen from a

given system (LMMS, Syntag.); gloss for the sense chosen by all systems (sys). Underlined text

indicates the expected tokenization in the ge_t/l case reported.

on the basis of which the annotator makes his final choice (Kanojia et al., 2014).

In the course of our qualitative analysis of errors, numerous cases have been found

in which different interpretations assigned to different ambiguous words have made it

impossible for the system to perform proper disambiguation. By way of example, we report

the analysis conducted on the verb “say”, for which we have identified a sense distribution

totally disjoint in the test set with respect to the training set, particularly, with respect to the

use of the verb as an introductory verb of direct speech.

In this case, we asked our lexicographer to review all instances of the verb “say”, both
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sense gloss ALL ALLSE SemCor

1 express in words 3/8 - 966/1,687

2 report or maintain 0/14 0/1 21/219

3 express a supposition 0/1 0/1 2/27

4 have a certain wording - - 4/8

5 give instructions to - - 0/8

6 utter in a certain way - - 1/4

7 express nonverbally - - 0/2

8 utter aloud 16/18 14/16 0/1

9 state as one’s opinion 0/3 0/3 -

10 recite a fixed text - - -

11 indicate - - -

19/44 15/21 994/1,956

Table 5.5. WordNet 3.0 sense distribution for the instances of the verb “say” in ALL, ALLSE and in

SemCor. Columns, left to right: number of sense according to the WordNet inventory (sense);

gloss for the WordNet sense (gloss); following columns indicate the number of instances in

which the verb appear as introductory to a direct speech (before the slash), versus the overall

number of instances (after the slash). Bottom row shows aggregate values.

appearing in SemCor and in the ALL test set, and to mark the verb when it appeared as

introductory to direct speech.

As can be seen in Table 5.5, the sense distribution of “say” changes radically within

the training set (SemCor) and test set (ALL). Particularly, we observe how, in almost all

cases in which the verb appear as introductory to direct speech, the test set makes use of

the WordNet sense glossed as utter aloud, which appears only once in the training set, and

not as an introductory verb to direct speech. In the training set, on the other hand, the vast

majority of instances introducing direct speech appear labeled with the WordNet’s first sense

express in words.

Not surprisingly, almost all the instances labeled with the utter aloud sense in the test

set are erroneously disambiguated by all systems (in 16 out of the overall 18 cases), which,

in the case of supervised architectures, have never been exposed to the utter aloud sense

assigned to the verb “say” in an introductory position to direct speech. Our best guess to
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explain this discrepancy may therefore lie in the existence of different annotation guidelines

which establish precise sources of cues to exploit when uncertainty occurs, or simply in

different interpretations given by the annotators to different linguistic phenomena. In the

case reported, test set annotators, unlike training set annotators, have probably exploited the

cue present in the WordNet examples, and noted that the only example where the verb is

used as introductory to direct speech is precisely in the sense identified with the gloss utter

aloud: “she said ‘Hello’ to everyone in the office.”

5.3 Analysis of 42D: a Challenge Set

The analysis we have conducted starting from traditional benchmarks for WSD has high-

lighted rather specific causes that justify the hypothesis that the current performance of

disambiguation systems is not really representative of their actual capabilities. And yet, the

phenomena discussed so far could be the reflection of peculiarities inherent in the analyzed

datasets.

In order to have further proof of our findings, we therefore decided to build a new

evaluation test set from scratch. Specifically, the dataset we present, called 42D, constitutes

an innovation in the field of WSD evaluation exercises, acting in fact as a harder benchmark

than its predecessors, or, quoting Belinkov and Glass (2019), a challenge set. 42D is thus

the first challenge set for WSD, an English test set systematically covering a wide range of

42 domains, designed to provide a different and complementary evaluation tool for those

systems that want to test their resilience towards those that currently represent critical factors

for disambiguation, i.e. biases towards most frequent word senses and towards senses

featured in the training data.

In what follows, we first describe the process by means of which we built and annotated

42D (Sections 5.3.1, 5.3.2 and 5.3.3), then, we proceed with the discussion concerning the

results of the experiments we conducted on this new challenge set (Section 5.3.4).

5.3.1 Corpus and Domain Set

As our source corpus, we chose the British National Corpus (Leech, 1992, BNC), which,

considering its well-balanced range of genres and topics, constituted a sound alternative to

other corpora such as Gigaword (Parker et al., 2011) or Wikipedia. As regards our domain

set, we narrowed down candidates to BabelDomains (Camacho-Collados and Navigli, 2017)

and WordNet Domains (Bentivogli et al., 2004), but we opted for the former in order to avoid

an exceedingly fine granularity of the labels. In fact, BabelDomains provides a mapping

between synsets (concepts) in BabelNet (and, consequently, in WordNet) and its wide array
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of 42 domain labels6 (ranging from food_and_drink and history to nautics and

meteorology).

5.3.2 Building 42D

In order to build our dataset, we assigned domains to paragraphs in the BNC through a

simple unsupervised technique that exploits counts of WordNet lexicalizations, which can

be taken as cues that the text belongs to that domain, as they are associated with a synset

mapped to a BabelDomain by Camacho-Collados and Navigli (2017).7

We automatically labeled each paragraph with the highest occurring domain among its

tokens. As a starting point, we collected the set of senses from WordNet that satisfy the

following criteria: (i) the sense is associated with some domain, and (ii) the lexicalization is

polysemous and associated with at least one other domain8. We then employed the Stanford

CoreNLP pipeline (Manning et al., 2014) to perform tokenization, lemmatization, PoS

tagging, and sentence splitting in order to to pre-process the BNC raw text, and split the

corpus into paragraphs containing no more than 250 adjacent tokens (including punctuation).

At this stage, we assigned each paragraph to a specific domain, simply by determining

which, among the 42 domains, showed the highest number of distinct lexicalizations within

a paragraph. After that, we assembled and ranked 25 paragraphs for each domain, also

prioritizing paragraphs with the least number of repetitions among the domain lexicalizations.

Finally, for each domain, we manually checked each of its 25 paragraphs in order to (i)

ensure no paragraph duplicates were being included, and (ii) select the most suitable ones

to represent and fit the domain,9. The dataset was therefore assembled as a result of the

concatenation of the 42 chosen paragraphs, with an average paragraph length of 208 tokens

(including punctuation), hence complying with the BNC Licence for paragraphs and other

fragments (see also footnote 1 in Chapter 5).
6http://babelnet.org/4.0/javadoc/it/uniroma1/lcl/babelnet/data/

BabelDomain.html
7Each BabelDomain label is associated with some set of synsets, with each synset having its words (e.g. car,

automobile, and machine, for the WordNet synset “a motor vehicle with four wheels”). Hence, we can see each

domain as a set of words obtained from its synsets.
8The second requirement was included to ensure a significant inter-domain ambiguity in our dataset.
9To prevent automatically-labeled paragraphs from being off-topic with respect to their domain, or unrepre-

sentative of usual running text, the top 25 paragraphs per domain (i.e. the ones with more domain words) were

manually validated and ranked by the annotators. Paragraphs containing lists – e.g. ingredients in a recipe, or

neighbouring countries – were discarded in the process.

http://babelnet.org/4.0/javadoc/it/uniroma1/lcl/babelnet/data/BabelDomain.html
http://babelnet.org/4.0/javadoc/it/uniroma1/lcl/babelnet/data/BabelDomain.html
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5.3.3 Dataset Annotation

The manual annotation of the paragraphs was performed by a single expert linguist with

previous experience of tagging with WordNet 3.0, i.e, the sense inventory we chose to

disambiguate 42D. The annotator reviewed the Part-of-Speech (PoS) tags10, along with

automatic tokenization and lemmatization (see Section 5.3.2), while compounding multi-

word expressions that are present in the WordNet inventory and resorting to multiple sense

annotations for cases in which several WordNet senses could properly fit the context. The

annotator was asked to annotate each content word in the paragraphs and, as a result of the

whole annotation process, we collected an overall figure of 3, 688 annotated instances.

At this stage, we proceeded to transform 42D from a standard all-words test set into a

challenge set representative of the criticalities identified in Section 5.2.1. To this end, we

have automatically excluded from 42D all those sense annotations which were featured in

SemCor or in WordNet as most frequent senses. As a result, we obtained a challenge set

containing exactly 451 unique instances.

Once collected, we asked a second expert linguist to perform a blind annotation over

a sample of 350 polysemous instances taken across all domains from the challenge set.

Our evaluation resulted in an agreement of 79.6%, which is in line with other evaluation

datasets.11 The reason we chose to employ no more than two highly-trained linguists to

carry out the annotation (as previously done in SemEval-2007) stems from the fact that

well-known issues in reaching an adequate inter-annotator agreement when employing non-

expert annotators exist (Pradhan et al., 2007), as well as from accounting for the hypothesis

that performance depends on the quality of the word sense inventory, rather than the number

of annotators (Passonneau et al., 2012).

Finally, to assess the accuracy of the annotations, we performed a standard statistical

evaluation: according to the Cochran’s Sample Size Formula, out of a population of 451
polysemous instances in 42D, and with a confidence interval of 5, a number of 350 instances

constitutes a statistically representative sample size to compute inter-annotator agreeement

and thus ensure the reliability of the tagging.

5.3.4 Results and Discussion

We first carried out a standard evaluation on 42D, simply testing all of the systems we

analyzed in this Chapter (see Section 5.1) on this new challenge set.
10According to the coarse-grained PoS tags in the universal PoS tagset of Petrov, Das, and McDonald (2012).
11We report the raw inter-annotator agreement (in line with other WSD evaluation datasets such as SemEval-

2007 and SemEval-2015), given that Cohen’s Kappa is not well defined when multiple tags are allowed (Palmer,

Dang, and Fellbaum, 2007).
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setting #inst (mono) random ± sstd BEM EWISER Gener. Gloss. LMMS Syntag.

ALL 7253 (1301) 36.3 ± 0.44 79.0 80.1 76.3 76.9 75.4 71.7

42D 451 (0) 24.7 ± 1.94 40.6 46.3 43.5 35.9 29.3 23.3

Table 5.6. F1 scores on the concatenation of the datasets (ALL) and on 42D. Columns, left to

right: test set (setting); total number of annotations (#inst) of which monosemous instances are

indicated between round brackets (mono); F1 score for a random baseline and its sample standard

deviation (random ± sstd); F1 scores for BEM, EWISER, Generationary (Gener.), GlossBERT

(Gloss.), LMMS and SyntagRank (Syntag.). Bold is best.

setting BEM EWISER Gener. Gloss. LMMS Syntag. gold

ALL(SC) 87.4% 87.0% 85.9% 88.6% 88.5% 88.8% 84.3%

42D(SC) 49.4% 41.7% 45.7% 55.4% 56.8% 65.2% 0.0%

ALL(WN1st) 72.6% 70.3% 69.0% 74.8% 65.9% 81.1% 65.2%

42D(WN1st) 36.4% 33.3% 31.9% 41.0% 42.1% 59.0% 0.0%

Table 5.7. Times (percentages) an investigated system predicts a sense that is (top) featured in

SemCor or (bottom) appears as WordNet 1st sense. Results are reported both on ALL and on

42D. Right column shows the times (percentages) the gold standard annotations on the test sets

coincide with senses featured in SemCor or appearing as WordNet 1st senses. Bold is closest to

gold.

The results shown in Table 5.6 empirically validate the existence of significant biases

affecting all WSD systems, regardless of the approach used, both towards the most frequent

senses and towards the word senses featured in the training set. Similarly to what we

observed with the ablation studies reported in Table 5.1, performances for state-of-the-art

WSD systems on 42D fail to reach a score of 50, with EWISER and Generationary being

the most resilient models so far, owing to their more heterogeneous training sets.

From another point of view, as shown in Table 5.7, it is possible to observe how, in the

context of ALL, the percentage of system predictions for senses featured in SemCor or as

WordNet first senses, is closer to the real extent of the senses used in the gold standard. As a

matter of example, 88.8% of SyntagRank’s sense predictions, which is the one showing the

wider gap with respect to the gold standard, are also featured in SemCor, but the percentage

of gold annotations using SemCor senses is just at a 4.5 percentile points below. The same

cannot be said in the case of 42D, where the closest gap with respect to the gold annotations

is represented by Generationary, which predicts only 31.9% of the times a WordNet first
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setting monosem avg flexibility avg solving amb+mono amb-0-mono

ALL 17.9% 1.060 0.39 5.9 6.9

Senseval-2 19.1% 1.058 0.40 5.5 6.6

Senseval-3 16.8% 1.025 0.36 6.8 7.9

SemEval-2007 5.7% 1.009 0.26 8.5 8.9

SemEval-2013 20.7% 1.009 0.41 4.9 5.9
SemEval-2015 18.4% 1.236 0.42 5.5 6.5

ALLSE 0% 1.026 0.18 9.4 9.4

SemCor 16.6% 1.003 0.35 6.9 8.1

42D 0% 1.044 0.26 6.5 6.5

Table 5.8. Data breakdown for different training, test and ablation sets. Columns, left to right:

setting; percentage of monosemous instances in the set (monosem); average number of gold

annotations available per polysemous instance (avg flexibility); average random solving chance

for instances in the set, computed as the mean value between all instances in the set, each

obtained by dividing the number of gold senses associated with a given lemma instance by

the whole number of senses associated to that lemma in WordNet (avg solving); ambiguity

including monosemous instances (amb+mono); ambiguity not including monosemous instances

(amb-0-mono). Bold is lowest difficulty. Underlined is highest difficulty.

sense. In a similar way to what we already found out with the subset of shared errors ALLSE
(Section 5.2.2), even though gold annotations feature few or no SemCor and/or WordNet

first senses, systems will still continue to predict them in a large percentage of cases.

We then devised another small experiment to determine if there are any objective criteria

which make 42D more challenging than other traditional datasets, particularly, in order

to verify if the difficulty of 42D is actually due to the fact of representing a stressing

environment for WSD systems, and not caused by other accidental and undesired factors.

To this end, we tested all of the traditional evaluation datasets (Senseval-2, Senseval-3,

SemEval-2007, SemEval-2013 and SemEval-2015), their concatenation (ALL), and the set

of the shared errors (ALLSE), as well as 42D and the SemCor training set, to determine the

following properties:

• The percentage of monosemous instances in the investigated dataset (monosem);

• The average number of word senses that the dataset provides as gold annotations for

polysemous instances (avg flexibility);
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• The average random solving chance for each instance in the dataset D, computed as

the mean value between all instances in D, each obtained by dividing the number of

gold senses associated with a given lemma instance by the whole number of senses

associated to that lemma in WordNet (avg solving);

• The ambiguity level, including monosemous instances. Computed, as in Raganato,

Camacho-Collados, and Navigli (2017), as the total number of candidate senses for

the lemmas in D, divided by the number of sense annotations in D (amb+mono).

• The ambiguity level of D, this time, computed without accounting for monosemous

instances (amb-0-mono).

The results shown in Table 5.8 show that – notwithstanding its intended lack of coverage

for monosemous instances – none of the factors examined justifies the higher difficulty

of 42D with respect to other traditional datasets. As can be noted from the results, both

ambiguity levels (amb+mono and amb-0-mono) of 42D are in fact perfectly comparable

to those of other test sets, if not lower, as is the case of Senseval-3 or SemEval-2007. The

same goes for the average random solving chance (avg solving), which is equal to that of

SemEval-2007, even if the results in terms of F1 score for the best system in the literature,

i.e. EWISER, are 75.2 on SemEval-2007, but only 46.3 on 42D.

This, and the fact that the flexibility in assigning multiple labels (avg flexibility) of 42D

is even higher than in Senseval-3, SemEval-2007 and SemEval-2013, clearly support the

idea that no other unwanted factor plays a significant role in determining the difficulty of

our challenge set.

To conclude our roundup of experiments on 42D, in Table 5.9 we report the PoS

breakdown data for 42D, along with comparisons to ALL and ALLSE . Though, the most

interesting value that we have decided to include in this Table is that showing the percentage

of predictions shared by the systems (“shared preds”), i.e. the percentage of cases in which

the systems agree when choosing a specific sense to disambiguate an instance in a given test

set (calculated as the pairwise average of the systems’ responses). As it can be seen, the

shared predictions reach a 77.5 percentage on ALL (considering all parts of speech) and a

69.6 percentage on the subset ALLSE . On 42D instead, although the challenge set is less

ambiguous than ALLSE , they only reach a percentage of 56.6. This fact is likely attributable

to the heterogeneous nature of the domains (and hence, contexts) covered in 42D, a feature

not found in traditional evaluation datasets.

In fact, (i) the second Senseval evaluation campaign (Edmonds and Cotton, 2001)

released an evaluation corpus not adjusted for domain-specific WSD (being a collection of

texts from various sources), and among the other evaluation exercises that have been devised
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setting pos #inst percentage amb+mono unique_sks unique_syns shared_preds

SemCor ALL 226,036 - 6.9 33,362 25,916 -

ALL ALL 7,253 - 5.9 3,669 3,239 77.5%

ALL NOUN 4,300 59.3% 4.8 1,943 1,745 79.9%

ALL VERB 1,652 22.8% 10.4 991 838 67.0%

ALL ADJ 955 13.2% 4.0 543 498 81.8%

ALL ADV 346 4.8% 3.1 192 158 86.3%

ALLSE ALL 536 - 9.4 401 386 69.6%

ALLSE NOUN 255 47.6% 6.7 182 179 72.1%

ALLSE VERB 203 37.9% 14.0 153 145 61.8%

ALLSE ADJ 59 11.0% 6.8 53 49 81.7%

ALLSE ADV 19 3.5% 5.8 13 13 80.4%

42D ALL 451 - 6.5 395 376 56.6%

42D NOUN 273 60.5% 5.6 236 225 57.3%

42D VERB 91 20.2% 10.7 81 77 50.3%

42D ADJ 64 14.2% 5.0 62 58 60.1%

42D ADV 23 5.1% 4.6 16 16 64.1%

Table 5.9. Part-of-speech breakdown for SemCor, ALL, the shared set of errors on ALL (ALLSE) and

42D. Columns, left to right: setting; part-of-speech (pos); number of instances (#inst); ambiguity

value (amb+mono), including monosemous instances, as seen in Raganato, Camacho-Collados,

and Navigli (2017); number of unique sense keys in the subset, according to WordNet 3.0

(unique_sks); number of unique synsets in the subset, according to WordNet 3.0 (unique_syns);

percentage of predictions shared by analyzed systems on the subset (shared_preds).

so far, (ii) the Senseval-3 task 1 (Snyder and Palmer, 2004) featured a test data consisting

of three texts representing three distinct genres (editorial, news story, and fiction), (iii) the

SemEval-2007 task 17 (Pradhan et al., 2007) covered a 3, 500 words section of the Wall

Street Journal corpus (Paul and Baker, 1992), (iv) the SemEval-2010 task 17 (Agirre et al.,

2010) had a test corpus focused exclusively on the environment domain, (v) the SemEval-

2013 task 12 (Navigli, Jurgens, and Vannella, 2013) had a test set consisting of 13 articles

obtained from three editions of the workshop on Statistical Machine Translation (WSMT)12

and covering domains ranging from sports to financial news, and (vi) the SemEval-2015 task

13 (Moro and Navigli, 2015) featured four documents collected from the OPUS project13 in

three specific domains (biomedical, maths and computers, and social issues).
12http://www.statmt.org
13http://opus.nlpl.eu/

http://www.statmt.org
http://opus.nlpl.eu/
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So, to date, no dataset for WSD has been specifically designed to encompass a wide and

systematic selection of semantic domains such as 42D. This fact, which seems to substantiate

why the shared prediction percentages on our challenge set are significantly lower than in

previous test sets, makes 42D an even more effective tool to probe into the quirks and error

classes pertaining only to specific systems.

5.4 Conclusion

In this Chapter we provided an answer to a much sought for question, i.e.: “are current

state-of-the-art WSD systems, today apparently performing on par with humans, actually

capable of disambiguating?”

We started by analyzing existing evaluation sets and, by means of different ablation

studies, we showed how the disambiguation performance can be severely overestimated and

hence, should not be merely taken at face value. Specifically, we provided further empirical

evidence to support the theories that see all systems, regardless of the underlying approaches,

suffering from biases, both towards the data featured in the training set, and towards the most

frequent word senses. Secondly, we analyzed the subset of traditional evaluation exercises

composed of the errors shared by all systems, and noted two more factors that make current

performance figures unreliable, this time, resulting in underestimated system scores: on the

one hand, set lower by the numerous and different errors inherent in the test sets, and on the

other, undermined by interpretation problems which arise as a result of the structure of the

employed inventory.

So what does it mean to surpass the inter-annotator agreement figure? Does this mean

that current disambiguation systems are really capable of performing the task like their

human counterparts? More likely, it means that these systems are simply becoming more

efficient at mimicking specific groups of annotators and their particular pigeonholing strate-

gies, apt at fitting meaning representations into the rigid scheme provided by a fixed sense

inventory. To further validate our findings, we have also created the first challenge set

for WSD: 42D. This new dataset – the first to be released after five years – contains no

annotations for word senses featured in SemCor, nor appearing as most frequent senses in

WordNet, and shows a very different picture of the current disambiguation performances

that we know, with F1 scores for best performers still lingering behind 50 points.

We will make the 42D English WSD challenge set freely available, knowing that it

can be employed as a fundamental and complementary tool to already existing datasets,

particularly, for probing the actual disambiguation capabilities of systems with respect to

those that we identified as the most difficult obstacles to overcome.
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Chapter 6

Summary

As unequivocally stated since its very title, with this thesis we delved into what we refer

to as the “uncharted territories” of WSD. In fact, we have seen how a long list of open

problems has yet to be dealt with before the research community will be able to call the

AI complete task of WSD finally solved. Furthermore, we also made clear why the albeit

astonishing performances attained by supervised systems could easily mislead researchers

and the general public into thinking that machines have actually rivaled human performance.

WSD is far from being resolved, and with this thesis we have paved the way for a

better understanding of the reasons why. To prove our hypothesis, we started by identifying

three critical challenges affecting the field and we provided as many possible strategies and

solutions.

First of all, we have shown how the structure of commonly used LKBs is largely over-

looked, to the point of being devoid, almost completely, of a fundamental semantic relation

such as that brought about by syntagmatic combinations (see Chapter 3). Considering how

impactful and viable a revaluation of knowledge-based approaches could be in a moment in

which models employ DL techniques requiring increasingly prohibitive architectures (see

also Section 2.3.1), it is clear why our findings can be of immediate interest. Particularly,

the simple injection of structured syntagmatic knowledge into a pre-existing LKB biased

towards paradigmatic relations have led knowledge-based systems to attain hitherto out of

reach results, with a significant boost of 4.4 F1 points over the previous state of the art in

English, and equivalent results in a multilingual setting (Maru et al., 2019).

From a different perspective, we analyzed the flaws underlying the usage of traditional

sense inventories for WSD and proposed a generative formulation to recast the task. As a

matter of fact, several of the issues currently affecting WSD stem from the widespread use of

sense inventories (see also Section 2.1.1) which, despite providing a computationally handy

solution in being finite lists of possible options, are often inadequate in terms of, among



84 6. Summary

other, sense granularity, interpretability and lack of coverage. We hence borrowed from DM

the technique of generating textual definitions, but with a significant difference. While DM

aims to provide a means to make the content of an embedding explicit and human-readable,

we employed its paradigms to provide contextual, ad hoc definitions for arbitrarily-sized

targets in context (see Chapter 4). By means of this, not only we are not anymore limited to

the word senses as enumerated in a given sense inventory, but we can generate definitions

for previously unseen words and phrases (Bevilacqua, Maru, and Navigli, 2020).

Finally, in line with the above, we conducted a detailed study to further highlight the

inadequacy of traditional word sense inventories in WSD (see Chapter 5). To do so, we

performed a series of ablation studies on traditional evaluation exercises, and collected

the set of shared mistakes that several SOTA systems commit with respect to the standard

English evaluation framework of Raganato, Camacho-Collados, and Navigli (2017).

If our objective was to use these errors to better understand the “actual” state of things,

and to have a means to better interpret the idea of WSD systems performing on par with

human annotators, our results have given evidence of three main causes why the reported

system performances might substantially differ in reality from the same systems’ actual

performances.

On the one hand, in fact, independently of the methodology employed, we have shown

how (i) systems share a bias towards what – according to the training set and the sense

inventory used – are the most frequent senses, moreover, demonstrating how supervised

systems’ performance is way lower when instances included in the training set are excluded

from the test set. On the other hand, we have claimed reported performances are further

distorted in that (ii) the structure of a sense inventory forces human annotators to make

suboptimal choices when devising a gold standard (see also Section 5.2.2.2), choices that are

not tied to common or shared knowledge, but rather dictated by the information as presented

in the inventory itself, and also in that (iii) a significant number of errors are featured in

traditional evaluation benchmarks, hence undermining the reliability of evaluation figures.

To further demonstrate the findings reported in Chapter 5, we also devised an entirely

new evaluation exercise, a challenge set named 42D, specifically tailored to reproduce the

harshest conditions for current state-of-the-art WSD systems.

6.1 Perspectives

As thoroughly anticipated, the number of issues related to WSD is large (see also 2.3) and

their minute description and review is beyond the scope of this work. Our main aim was

rather to prove that WSD has still a lot of work to be carried out, and in this thesis, we
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highlighted three, focused problem, along with providing as many solutions so as to support

our statement. For all this, we firmly believe our findings should not be considered as

finishing lines, but rather, as start points. In light of this, in what follows, we build on top

of our work, and foresee potential developments and future works for each of the topic we

dealt with in this thesis.

6.1.1 On Knowledge Bases

Despite having attained so far unprecedented performances thanks to the inclusion of

syntagmatic information (Maru et al., 2019; Scozzafava et al., 2020), still, knowledge-based

systems linger behind supervised systems by several points according to standard evaluation

benchmarks (Bevilacqua and Navigli, 2020). Nonetheless, it should be noted that such

improvement has been brought about by the inclusion of less than 90, 000 lexical-semantic

combinations between nouns and verbs only. This, and the fact that the performance keeps

growing as a factor of the increasing number of relations (see also 3.1.5), indicate that results

can still improve as more manually-disambiguated combinations are added to the LKB.

Additionally, syntagmatic relations have not been type-labeled so far (Maru et al., 2019),

and their categorization could be a useful tool to perform bootstrapping over resources

containing non-disambiguated combinations (Chen and Liu, 2011; Cousot and Lafourcade,

2017), thus triggering a virtuous circle which could led syntagmatic relations to become the

keystone to finally match supervised systems’ performance.

6.1.2 On Definition Generation

To generate a definition instead of picking one from a finite inventory of many is a huge

innovation in the field of WSD, one that opens up new and unexplored research scenarios.

With our work, we introduced our methodology with a focus on the English language only

(Bevilacqua, Maru, and Navigli, 2020). A first step forward would therefore be represented

by an attempt to transfer the same approach to other languages. The major obstacle in doing

this could lie in the paucity of freely available resources and machine-readable dictionaries

in other languages.

Another interesting line of research could also focus on (i) the generation of precise defi-

nitions for named entities, whereas Generationary focuses primarily on common concepts,

as well as on (ii) discontinuous targets, i.e. when the target to be defined is separable, such

as in a phrasal verb (e.g. “you can take Jacob on”, where the underlined tokens should make

up a single target).

It is also worth noting and commenting here two potential critical points that can
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undermine this approach, particularly, in the context of the statements made in this same

thesis. On the one hand, it is legitimate to ask how a characterization of senses no longer

based on predefined inventories can be used downstream, and on the other hand, it is

appropriate to observe how, while an approach such as the one described in Chapter 4 poses

a possible solution to the problem of fixed sense inventories, it still employs those very

paradigms we sought alternatives for with the re-evaluation of knowledge-based systems in

Chapter 3.

To respond to the first potential observation, the approach described in Chapter 4,

unlike traditional approaches for WSD, can already be viewed as an application in itself,

for example, as an integrative tool in ebook readers, particularly useful for learners of a

language, or as a support tool in the creation of new dictionaries. Furthermore, representing

word senses by means of glosses generated in a continuum does not preclude the possibility

of using this data in downstream applications, such as, inter alia, the use of definition

embeddings as a means to boost BERT performances (Pappas, Mulcaire, and Smith, 2020).

As for the potential criticisms directed towards the fact that an approach of this type

implies the use of Language Models such as those whose usage we have invited to exercise

caution with since the introduction of this thesis (see also Section 2.3.1), it is primarily good

to reiterate how the spirit of this work is to place the first stones along different tracks, albeit

distant from each other, each representative of a distinct issue under the wide scope of WSD

applications.

Having said that, it should be noted that we do not wish to condemn the use of Language

Models at all, but rather invite the research community to quickly figure out alternative

solutions and to exercise caution with overparametrization as the only way to progress the

state of the art. To make mention of our own case, Generationary and the important results

derived from its application did not require out-of-the-ordinary infrastructures (see Section

4.4.4). And yet, it is certainly advisable to right away direct future efforts in an attempt

to prevent such an approach to see its further improvements exclusively tied to the use of

increasingly prohibitive and potentially hazardous infrastructures.

6.1.3 On Disambiguation Errors and System Performance

Similarly to Generationary, the analysis of the shared errors in WSD we detailed in Chapter

5 has been specifically conducted on the English language only, given that it is the only

language featured in the standard evaluation benchmarks (Raganato, Camacho-Collados,

and Navigli, 2017). Nonetheless, it would be interesting to see both how the common

issues we identified in our study affect systems dealing with other languages, as well as to

eventually discover language-specific phenomena.
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Finally, a similar error analysis should be likewise conducted to investigate systems’

performance when coarser sense inventories are employed (Snow et al., 2007; Lacerra et al.,

2020), so as to determine whether reducing the fine granularity of word senses would also

help mitigating the impact of rare and out-of-training senses in the test sets, without going

to the detriment of interpretability.
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Appendix A

Chapter 4: Supplementary Materials

A.1 Additional Results on DM

In Table A.1 we report results, for the Definition Modeling evaluation described in Section

4.4.1, on two additional datasets.

NOR (Noraset et al., 2017) includes data from the GCIDE and WordNet. It features only

“static” pairs, in which the context coincides with the word to be defined. Nonetheless, each

lemma can be associated with multiple definitions.

GAD (Gadetsky, Yakubovskiy, and Vetrov, 2018) collects context-target pairs and defini-

tions from oxforddictionaries.com.

The target lemma is not present in all contexts, so in these cases we have prepended the

lemma according to the following template: ‘lemma: context’.1

model ppl↓ BL↑ R-L↑ MT↑ BS↑

N
O

R

Random - 0.2 6.3 1.9 69.0
Noraset et al. (2017) 48.2 - - - -

Ishiwatari-NOR* - 1.9 15.7 5.0 72.9
Gen-NOR 28.6 3.8 17.7 8.1 72.9

G
A

D

Random - 0.2 8.7 2.8 68.6
Gadetsky, Yakubovskiy, and Vetrov (2018) 43.5 - - - -

Mickus, Paperno, and Constant (2019) 34.0 - - - -

Ishiwatari-GAD* - 2.5 18.7 7.0 72.8
Gen-GAD 12.3 9.9 28.9 12.8 77.9

Table A.1. DM evaluation results. Columns: perplexity, BLEU, Rouge-L, METEOR, BERTScore

(ppl/BL/R-L/MT/BS). Row groups are mutually comparable (bold = best). ↑/↓: higher/lower is

better. *: re-trained.

1The train/dev/test splits of NOR and GAD are disjoint in the lemma of the target words.

oxforddictionaries.com
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A.2 Perplexity

Perplexity captures the confidence of the model in outputting a certain sequence.

In approaches with word-level tokenization, evaluated at word-level, perplexity can can

be computed by exponentiating the negative log-likelihood that is used for training:

PPLww = exp(−
∑
w∈V

P (w|c, t, h̄) ln P̂ (w|c, t, h̄)) (A.1)

= exp(− ln P̂ (w̄|c, t, h̄)) (A.2)

where c is the context, t is the target, V is the vocabulary, w̄ is the gold word, and h̄ is the

gold history of previous tokens.

Generationary employs subword-level tokenization, but we can still obtain the word-level

probabilities by applying the chain-rule of conditional probability:

PPLsw = exp(− ln
|w̄?|∏
i=1

P̂ (w̄?i |c, t, h̄, w̄?1:i−1)) (A.3)

where w̄∗ is the n-ple that is the subword split of w̄, e.g. 〈 token, ##ization 〉 for

tokenization.

Do we maintain full comparability? There are two issues here. The first stems from the

fact that, thanks to the application of the chain rule, the vocabulary is open, i.e. the support

of the subword model is the set of possible words, so that every item receives non-zero

probability.

On the contrary, a word-level model without some kind of backoff strategy has a closed

vocabulary. If the evaluation set includes a word outside V , the closed vocabulary model

has a special <unk> token, on which it is trained to concentrate all the probability mass

that the open vocabulary model, instead, would spread over all the possible words which are

not in V . This entails an unfavorable advantage of the closed vocabulary model over the

open vocabulary.

Moreover, there is an additional complication arising from the fact that, while the

subword tokenizers are usually deterministic, i.e. any word is always split in the same way,

there might be multiple legal subword splits according to the vocabulary, and to obtain

the probability of the word, we would need to marginalize over all splits. In other words,

we would need to marginalize by summing the probability of 〈 token, ##ization

〉, 〈 token, ##iz, ##ation 〉, 〈 to, ##ken, ##ization 〉 and so on. This is very

burdensome, and practically we only consider the deterministic split produced by the

tokenizer. In doing this, we underestimate the probability of the word and thus, overestimate

the perplexity of the subword level model.
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A.3 NLG Measures Details

In order to ensure comparability, here we report the BLEU, ROUGE, METEOR, and

BERTScore configurations that we used. A scorer is available as part of the provided

software.

BLEU We employed the reference implementation of corpus BLEU provided in the

sacrebleu package (Post, 2018)2. We use default parameters.

Signature:

BLEU+case.mixed+numrefs.1+smooth

.exp+tok.13a+version.1.3.6.

ROUGE We have employed the Python rouge library (https://github.com/

pltrdy/rouge).

METEOR We have employed the Java meteor library (https://www.cs.cmu.

edu/~alavie/METEOR), version 1.5. METEOR is calculated using the -norm and

-noPunct flags.

Signature:

meteor-1.5-wo-en-norm_nopunct-

0.85_0.2_0.6_0.75-ex_st_sy_pa-1.0

_0.6_0.8_0.6

BERTScore We evaluate using the Python BERTScore (https://github.com/

Tiiiger/bert_score) library, with the roberta-large-mnli model and default

parameters.

Signature:

roberta-large-mnli_L19_no-idf

_version=0.3.0(hug_trans=2.8.0)

A.4 Generation Examples

In the evaluation of NLG systems, human qualitative assessment is very important. Therefore,

we have chosen to report a fair number of non cherry-picked, zero-shot generation examples,

produced by means of our GEN-UNI model.
2https://github.com/mjpost/sacreBLEU

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
https://www.cs.cmu.edu/~alavie/METEOR
https://www.cs.cmu.edu/~alavie/METEOR
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://github.com/mjpost/sacreBLEU
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c1: Good news.

ĝ1: (New Testament) The gospel as revealed by Jesus to the apostles.

g1: Any news that arouses feelings of joy or eases anxiety.

c2: Uneven margin.

ĝ2: A margin that is not uniform.

g2: A margin that is not perfectly leveled.

c3: Early diagnosis.

ĝ3: The diagnosis of a condition before symptoms appear.

g3: A diagnosis that is made at an initial stage of a disease.

c4: Sincere friendship.

ĝ4: A friendship that is not based on deceit or hypocrisy.

g4: Friendship marked by genuine feelings of benevolence.

c5: Painful performance.

ĝ5: A performance of a piece of music that is difficult to play.

g5: A performance that is exceptionally bad.

c6: Courageous heart.

ĝ6: A heart that is strong enough to endure adversity.

g6: The feelings of a person that is not afraid of getting hurt.

c7: Inaccurate thermometer.

ĝ7: A thermometer that is inaccurate in measuring temperature.

g7: A thermometer that indicates the wrong temperature.

c8: New friend.

ĝ8: A friend who has recently come into one’s life.

g8: A recently made friend.

c9: Familiar guest.

ĝ9: A person who is a regular customer or client of a hotel, restaurant, etc.

g9: A well known guest.

c10: Vivacious hostess.

ĝ10: A woman who entertains guests at their home and makes them feel welcome.

g10: A woman host who shows liveliness.

Table A.2. Random sample of Generationary definitions (ĝ) for Hei++ contexts (c). g: gold

definition.

In Table A.2 we show Generationary outputs and gold definitions for 10 randomly

sampled phrases in the Hei++ dataset. In addition, in Table A.3 we report gloss generation

examples for random words and noun phrases taken from the webtext corpus included in
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c1: Hipster guys #2 & #3.

ĝ1: Members of the hipster subculture.

c2: Because you have no estrogen ...you could not possibly understand what chocolate

means to a woman.

ĝ2: The absence of estrogen in the body.

c3: Mozilla Firebird bookmark toolbar doesn’t hide command click to open link in new

tab.

ĝ3: A toolbar in the Mozilla browser.

c4: Guy #2: On that table over there.

ĝ4: The (usually specified) table on which something is located.

c5: Man, why do chip manufacturers always put the crumbs at the bottom of the bag?

ĝ5: A company that manufactures potato chips.

c6: Install new theme without an internet connection.

ĝ6: A connection to the internet.

c7: It’s a true story.

ĝ7: A fictional story based on real events.

c8: Seeking female friend, 40s, attractive 5 ft 5+.

ĝ8: A friend who is not a man.

c9: Clicking Get New Extensions in Options Dialog opens a new browser....

ĝ9: A dialog box in a web browser, allowing the user to select from a number of options.

c10: And he goes to my other roommate for advice.

ĝ10: The other person with whom one shares a room.

Table A.3. Generationary definitions (ĝ) for random targets and contexts (c) excerpted from

webtext.

the NLTK suite Loper and Bird (2002). We have excluded swear words, slurs, numbers, and

noun phrases consisting entirely of named entities. Moreover, every sampled item whose

target was featured in our training set was filtered out.
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