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Abstract—This paper presents a discrete-time, distributed and 

non-cooperative routing algorithm, which is proved, via Lyapunov 

arguments, to asymptotically converge to a specific equilibrium 

condition among the traffic flows over the network paths, known 

as Wardrop equilibrium. This convergence result improves the 

discrete-time algorithms in the literature, which achieve 

approximate convergence to the Wardrop equilibrium. Numerical 

simulations show the effectiveness of the proposed approach. 

 

Index Terms— Wardrop equilibrium, Lyapunov stability, 

selfish routing. 

I. INTRODUCTION 

HE paper presents a discrete-time selfish routing algorithm, 

proving the convergence to a Wardrop equilibrium, which is a 

game-theoretical concept originally introduced for network 

games when modelling transportation networks with congestion [1], 

and which can be informally described as the situation when “the 

journey times on all the routes actually used are equal, and less than 

those which would be experienced by a single vehicle on any unused 

route” [2]. In particular, routing is said to be selfish when, in selecting 

a path to travel from source to destination, each player does not take 

into account the additional congestion that it causes other players to 

experience as a result of its actions [3]. 

In routing scenarios, the system performance crucially depends on 

effectively dividing up traffic across the admissible network paths 

[4][5]. We therefore refer to the model of a time-invariant 

communication topology where a certain amount of traffic load, or 

flow demand, has to be routed from a source node to a destination node 

over a set of admissible paths in such a way as to ensure that the 

network stays balanced, i.e., the used network paths yield minimal 

latencies. Network traffic is modelled as an infinite stream of 

infinitely-many arriving agents, each being responsible for an 

infinitesimal amount of traffic, or job. Each agent is then a decision 

maker, yielding the distributed nature of the modelling setup.  

Non-cooperative algorithms entail the presence of several decision 

makers which optimize their own response time independently of the 

other ones, since cooperation is not allowed. In case a finite number of 

agents is considered, a Nash equilibrium condition is reached when no 

agent can receive any further benefit by changing its own decision 

unilaterally. In other words, the stability of the network under said 

algorithms is analysed in terms of reaching a distribution of the traffic 

flow such that no single agent can move to any other path with a 

smaller number of jobs. In case the number of agents is infinite, a 

combination of flows such that no agent can improve its latency by 

deviating unilaterally yields a Wardrop equilibrium for the network. 

Indeed, a Nash equilibrium is said to become a Wardrop equilibrium 
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whenever the number of agents is assumed to be infinite [6][7]. In turn, 

dynamic algorithms are required for settings where the load 

distribution is not known a priori as they succeed in performing the 

decision-making process based on the current state of the system, 

which is generally made available via feedback.  

In this respect, we propose a discrete-time, distributed, non-

cooperative, dynamic selfish routing algorithm, designed so that a 

Wardrop equilibrium is reached by the agents. To the authors’ 

knowledge, the proposed algorithm is the first discrete-time selfish 

routing algorithm which is proved to converge asymptotically to the 

exact Wardrop equilibrium. 

 

The paper is organized as follows: Section II presents the state of 

the art on selfish routing and Wardrop equilibrium, and highlights the 

proposed novelties; Section III introduces the routing problem; Section 

IV presents the proposed discrete-time control law and proves its 

convergence to the Wardrop equilibrium; Section V shows the results 

of numerical simulations; in Section VI the conclusions are drawn. 

II. RELATED WORK AND PROPOSED INNOVATION 

This work falls within the scope of algorithmic game theory, which 

provides a fruitful modelling framework for many applications, e.g., in 

transport, network engineering and computer science problems, and 

currently represents a very active area of research [8]-[11]. 

Wardrop equilibria have been relied upon in order to deal with 

several different types of congested environments, such as: routing in 

road traffic networks [12][13], traffic engineering in communication 

networks [14][15], load balancing in distributed computational grids 

[16] and in wired and wireless networks [17][18]. In particular, as 

useful reads, we recall [15] for a clear definition of the concept of 

population, and [7] for a detailed discussion distinguishing between 

approximate and exact equilibria. In the classical problem formulation 

[19], a congested network represented by a graph with nodes and edges 

is considered. A non-decreasing latency function of traffic is 

associated with each edge, representing the cost of the edge (e.g., its 

congestion level). The network serves several commodities, 

characterized by a given amount of traffic load to be routed from a 

source to a destination and balanced over the set of admissible network 

paths. The job vector is the amount of traffic that is allocated for each 

commodity and for each path connecting the (source, destination) 

pairs. Each agent has the possibility to distribute its own flow among 

a set of admissible paths.  

A job vector in which, for all commodities, the latencies of all used 

paths are equal is called Wardrop equilibrium. The Wardrop 

equilibrium can be computed by centralized algorithms in polynomial 

time [20]. This paper is aimed at achieving a Wardrop equilibrium via 

a discrete-time dynamic and distributed algorithm.  

This concept has been adopted for solving  selfish routing problems: 
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in this respect, quite a few works in the literature resort to a similar 

approach as the one proposed in this paper, such as [21], [22], and [23] 

relative to a continuous-time setting, and, instead, [24], [25], [26], and 

[27] relative to a discrete-time setting where the authors only prove 

convergence to an approximated neighborhood of the Wardrop 

equilibrium. In [24], the authors develop a round-based distributed 

algorithm with a finite number of agents. Each agent is responsible for 

one commodity and has a set of admissible paths among which it may 

distribute its traffic. In this respect, the population of agents 

responsible for rerouting the traffic is instructed to learn a Wardrop 

equilibrium efficiently by relying on suitable adaptive sampling 

methods. A bulletin board is assumed to be available, where the traffic 

assignments are updated at every round. With a similar bulletin board 

scenario, in [25] a distributed routing algorithm is presented. At each 

round, each agent “samples” a different path and compares the latency 

of the newly chosen path with its own current latency. If the 

comparison shows that the agent can improve its latency by rerouting 

its own portion of network traffic, then it “migrates” to the better path 

with some probability depending on the latency improvement. 

Convergence results are given both when the agents base their 

decisions on up-to-date information and when the information is 

“stale” (i.e., considering delays in the bulletin board update). In [26], 

a distributed and asynchronous routing algorithm is proposed, relying 

on an estimation of the latencies of all paths and on a reinforcement 

learning algorithm to update the probabilities of transmission towards 

the different paths. In [27] a round-based version of the adaptive 

routing algorithm with stale information shown in [25] is proposed. All 

the cited algorithms converge to an approximate Wardrop equilibrium. 

Yet, none of these works yields exact convergence to a Wardrop 

equilibrium. In [28] and [29], the convergence to an exact Wardrop 

equilibrium is tackled in a no-regret learning framework by assuming 

the latency values to be discounted over time; such an assumption is 

limiting in non-atomic congestion games and in routing applications 

as it implies that players value future time less than current time. 

The main innovation of the current work is therefore the design of 

a discrete-time selfish routing algorithm converging to an exact 

Wardrop equilibrium. In particular, the proposed algorithm is designed 

so as to dynamically learn a Wardrop equilibrium efficiently and in a 

distributed fashion. We adopt the problem formulation proposed in 

[17] and rely on the algorithm proposed in [27].  

Hence, the scenario considered in this paper requires a non-

cooperative dynamic selfish routing approach. Yet, for the sake of 

completeness, we recall that such a setup can also be adapted to load 

balancing purposes in game-theoretic frameworks, where the problem 

can be described as a dynamic load balancing game, with users 

distributing their loads in a non-cooperative and selfish fashion (e.g., 

see [30], [31], and [32]). 

III. SELFISH ROUTING PROBLEM 

As described above, this paper further develops a well-known 

model for selfish routing [27], where an infinite population of agents 

carries an infinitesimal amount of load each. Standard notation is used 

throughout the paper, with |⋅| denoting the cardinality operator. 

We are given a network 𝒢 = (𝒱, ℰ), where 𝒱 is the finite set of 

vertices or nodes, ℰ ⊆ 𝒱 × 𝒱 is the set of edges or links. Let ℐ denote 

a set of commodities with constant traffic demands 𝑑𝑖 > 0, ∀𝑖 ∈ ℐ, 
generally expressed in jobs per unit of time, with total demand 𝑑 ≔
∑ 𝑑𝑖𝑖∈ℐ . Let also 𝒫𝑖 denote a set of paths (or providers), which serve 

the traffic flows for every commodity  𝑖 ∈ ℐ and let 𝒫 = ⋃ 𝒫𝑖
𝑖∈ℐ  be 

the set of all the network paths. Each source node (e.g., 𝑠𝑖 for some 𝑖 ∈

ℐ) is connected by the network to the destination node (i.e., 𝑡𝑖) through 

the set of paths 𝒫𝑖. A given path 𝑝 ∈ 𝒫𝑖 includes a set of links; let 𝒫𝑒 

be the set of paths including the edge 𝑒, i.e., 𝒫𝑒 ≔ {𝑝 ∈ 𝒫 | 𝑒 ∈

𝑝}, ∀𝑒 ∈ ℰ, and let ℰ𝑖 be the set of edges included in the paths of 𝒫𝑖, 

i.e., ℰ𝑖 ≔ {𝑒 ∈ 𝑝|𝑝 ∈ 𝒫𝑖}. Let us also define the maximum path length 

as 𝜆𝑖 ≔ max
𝑝∈𝒫𝑖

|𝑝| and the maximum number of paths including an edge 

as 휂𝑖 ≔ max
𝑒∈ℰ𝑖

|𝒫𝑒|.  

The definition of agent is also required. As defined, for instance, in 

[19], each agent is an infinitesimal portion of a specified commodity. 

Let 𝑥𝑝
𝑖  be the volume of the agents, or bandwidth, of commodity 𝑖 

relying on a path 𝑝 ∈ 𝒫𝑖. In the scenario considered in this paper, the 

vector 𝒙 = (𝑥𝑝
𝑖 )

𝑝∈𝒫𝑖,𝑖∈ℐ
 can be defined as the flow vector or population 

share, whose components specify the overall amount of traffic per unit 

of time flowing along path 𝑝 ∈ 𝒫𝑖 and associated with commodity 𝑖 ∈

ℐ. Let 𝑥𝑝 ≔ ∑ 𝑥𝑝
𝑖

𝑖∈ℐ , 𝑥𝑒
𝑖 ≔ ∑ 𝑥𝑝

𝑖
𝑝∈𝒫𝑖∩𝒫𝑒

 and 𝑥𝑒 ≔ ∑ 𝑥𝑒
𝑖

𝑖∈ℐ  denote the 

total traffic flow over path 𝑝 ∈ 𝒫, the traffic flow of commodity 𝑖 over 

edge 𝑒 and the total traffic flow over edge 𝑒, respectively. 

 

Definition 1. The feasible state space, i.e., the closed set of feasible 

flow vectors, is 

 

𝒳 ≔ {𝒙 ∈ ℝ|𝒫|×|ℐ| | 𝑥𝑒 ≥ 0,∀𝑒 ∈ ℰ, ∑ 𝑥𝑝
𝑖

𝑝∈𝒫𝑖 = 𝑑𝑖 , ∀𝑖 ∈ ℐ}. (1) 

 ■ 

 

A metric of interest is the average response time required by the 

path 𝑝 ∈ 𝒫 for serving an amount of traffic equal to 𝑥𝑝.The response 

time grows with the considered traffic flow and thus it is a reliable 

indicator of the path congestion status. Hence, this quantity is defined 

as the latency function associated with the path 𝑝 ∈ 𝒫 which is a non-

negative function 𝑙𝑝(𝒙) ∶ [0, 𝑑] → ℝ≥0. The path latency is the sum of 

the latencies of the edges of the path, denoted with 𝑙𝑒(𝑥𝑒) ∶ [0, 𝑑] →
ℝ≥0, i.e., 𝑙𝑝(𝒙) = ∑ 𝑙𝑒(𝑥𝑒), ∀𝑝 ∈ 𝒫𝑒∈𝑝 . The shape of the latency 

functions depends on the application considered. One strength of the 

proposed approach is that the agents only rely on measures of the 

latency functions, which are not required to be explicitly modelled. 

Note that the latency of a path 𝑝 ∈ 𝒫 is a function of the flow vector 

𝒙, and the latency of an edge is a function of its flow over edge 𝑒, i.e., 

𝑥𝑒. The latency functions are assumed to have the following properties. 

 

Assumption 1. The latency functions 𝑙𝑒(𝜉), 𝑒 ∈ ℰ, are Lipschitz 

continuous and strictly increasing over the interval [0, 𝑑]. We also 

define 𝛽𝑒  as the local Lipschitz constant of 𝑙𝑒, and 𝛽𝑚𝑎𝑥 ≔max
𝑒∈ℰ

𝛽𝑒 .∎ 

 

Assumption 1 is a reasonable restriction, since the response time of 

a path generally increases with the total amount of traffic flow routed 

onto that path. 

The agents’ aim is that of minimizing their personal latency 

selfishly without considering the impact on the global situation. One 

usually assumes that the agents will converge to some allocation in 

which no agent can improve its latency by deviating unilaterally. A 

useful characterization of such an equilibrium goes back to Wardrop. 

In particular, a single request of the flow is approximately considered 

as an agent: in fact, even if the number of requests is finite, if the flow 

rates are sufficiently high, the population acceptably approximates the 

infinite population constraint required by Wardrop theory [1]. 

The routing problem is formulated below as the problem of 

determining the strategies which will lead the flow vector to reach a 

Wardrop equilibrium. In Wardrop theory, stable flow assignments are 

the ones in which no agent (i.e., no “small” portion of a commodity 

directed from a source to a destination) can improve its situation by 

changing its strategy (i.e., the set of used paths) unilaterally. This 

objective is achieved if all agents reach a Wardrop equilibrium. 
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Definition 2 ([24]). A feasible flow vector 𝒙 is at a Wardrop 

equilibrium for an instance of the considered routing game if, for each 

path 𝑝 ∈ 𝒫𝑖 such that 𝑥𝑝
𝑖 > 0, the following relation holds: 𝑙𝑝(𝒙) ≤

𝑙𝑞(𝒙), ∀𝑞 ∈ 𝒫𝑖 , ∀𝑖 ∈ ℐ. ■ 

 

In practice, at the Wardrop equilibrium, the latencies of all the 

loaded paths have the same value: therefore, provided that the latency 

functions properly represent the path performances, a fair exploitation 

of the network resources is achieved by driving the flows towards a 

Wardrop equilibrium. 

In the framework of researches on Wardrop equilibria, a key role is 

played by the Beckmann, McGuire, and Winsten potential [20]: 

 

Φ(𝒙) ≔ ∑ ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒
0𝑒∈ℰ , (2) 

 

whose properties are summarised in Property 1 below. 

 

Property 1 ([25]). Under Assumption 1, the potential (2) is continuous 

and the following properties hold: 

i) there exists a unique flow 𝒙𝑚𝑖𝑛, over the set of feasible flows, 

minimizing Φ; 

ii) correspondingly, there exists a unique positive minimum 

Φ𝑚𝑖𝑛 = Φ(𝒙𝑚𝑖𝑛); 
iii) in 𝒙𝑚𝑖𝑛, no agent can improve its own latency unilaterally, i.e., 

𝒙𝑚𝑖𝑛 is at Wardrop equilibrium. ∎ 

 

Property 1 states that, in the considered scenario, the set 

𝒳𝒲  collapses into a unique Wardrop equilibrium with jobs vector 

𝒙𝑚𝑖𝑛, hereafter denoted with 𝒙𝒲. 

IV. DISCRETE-TIME CONTROL LAW  

AND ALGORITHM CONVERGENCE 

For the sake of presentation clarity, we choose to limit the analysis 

to the single-commodity case only, i.e., |ℐ| = 1, and, therefore, the 

index 𝑖 will be neglected. 

A. Proposed Control Law 

The system dynamics is therefore expressed component-wise by 

 

𝑥𝑝[𝑘 + 1] = 𝑥𝑝[𝑘] + 𝜏 ∑ (𝑟𝑞𝑝[𝑘] − 𝑟𝑝𝑞[𝑘])𝑞∈𝒫 ,   

𝑘 = 0,1, … , ∀𝑝 ∈ 𝒫, (3) 

 

where 𝜏 is the sampling period and 𝑟𝑝𝑞[𝑘] is the so-called migration 

rate from path 𝑝 ∈ 𝒫 to path 𝑞 ∈ 𝒫.  

Inspired by the algorithm in [24], the migration rate is defined as 

 

𝑟𝑝𝑞[𝑘] = 𝑥𝑝[𝑘]𝜎𝑝𝑞[𝑘]𝜇𝑝𝑞[𝑘], (4) 

 

where 

 

𝜎𝑝𝑞[𝑘] > 0, ∀𝑝, 𝑞 ∈ 𝒫, (5) 

 

is the control gain, which sets the rate with which the population share 

of path 𝑝 migrates to path 𝑞, and 𝜇𝑝𝑞[𝑘] is the so-called migration 

policy, representing the decision whether (and in which percentage) 

the population share assigned to path 𝑝 migrates to path 𝑞. 

Throughout the paper, we consider the following initial conditions: 

 

{
𝑥𝑝[0] ≥ 0, ∀𝑝 ∈ 𝒫,

∑ 𝑥𝑝𝑝∈𝒫 [0] = 𝑑.
 (6) 

 

There is a variety of migration policies used in the literature for 

continuous-time algorithms, e.g., the better response policy 

 

𝜇𝑝𝑞[𝑘] = {
0    if 𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) ≤ 0,

1      otherwise,                                 
  

 

and the linear migration policy 

 

𝜇𝑝𝑞[𝑘] = {
0    if 𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) ≤ 0,

𝑙𝑝(𝑥𝑝[𝑘])−𝑙𝑞(𝑥𝑞[𝑘])

𝑙𝑚𝑎𝑥
        otherwise,

  

 

where 𝑙𝑚𝑎𝑥 is the maximum latency value. By using these migration 

policies, it can be shown that convergence cannot be guaranteed, 

however small the sampling time 𝜏 is chosen (see, e.g., [25]). 

The proposed migration policy is then a modified better response 

policy, defined as: 

 

𝜇𝑝𝑞[𝑘] = {
0    if 𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) ≤ 𝛼𝛿[𝑘],

1                      otherwise,                         
 (7) 

 

where 𝛼 ∈ (0,1) is a tuning parameter which affects the algorithm 

convergence velocity, as examined in the following Section, and 𝛿[𝑘] 
is defined as the difference between the maximum measured latency 

value of the loaded paths and the minimum measured latency value, at 

time 𝑘, i.e., 

 

𝛿[𝑘] ≔ max
𝑝∈𝒫 | 𝑥𝑝[𝑘]>0

 𝑙𝑝(𝒙[𝑘]) − min
𝑞∈𝒫

 𝑙𝑞(𝒙[𝑘]). (8) 

 

The proposed control law is expressed by equations (4), (5) and (7), 

with the following control gain upper bound: 

 

𝜎𝑝𝑞[𝑘] ≤
𝛼𝛿[𝑘]

𝜏𝜆𝛽𝑚𝑎𝑥𝑑(|𝒫|+𝜂)
, (9) 

 

The system dynamics (3), under the control law (4), (5), (7), (8), and 

(9) – hereafter referred to as Discrete-Time Selfish Routing (DTSR) 

dynamics – resembles the algorithm proposed in [24]; besides the 

different expression (9) for 𝜎𝑝𝑞[𝑘], the main difference is the tolerance 

𝛼𝛿[𝑘] introduced in equation (7).  

In particular, the DTSR dynamics yields, in vector form, the closed-

loop nonlinear system dynamics 

 

𝒙[𝑘 + 1] = 𝑓(𝒙[𝑘]),     𝒙(0) ∈ 𝒳, (10) 

 

with respect to which we conduct the Lyapunov stability analysis 

reported in Section IV.B. Such a map from a population game to a set 

of difference equations is referred to in the literature as deterministic 

evolutionary dynamics [8]. 

B. Convergence Proof 

 

Lemma 1. Under Assumption 1 on the DTSR dynamics, with initial 

conditions (6), the latency variation of an edge 𝑒 in time steps is 

bounded according to the following relation: 

 

−
|𝒫|

𝜆(|𝒫|+𝜂)
𝛼𝛿[𝑘] ≤ 𝑙𝑒(𝑥𝑒[𝑘 + 1]) − 𝑙𝑒(𝑥𝑒[𝑘]) ≤

𝜂

𝜆(|𝒫|+𝜂)
𝛼𝛿[𝑘]. (11) 

 ∎ 

 

Proof. In the worst case, at time 𝑘, no paths migrate their own 

population to a path 𝑝 such that 𝑒 ∈ 𝑝: 
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𝑙𝑒(𝑥𝑒[𝑘 + 1]) = 𝑙𝑒(𝑥𝑒[𝑘] + 𝜏 ∑ ∑ (𝑟𝑚𝑝[𝑘] − 𝑟𝑝𝑚[𝑘])𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 )  

≥ 𝑙𝑒(𝑥𝑒[𝑘] − 𝜏 ∑ ∑ (𝑟𝑝𝑚[𝑘])𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 ). (12) 

 

Since 𝛽𝑒  is the Lipschitz constant of the function 𝑙𝑒, it follows that 

 

𝑙𝑒(𝑥𝑒[𝑘 + 1]) ≥ 𝑙𝑒(𝑥𝑒[𝑘]) − 𝛽𝑒𝜏 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 . (13) 

 

Considering equations (4), (7) and (9), the last term of equation (13) is 

written as 

 

𝛽𝑒𝜏 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 =  

= 𝛽𝑒𝜏 ∑ ∑ 𝜎𝑝𝑚[𝑘]𝜇𝑝𝑚[𝑘]𝑥𝑝[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒   

≤ 𝛽𝑒𝜏 ∑ ∑ 𝜎𝑝𝑚[𝑘]𝑥𝑝[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒   

≤
𝛼𝛿[𝑘]

𝜆𝑑(|𝒫|+𝜂)
∑ 𝑥𝑝[𝑘] ∑ 1𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 ,  (14) 

 

where the last inequality holds since 𝛽𝑒 ≤ 𝛽𝑚𝑎𝑥. Since there are at 

most |𝒫 ∖ 𝒫𝑒| ≤ |𝒫| terms in the last summation of equation (14) and 

since ∑ 𝑥𝑝[𝑘]𝑝∈𝒫𝑒 ≤ 𝑑, it holds that 

 

𝛽𝑒𝜏 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 ≤
|𝒫|

𝜆(|𝒫|+𝜂)
𝛼𝛿[𝑘]. (15) 

 

Similarly, in the worst case, at time 𝑘, every path 𝑞 such that 𝑒 ∈ 𝑞 

does not migrate its population to any other paths: 

 

𝑙𝑒(𝑥𝑒[𝑘 + 1]) ≤ 𝑙𝑒(𝑥𝑒[𝑘]) + 𝛽𝑒𝜏 ∑ ∑ 𝑟𝑛𝑞[𝑘]𝑛∈𝒫∖𝒫𝑒𝑞∈𝒫𝑒 . (16) 

 

Also, given definition (9), since 𝛽𝑚𝑎𝑥 ≥ 𝛽𝑒 , ∀𝑒 ∈ ℰ, and 

∑ 𝑥𝑛[𝑘]𝑛∈𝒫∖𝒫𝑒 ≤ 𝑑, it holds that: 

 

𝛽𝑒𝜏 ∑ ∑ 𝑟𝑛𝑞[𝑘]𝑛∈𝒫∖𝒫𝑒𝑞∈𝒫𝑒 ≤
𝛼𝛿[𝑘]

𝜆(|𝒫|+𝜂)
∑ 𝜇𝑛𝑞[𝑘]𝑞∈𝒫𝑒 . (17) 

 

Since 휂 ≥ |𝒫𝑒|, ∀𝑒 ∈ ℰ, and 𝜇𝑝𝑞[𝑘] ≤ 1, ∀𝑝, 𝑞 ∈ 𝒫, it holds that 

 

𝛽𝑒𝜏 ∑ ∑ 𝑟𝑛𝑞[𝑘]𝑛∈𝒫∖𝒫𝑒𝑞∈𝒫𝑒 ≤
𝜂

𝜆(|𝒫|+𝜂)
𝛼𝛿[𝑘]. (18) 

  ∎ 

 

It is shown below that the state space 𝒳 is a positively invariant set. 

 

Lemma 2. Under Assumption 1, 𝒳 is a positively invariant set for the 

DTSR dynamics, with the initial conditions specified in (6). 

 

Proof.  

It is shown in the following that, since the initial flow vector of the 

considered system dynamics, 𝒙[0], lies in 𝒳, the flow vector 𝒙[𝑘] lies 

in 𝒳 too, i.e., that a) ∑ 𝑥𝑝[𝑘]𝑝∈𝒫 = 𝑑 and b) 𝑥𝑒[𝑘] ≥ 0, ∀𝑒 ∈ ℰ, ∀𝑘 ≥

0. 

a) It follows from equation (3) that 

 

∑ (𝑥𝑝[𝑘 + 1] − 𝑥𝑝[𝑘])𝑝∈𝒫 = 𝜏∑ ∑ (𝑟𝑞𝑝[𝑘] − 𝑟𝑝𝑞[𝑘])𝑞∈𝒫𝑝∈𝒫   

= 𝜏(∑ ∑ 𝑟𝑞𝑝[𝑘]𝑞∈𝒫𝑝∈𝒫 −∑ ∑ 𝑟𝑞𝑝[𝑘]𝑝∈𝒫𝑞∈𝒫 ) = 0, (19) 

 

and, therefore, that ∑ 𝑥𝑝[𝑘]𝑝∈𝒫 = ∑ 𝑥𝑝[0]𝑝∈𝒫 = 𝑑, ∀𝑘 ≥ 0.  

b) By induction, since 𝑥𝑒[0] ≥ 0, ∀𝑒 ∈ ℰ, it is proven below that 

𝑥𝑒[𝑘] ≥ 0, ∀𝑒 ∈ ℰ, ∀𝑘 ≥ 0. Assuming that 𝑥𝑒[𝑘] ≥ 0, ∀𝑒 ∈ ℰ, for a 

given 𝑘, it is sufficient to prove that  

 

𝑥𝑒[𝑘 + 1] = 𝑥𝑒[𝑘] + 𝜏∑ (𝑟𝑞𝑝[𝑘] − 𝑟𝑝𝑞[𝑘])𝑞∈𝒫|𝑒∉𝑞
𝑝∈𝒫|𝑒∈𝑝

≥ 0, ∀𝑒 ∈ ℰ. (20) 

 

Since 𝑥𝑒[𝑘] ≥ 0, from equation (4) it follows that 𝑟𝑝𝑞[𝑘] ≥ 0. Thus, 

the following inequality holds (in the worst case, no paths migrate part 

of their population to a path 𝑝 which includes 𝑒): 

 

𝑥𝑒[𝑘 + 1] ≥ 𝑥𝑒[𝑘] − 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 , ∀𝑒 ∈ ℰ. (21) 

 

A sufficient condition for inequality (20) to hold is then 

 

𝑥𝑒[𝑘] − 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 ≥ 0, ∀𝑒 ∈ ℰ (22) 

 

Recalling equations (4) and (8) and the definition of 𝑥𝑒[𝑘], equation 

(22) can be written as 

 

∑ 𝑥𝑝[𝑘]𝑝∈𝒫𝑒 − 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 = ∑ 𝑥𝑝[𝑘]𝑝∈𝒫𝑒 −

𝜏∑ ∑ 𝑥𝑝[𝑘]𝜎𝑝𝑞[𝑘]𝜇𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒   

= ∑ (𝑥𝑝[𝑘](1 − 𝜏∑ 𝜎𝑝𝑞[𝑘]𝜇𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒 )) 𝑝∈𝒫𝑒 ≥ 0,∀𝑝 ∈ 𝒫. (23) 

 

The inequality (23) holds if each term of the summation is positive, 

which, given equation (9), is written as: 

 

𝑥𝑝[𝑘](1 − 𝜏∑ 𝜎𝑝𝑞[𝑘]𝜇𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒 )  

≥ 𝑥𝑝[𝑘] (1 −
𝛼𝛿[𝑘]

𝜆𝛽𝑚𝑎𝑥𝑑(|𝒫|+𝜂)
∑ 𝜇𝑝𝑞[𝑘]𝑞∈𝒫∖𝒫𝑒 )  

> 𝑥𝑝[𝑘] (1 −
𝛼𝛿[𝑘]

𝜆𝛽𝑚𝑎𝑥𝑑
 ) ≥ 0, ∀𝑝 ∈ 𝒫, (24) 

 

where the second inequality holds since, considering that 𝜇𝑞𝑞[𝑘] =

0, ∀𝑘 ≥ 0, the inner summation has at most (|𝒫| − 1) terms equal to 

1. If 𝑥𝑝[𝑘] = 0, the inequality (24) is verified. Instead, if 𝑥𝑝[𝑘] > 0, 

equation (24) holds if 

 
𝛼𝛿[𝑘]

𝜆𝛽𝑚𝑎𝑥𝑑
≤ 1. (25) 

 

Given that 0 < 𝛼 < 1 and given definition (8), it follows that 

 

𝛼𝛿[𝑘]

𝜆𝛽𝑚𝑎𝑥𝑑
<

max
𝑝∈𝒫

𝑙𝑝(𝒙[𝑘])

𝜆𝛽𝑚𝑎𝑥𝑑
< 1, (26) 

 

where the last inequality holds since, by the definitions of the 𝛽𝑒’s, of 

𝛽𝑚𝑎𝑥  and of 𝜆, it holds that 𝑙𝑝(𝒙) = ∑ 𝑙𝑒(𝑥𝑒)𝑒∈𝑝 ≤ ∑ 𝛽𝑒𝑑𝑒∈𝑝 ≤

𝜆𝛽𝑚𝑎𝑥𝑑, ∀𝑝 ∈ 𝒫.  ■ 

 

We are now in a position to prove the following theorem.  

  

Theorem 1. Under Assumption 1, 𝒙𝒲 is a globally asymptotically 

stable equilibrium point for the DTSR dynamics, with initial 

conditions (6) and with total traffic demand 𝑑 > 0.  ■ 

 

Proof. The following proof is based on Lyapunov’s direct method. Let 

ℒ(𝒙) ≔ Φ(𝒙) − Φ𝑚𝑖𝑛 be the candidate Lyapunov function, where 

Φ(𝒙) is the potential (2) and Φ𝑚𝑖𝑛 is its minimum value, which is 

unique thanks to Assumption 1. 

 

Let Δℒ(𝒙[𝑘]) denote the difference of the Lyapunov function ℒ(𝒙) 
along the solutions of the DTSR system: 

 

Δℒ(𝒙[𝑘 + 1]) ≔ ℒ(𝒙[𝑘 + 1]) − ℒ(𝒙[𝑘])  

= ∑ ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘+1]

𝑥𝑒[𝑘]𝑒∈ℰ   

≤ ∑ (𝑥𝑒[𝑘 + 1] − 𝑥𝑒[𝑘])𝑙𝑒(𝑥𝑒[𝑘 + 1])𝑒∈ℰ ,  (27) 
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where the inequality holds from geometric considerations, as the 

latency functions are strictly increasing (see the Appendix). 

Considering that 

 

∑ 𝑥𝑒[𝑘]𝑙𝑒(𝑥𝑒[𝑘])𝑒∈ℰ = ∑ ∑ 𝑥𝑝[𝑘]𝑝∈𝒫𝑒 𝑙𝑒(𝑥𝑒[𝑘])𝑒∈ℰ =

∑ ∑ 𝑥𝑝[𝑘]𝑒∈𝑝 𝑙𝑒(𝑥𝑒[𝑘])𝑝∈𝒫 = ∑ 𝑥𝑝[𝑘] ∑ 𝑙𝑒(𝑥𝑒[𝑘])𝑒∈𝑝𝑝∈𝒫 =

∑ 𝑥𝑝[𝑘]𝑙𝑝(𝒙[𝑘])𝑝∈𝒫 ,  (28) 

 

from equations (27) and (28), it follows that 

 

Δℒ(𝒙[𝑘 + 1]) ≤ ∑ (𝑥𝑝[𝑘 + 1] − 𝑥𝑝[𝑘])𝑙𝑝(𝒙[𝑘 + 1])𝑝∈𝒫   

= ∑ 𝜏(∑ 𝑟𝑞𝑝[𝑘]𝑞∈𝒫 −∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝒫 )𝑙𝑝(𝒙[𝑘 + 1])𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑞𝑝[𝑘]𝑞∈𝒫 𝑙𝑝(𝒙[𝑘 + 1])𝑝∈𝒫 − 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘]𝑞∈𝒫 𝑙𝑝(𝒙[𝑘 + 1])𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘]𝑝∈𝒫 𝑙𝑞(𝒙[𝑘 + 1])𝑞∈𝒫 − 𝜏∑ ∑ 𝑟𝑝𝑞𝑞∈𝒫 [𝑘]𝑙𝑝(𝒙[𝑘 + 1])𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘] (𝑙𝑞(𝒙[𝑘 + 1]) − 𝑙𝑝(𝒙[𝑘 + 1]))𝑞∈𝒫𝑝∈𝒫 . (29) 

 

We now prove that the terms 𝑟𝑝𝑞[𝑘] (𝑙𝑞(𝒙[𝑘 + 1]) − 𝑙𝑝(𝒙[𝑘 + 1])) 

of the last summation are either negative or null, for any 𝑝, 𝑞 ∈ 𝒫. 

 

a) If 𝑟𝑝𝑞[𝑘] = 0, the term is null. 

 

b) It is shown below that, if 𝑟𝑝𝑞[𝑘] > 0, it holds that 𝑙𝑝(𝒙[𝑘 + 1]) −

𝑙𝑞(𝒙[𝑘 + 1]) > 0, i.e., the considered term in (29) is negative. 

By Lemma 1, it holds that 

 

𝑙𝑝(𝒙[𝑘 + 1]) − 𝑙𝑞(𝒙[𝑘 + 1])  

≥ (𝑙𝑝(𝒙[𝑘]) − ∑
|𝒫|

𝜆(|𝒫|+𝜂)𝑒∈𝑝 𝛼𝛿[𝑘]) − (𝑙𝑞(𝒙[𝑘]) +

∑
𝜂

𝜆(|𝒫|+𝜂)𝑒∈𝑞 𝛼𝛿[𝑘])  

≥ (𝑙𝑝(𝒙[𝑘]) −
|𝒫|

|𝒫|+𝜂
𝛼𝛿[𝑘]) − (𝑙𝑞(𝒙[𝑘]) +

𝜂

|𝒫|+𝜂
𝛼𝛿[𝑘])  

= 𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) − 𝛼𝛿[𝑘], (30) 

 

where the second inequality follows from the fact that |𝑝| ≤ 𝜆, ∀𝑝 ∈
𝒫. Since we are considering the case 𝑟𝑝𝑞[𝑘] > 0, it follows from 

equation (7) that 

 

𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) > 𝛼𝛿[𝑘], (31) 

 

which, from equation (30), yields that 𝑙𝑝(𝒙[𝑘 + 1]) − 𝑙𝑞(𝒙[𝑘 + 1]) >

0. 

 

Now we can prove the asymptotic convergence to 𝒙𝒲 by showing 

that Δℒ(𝒙[𝑘 + 1]) = 0 if and only if 𝒙[𝑘] = 𝒙𝒲. 

 

If 𝒙[𝑘] = 𝒙𝒲, for any couple 𝑝, 𝑞 ∈ 𝒫, it holds either that 

𝑙𝑝(𝒙[𝑘]) ≤ 𝑙𝑞(𝒙[𝑘]) with 𝑥𝑝[𝑘] > 0 or that 𝑥𝑝[𝑘] = 0. In the latter 

case, it follows from equation (4) that 𝑟𝑝𝑞[𝑘] = 0. In the former case, 

equation (7) yields that 𝜇𝑝𝑞[𝑘] = 0 and, therefore, 𝑟𝑝𝑞[𝑘] = 0. From 

the discussion above, it follows that Δℒ(𝒙[𝑘 + 1]) = 0. 

If 𝒙[𝑘] ≠ 𝒙𝒲, there exist one or more pairs of paths 𝑝, 𝑞 ∈ 𝒫, such 

that 𝑥𝑝[𝑘] > 0 and 𝑙𝑝(𝒙[𝑘]) − 𝑙𝑞(𝒙[𝑘]) ≥ 0. Let �̅� and �̅� be the paths 

such that �̅� = argmax
𝑝∈𝒫 | 𝑥𝑝[𝑘]>0

𝑙𝑝(𝒙[𝑘]) and �̅� = argmin
𝑞∈𝒫

𝑙𝑞(𝒙[𝑘]), 

respectively, i.e., by definition (8), such that 𝑙�̅�(𝒙[𝑘]) − 𝑙�̅�(𝒙[𝑘]) =

𝛿[𝑘]. Given that 0 < 𝛼 < 1, it holds that 𝑙�̅�(𝒙[𝑘]) − 𝑙�̅�(𝒙[𝑘]) >

𝛼𝛿[𝑘] and, from equations (4) and (7), that  𝑟�̅��̅�[𝑘] > 0. From the 

 
2 Analogous results were achieved by simulating the algorithm with 

monotonically increasing but non-convex functions, e.g., the logarithmic one; 

discussion above, it follows that Δℒ(𝒙[𝑘 + 1]) < 0.  ∎ 

 

Remark 1. In the control law (4), the 𝜎𝑝𝑞’s are interpreted as the control 

gains. Lemma 1 and Theorem 1 show that equation (9) sets dynamic 

upper bounds on such control gains, with the twofold objective of 

keeping the dynamics feasible and of driving the system trajectories 

towards 𝒙𝒲.  ∎ 

 

Remark 2. Concerning the migration policy in equation (7), the key 

elements for the convergence of the discrete-time case are the facts (i) 

that, at any time step 𝑘, equation (7) sets a minimum latency separation 

𝛼𝛿[𝑘] for the migration between two paths, and (ii) that such latency 

separation vanishes with 𝑘, as the latency values converge.  ∎ 

 

Remark 3. As regards the convergence velocity of the considered 

closed-loop dynamics (10), the value chosen for 𝛼 sets a trade-off 

between the gain value – the upper bound (9) on the 𝜎𝑝𝑞’s is 

proportional to 𝛼 – and the number of flows selected for migrations – 

according to equation (7), at a given time step 𝑘, the 𝜇𝑝𝑞’s are positive 

only for the path pairs whose latencies differ by a quantity that is larger 

than 𝛼𝛿[𝑘] – see also the example simulation runs in Section V.  ∎ 

V. NUMERICAL SIMULATIONS 

In this Section, the proposed algorithm is evaluated via numerical 

simulations performed with MATLAB®. The example scenario has 

|ℰ| = 14 edges and |𝒫| = 12 paths, as shown in Fig.  1, which support 

the total traffic 𝑑 = 1. The figure shows that 𝜆 = 4 and 휂 = 6. The 

following convex latency functions2 were selected: 

 

𝑙𝑒(𝑥𝑒) = 𝑒−𝛽𝑒𝑥𝑒/𝑑 − 1, (32) 

 

with 𝛽𝑒 = 0.2, for 𝑒 ≤ 5, 𝛽𝑒 = 0.3 for 6 ≤ 𝑒 ≤ 9, 𝛽𝑒 = 0.1 for 𝑒 ≥
10. Equation (32) defines three groups of edges, each one 

characterized by the same latency function. 

 

 0 = 𝑠   = 𝑡  

  

 1

  

  

𝑒 
𝑒1

𝑒 

𝑒 

𝑒 

𝑒 

𝑒 

𝑒 

𝑒10

𝑒11
𝑒1 

𝑒1 

𝑝1 = 𝑒1, 𝑒11
𝑝 = 𝑒1 , 𝑒 , 𝑒1 
𝑝 = 𝑒 , 𝑒 , 𝑒11
𝑝 = 𝑒 , 𝑒 , 𝑒 , 𝑒1 

𝑒 

𝑝 = 𝑒 , 𝑒 , 𝑒1 
𝑝 = 𝑒 , 𝑒 , 𝑒10 , 𝑒1 
𝑝 = 𝑒 , 𝑒 , 𝑒1 
𝑝 = 𝑒 , 𝑒10, 𝑒1 

𝑝 = 𝑒 , 𝑒1 
𝑝10 = 𝑒 , 𝑒 , 𝑒1 
𝑝11 = 𝑒 , 𝑒 , 𝑒10, 𝑒1 
𝑝1 = 𝑒 , 𝑒1 

𝑒1 

 
Figure 1. Example network and list of paths from the source node s to the 

destination node 𝑡 ( 𝑖: vertex 𝑖; 𝑒𝑖: edge 𝑖; 𝑝𝑖: path 𝑖). 

 

The first set of simulation runs addresses the tuning of the parameter 

𝛼 of the control action, whereas the second one shows some latency 

and population dynamics examples as well as a qualitative comparison 

between the proposed algorithm and the one in [27]. 

the case of convex latency functions is presented here since it is meaningful for 

routing problems. 
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Figure 2.  Convergence time (mean and std. deviation) vs. 𝛼 

To evaluate the effect of the parameter 𝛼 on the convergence time, 

simulation runs starting from random initial states were simulated for 

values of 𝛼 ranging from 0.1 to 0.99. The convergence time was 

defined as the time instant 𝑘𝑐  such that the maximum latency mismatch 

𝛿[𝑘𝑐] lies within a tolerance 휀 = 10− . 

Fig. 2 shows the obtained convergence times, averaged over 20 

simulation runs, highlighting that the convergence time 

• is larger for small values of 𝛼 and then decreases with 𝛼 until 

𝛼 = 0.45, due to the fact that the 𝜎𝑝𝑞’s, i.e., the control gains, 

increase with 𝛼; 

• increases for values of 𝛼 from 𝛼 = 0.45 onwards, since fewer 

paths are selected for migrations (see the migration policy (7)); 

for instance, for values of 𝛼 sufficiently close to 1, only the 

paths with the largest and smallest latency values can exchange 

their population. 

The second simulation set presents examples of simulation runs 

under the proposed algorithm, for different values of 𝛼, and under the 

algorithm in [27]. The latter is a round-based algorithm: at every time 

step 𝑘, each path 𝑝 ∈ 𝒫 is activated with probability 𝛾. Each activated 

path decides to migrate to a given path 𝑞 ∈ 𝒫 based on the rule: 

 

Pr {𝑞 is selected} = {

1

|𝒫|
 with probability 𝛽𝐹          

𝑥𝑞[𝑘]

𝑑
 with probability (1 − 𝛽𝐹),

 (33) 

 

where 𝛽𝐹 ∈ (0,1) is the probability with which a random path is 

selected for the migration (exploration) instead of selecting the path 

proportionally to its population (exploitation). The migration from an 

activated path to the selected one is still given by equation (4), with 

migration rate 𝜎𝑝 =
1

|𝒫|
 and migration probability 𝜇𝑝𝑞[𝑘] =

max {
𝑙𝑝[𝑘]−𝑙𝑞[𝑘]

�̅�(𝑙𝑝[𝑘]+𝜁)
, 0}, where 휂̅ is the maximum value of the elasticity of 

the latency functions (defined in [27] as 휂(𝜉) ≔
𝑥⋅𝑑𝑙(𝜉)/𝑑𝜉

𝑙(𝜉)
) and 휁 is a 

positive value needed to avoid a division by 0 if 𝑙𝑝[𝑘] = 0. The 

parameters, tuned according to [27], were set as follows: 𝜎𝑝𝑞 =
1

1 
, 휁 =

0.01, 𝛾 =
1

  
, 𝛽𝐹 = 0.002, 휂̅ = 2. 

Fig. 3 and Fig. 4 show the dynamics of the latency and population 

values obtained with the proposed algorithm, with 𝛼 = 0.45, and with 

the algorithm in [27], respectively, starting from the same initial 

population. The figures highlight that, while the convergence 

velocities appear similar, the dynamics of the proposed algorithm is 

much smoother, since the algorithm in [27] relies on migration 

probabilities. For the same reason, even in the long run, the algorithm 

in [27] produces oscillations around the value at the equilibrium (in 

fact, it achieves an approximate equilibrium, see [27] for details). 

Fig. 5 shows the algorithm behaviour at values of 𝛼 close to 1, 

highlighting that, at each time step, only the paths with the largest and 

smallest latency values exchange their populations. 

  

Figure 3.  Population dynamics (higher plot) and latency dynamics (lower plot) 

with 𝛼 = 0.45. 

 

Figure 4.  Population dynamics (higher plot) and latency dynamics (lower plot) 

with the algorithm in [27]. 

  

Figure 5.  Population dynamics (higher plot) and latency dynamics (lower plot) 

with 𝛼 = 0.99. 
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VI. CONCLUSIONS AND FUTURE WORK 

This paper proposes a distributed non-cooperative selfish routing 

algorithm, which adopts the problem formulation proposed in [25] and 

introduces the design of a discrete-time algorithm. The proposed 

algorithm is proved to asymptotically converge to the exact Wardrop 

equilibrium, in contrast with the existing discrete-time algorithms, 

which converge to approximate Wardrop equilibria. The convergence 

proof is given by relying on Lyapunov’s second method. 

Future work is aimed (i) at extending the proposed algorithm to the 

multi-commodity scenario, (ii) at analysing the effects of time-delays 

and of communication constraints and losses and (iii) at implementing 

the algorithm in real applications, such as load balancing in smart-grids 

and in cloud networks, where the load and the latency functions may 

vary with time. 

APPENDIX 

If 𝑥𝑒[𝑘 + 1] > 𝑥𝑒[𝑘], the upper plot of Fig. 6 shows that the 

quantity (𝑥𝑒[𝑘 + 1] − 𝑥𝑒[𝑘])𝑙𝑒(𝑥𝑒[𝑘 + 1]), equal to the area of the 

rectangle with bold lines, is larger than the integral ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘+1]

𝑥𝑒[𝑘]
, 

equal to the grey area. If 𝑥𝑒[𝑘 + 1] < 𝑥𝑒[𝑘], the lower plot shows that 

(𝑥𝑒[𝑘] − 𝑥𝑒[𝑘 + 1])𝑙𝑒(𝑥𝑒[𝑘 + 1]), equal to the area of the rectangle 

with bold lines, is smaller than the integral ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘]

𝑥𝑒[𝑘+1]
, equal to 

the grey area. 

𝑥 𝑥1

휂̅ ≔ max
𝑥∈[𝑥 ,𝑥 ]

𝑑𝑙 𝑥

𝑑𝑥
− 휂̅ ⋅ 𝑥 − 𝑥1

− 𝑙 𝑥 − 𝑙 𝑥1

𝑥𝜆

𝑙 𝑥

0

𝑥1 𝑥 

휂̅ ≔ max
𝑥∈[𝑥 ,𝑥 ]

𝑑𝑙 𝑥

𝑑𝑥
휂̅ ⋅ (𝑥 − 𝑥1)

𝑙 𝑥 − 𝑙(𝑥1)

𝑥𝜆

𝑙 𝑥

0

𝑥𝑒[𝑘] 𝑥𝑒 𝑘 + 1 𝑥𝑑

𝑙𝑒 𝑥

0

𝑙𝑒 𝑥𝑒 𝑘 + 1

𝑙𝑒 𝑥𝑒[𝑘]
𝑙 𝑥 

𝑙 𝑥1

𝑥𝑒 𝑘 + 1 𝑥𝑒[𝑘] 𝑥𝑑

𝑙𝑒 𝑥

0

𝑙𝑒 𝑥𝑒[𝑘]

𝑙𝑒 𝑥𝑒 𝑘 + 1

 

Figure 6.  Geometrical considerations on the latency functions. 
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