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Abstract

We use a tensor C∗–category with conjugates and two quasitensor func-
tors into the category of Hilbert spaces to define a ∗–algebra depending
functorially on this data. In one of them is tensorial we can complete in
the maximal C∗–norm. A particular case of this construction allows us
to begin with solutions of the conjugate equations and associate ergodic
actions of quantum groups on the C∗–algebra in question. The quantum
groups involved are Au(Q) and Bu(Q). 1 2

1 Introduction

The theory of ergodic actions of compact quantum groups on unital C∗–algebras
has recently attracted interest. In the group case, one of the first results was the
theorem by Høegh-Krohn, Landstad and Størmer asserting that the multiplicity
of an irreducible representation is always bounded by its dimension and that
the unique G–invariant state is a trace [8].

Ergodic theory for group actions was later investigated by Wassermann in a
series of papers [20], [21], [22], who, among other results, classified all ergodic
actions of SU(2) on von Neumann algebras. In particular, he proved the im-
portant result that SU(2) cannot act ergodically on the hyperfinite II1 factor.

For compact quantum groups, ergodic theory on C∗–algebras was initiated
by Boca. He generalized the HLS theorem, showing that the multiplicity of
an irreducible is bounded instead by its quantum dimension. Woronowicz [24]
noticed that the modular group of a compact quantum group is not always
trivial, consequently, the invariant state cannot be a trace in general. Boca
described the modularity of this state for a general ergodic action [4].

12000 American Mathematical Society Classification: Primary 18D10, 20N99, 37A55
2Keywords: ergodic actions, quantum groups, conjugate equations

1

http://arxiv.org/abs/0808.3326v3


1 INTRODUCTION 2

Podles was interested in studying quantum spheres: he introduced subgroups
and quotients for compact quantum groups and computed them for the quantum
SU(2) and SO(3) groups. Some of the quantum spheres he found are not
embedable into the quotient spaces [14].

Later Wang found many examples of ergodic quantum actions on C∗–algebras:
for the quantum groups Au(Q) on type IIIλ Powers factors, on the Cuntz alge-
bras, on the injective factor of type III1 and on the hyperfinite II1 factor (this,
by a Kac type quantum group). He also found an example on a commutative
C∗–algebra that is not a quotient [18].

Classifying ergodic C∗–actions of the quantum group SµU(2) of Woronowicz
is an open problem. Tomatsu has classified all those which are embedded in the
translation action of SµU(2) [16].

Bichon, De Rijdt and Vaes have constructed examples of ergodic actions of
SµU(2) not embedable in the translation action. since the multiplicity of an irre-
ducible is bigger than its integral dimension. The authors also introduced a new
invariant, the quantum multiplicity m(u) of an irreducible representation u in
the action. This invariant reduces to the quantum dimension for the translation
action. In general, one has the bounds: multiplicity(u) ≤ m(u) ≤ q-dim(u).
Even for quotient actions, the quantum multiplicity is not an integer in gen-
eral [3]. These examples were constructed by means of a generalisation of the
Tannaka-Krein duality theorem for compact quantum groups [25] to ergodic
actions of full multiplicity.

In [10] we in turn extended the duality theorem of [3] to general ergodic
actions of compact quantum groups on unital C∗–algebras. To this aim, we
introduced the notion of quasitensor functor between two tensor C∗–categories
with conjugates, and we showed that quasitensor functors from the representa-
tion category of a compact quantum group G to the category of Hilbert spaces
characterise the spectral functors of ergodic C∗–actions of G.

As an application, we constructed ergodic actions of SµU(d) starting from
abstract tensor C∗–categories with a Hecke symmetry of parameter q = µ2. In
particular, one gets ergodic actions of SµU(2) from a real or pseudoreal object
y of a tensor C∗–category with intrinsic dimension d(y) ≥ 2, with µ and d(y)
related by d(y) = |µ + µ−1| and µ positive if y is pseudoreal and negative
otherwise.

Our interest in braiding was motivated by low dimensional QFT, where
braided tensor C∗–categories arise, albeit with a unitary braiding [7].

The aim of this paper is twofold. We first give an alternative notion of
quasitensor functor and we show the equivalence with that of [10], as well as the
construction of the mentioned C∗–ergodic action of G. Furthermore, we apply
this construction to obtain ergodic actions of compact quantum groups starting
from solutions of the conjugate equation in a tensor C∗–category.

This paper has a sequel, that is [12], where we start precisely from the non
commutative space here obtained to construct Hilbert bimodule representations
of compact quantum groups arising from tensor C∗–categories generated by an
object of intrinsic dimension ≥ 2. In this sense, our ergodic actions should be
regarded as virtual quantum subgroups.
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Furthermore, as an application, we get ergodic actions of SµU(2), for nega-
tive or positive values of the deformation parameter uniquely determined by the
intrinsic dimension. Ergodic actions of the quantum groups Bu(Q) and Au(Q)
of Wang appear as well.

The paper is organized as follows. In Section 2 we review the main facts
about compact quantum groups [26], the main invariants of ergodic C∗–actions
and the duality theorem of [10].

In Section 3 we state our main results: the existence of ergodic C∗–actions
of the compact quantum group Au(Q), in the notation of Wang, associated with
an invertible positive matrix Q ∈ Mn(C) with Tr(Q) = Tr(Q−1) arising from
normalized solutions R,R of the conjugate equations. Q and R are related by
Trace(Q) = R∗ ◦R.

For self-conjugate solutions of the conjugate equations we also get ergodic
C∗–actions of the compact quantum group Bu(Q), in the notation of Wang,
associated with an invertible matrix Q ∈ Mn(C) with QQ = ±1 and hence
TrQ∗Q =Tr(Q∗Q)−1. Q and R are now related by Trace(Q∗Q) = R∗ ◦ R and
±1 distinguishes real from pseudoreal solutions. 3

In Section 4, we generalize, at an algebraic level, the construction of the
∗–algebra carrying the ergodic action giving a formalism symmetric in two qu-
asitensor functors and discuss its functorial properties. We then complete in
the maximal C∗–norm when one of the two functors is tensorial. The general
case will be considered elsewhere [13]. The action itself is defined in Section 5.
Section 6 recalls some properties of the Temperley-Lieb categories associated
with self-conjugate solutions of the conjugate equations whilst Section 7 is de-
voted to related categories needed for treating general solutions of the conjugate
equations. Section 8 treats the embeddings of these categories into the category
of Hilbert spaces and the associated compact quantum groups and concludes
with the proof of the main results.

2 Preliminaries

In this preliminary section we recall the main invariants associated with an
ergodic action of a compact quantum group G on a unital C∗–algebra C and
the duality theorem of [10].

2.1 Compact quantum groups.

We follow Woronowicz [26] in defining a compact quantum group G to be
a pair G = (Q,∆) where Q is a C∗–algebra with unit I and ∆ : Q → Q ⊗ Q a
unital coassociative ∗–homomorphism, the coproduct:

∆⊗ ι ◦∆ = ι⊗∆ ◦∆,

with ι : Q → Q the identity map. To economize on brackets we shall always eval-
uate tensor products before composition. The coproduct is required to satisfy

3Banica denotes Au(Q) by Au(F ) where Q = F ∗F and Bu(Q) by Ao(F ), where Q = F ∗,
(Définition 2 of [2]).
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the following nondegeneracy condition: the subspaces I⊗Q∆(Q) and Q⊗I∆(Q)
are dense in Q⊗ Q.

A unitary representation of G on a finite dimensional Hilbert space Hu is
a linear map u : Hu → Hu ⊗ Q satisfying the group homomorphism property,
nondegeneracy and unitarity, expressed respectively by:

u⊗ ι ◦ u = ι⊗∆ ◦ u,

u(Hu)(I ⊗ Q) = Hu ⊗ Q

(u(ψ), u(ψ′))Q = (ψ, ψ′)I,

where on the left hand side of the last relation we have the natural Q–valued
inner product of the right Hilbert module Hu ⊗ Q:

(ψ ⊗ q, ψ′ ⊗ q′)Q := (ψ, ψ′)q∗q′, ψ, ψ′ ∈ Hu, q, q
′ ∈ Q.

The coefficients of u are elements of Q defined by uψ,ψ′ := ψ∗ ⊗ Iu(ψ′), where
ψ∗ : Hu → C is the annihilation operator ψ∗ψ′ := (ψ, ψ′). Representation
coefficients span a dense ∗–subalgebra of Q. If u and v are two representations,
we can form the tensor product representation u ⊗ v on the tensor product
Hilbert space Hu ⊗Hv, defined by

(u⊗ v)ψ⊗φ,ψ′⊗φ′ := uψ,ψ′vφ,φ′ . (2.1)

A conjugate of u is a unitary representation u with an antilinear invertible
j : Hu → Hu such that

uφ,jψ = (uj∗φ,ψ)
∗. (2.2)

A conjugate u of u is defined up to unitary equivalence. Every representation
has a conjugate representation [24]. The category Rep(G) with objects unitary
representations of G and arrows the intertwining operators

(u, v) := {A : Hu → Hv : v ◦A = A⊗ I ◦ u},

is a tensor C∗–category with conjugates (and also subobjects and direct sums)
in the sense of [9]. Furthermore, Rep(G) embeds naturally as a tensor ∗–
subcategory of the category H of Hilbert spaces. Conversely, any tensor ∗–
subcategory of H with conjugation, subobjects and direct sums is the represen-
tation category of a compact quantum group [25].

The quantum groups of interest here are theWoronowicz deformations SµU(2)
by a nonzero real parameter µ [25] and the Van Daele-Wang orthogonal groups
and unitary groups Bu(Q) and Au(Q) associated with an invertible matrix
Q ∈Mn(C) [17].

2.2 Ergodic C∗–actions

Consider a unital C∗–algebra C and a compact quantum group G. An action

of G on C is a unital ∗–homomorphism δ : C → C ⊗ Q satisfying the group
representation property:

ι⊗∆ ◦ δ = δ ⊗ ι ◦ δ,
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and the nondegeneracy property requiring that δ(C)I ⊗ Q be dense in C ⊗ Q.
The spectrum of δ, sp(δ), is defined to be the set of all unitary representations
u of G for which there is a faithful linear map T : Hu → C intertwining the
representation u with the action δ:

δ ◦ T = T ⊗ ι ◦ u.

In other words, if uij are the coefficients of u in some orthonormal basis of H ,
we are requiring the existence of a spectral multiplet of linearly independent
elements c1, . . . , cd ∈ C, with d the dimension of u, transforming like u under
the action: δ(ci) :=

∑
j cj ⊗ uji. The linear span of all the ci’s, denoted Csp, as

u varies in the spectrum, is a dense ∗–subalgebra of C [14].
The action δ is called ergodic if the fixed point algebra

Cδ = {c ∈ C : δ(c) = c⊗ I}

reduces to the complex numbers: Cδ = CI. The simplest example of an ergodic
action is the translation action of G on C = Q with δ = ∆. Another simple class
of examples are the adjoint actions on B(Hu), where u is an irreducible unitary
representation. The spectrum then consists of the subrepresentations of u⊗ u.

If an action δ is ergodic, the spectral multiplets transforming like u form
Hilbert spaces. In fact, for any representation u, consider the space

Lu := {T : Hu → C, δ ◦ T = T ⊗ ι ◦ u}.

If S, T ∈ Lu, < S, T >:=
∑
i T (ψi)S(ψi)

∗, where (ψi) is an orthonormal basis of
Hu, is an element of the fixed point algebra Cδ, and hence a complex number.
Lu is known to be finite dimensional and is therefore a Hilbert space with the
above inner product. This Hilbert space is nonzero precisely when u contains
a subrepresentation v ∈ sp(δ). In particular, for an irreducible u, the condi-
tions u ∈ sp(δ) and Lu 6= 0 are equivalent. The dimension of Lu is called the
multiplicity of u and denoted mult(u).

The complex conjugate vector space Lu, endowed with the conjugate inner
product

< S, T >:=< T, S >=
∑

i

S(ψi)T (ψi)
∗,

is called the spectral space associated with u.
If for example δ is the translation action on Q, any ψ ∈ Hu defines an element

of Lu by
Tψ(ψ

′) := ψ∗ ⊗ Iu(ψ′).

Hence the spectral space Lu can be identified with Hu through the unitary map

ψ ∈ Hu → Tψ ∈ Lu.

For a general ergodic action, we introduce certain maps whose coefficients gen-
erate the dense ∗–subalgebra Csp, as the representations do in the case of the
translation action.
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For any u ∈ Rep(G), define the map

cu : Hu → Lu ⊗ C

associated with the spectral space Lu by:

cu(ψ) :=
∑

k

Tk ⊗ Tk(ψ), (2.3)

where Tk is any orthonormal basis of Lu. Clearly cu is determined by its coef-
ficients

cu
T,ψ

:= T
∗
⊗ Icu(ψ) = T (ψ), ψ ∈ Hu, T ∈ Lu. (2.4)

The cu’s are called multiplicity maps in [10].
In the example of the translation action, identifying Lu and Hu we have

cu = u.
We can represent cu as a rectangular matrix whose k-th row is given by the

multiplet Tk = (Tk(ψ1) . . . Tk(ψd)) transforming like u under δ.
It is known that the set of all coefficients {cu

Tk,ψj
= Tk(ψj), j, k}, of the multi-

plicity maps in orthonormal bases forms a linear basis for the dense ∗–subalgebra
Csp [3], [10], when u varies in a complete set of irreducible representations of
sp(δ), generalizing a well known property of matrix coefficients of a compact
quantum group [26].

In [3] the authors introduce a new numerical invariant, the quantum multi-

plicitym(u) of the representation u, in the following way. If j : Hu → Hu defines
a conjugate representation of u in the sense recalled in the previous subsection,
then we can associate an invertible antilinear J : Lu → Lu with J by setting
J(T )(φ) := T (j−1(φ))∗. Its inverse J−1 : Lu → Lu is given by J−1(S)(ψ) =
S(j(ψ))∗. If u is irreducible, m(u)2 := Trace(JJ∗)Trace((JJ∗)−1). One has:

mult(u) ≤ m(u) ≤ d(u),

an inequality which strengthens the inequality mult(u) ≤ d(u) previously ob-
tained by Boca [4], when generalizing the HLS theorem [8] mult(u) ≤ dim(u) in
the group case. If u is reducible, we define m(u) as the infimum of all the above
trace values, derived from all possible solutions of the conjugate equations for
u. Then the inequality

dim(Lu) ≤ m(u) ≤ d(u) (2.5)

holds for all representations u. Notice that m(u) takes the smallest possible
value dim(Lu) precisely when for some j the associated J is a scalar multiple
of an antiunitary. Examples of ergodic actions of SµU(2) where dim(u) <
mult(u) < m(u) = d(u) have been constructed in [3].

2.3 The spectral functor of an ergodic action and quasitensor functors

It has been shown in [10] that ergodic actions of compact quantum groups
on unital C∗–algebras have a duality theory resembling the duality theory of
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Woronowicz for compact quantum groups: an ergodic G–action on C has a dual
object allowing one to reconstruct the G–action on the maximal completion of
Csp. Furthermore, the dual objects of ergodic actions have been characterized.

The map u 7→ Lu can be extended to a functor

L : Rep(G) → H

from the category of representations of G to the category H of Hilbert spaces.
This functor is defined on arrows as follows.

If A ∈ (u, v) and T ∈ Lv then T ◦ A : Hu → C lies in Lu. Hence if we
identify Lu canonically with the dual vector space of Lu, any arrow A ∈ (u, v)
in Rep(G) induces a linear map LA ∈ (Lu, Lv) via the natural pairing between
Lu and Lu:

LA : ϕ ∈ Lu → (T ∈ Lv → ϕ(T ◦A)) ∈ Lv.

The spectral functor L and the multiplicity maps cu are related as follows

LA ⊗ I ◦ cu = cv ◦A, A ∈ (u, v),

for any u, v ∈ Rep(G). In terms of the matrix coefficients of cu this reads

cu
LA∗ S,ψ

= cv
S,Aψ

, A ∈ (u, v), ψ ∈ Hu, S ∈ Lv. (2.6)

Taking the tensor C∗–category structure of Rep(G) and H into account one
can see that L is a ∗–functor, but not a tensor ∗–functor, in general.

In fact, for u, v ∈ Rep(G), the tensor product Hilbert space Lu ⊗ Lv is in
general just a subspace of Lu⊗v, in the sense that there is a natural isometric
inclusion

L̃u,v : Lu ⊗ Lv → Lu⊗v

identifying a simple tensor S ⊗ T with the complex conjugate of the element of
Lu⊗v defined by

ψ ⊗ φ ∈ Hu ⊗Hv → S(ψ)T (φ).

The main result of [10] characterizes the set of all ergodic action duals (L, L̃)
algebraically among all ∗–functors

τ : Rep(G) → H

endowed with isometries τ̃u,v : τu ⊗ τv → τu⊗v. These are precisely the qua-

sitensor functors, defined below.
We shall refer to [5] for the notion of an abstract (strict) tensor C∗–category

T. The tensor product between objects u and v will be denoted by u ⊗ v and
between arrows S and T by S ⊗ T . The tensor unit object will be denoted ι.
We shall assume that ι is an irreducible object: (ι, ι) = C, unless otherwise
specified. The n-th tensor power of an object u will be denoted un. When
we refer to a tensor C∗–category of Hilbert spaces, we mean that the objects
are finite dimensional Hilbert spaces and contain Hilbert spaces of any finite
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dimension. The spaces of arrows are all linear operators between the Hilbert
spaces in question.

Let T and R be strict tensor C∗–categories. A ∗–functor τ : T → R together
with a collection of isometries τ̃u,v ∈ (τu ⊗ τv, τu⊗v), for objects u, v ∈ T, is
called quasitensor if

τι = ι, (2.7)

τ̃u,ι = τ̃ι,u = 1τu , (2.8)

τ̃∗u,v⊗w ◦ τ̃u⊗v,w = 1τu ⊗ τ̃v,w ◦ τ̃∗u,v ⊗ 1τw (2.9)

and if
τ(S ⊗ T ) ◦ τ̃u,v = τ̃u′,v′ ◦ τ(S) ⊗ τ(T ), (2.10)

for any other pair of objects u′, v′ and arrows S ∈ (u, u′), T ∈ (v, v′). In
particular, a tensor functor τ is quasitensor with τ̃u,v := 1τu⊗τv , as τu⊗v =
τu ⊗ τv for all objects u, v, (2.7) and (2.8) hold by assumption and (2.9) and
(2.10) are trivially satisfied. More generally, if all the isometries τ̃u,v are unitary,
we recover the known notion of a relaxed tensor functor.

This definition of a quasitensor functor differs from that given in [10] and
the equivalence is established in the appendix.

Given a quasitensor functor (µ, µ̃) into the category of Hilbert spaces, let
τ denote the embedding functor of the category of finite dimensional unitary
representations of a compact quantum group G into the category of Hilbert
spaces then, as shown in [10], there is a canonical ergodic action of G on a
C∗–algebra µCτ . If µ is the spectral functor of an ergodic action of G on a
C∗–algebra B then µ is isomorphic to the spectral functor of the action on µCτ
and the dense spectral subalgebras of B and µCτ are canonically isomorphic.
However, B and µCτ need not be isomorphic. µCτ is the completion of its dense
spectral subalgebra in the maximal C∗–norm and this may not be the case for
B.

3 The main results

In this section we state our main results.

3.1 Theorem Let x be an object of a tensor C∗–category with irreducible tensor
unit ι and let R ∈ (ι, x2) satisfy R∗ ⊗ 1x ◦ 1x⊗R = ±1x and ‖R‖2 ≥ 2. For any
integer 2 ≤ n ≤ ‖R‖2, let Q ∈Mn(C) be any invertible matrix satisfying

QQ = ±I, Trace(Q∗Q) = Trace(Q∗Q)−1 = ‖R‖2.

Then there is an ergodic action of the compact quantum group Bu(Q) of Wang
[19] on a unital C∗–algebra C with spectral spaces Lur = (ι, xr), r ≥ 0 and
L∑

k ψk⊗Q∗ψk
= R, where the sum is taken over an orthonormal basis ψk of the
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Hilbert space of u. If m(u) = dim(ι, x), u being the defining representation of
Bu(Q), then

m(ur) = dim(ι, xr).

In particular, if we choose n = 2 we get an ergodic action of SµU(2) for a
nonzero −1 < µ < 1 determined by |µ+ µ−1| = ‖R‖2, where µ > 0 if and only
if x is pseudoreal.

In the examples derived from subfactors and treated in [11]. We do have
m(u) = dim(ι, x).

3.2 Theorem Let x be an object of a tensor C∗–category with irreducible tensor
unit ι and let R ∈ (ι, x⊗x) and R ∈ (ι, x⊗x) satisfy R∗⊗ 1x ◦ 1x⊗R = 1x and

R
∗
⊗ 1x ◦ 1x ⊗ R = 1x and ‖R‖2 = ‖R‖2 ≥ 2. For any integer 2 ≤ n ≤ ‖R‖2,

let Q ∈Mn(C) be any positive invertible matrix satisfying

Trace(Q) = Trace(Q−1) = ‖R‖2.

Then there is an ergodic action of the compact quantum group Au(Q) of Wang
on a unital C∗–algebra C with spectral spaces Lq(u,u) = (ι, q(x, x)), where q
is a monomial in two variables and u the defining representation of Au(Q). If
m(u) = dim(ι, x),

m(q(u, u)) = dim(ι, q(x, x)),

for each q.

The proofs involve two main steps. The first is to embed the tensor ∗–
subcategory generated by R or by R and R into the category of Hilbert spaces.
The second step is to define the ergodic action, by applying the duality theorem
for ergodic actions of compact quantum groups on unital C∗–algebras proved
in [10]. The construction of the C∗–algebra will be given in Sect. 4 in greater
generality than in [10] and the G–action is explained in Sect. 5. We start with
a pair of quasitensor functors (τ, τ̃ ), (µ, µ̃) and obtain the following result.

3.3 Theorem Let A be a tensor C∗–category with conjugates and (µ, µ̃) : A →
M and (τ, τ̃ ) : A → T quasitensor functors. We let ◦

µCτ be the linear space∑
u(µu, ι) ⊗ (ι, τu), the sum being taken over the objects of A, quotiented by

the linear subspace generated by elements of the form

M ◦ µ(A)⊗ T −M ⊗ τ(A) ◦ T.

Thus we may write ◦
µCτ =

∑
u(µu, ι)⊗A (ι, τu). Then

a) ◦
µCτ can be given the structure of a ∗–algebra.

b) If either µ or τ is tensorial then ◦
µCτ can be completed in the maximal

C∗–norm to give a unital C∗–algebra µCτ .

c) If we have an action η of a compact qantum group G on T leaving the objects
invariant, there is a unique action α of G on µCτ such that α(M ⊗ T ) =
M ⊗ η(T ).
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4 C∗–algebras from pairs of quasitensor functors

Let A be a tensor C∗–category with conjugates and (µ, µ̃) : A → M and (τ, τ̃ ) :
A → T quasitensor functors. We let ◦

µCτ be the linear space
∑

u(µu, ι)⊗ (ι, τu),
the sum being taken over the objects of A, quotiented by the linear subspace
generated by elements of the form

M ◦ µ(A)⊗ T −M ⊗ τ(A) ◦ T.

Thus we may write ◦
µCτ =

∑
u(µu, ι) ⊗A (ι, τu). We next define a product on

◦
µCτ setting for L ∈ (µu, ι), M ∈ (µv, ι), S ∈ (ι, τu), T ∈ (ι, τv),

(L⊗ S)(M ⊗ T ) := (L ⊗M) ◦ µ̃∗

u,v ⊗ τ̃u,v ◦ (S ⊗ T ).

It is easy to check that the product is well defined and associative.
When either (τ, τ̃ ) or (µ, µ̃) is minimal in the sense defined in the appendix

◦
µCτ reduces to the complex numbers. The reason is that this algebra does not
change if we complete A under direct sums and subobjects and extend (τ, τ̃ ).
Every object of A is then a direct sum of irreducibles and it becomes clear that
we can restrict the sum over u in the definition of ◦

µCτ to a representative set of
irreducibles. But then (ι, µu) = 0 unless u = ι so ◦

µCτ = (ι, ι).
Tensor C∗–categories with conjugates have been studied in [9]. We recall

the notion of conjugate object u of u. This object is defined, up to unitary
equivalence, by the existence of two intertwiners R ∈ (ι, u ⊗ u), R ∈ (ι, u ⊗ u)
satisfying the conjugate equations:

R
∗
⊗ 1u ◦ 1u ⊗R = 1u, (4.1)

R∗ ⊗ 1u ◦ 1u ⊗R = 1u. (4.2)

The intrinsic dimension d(u) of u is the infimum of all possible ‖R‖‖R‖.
If G is a compact quantum group, Rep(G) is a tensor C∗–category with

conjugates: for any representation u with conjugate representation u defined
by the antilinear intertwiner j : Hu → Hu as in (2.2), the elements R :=∑
ψj ⊗ j−1ψj and R :=

∑
k φk ⊗ jφk are intertwiners in (ι, u⊗ u) and (ι, u⊗ u)

respectively and satisfy the conjugate equations. Hence every representation has
an associated intrinsic dimension d(u), also called quantum dimension, given by

d(u)2 = inf(‖R‖‖R‖)2 = infTrace(j∗j)Trace((j∗j)−1). (4.3)

Notice that d(u) ≥ dim(u) with equality if and only if j is antiunitary. In terms
of the quantum group, the condition dim(u) = d(u) for all u is equivalent to
requiring the coinverse κ to be involutive.

Let A be a tensor C∗–category and pick for each object u of A a solution
Ru, Ru of the conjugate equations. We agree to take Rι = Rι = 1ι. There is an
associated conjugation on A defined, for A ∈ (v, u), by

A• := R∗

v ⊗ 1u ◦ 1v ⊗A∗ ⊗ 1u ◦ 1v ⊗Ru.
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A• ∈ (v, u) can also be defined by the equation

1v ⊗A• ◦Rv = A∗ ⊗ 1u ◦Ru.

If B ∈ (w, v) then (A ◦ B)• = A• ◦ B•. If we use the product solutions of the
conjugate equations for defining the conjugate of a product then (A ⊗ B)• =
B• ⊗ A•. In fact, if A ∈ (u, u′) and B ∈ (v, v′) then

(A⊗B)• = R∗

u⊗v ⊗ 1v′⊗u′ ◦ 1v⊗u ⊗A∗ ⊗B∗ ⊗ 1v′⊗u′ ◦ 1v⊗u ⊗Ru′⊗v′ .

Substituting in the product form of the solutions we get

(A⊗B)• =

(R∗

v◦1v⊗R
∗

u⊗1v)⊗1v′⊗u′◦1v⊗u⊗A
∗⊗B∗⊗1v′⊗u′◦1v⊗u⊗(1u′⊗Rv′⊗1u′◦Ru′) =

(R∗

v ◦ 1v⊗B
∗ ◦ 1v⊗R

∗

u⊗ 1v′)⊗ 1v′⊗u′ ◦ 1v⊗u⊗ (1u⊗Rv′ ⊗ 1u′ ◦A∗⊗ 1u′ ◦Ru′) =

(R∗

v ◦ 1v⊗B
∗)⊗ 1v′⊗u′ ◦ 1v⊗Rv′ ⊗ 1u′ ◦ 1v⊗R

∗

u⊗ 1u′ ◦ 1v⊗u⊗ (A∗⊗ 1u′ ◦Ru′) =

B• ⊗ 1u′ ◦ 1v ⊗A• = B• ⊗A•.

A computation shows that the inverse of A→ A• is

A = R
∗

v ⊗ 1u ◦ 1v ⊗A•∗ ⊗ 1u ◦ 1v ⊗Ru.

Now
R̂u := µ̃∗

u,u ◦ µ(Ru), R̂u := µ̃∗

u,u ◦ µ(Ru) (4.4)

is a solution of the conjugate equations for µu since

R̂∗

u ⊗ 1µu
◦ 1µu

⊗ R̂u = µ(R∗

u)⊗ 1µu
◦ µ̃u,u ⊗ 1µu

◦ 1µu
⊗ µ̃∗

u,u ◦ 1µu
⊗ µ(Ru) =

µ(R∗

u)⊗ 1µu
◦ µ̃∗

u⊗u,u ◦ µ̃u,u⊗u ◦ 1µu
⊗ µ(Ru) = µ(R∗

u ⊗ 1u) ◦ µ(1u ⊗Ru) = 1µu

with the other relation following similarly. There is therefore a conjugation
defined on the full subcategory of M whose objects are the images of those of
A under µ.

Remark If µ is not injective on objects, this conjugation is not well defined.
This plays no role in the following since R̂u is labelled by u rather than µu.
In what follows, the tensor category M can, if desired, be replaced by a tensor
C∗–category whose objects are those of A and where the arrows from u to v are
arrows from µu to µv with the obvious algebraic operations. The ∗–functor µ
then becomes an isomorphism on objects.

Changing the solution of the conjugate equations using an invertible X (see

Appendix), then as we would expect, the corresponding change in R̂u and R̂u
is induced by µ(X). The solutions of the conjugate equations for τu, defined

analogously, will be denoted by R̃u, R̃u.
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Given A ∈ (v, u), then

µ(A•) = µ(R∗

v ⊗ 1u ◦ 1v ⊗A∗ ⊗ 1u ◦ 1v ⊗Ru) =

µ(R∗

v)⊗ 1µu
◦ µ̃∗

v⊗v,u ◦ µ̃v,v⊗u ◦ 1µv
⊗ µ(A∗ ⊗ 1u ◦Ru) =

µ(R∗

v)⊗ 1µu
◦ µ̃v,v ⊗ 1µv,v

◦ 1̃µv
◦ µ̃∗

v,u ◦ 1µv
⊗ µ(A∗ ⊗ 1u ◦Ru) =

R̂∗

v ⊗ 1µu
◦ 1µv

⊗ µ(A∗)⊗ 1µu
◦ 1µv

⊗ µ̃∗

u,u ◦ 1µv
⊗Ru =

R̂∗

v ⊗ 1µu
◦ 1µv

⊗ µ(A∗)⊗ 1µu
◦ 1µu

⊗ R̂v.

Thus µ(A•) = µ(A)•.

When (µ, µ̃) and (τ, τ̃ ) are quasitensor ∗–functors, we define an involution
on ◦

µCτ by setting
(M ⊗ T )∗ :=M• ⊗ T •.

This is well defined since, for example,

(M ◦ µ(A)⊗ T )∗ = (M ◦ µ(A))• ⊗ T • =M• ◦ µ(A•)⊗ T • =

M• ⊗ τ(A•) ◦ T • = (M ⊗ τ(A) ◦ T )∗.

If we change the solution of the conjugate equations using an invertible X (see
Appendix), then (M ⊗ T )∗ becomes M• ◦ µ(X∗)⊗ τ(X−1∗) ◦ T • = (M ⊗ T )∗.
In other words, the involution is independent of the choice of solutions of the
conjugate equations in A. Thus to check that we really have an involution, it
suffices to pick Ru = Ru and Ru = Ru when computing the second adjoint. In
this case, the above computation of the inverse of A 7→ A• implies that we have
an involution.

4.1 Proposition The product and involution defined above make ◦
µCτ into a

∗–algebra.

Proof It suffices to show that

(N• ⊗M• ◦ µ̃∗

v,u)⊗ (τ̃v,u ◦ T
• ⊗ S•) = (N• ⊗ T •)⊗ (M• ⊗ S•) =

(M ⊗N ◦ µ̃∗

u,v)
• ⊗ (τ̃u,v ◦ S ⊗ T )•.

As the involution is independent of the choice of solutions of the conjugate equa-
tions, we may suppose, in evaluating this expression, that R̂u⊗v = µ̃∗

v⊗u,u⊗v ◦

µ(1v ⊗Ru ⊗ 1v ◦Rv) with an analogous expression for R̃u⊗v. Now

(M ⊗N ◦ µ̃∗

u,v)
• = R̂∗

u⊗v ◦ 1µv⊗u
⊗ µ̃u,v ◦ 1µv⊗u

⊗M∗ ⊗N∗ =

µ(R∗

v) ◦ µ(1v ⊗R∗

u ⊗ 1v) ◦ µ̃v⊗u,u⊗v ◦ 1µv⊗u
⊗ µ̃u,v ◦ 1µv⊗u

⊗M∗ ⊗N∗ =

µ(R∗

v) ◦ µ(1v ⊗R∗

u ⊗ 1v) ◦ µ̃v⊗u⊗u,v ◦ µ̃v⊗u,u ⊗ 1µv
◦ 1µv⊗u

⊗M∗ ⊗N∗ =

µ(R∗

v)◦ µ̃v,v ◦1µv
⊗µ(R∗

u)⊗1µv
◦ µ̃∗

v,u⊗u⊗1µv
◦ µ̃v⊗u,u⊗1µv

◦1µv⊗u
⊗M∗⊗N∗ =
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R̂∗

v ◦ 1µv
⊗N∗ ◦ 1µv

⊗ µ(R∗

u) ◦ 1µv
⊗ µ̃u,u ◦ µ̃v,u ⊗ 1µu

◦ 1µv⊗u
⊗M∗ =

(R̂∗

v ◦ 1µv
⊗N∗)⊗ (R̂∗

u ◦ 1µu
⊗M∗) ◦ µ̃∗

v,u = (N• ⊗M• ◦ µ̃∗

v,u).

This proves the result since the term involving S and T can be treated in the
same way.

Remark Note that ◦
µCτ depends only on the images of µ and τ . However the

images will not in general be tensor categories and the existence of ◦
µCτ depends

on having two quasitensor functors.

In the following c will denote the support of ι (see Appendix).

4.2 Corollary If τ̃•u,v ◦ cτv ⊗ cτu = τ̃∗•∗u,v ◦ cτv ⊗ cτu = τ̃v,u ◦ cτv ⊗ cτu .

Proof. Let Si ∈ (ι, τu), Tj ∈ (ι, τv) be orthonormal bases then in the proof of
Proposition 4.1 we have seen that

τ̃•u,v ◦ T
•

j ⊗ S•

i = (τ̃u,v ◦ Si ⊗ Tj)
• = τ̃v,u ◦ T

•

j ⊗ S•

i .

Multiplying on the right by T ∗•
j ⊗S∗•

i , summing over i and j and using the fact
that, by Lemma A.5, c•τu = cτu , we get the one equality. The other equality
follows similarly from Proposition 4.1 but using the part involving the functor
µ.

We now make use of the irreducibility of the tensor unit ι in A, M and T and
define a linear functional h on ◦

µCτ by setting for M ∈ (µu, ι) and T ∈ (ι, τu),

h(M ⊗ T ) := (M ◦ µ(cu))⊗ T =
∑

i

(M ◦ µ(Vu,i))⊗ (τ(V ∗

u,i) ◦ T ),

where Vu,i is an orthonormal basis in (ι, u). The first expression shows that h
is well defined and the second that it takes values in C.

The next task is to show that h is a faithful positive linear functional and it
would be natural to argue in terms of irreducibles. HoweverA does not necessary
have sufficient irreducibles and there are two ways to proceed. Let B denote
the completion of A under subobjects then B has sufficient irreducibles and we
have a canonical inclusion functor from A to B. The quasitensor functors (µ, µ̃)
and (τ, τ̃ ) from A can be extended to quasitensor functors (ν, ν̃) and (σ, σ̃) from
B. A variant of Proposition 4.4 below shows that ◦

µCτ and ◦
νCσ are canonically

isomorphic. After this we may suppose that A has sufficient irreducibles. To
avoid giving the details involved, we give an alternative proof using minimal
projections in A in place of irreducibles, every unit being a sum of minimal
projections.

As we have seen that the involution on our algebra is independent of the
choice of conjugate, we suppose in the following computation that u 7→ Ru
is a standard choice of solutions of the conjugate equations (see Appendix).
The conjugation then commutes with the adjoint and maps projections into
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projections. If E ∈ (u, u) is a minimal projection then E• is a minimal projection
in (u, u). Setting RE := E• ⊗ E ◦Ru and RE := E ⊗ E• ◦Ru, we have

E ⊗ R∗

E ◦RE ⊗ E = E, E• ⊗R
∗

E ◦RE ⊗ E• = E•,

the form taken by the conjugate equations for minimal projections. If E is any
projection in (u, u) we let VE,i, i = 1, 2, . . . nE , be a maximal set of mutually
orthogonal isometries in (ι, u) with VE,i ◦ V

∗
E.i ≤ E and we set cE :=

∑
i VE,i ◦

V ∗
E,i. Two minimal projections are equivalent if they are connected by a partial

isometry and we pick a set Ê of minimal projections, one from each equivalence
class. Note that cE•⊗F = 0 if E and F are inequivalent minimal projections
whereas cE•⊗E = ‖RE‖

−2RE ◦R∗
E .

4.3 Proposition h is a faithful positive linear functional on ◦
µCτ .

Proof Given an object u of A there are partial isometries Ui with U
∗
i ◦Ui ∈ Ê and∑

i Ui ◦ U
∗
i = 1u. If M ∈ (µu, ι) and T ∈ (ι, τu) then M ⊗ T =

∑
iM ◦ µ(Ui)⊗

τ(U∗
i )◦T ). Thus any element of ◦µCτ is a sum of elements of the formM⊗T where

M =M ◦ µ(E) and τ(E) ◦ T for some E ∈ Ê. Given L⊗ S with L = L ◦ µ(F )
and S = τ(F )◦S then by the remarks above, h((L⊗S)∗(M ⊗T )) = 0 if E 6= F
whereas if E = F ,

h((L⊗S)∗(M⊗T )) = ‖RE‖
−2(R̂∗

E◦µ(E
•)⊗L∗⊗M◦R̂E)(R̂

∗

E◦µ(E
•)⊗S∗⊗T ◦R̂E)

= ‖RE‖
−2(φE(L

∗ ◦M))(φ∗E(S
∗ ◦ T )),

with φE the scalar product on {X : X ◦ µ(E) = X = µ(E) ◦ X} and {Y :
Y ◦ τ(E) = Y = τ(E) ◦ Y } induced by R̂E := µ(E•) ⊗ µ(E) ◦ R̂u and R̃E :=
τ(E•)⊗τ(E)◦R̃u as in the appendix. To complete the proof it is enough to show
that h(X∗X) ≥ 0 forX :=

∑
m,n λm,nLm⊗Sn when Lm is an orthonormal basis

in (µu, ι) ◦ µ(E), Sn an orthonormal basis in τ(E) ◦ (ι, τu) with respect to the
scalar products φE and λm,n ∈ C with equality if and only if

∑
m(Lm⊗Sm) = 0.

But the above computation shows that

h(
∑

m

(Lm ⊗ Sm)∗
∑

n

(Ln ⊗ Sn)) =

∑

m,n,p,q

‖RE‖
−2λm,nλp,qφE(L

∗

m ◦ Lp)φE(S
∗

m ◦ Sq) =
∑

m,n

|λm,n|
2,

as required.

The previous proposition implies in particular that ◦
µCτ has a non trivial

C∗–norm. In general, the maximal C∗–norm may not be finite. However, this
will be the case if either µ or τ is a (not necessarily strict) tensor functor, and
this suffices for the purposes of [12]. To see this, we may extend the arguments
of [10], where finiteness of the maximal C∗–norm is explicitly shown, to the
setting of this paper. However, the corresponding algebra CF of that paper was
introduced in a slightly different way, by means of a complete set of irreducible
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objects. The following argument should make it clear that the two approaches
are in fact equivalent.

We define a set of linear functionals on ◦
µCτ . Pick a maximal set Ek ∈

(uk, uk), k ∈ K, of inequivalent minimal projections in A. Then for each u, pick
partial isometriesWi, i ∈ Iu such that W ∗

i ◦Wi = Efu(i) where fu : Iu → K and∑
i∈Iu

Wi ◦W
∗
i = 1u. Given k ∈ K and M,M ′ ∈ (ι, µuk

) and N,N ′ ∈ (ι, µv),
we set

ωT,M (N∗ ⊗ S) :=
∑

i∈Iv ,fv(i)=k

(N∗ ◦ µ(Wi) ◦M)(T ∗ ◦ τ(W ∗

i ) ◦ S).

This expression is independent of the choice of the partial isometries and is
understood to be zero if f−1

v (k) is the empty set. We must check that ωT,M is
well defined. To this end, let A ∈ (v, w), and P ∈ (ι, µw), then

ωT,M (P ∗ ⊗ τ(A) ◦ S) =
∑

ℓ∈Iw ,fw(ℓ=k

(P ∗ ◦ µ(Wℓ) ◦M)(T ∗ ◦ τ(W ∗

ℓ ) ◦ τ(A) ◦ S) =

∑

i∈Iv ,fv=k,ℓ∈Kv,fw=k

(P ∗ ◦ µ(Wℓ) ◦M)(T ∗ ◦ τ(W ∗

ℓ ) ◦ τ(A) ◦ τ(Wi) ◦ τ(W
∗

i ) ◦ S) =

∑

i∈Iw ;fv(i)=k

(P ∗ ◦ µ(A) ◦ µ(Wi) ◦M)(T ∗ ◦ τ(W ∗

i ) ◦ S) = ωT,M (P ∗ ◦ µ(A) ⊗ S),

as required. Note that ω1ι,1ι is just the Haar state h. One would expect ωM,M

to be a positive linear functional and imitating the proof in the case of h should
shed light on the question.

Since for M,M ′ ∈ (ι, µu) and Wi, i ∈ Iu, as above,

(M∗ ⊗ T ) =
∑

i∈Iu

(M∗ ◦ µ(Wi))⊗ ((τ(W ∗

i ) ◦ S),

every element of ◦
µCτ is a sum of elements of the form (N∗ ⊗ S), where µ(Ek) ◦

N = N and τ(Ek)◦S = S for some k ∈ K. IfM = µ(Ej)◦M and T = τ(Ej)◦T ,
then ωT,M (N∗⊗S) = δjk(T

∗ ◦S)(N∗ ◦M). We now claim that the set of linear
functionals ωT,M with M = µ(Ek) ◦M and T = τ(Ek) ◦ T separates sums of
elements of the form N∗ ⊗ S where N = µ(Ek) ◦N , S = τ(Ek) ◦ S. Any such
sum X may be written in the form

∑
i,j λij(M

∗
i ⊗ Tj), where Mi and Tj are

orthonormal bases of the range of µ(Ek) and τ(Ek). ωMn,Mp
(X) = λnp. Thus

the above set of linear functionals separates ◦
µCτ .

We let µCτ denote the C∗–algebra obtained by completing ◦
µCτ in the max-

imal C∗–norm.

We now investigate the functorial properties of the above construction. Let
(η, η̃) : A1 → A2, (µ1, µ̃1) : A1 → M, (µ2, µ̃2) : A2 → M, (τ1, τ̃1) : A1 → T

and (τ2, τ̃2) : A2 → T be quasitensor functors with (µ1, µ̃1) = (µ2, µ̃2) ◦ (η, η̃)
and (τ1, τ̃1) = (τ2, τ̃2) ◦ (η, η̃). Then the above equalities imply that there is
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a well defined natural unital multiplicative map η∗ from µ1
Cτ1 to µ2

Cτ2 . Since
the adjoint is independent of the choice of solutions of the conjugate equations
we may suppose that if Ru is chosen in A1 then η(Ru) is chosen in A2 and
a computation now shows that R̂ηu = R̂u so that η∗ is a unital morphism.
Obviously, η 7→ η∗ is a covariant functor.

4.4 Proposition If (η, η̃) : A1 → A2 is full and each object of A2 is a direct
sum of the images of projections under η then η∗ is an isomorphism.

Proof As the C∗–algebras in question are obtained by completion in the maximal
C∗–norm it will suffice to show that we have an isomorphism before completion.
Given M ∈ (ι, µ2,x) and T ∈ (ι, τ2,x), pick projections Ei in A1 and partial
isometries Wi in A2 such that

∑
iWi ◦W

∗
i = 1x and W ∗

i ◦Wi = η(Ei), then
η∗

∑
i(M

∗ ◦µ2(Wi)⊗τ2(W
∗
i )◦T ) = (M∗⊗T ) and η∗ is surjective. If X is in the

kernel of η∗, pick T = τ1(Ek) ◦ T and M = µ1(Ek) ◦M , where Ek is a minimal
projection in A1. Then η(Ek) is a minimal projection in A2 and T = τ2η(Ek)◦T
and M = µ2η(Ek) ◦M . Thus ωT,M (X) = ωT,M (η∗(X) = 0, so X = 0.

As a second example of functorial properties we suppose that ξ : (σ, σ̃) →
(τ, τ̃ ) is a unitary tensor natural transformation. Thus ξι = 1ι, ξv ◦ σ(A) =
τ(A) ◦ ξu for A ∈ (u, v) and ξu⊗v ◦ σ̃u,v = τ̃u,v ◦ ξu ⊗ ξv. We now set

ξ∗(M ⊗ S) :=M ⊗ ξu ◦ S, M ∈ (µu, ι), S ∈ (ι, σu).

Obviously, if A ∈ (u, v) then ξ∗(M ⊗ σ(A) ◦ S) = ξ∗(M ◦ µ(A) ⊗ S). Thus ξ∗
can be considered as a linear map from ◦

µCσ to ◦
µCτ .

ξ∗(M ⊗ S)ξ∗(M
′ ⊗ S′) = (M ⊗M ′ ◦ µ̃∗

u,u′ ⊗ τ̃u,u′ ◦ (ξu ◦ S)⊗ (ξu′ ◦ S′) =

(M ⊗M ′ ◦ µ̃∗

u,u′ ⊗ ξu⊗u′ ◦ σ̃u,u′ ◦ S ⊗ S′) = ξ∗((M ⊗ S)(M ′ ⊗ S′).

Thus ξ∗ is multiplicative.

ξ∗((M ⊗ S)∗) = ξ∗(M
• ⊗ S•) = (M• ⊗ ξu ◦ S

•)

whereas
(ξ∗(M ⊗ S))∗ = (M• ⊗ (ξu ◦ S)•).

Thus it suffices to show that ξ•u = ξu.

ξ∗u ◦ ξ
•

u = R∗

σu
⊗ 1σu

◦ 1σu
⊗ ξ∗u ⊗ ξ∗u ◦ 1σu

⊗Rτu .

Now
ξ∗u ⊗ ξ◦uτ̃u,u∗ = σ̃∗

u,u ◦ ξ∗u⊗u, Rτu = τ̃∗u,u ◦ τ(Ru),

and ξ∗u⊗u ◦ τ(Ru) = σ(Ru). This gives ξ∗u ⊗ ξ∗u = 1u and hence ξ•u = ξu, as
required. Thus ξ∗ is an isomorphism and hence extends to an isomorphism
from µCσ to µCτ .

As a third example of functorial properties, we consider quasitensor functors
(µ, µ̃) : A → M, (τ, τ̃ ) : A → T and (σ, σ̃) : T → S and define for M ∈ (µu, ι)
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and S ∈ (ι, τu), σ∗(M ⊗ S) := (M ⊗ σ(S)). This obviously defines a linear map
σ∗ from ◦

µCτ to ◦
µCστ . σ∗ is multiplicative since

σ̃ ◦ τu,v ◦ σ(S)⊗ σ(T ) = σ(τ̃u,v) ◦ σ(S ⊗ T ),

where T ∈ (ι, τv). Furthermore σ∗ commutes with the adjoint since σ commutes
with conjugation. Hence σ∗ extends to a morphism from µCτ to µCστ .

4.5 Proposition σ∗ is faithful and if σ maps (ι, τu) onto (ι, στu) for each object
u of A, then σ∗ is an isomorphism.

Proof Under the above condition, σ∗ is obviously surjective. It therefore suffices
to prove that σ∗ is faithful on ◦

µCτ . To this end, let us denote the image of an

element X ∈ ⊕u(µu, ι) ⊗ (ι, τu) in ⊕(µu, ι) ⊗A (ι, τu) by X̂ and suppose that
σ∗(X̂) = 0. Then σ∗(X), the image of X in ⊕u(µu, ι)⊗ (ι, στu), is of the form

∑

i

(Mi ⊗ (στ(Ai) ◦ σ(Si))− (Mi ◦ µ(Ai))⊗ σ(Si)).

Set Y := ⊕i(Mi ⊗ (τ(Ai) ◦ Si) − (Mi ◦ µ(Ai)) ⊗ Si then σ∗(X) = σ∗(Y ) and
Ŷ = 0. Hence it suffices to show that X̂ = 0 when σ∗(X) = 0, but this follows
since σ is faithful on the Hilbert spaces (ι, τu).

We now recall the ∗–functor q : T → H, discussed in the appendix, taking an
object x of T to the Hilbert space (ι, x) and X ∈ (x, y) onto the map T 7→ X ◦T .
q extends uniquely to a quasitensor functor (q, q̃), and q̃ is minimal. By the above
result, q∗ is an isomorphism and, in this sense, it suffices to consider quasitensor
functors (µ, µ̃) and (τ, τ̃ ) taking values in the category of Hilbert spaces.

5 The genesis of ergodic actions

In this section we explain how to get actions of quantum groups on the C∗–
algebras constructed from a pair of quasitensor functors in the last section. To
this end, we suppose that we have an action η of a quantum group G on the
category T leaving the objects of T invariant. Regarding the C∗-algebra Q of
G as a C∗–category with a single object, η is a ∗–functor from T to T ⊗ Q

with η ⊗ 1Q ◦ η = 1T ⊗ ∆ ◦ η, ∆ being the coproduct. Since T ⊗ Q is not a
tensor C∗–category, we cannot require η to be a tensor ∗–functor. The natural
condition is to require instead that η(S ⊗ T ) = η(S)⊤η(T ), where ⊤ indicates
that we take a tensor product in the first component and a product in the second
a la Woronowicz. This is the product used when defining the tensor product
of representations of a quantum group. We further suppose that the arrows
of A intertwine this action, i.e. that η(τ(A) ◦ T ) = τ(A) ⊗ I ◦ η(T ) and that
η(τ̃u,v) = τ̃u,v ⊗ I for each pair u, v of objects of A.

5.1 Proposition There is a unique action α of G on µCτ such that α(M⊗T ) :=
M ⊗ η(T ).
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Proof α is obviously well defined and a simple computation shows that it is
multiplicative. To show that it commutes with the adjoint, we must show that
η(S•) = η(S)•⊗∗. Now

η(S•) = η(S∗ ⊗ 1τu ◦ R̃u) = η(S∗)⊤1τu ⊗ I ◦ R̃u ⊗ I = η(S)•⊗∗.

Finally, α extends to µCτ by continuity and is trivially an action.

Let EG denote the conditional expectation defined by averaging η overG and
let EG,u denote the projection obtained by restricting to (ι, τu). If A ∈ (u, v)
then EG,vτ(A)EG,u = τ(A)EG,u thus EG,vτ(A) = τ(A)EG,u. Thus EG,· is a
natural transformation from τ to τ as is τ(c) where c denote the central support
of ι in A as before. If EG,· = τ(c) then the above action will be ergodic.

It remains to understand how to get appropriate actions of a quantum group
G on T and when the induced action on µCτ is ergodic. Now if we suppose that
τ is a tensor ∗–functor into the category of Hilbert space then, as A has conju-
gates, the duality theorem of Woronowicz [25] gives us an action η of a compact
quantum group Gτ on the Hilbert spaces (ι, τu) and hence on the category T.
The C∗–algebra of Gτ is τCτ , showing how our construction generalizes that of
Woronowicz. The action is defined by

ηu(T ) =
∑

i

Ti ⊗ (T ∗

i ⊗ T ), T ∈ (ι, τu),

where the sum is taken over an orthonormal basis. The arrows of the form τ(A)
intertwine this action, the conditional expectation defined by averaging over Gµ
is τ(c) and η(S⊗T ) = η(S)⊤η(T ). Thus we have an induced action α of Gτ on

µCτ :

α(M ⊗ T ) =
∑

i

(M ⊗ Ti)⊗ (T ∗

i ⊗ T ).

This action is ergodic since the conditional expection coincides with h which is
the unique invariant state. To put ourselves in the setting of [10], we replace µ by
qµ which can then be identified with the spectral functor of the ergodic action.
The spectral space Lu associated with the representation u can be identified,
as a Hilbert space, with (ι, µu) through the map that takes M ∈ (ι, µu) to the
complex conjugate of the map of Lu:

T ∈ (ι, τu) → M∗ ⊗ T ∈ µCτ .

Remark Under certain circumstances, the above generalizes to the case of a
quasitensor functor τ but since it is not needed here, we will give details in a
separate paper.

6 Self-conjugate solutions of the conjugate equa-

tions

To treat self-conjugate solutions of the conjugate equations we consider two
tensor ∗–categories. The first, Trd, for real solutions, has objects that are powers
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yn, n ∈ N0, of a generating object y and whose arrows are generated by a single
arrow S ∈ (ι, y2) satisfying S∗ ⊗ 1y ◦ 1y ⊗ S = 1y and S∗ ◦ S = d. The
second, Tpd, for pseudoreal solutions, has objects that are powers zn, n ∈ N0,
of a generating object z and whose arrows are generated by a single arrow S
satisfying S∗ ⊗ 1y ◦ 1y ⊗ S = −1y and S∗ ◦ S = d. In both cases we suppose
that d 6= 0.

As Trd and Tpd are defined in terms of generators and relations they will sat-
isfy the corresponding universal properties. But the analogous universal proper-
ties are satisfied by the Temperley-Lieb categories [27], usually defined without
reference to a ∗–operation. Hence the categories Trd and Tpd are Temperley-
Lieb categories corresponding to parameters ±d with a ∗–operation defined by
a solution S of self-conjugate solutions of the conjugate equations. As such, the
following assertions are well known. The units and generating objects of these
categories are irreducible and the spaces of arrows are finite dimensional. The
categories are simple except at roots of unity, d = 2 cos π

ℓ
, ℓ = 3, 4, . . . , when

they have a single non-zero proper ideal [6]. They are tensor C∗–categories
when d ≥ 2 and at roots of unity their quotients by the unique non-zero proper
ideal are tensor C∗–categories having the universal property, but now for tensor
C∗–categories.

We define a left inverse ψ for the generating object y of Trd by

ψm,n(Y ) := S∗ ⊗ 1ym−1 ◦ 1y ⊗ Y ◦ 1yn−1 ⊗ S, Y ∈ (yn, ym).

Iterating ψ we get a mapping Tr: (yn, yn) → (ι, ι), the Markov trace. A right
inverse for y is obtained by dualizing the above definition with respect to ⊗ and
iterating again defines the Markov trace.

A left and right inverse for the generating object z of Tpd can be defined
analogously and their iterates again yield the Markov trace.

7 General solutions of the conjugate equations

We define Td for d 6= 0 to be the tensor ∗–category whose objects are the words
in x and x and whose arrows are generated by two arrows R ∈ (ι, x ⊗ x) and

R ∈ (ι, x⊗x) subject to the relations 1x⊗R
∗◦R⊗1x = 1x, 1x⊗R

∗
◦R⊗1x = 1x,

R∗ ◦R = d and R
∗
◦R = d. We note that Td has an involution ◦ taking x to x

and R to R. We call an object even or odd according as to whether it a tensor
product of an even or odd number of the objects x and x. The space of arrows
between an even and an odd object is zero.

As Td has been defined in terms of generators and relations, it has a universal

property: given any solutions R′, R
′
of the conjugate equations in a tensor ∗–

category T with R
′
∗ ◦R′ = d and R

′
∗
◦R

′
= d, there is a unique tensor ∗–functor

φ : Td → T such that φ(R) = R′ and φ(R) = R
′
. Yamagami in [28] defines a

tensor ∗–category in terms of oriented Kauffman diagrams and shows that it has
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the above universal property so that this category is in fact isomorphic to Td.
With his very different starting point his proof of Theorem 7.1 below is quite
different.

7.1 Theorem ι and x are irreducible in Td.

Proof If X ∈ (ι, ι) then X → 1x ⊗X is a faithful morphism from (ι, ι) to (x, x),
since it suffices to show that (ι, x ⊗ x) is 1-dimensional in Td. This will be the
case if any intertwiner in (ι, x⊗ x) constructed as an algebraic expression in R,
R, 1x, 1x and their adjoints reduces to a multiple of R. A tensor product of
the basic arrows 1x, 1x, R, R, R

∗ and R
∗
. will be said to be a term. A term is

positive if R∗ and R
∗
are not involved and negative if R and R are not involved.

Using the interchange law, any term can be written in the form X+ ◦X−, where
X+ is a positive term and X− a negative term. Now consider a composition of
terms of the form X− ◦X+. We break these two terms into an equal number of
pieces of minimal size such that the ◦–composition of the corresponding pieces is
defined. We list the possible ◦–compositions of two pieces. 1x⊗R

∗◦R⊗1x = 1x;
R∗⊗ 1x ◦ 1x⊗R = 1x; 1x⊗R

∗
◦R⊗ 1x = 1x; R

∗
⊗ 1x ◦ 1x⊗R = 1x; R

∗ ◦R = d;
R

∗
◦R = d; 1x◦1x = 1x; 1x◦1x = 1x; 1x⊗x◦R = R; 1x⊗x◦R = R; R∗◦1x⊗x = R∗;

R
∗
◦1x⊗x = R

∗
; 1x⊗x⊗R

∗◦R⊗1x⊗x = R⊗R∗; 1x⊗x⊗R
∗ ◦R⊗1x⊗x = R⊗R∗;

1x⊗x ⊗ R
∗
◦ R ⊗ 1x⊗x = R ⊗ R

∗
; 1x⊗x ⊗ R

∗
◦ R ⊗ 1x⊗x = R ⊗ R∗. Thus

up to a scalar X− ◦ X+ = Y+ ◦ Y−. Hence up to a scalar any composition of
terms can be written as a composition of positive and negative terms where the
negative terms appear on the right and the positive terms on the left. But such
a composition is an arrow of (ι, x⊗x) if and only if there are no negative terms
and a single positive term R.

Remark Every composition of terms in Td can also be written as a composition
of positive and negative terms, the positive terms appearing on the right and
the negative terms on the left.

The universal property of Td implies that there is a unique tensor ∗-functor
φ : Td → Trd such that φx = y and φ(R) = φ(R) = S. As an aid to studying
this functor we introduce the full subcategory Tad whose objects are of the form
(x ⊗ x)n, the even objects or (x ⊗ x)n ⊗ x, the odd objects, for n ∈ N0. This
category is obviously not a tensor subcategory of Td but it can be given the
structure of a tensor ∗–category. Note first that there is no non-zero arrow
between objects of different parity so any non-zero arrow has a definite parity
and we define the tensor product as X ⊗X ′ if X is even and X ⊗X

′
◦ if X is

odd. As an object of Tad , x is self-conjugate. Therefore there is a unique tensor
∗–functor ψ : Trd to Tad with ψy = x and ψ(S) = R. The restriction φa of φ to
Tad is a tensor ∗–functor since φ(X) = φ(X◦) and φaψ = 1Trd

. Thus φa and φ
are surjective on arrows. φ is obviously not full since (x, x) = 0 and (y, y) 6= 0.
Thus, in particular, we have proved the following result.

7.2 Theorem The canonical functor φ from Td to Trd is a tensor ∗–functor
surjective on both objects and arrows but not full.

7.3 Theorem ψ : Trd → Tad is an isomorphism of tensor ∗–categories and
φ : Td → Trd is faithful.
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Proof If X is a term of Tad then φa(X) will be a term of Trd and ψφa(X) = X .
But every arrow of Tad is a linear combination of compositions of terms. Hence
ψ is an isomorphism. More generally, given a full subcategory Tsd of Td such
that the restriction φs of φ to the objects of Tsd is an isomorphism, the image
of Tsd under φs is a subcategory Tsrd of Trd. Every term Y of Tsrd is the image
under φs of a term of unique term ψs(Y ) of Tsd. Note, however, that formally

distinct terms of Td can define the same arrow of Td, for example, R ◦ R
∗
=

R
∗
⊗ R. Nevertheless ψs extends to a full functor from Tsrd to Tsd. φ

s and ψs

are isomorphisms since they are inverses of one another in restriction to terms.
Using the linear isomorphism of (x ⊗ p, q) and (p, x ⊗ q) where necessary, we
conclude that φ is faithful.

We define left inverses ψ and ψ of x and x by

ψp,q(X) := R∗ ⊗ 1p ◦ 1x ⊗X ◦R⊗ 1q, X ∈ (x⊗ q, x⊗ p),

ψp,q(X) : R
∗
⊗ 1p ◦ 1x ⊗X ◦R⊗ 1q. X ∈ (x⊗ q, x⊗ p).

Iterating ψ and ψ appropriately we get a map Tr: (p, p) → (ι, ι). Obviously,
since the unit of Td is irreducible by Theorem 7.1, Tr(X) =Tr(φ(X)). Right
inverses of x and x are defined by dualizing with respect to ⊗ and iterated
appropriately lead to the same map Tr: (p, p) → (ι, ι). It follows that Tr is a
trace in that Tr(X ◦X ′) =Tr(X ′ ◦X), whenever the compositions are defined.
Another way of looking at this trace is to note that R,R extend uniquely to a
homomorphic choice q 7→ Rq of solutions of the conjugate equations in Td (see
Appendix). The corresponding scalar product ψq on (q, q) is that associated
with the trace.

Following [23], we call an arrow X ∈ (p, q) of Td negligible if Tr(X ′ ◦X) = 0
for all X ′ ∈ (q, p). Clearly, X is negligible if φ(X) is negligible in Trd but the
converse follows from Theorem 7.2. The set of negligible arrows is a tensor
∗–ideal. This is well known in the case of Trd but holds in some generality.

7.4 Proposition Let T be a tensor ∗–category with conjugates and irreducible
tensor unit and u 7→ Ru a tracial and homomorphic choice of solutions of the
conjugate equations with associated trace Tr, then the set I of negligible arrows
in T is the maximal proper tensor ∗–ideal.

Proof If X ∈ (u, v) then Tr(1u) = R∗
u ◦1u⊗u ◦Ru = du. So Tr(X ′ ◦X)∗ =TrX∗ ◦

X
′
∗ =TrX

′
∗ ◦ X∗ so I = I∗. If W ∈ (w, u) and V ∈ (v, w) then Tr(V ◦ X ◦

W ) =Tr(W ◦ V ◦X) so X ∈ I implies X ◦W ∈ I. Now let Z ∈ (t ⊗ v, t ⊗ u),
then, since u 7→ Ru is homomorphic,

Tr(Z ◦ 1t ⊗X) = R∗

u ◦ 1u ⊗ (R∗

t ⊗ 1t ◦ 1t ⊗ Z ◦Rt ⊗ 1v ◦X) ◦Ru.

Thus X ∈ I implies 1t⊗X ∈ I and similarly for tensoring on the right. Tr(1ι) =
1 so that I is a proper tensor ∗–ideal. Now if J is a proper tensor ∗-ideal and
X ∈ (u, v) ∩ J then Tr(X ′ ◦X) ∈ J for all X ′ ∈ (v, u) thus X ∈ I, completing
the proof.
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7.5 Proposition A tensor C∗–category with irreducible tensor unit and con-
jugates is simple.

Proof A standard choice of solutions of the conjugate equations yields a trace in-
dependent of that choice (see Appendix) so the proof of Proposition 7.4 applies.
Since the trace is faithful every negligible arrow is zero.

We now investigate the ideal structure of Td. As remarked above, an arrow
X of Td is negligible if and only if φ(X) is negligible. Thus if d 6= cos π

ℓ
for

ℓ = 3, 4, . . . , X is negligible if and only if φ(X) = 0. Thus by Theorem 7.3,
Td is simple for these values of d. If d = cos π

ℓ
for ℓ = 3, 4, . . . , then again by

Theorem 7.2, the ideal of negligible arrows in Td is the unique non-zero proper
tensor ideal. We have therefore proved the following result.

7.6 Theorem Td is simple unless d = 2 cos π
ℓ
when it has a single non-zero

proper tensor ideal.

As another consequence of Theorem 7.3, Td will be a tensor C∗–category
whenever Trd is a tensor C∗–category, i.e. whenever d ≥ 2. If d = 2 cos π

ℓ
,

ℓ = 3, 4, . . . , its quotient by the unique non-zero proper ideal will be a tensor C∗–
category having the universal property for normalized solutions of the conjugate
equations with these values of d.

There is also a canonical functor φ : Td → Tpd with φx = φx = z, φ(R) = S
and φ(R) = −S. The results of this section have obvious analogues in this case.

8 Embedding the universal categories

There will be tensor ∗–functors from Td to a tensor C∗–category T if d = 1,
d ≥ 2 or if d = 2 cos π

ℓ
, for ℓ = 3, 4, . . . . For these values of d, given normalized

solutions R′, R
′
of the conjugate equations for x′ in T with R

′
∗◦R′ = d, there is a

unique tensor ∗–functor φ from Td to T with φx = x′, φ(R) = R′ and φ(R) = R
′
.

When φ is injective on objects the image of φ is a tensor C∗–category isomorphic
to Td. Similarly, if S′ ∈ (ι, y

′2) is a real (or pseudoreal) solution of the conjugate
equations in T with S′∗ ◦S′ = d, then there is a unique isomorphism φ from Trd

(or Tpd) to the tensor C∗–subcategory generated by S taking y to y′ and S to
S′.

Obviously, a tensor C∗–category T with (ι, ι) = C can only be embedable in
the tensor C∗–category of Hilbert spaces if any normalized solution R,R of the
conjugate equations in T with R∗ ◦R < 2 is unitary. In particular, the quotient
tensor C∗–categories Td/I for d = 2 cos π

ℓ
cannot be embedded into the tensor

C∗–category of Hilbert spaces.

We will now classify, for the possible values of d other than d = 1, the tensor
∗–functors from Trd and Tpd to the category of Hilbert spaces up to natural
unitary tensor equivalence. They are determined by the parameters λi used by
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[3]. Let φ : Trd → H be a tensor ∗–functor, then there are 0 < λi < 1 with∑k
1(λ

2
i + λ−2

i ) + n− 2k = d and an orthonormal basis ei of φσ such that

φ(S) =

k∑

1

λiei+k ⊗ ei +

k∑

1

λ−1
i ei ⊗ ei+k +

n∑

2k+1

ei ⊗ ei.

Similarly, if φ : Tpd → H is a tensor ∗–functor then there are 0 < λi ≤ 1 with∑n
2

1 (λ2i + λ−2
i ) = d and an orthonormal basis ei of φσ such that

φ(S) =

n
2∑

1

λiei+n
2
⊗ ei −

n
2∑

1

λ−1
i ei ⊗ ei+n

2
.

The following result can easily be proved, cf. [29].

8.1 Proposition

a)The parameters λi with 0 < λi < 1 and
∑k

1(λ
2
i+λ

−2
i )+n−2k = d classify the

tensor ∗–functors φ : Trd → H up to a natural unitary tensor equivalence.

b)The parameters λi with 0 < λi ≤ 1 and
∑n

2

1 (λ2i + λ−2
i ) = d classify the

tensor ∗–functors φ : Tpd → H up to a tensor unitary natural equivalence.

In case a), the spectrum of j∗y ◦ jy is {λ2i , λ
−2
i : 1 ≤ i ≤ k} ∪ {1 : 2k +

1 ≤ i ≤ n}, where jy is the antilinear invertible operator on Hy defined by
φ(S) :=

∑
i ei ⊗ jyei. In case b) it is {λ2i , λ

−2
i : 1 ≤ i ≤ n

2 }.

We next classify the tensor ∗–functors φ : Td → H, d 6= 1, up to a tensor
unitary natural equivalence. Any such functor φ determines an invertible anti-
linear operator jx on Hx via φ(Rx) :=

∑
i ei ⊗ jxei. The following result can

again be easily proved.

8.2 Proposition The tensor natural unitary equivalence classes of embeddings
of Td into Hilbert spaces are classified by a monotone set of parameters 0 < λi
with

∑n
i=1 λ

2
i =

∑n
i=1 λ

−2
i = d, where {λ2i } is just the eigenvalue list of j∗x ◦ jx.

A rather less natural description of these equivalence classes in terms of an
invertible linear operator can be found in [28].

Remark As we have canonical tensor ∗–functors from Td to Trd and Tpd taking
R and R onto S and −S respectively, an embedding of Trd or Tpd induces
an embedding of Td, equivalent embeddings inducing equivalent embeddings.
Thus for each set of parameters in Proposition 8.1 there is a corresponding set
of parameters in Proposition 8.2. The eigenvalue list of j∗yjy in Proposition 8.1a
and j∗z jz in Proposition 8.1b has been indicated above. Recall that n is even in
Proposition 8.1b. We see that no two inequivalent embeddings of Trd or Tpd can
induce equivalent embeddings of Td but that for each embedding of Tpd there is
an embedding of Trd inducing an equivalent embedding of Td.
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If A is a tensor C∗–category with conjugates and irreducible tensor unit,
then by the duality theorem of Woronowicz [25] every embedding of A into the
category of Hilbert spaces determines a compact quantum group whose category
of finite-dimensional representations is equivalent to the completion of A under
subobjects and direct sums. It can be easily shown that embeddings differing
by a tensor unitary equivalence yield isomorphic quantum groups. In fact, this
results from the discussion following Proposition 4.4.

We now describe the compact quantum groups arising from the embeddings
of Td, Trd and Tpd. Obviously all of these quantum groups have a representa-
tion theory generated by a single fundamental representation u. In the Hilbert
space of the embedding, the arrows R ∈ (ι, u ⊗ u) and R ∈ (ι, u ⊗ u) are then
intertwining operators between the associated representations of the compact
quantum group. The conjugation ju : Hu → Hu is an invertible antilinear inter-
twiner ju from u to u. Thus ju ⊗

∗ ◦u = u ◦ ju, or, in terms of matrix elements
jmnu

∗
np = umrjrp. This relation might be used to define the compact quantum

groups involved. In fact, the quantum groups involved have been defined, less
intrinsically, in terms of a linear operator Q in the notation of Wang [19] and
F in that of Banica [1], [2].

We first treat the self-conjugate case, i.e. embeddings of Trd and Tpd so that
u = u and hence j2u = ±1. We let c be an antiunitary involution on the Hilbert
space of u and set Q := cj∗u, then QcQc = ±1 and Q∗ ⊗ 1 ◦ c⊗∗ ◦u = u ◦Q∗ ◦ c,
then working in the basis where cij = δik, we get unpQnm = Qpnu

∗
mn or ut◦Q =

Q⊗1◦u∗. These are the defining relations for the compact quantum groupBu(Q)
in the notation of Wang. Note that Q∗Q = juj

∗
u, thus the isomorphism class

of Bu(Q) depends only on the eigenvalue list of Q∗Q, improving Wang’s result.
Banica uses the adjoint operator F := Q∗ = juc and denotes the quantum group
by Ao(F ).

Turning to the embeddings of Td, Banica and Wang make use not of the
conjugate representation u but of the equivalent non-unitary representation ũ,
ũmn := u∗mn which depends on a choice of orthonormal basis in Hu. The
antiunitary operator c leaving this basis fixed intertwines ũ and u. Thus F :=
juc is a linear intertwiner from ũ and u and, setting Q := F ∗F , a computation
shows that unpQnr = Qpsu

∗
rs or ut ◦ Q = Q ⊗ 1 ◦ ũ. This is the relation

used by Wang to define the compact quantum group Au(Q) or Au(F ) in the
notation of Banica. Note that the eigenvalue list of Q coincides with that of
j∗uju and is hence characteristic of the tensor natural unitary equivalence class
of the embedding. As Wang showed, the quantum groups Au(Q) and Au(Q

−1)
are isomorphic and this reflect the involution on Td exchanging R and R. The
relation between the groups Au(Q) and the embeddings of Td have already been
established by Yamagami [28].

Thus given a normalized solution of the conjugate equations R,R in a tensor
C∗–categoryM we have a canonical tensor ∗–functor µ : Td → M and picking an
embedding τ into the category of Hilbert spaces we get an ergodic action of Gτ
on µCτ . Choosing τ suitably, Gτ ≃ Au(Q) for any Q > 0 with Tr(Q) = R∗ ◦R.
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Similarly, given a real solution of the conjugate equations R in a tensor C∗–
category M, we have a canonical tensor ∗–functor µ : Trd → M and picking an
embedding τ of Trd into the category of Hilbert spaces, we get an ergodic action
of Gτ on µCτ . Choosing τ suitably, Gτ ≃ Bu(Q) for any Q with Tr(Q∗Q) =
Tr(Q∗Q)−1 = R∗ ◦ R and QcQc = I. Since R =

∑
k ψk ⊗ juψk, where the

sum is taken over an orthonormal basis of τu invariant under c, we have R =∑
k ψk ⊗Q∗ψk.

Given a pseudoreal solution of the conjugate equations R in a tensor C∗–
category M, we have a canonical tensor ∗–functor τ : Tpd → M and picking an
embedding τ of Tpd into the category of Hilbert spaces, we get an ergodic action
of Gτ on µCτ . Choosing τ suitably, Gτ ≃ Bu(Q) for any Q with Tr(Q∗Q) =
Tr(Q∗Q)−1 = R∗ ◦ R and QcQc = −I. The comment on ergodic actions of
SµU(2) follows since SµU(2) is isomorphic to Bu(Q) with QcQc = 1 when µ > 0
and the eigenvalue list of Q∗Q is |µ| ≤ |µ−1| and to Bu(Q) with QcQc = −1
when µ < 0 and the eigenvalue list of Q∗Q is µ < µ−1. In this case, R =
−
∑
k ψk ⊗Q∗ψk.

If we pick v 7→ Rv to be standard,then the condition m(v) = dim(ι, µv) is
equivalent to saying that R̂v is standard. The results on the q-multiplicity now
follow from Corollary A.10. This completes the proof of Theorems 3.1 and 3.2.

9 Outlook

The work reported on in this paper is in the process of being extended in several
directions. In Sections 6, we introduced the tensor ∗–categories with conjugates
Trd and Tpd whose objects were tensor powers of a single object and described
their embeddings into the tensor category of Hilbert spaces and the associ-
ated compact quantum groups. An interesting problem is to describe tensor
C∗–categories without conjugates whose objects are again tensor powers of a
single irreducible object but where the completion under subobjects has conju-
gates, their embeddings into Hilbert spaces and the associated compact quantum
groups. The compact quantum groups SµU(n), n ≥ 3 are the prime examples
that can be obtained in this way. We have not found a systematic way of pro-
ducing further examples nor of classifying the underlying tensor C∗–categories.
However, we have found compact quantum groups depending on two integers
n > 2, the smallest integer n > 0 such that ι ≤ xn, where x is the generating
object and d is the intrinsic dimension of x and also the dimension of the Hilbert
space of the corresponding representation of the compact quantum group.

An interesting aspect, not touched on in the paper, of our way of constructing
ergodic actions, is that it really leads to two ergodic actions on the C∗–algebra

µCτ . Thus if Gµ and Gτ denote the quantum groups with C(Gµ) = µCµ and
C(Gτ ) = τCτ then Gµ acts on the left and Gτ on the right on µCτ . The simplest
and well known example of this phenomenon is when µ = τ yielding the left
and right actions of a quantum group on itself.
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Finally, the C∗-algebras µCτ may be used in a different way; we may define
a suitable left action of the algebra on itself together with the obvious right
action, making it into a µCτ–bimodule. Further bimodules can be constructed
too, and reflect more fully the structure of the target tensor C∗–category M of
µ. When µ is surjective on objects, M can be embedded in a tensor C∗–category
of µCτ–bimodules and this in turn leads to further insight on when M can be
embedded into the tensor C∗–category of Hilbert spaces.

10 Appendix

In this section we show some properties of quasitensor functors and conjugation
used in the paper and begin by establishing the equivalence of the definition of
quasitensor functor with that in [10].

Composing (2.9) on the left by 1τu ⊗ τ̃
∗
v,w and on the right by τ̃u,v⊗1τw gives

1τu ⊗ τ̃∗v,w ◦ τ̃∗u,v⊗w ◦ τ̃u⊗v,w ◦ τ̃u,v ⊗ 1τw = 1τu ⊗ 1τv ⊗ 1τw .

Since we are dealing with isometries, this implies

τ̃u⊗v,w ◦ τ̃u,v ⊗ 1τw = τ̃u,v⊗w ◦ 1τu ⊗ τ̃v,w =: τ̃u,v,w, (A.1)

the associativity condition. If we let Eu,v ∈ (τu⊗v, τu⊗v) be the range projection
of τ̃u,v and Eu,v,w ∈ (τu⊗v⊗w , τu⊗v⊗w) be the range projection of τ̃u,v,w, then
by (2.10) and (A.1)

Eu,v⊗w ◦ Eu⊗v,w = τ̃u,v⊗w ◦ 1τu ⊗ τ̃v,w ◦ τ̃∗u,v ⊗ 1τw ◦ τ̃∗u⊗v,w

= τ̃u⊗v,w ◦ τ̃u,v ⊗ 1τw ◦ τ̃∗u,v ⊗ 1τw ◦ τ̃∗u⊗v,w = Eu,v,w. (A.2)

(A.1) and (A.2) replaced (2.10) in the definition of quasitensor functor in [10].
On the other hand, composing (A.2) on the left with τ̃∗u⊗v,w and on the right with
τu,v⊗w and using (A.1), we get (2.10). Thus the two definitions are equivalent.

RemarkWe automatically have τ̃ι,u = τ̃u,ι = 1τu if the initial tensor C∗–category
has conjugates or if every object is a direct sum of irreducibles.

Let us, informally, think of τu ⊗ τv as a subspace of τu⊗v. Equations (A.1)
combined with (A.2) require the projection onto τu⊗v⊗ τw to take the subspace
τu ⊗ τv⊗w onto τu ⊗ τv ⊗ τw. This property should be thought of as a variant
of Popa’s commuting square condition for a square of inclusion of finite von
Neumann algebras [15]. In fact in that situation we have inclusions N ⊂ M ,
Q ⊂ P such that Q ⊂ N and P ⊂ M . Recall that this square is called a
commuting square if EMN (P ) ⊂ Q (or, equivalently, if one of the following hold:
EMP (N) ⊂ Q, EMN EMP = EMP EMN = EMQ ).

A.1 Proposition Let (σ, σ̃) and (τ, τ̃ ) be quasitensor functors and suppose
ρ := τσ is defined. Set ρ̃u,v := τ(σ̃u,v) ◦ τ̃σu,σv

then (ρ, ρ̃) is a quasitensor
functor.
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Proof The proof just involves routine computations. It is given here for com-
pleteness. Obviously ρ̃ι,u and ρ̃u,ι are units for any object u.

ρ̃∗u,v⊗w ◦ ρ̃u⊗v,w = τ̃∗σu,σv⊗w
◦ τ(σ̃∗

u,v⊗w) ◦ τ(σ̃u⊗v,w) ◦ τ̃σu⊗v ,σw
=

τ̃∗σu,σv⊗w
◦ τ(1σu

⊗ σ̃v,w) ◦ τ(σ̃
∗

u,v ⊗ 1σw
) ◦ τ̃σu⊗v ,σw

=

1ρu ⊗ τ(σ̃v,w) ◦ τ̃
∗

σu,σv⊗σw
◦ τ̃σu⊗σv ,σw

◦ τ(σ̃∗

u,v)⊗ 1ρw =

1ρu ⊗ τ(σ̃v,w) ◦ 1ρu ⊗ τ̃σv ,σw
◦ τ̃∗σu,σv

⊗ 1ρw ◦ τ(σ̃∗

u,v)⊗ 1ρw =

1ρu ⊗ ρ̃v,w ◦ ρ̃∗u,v ⊗ 1ρw ,

completing the proof.

We comment here on one particularly simple class of quasitensor functors.
Let u be an object of a tensor C∗-category with irreducible tensor unit, (ι, ι) = C

For an object u pick an orthonormal basis Ai of the Hilbert space (ι, u) and set
cu :=

∑
iAi ◦ A

∗
i . c is the support of ι and is in the centre of A. Thus, as one

sees at once, if T ∈ (u, v), T ◦ cu = cv ◦ T . Note that

cu ⊗ cv = cu⊗v ◦ 1u ⊗ cv = cu⊗v ◦ cu ⊗ 1v.

In fact

cu⊗v ◦ cu ⊗ 1v =
∑

i

cu⊗v ◦Ai ⊗ 1v ◦A
∗

i ⊗ 1v =
∑

i

Ai ⊗ cv ◦A
∗

i ⊗ 1v = cu ⊗ cv.

A.2 Proposition Let τ : A → T be a ∗–functor between tensor C∗–categories,
where T has irreducible tensor unit and every object of T is a tensor product of
objects in the image of τ . Let u, v be objects of A and Ai and Bj orthonormal
bases of the Hilbert spaces (ι, u) and (ι, v), respectively and set

τ̃u,v =
∑

i,j

τ(Ai ⊗Bj) ◦ τ(A
∗

i )⊗ τ(B∗

j ).

Then τ̃ satisfies all the above conditions except that it may just be a partial
isometry. (τ, τ̃ ) is a quasitensor functor if and only if τ(cu) = 1τu for all objects
u of A, T is then a full tensor subcategory of a category of Hilbert spaces and
τ̃ is the unique natural transformation making τ into a quasitensor functor.

Proof It is easily checked that τ̃ is a natural transformation and satisfies the
associativity condition. Its initial projection is τ(cu) ⊗ τ(cv) and its final pro-
jection is Eu,v = τ(cu ⊗ cv). Hence

Eu⊗v,w ◦ Eu,v⊗w = τ(cu⊗v ⊗ cw ◦ cu ⊗ cv⊗w) = τ(cu ⊗ cv ⊗ cw) = Eu,v,w.

Thus (τ, τ̃ ) will be a quasitensor functor if and only if τ(cu) = 1τu for all u.
In particular the support of the tensor unit of T is the unit and every object
of T is a direct sum of copies of the unit so T is a full tensor subcategory
of a category of Hilbert spaces. If (τ, τ̃ ) is to be a quasitensor functor then
τ̃u,v ◦ τ(A) ⊗ τ(B) = τ(A ⊗B) for all A ∈ (ι, u) and B ∈ (ι, v).
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The condition τ(cu) = 1u for all u is very strong. It also implies that
τu is a zero object whenever cu = 0, i.e. whenever (ι, u) = 0. Note that a
general quasitensor functor has Eu,v ≥ τ(cu ⊗ cv) with equality characterizing
the above special case. For this reason, we then say that τ̃ is minimal. This
case can be alternatively characterized by saying that the kernel of τ is precisely
the set of arrows of A which are zero when composed with c. For if T ∈ (u, v)
and T ◦ cu = 0 then τ(T ◦ u) = τ(T ) = 0. Conversely if τ(T ) = 0 then
τ(B∗

j ◦ T ◦ Ai) = 0. Hence cv ◦ T ◦ cu = T ◦ cu = 0. Thus essentially what the
functor τ does is to map u onto the Hilbert space (ι, u) and T onto the map
A 7→ T ◦A.

Quasitensor functors (τ, τ̃ ) with τ̃ minimal are of no direct interest in this
paper as µCτ reduces to the complex numbers. Indirectly, however, the minimal
quasitensor functor (q, q), defined below, plays a role in composition. Let (τ, τ̃ )
be a quasitensor functor A → T and let q : T → H denote the ∗–functor taking
an object x of T to the Hilbert space (ι, x) and the arrow T ∈ (x, y) to the
map A 7→ T ◦ A. There is then a unique quasitensor functor (q, q̃) and q̃ is
minimal. The composition (q, q̃) ◦ (τ, τ̃ ) is then a quasitensor functor from A

to H without the natural transformation being unitary, in general. When τ is
actually a tensor ∗–functor, this class of examples was considered in [10] and
includes as a special case the invariant vectors functor.

Note the following corollaries of the above discussion.

A.3 Corollary Let τ : A → T be a ∗–functor between tensor C∗–categories
where A is a category of Hilbert spaces then τ may be made into a quasitensor
functor in a unique way and is then a relaxed tensor functor .

A.4 Corollary The tensor product on a C∗–category of Hilbert spaces is
uniquely defined up to a natural unitary transformation. Any two tensor C∗–
categories of Hilbert spaces are equivalent.

We next discuss properties of the conjugation on arrows A→ A• defined in
Sect. 4. This conjugation does not necessarily commute with the adjoint so that
A∗•∗ is, in general, an alternative conjugation. If we choose standard solutions
of the conjugate equations, however, then A∗• = A•∗. In the next lemma, we
prove two results that will be used later.

A.5 Lemma Let Ai be an orthonormal basis of the Hilbert space (ι, u), then∑
iAi ⊗ A•

i = cu ⊗ cu ◦ Ru and
∑

iA
∗•∗
i ⊗ Ai = cu ⊗ cu ◦ Ru. Furthermore

c•u = cu.

Proof Let A,B ∈ (ι, u) then A⊗B• = A⊗ 1u ◦B
• = (A ◦B∗)⊗ 1u ◦Ru. Thus∑

iAi⊗A
•
i = cu⊗1u◦cu⊗v ◦Ru = cu⊗cu◦Ru. The second result can be proved

similarly. Now c•u =
∑

iA
•
i ◦A

∗•
i . Thus cuc

•
u = c•u and similarly c•ucu = cu. But

both c and c• lie in the centre of A and the result follows.

A choice of solutions of the conjugate equations determines a scalar product
on each (u, u) and we write φu(A

∗ ◦B) := R∗
u ◦ 1u ⊗ (A∗ ◦B) ◦Ru.

If X ∈ (u, ũ) is invertible then X ⊗ 1u ◦ Ru and 1u ⊗X∗−1 ◦ Ru is another
solution of the conjugate equations for u. Changing Ru using X and Rv using
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Y , the conjugation becomes X−1∗ ◦A• ◦ Y ∗ whilst the scalar product on (u, u)
is given by φu(A

∗ ◦B ◦ (X∗ ◦X)•∗).
Let Ru, Ru and Rv, Rv be solutions of the conjugate equations for u and v,

then Ru, Ru solves the conjugate equations for u and 1v ⊗ Ru ⊗ 1v ◦ Rv, 1u ⊗
Rv ⊗ 1u ◦Ru solves the conjugate equations for u⊗ v. If these solutions always
coincide with Ru, Ru and Ru⊗v, Ru⊗v respectively then u 7→ Ru will be said to
be a homomorphic choice of solutions of the conjugate equations.

A.6 Proposition Let u 7→ Ru be a homomorphic choice of solutions of the
conjugate equations then the associated conjugation • is involutive.

Proof Let A ∈ (u, v) then u, v are the conjugates of u, v and

A•• = R∗

u ⊗ 1v ◦ 1u ⊗ (1u ⊗R
∗

v ◦ 1u ⊗A⊗ 1v ◦Ru ⊗ 1v)⊗ 1v ◦ 1u ⊗Rv.

But Ru = Ru and Rv = Rv, so

A•• = R
∗

u ⊗ 1v ◦ 1u ⊗ (1u ⊗R
∗

v ⊗ 1v ◦ 1u⊗v ⊗Rv ◦ 1u ⊗A ◦Ru) =

R
∗

u ⊗ 1v ◦ 1u⊗u ⊗A ◦ 1u ⊗Ru = A.

The following simple construction shows that, up to an equivalence of tensor
C∗–categories, we may find such a homomorphic choice. Given a tensor C∗–
category T with a choice u 7→ Ru of solutions of the conjugate equations, let T⊗

be the tensor C∗–category whose objects are words in the objects u of T and their
formal adjoints u. The tensor product of objects is defined by juxtaposition:
(u1, u2, . . . , um)⊗ (v1, v2, . . . , vn) := (u1, u2, . . . , um, v1, v2, . . . , vm). The arrows
are defined by setting

((u1, u2, . . . , um), (v1, v2, . . . , vn)) := (u1 ⊗ u2 ⊗ · · · ⊗ um, v1 ⊗ v2 ⊗ · · · ⊗ vn)

and are given the obvious algebraic operations. There is a tensor ∗–functor
η : T⊗ → T with η(u1,u2,...um) = u1 ⊗ u2 ⊗ · · · ⊗ um an acting as the identity
on arrows. Here a formal conjugate u is mapped onto the conjugate of u in
T determined by Ru. η is obviously an equivalence of tensor C∗–categories.
We now choose solutions of the conjugate equations for sequences of length one
setting R(u) := Ru and R(u) := Ru and extend in the unique way to get a
homomorphic choice.

A.7 Lemma Let u 7→ Ru be a choice of solutions of the conjugate equations
for u such that

ψu(A) := Ru
∗
◦ 1u ⊗A ◦Ru, A ∈ (u, u)

is tracial: ψu(A
∗◦B) = ψv(B◦A∗), A,B ∈ (u, v) and write for clarity JuS := S•,

S ∈ (ι, u) then

Tr(J∗

u ◦ Ju) = Tr(J−1∗
u ◦ J−1

u ) = dim(ι, u).
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Proof If Si is an orthonormal basis of (ι, u), then by Lemma A.5

Tr(J∗

uJu) =
∑

i,j

(Si⊗S
•

i )
∗◦(Sj⊗S

•

j ) = R
∗

u◦cu⊗cu◦Ru = R
∗

u◦1u⊗(cu◦c
•

u)◦Ru.

But by Lemma A.5, c•u = cu so we get Tr(J∗
uJu) = ψu(cu). Picking an or-

thonormal basis Si for (ι, u), cu =
∑

i Si ◦ S
∗

i . But ψ is tracial, so Tr(J∗
uJu) =∑

i S
∗

i ◦ Si = dim(ι, u) =dim(ι, u), as required.

It has been shown in [9] that if ψ is tracial then the corresponding conjugation
commutes with the adjoint. As a consequence, if S, T ∈ (ι, u) then

(T, S) = (S, T )∗ = (S, T )• = (S∗ ◦ T )• = S•∗ ◦ T • = (S•, T •).

In other words, • : (ι, u) → (ι, u) is antiunitary.

Standard solutions R,R of the conjugate equations for u have special prop-
erties. They are unique up to a unitary and products of standard solutions
are again standard. Furthermore, φu is independent of the choice of standard
solution so we may replace Ru by Ru and get ψu = φu and it is known that
φ is tracial, i.e. if A,B ∈ (u, v) then φu(A

∗ ◦ B) = φv(B ◦ A∗). Furthermore,

φu(1u) = R∗ ◦R = R
∗
◦R = d(u) the intrinsic dimension of u [9] .

A.8 Lemma Let u 7→ Ru be a choice of standard solutions of the conjugate
equations.

a) LetW ∈ (v, u) be an isometry then Rv =W •∗⊗W ∗ ◦Ru, Rv =W ∗⊗W •∗ ◦
Ru.

b) Let Wi ∈ (ui, u) be isometries with
∑

iWi ◦W
∗
i = 1u, then Ru =

∑
iW

•
i ⊗

Wi ◦Rui
and Ru =

∑
iWi ⊗W •

i ◦Rui
.

c) There is a unitary V ∈ (u, u) such that Ru = V ⊗ 1u ◦ Ru and Ru =
1u ⊗ V ◦Ru.

Proof

a) is proved as follows

Rv =W ∗ ⊗ 1v ◦ 1u ⊗W •∗ ◦Ru =W ∗ ◦W ⊗ 1v ◦Rv = Rv.

The second equation can be proved similarly.

To prove b), we compute as follows.

∑

i

W •

i ⊗Wi ◦Rui
=

∑

i

1u ⊗ (Wi ◦W
∗

i ) ◦Ru = Ru

and the second equation can be proved similarly.

To prove c) note that Ru, Ru is a standard solution of the conjugate equations
for u and therefore differs from Ru, Ru by a unitary V as claimed.
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It must be remembered though that even if u → Ru is standard, R̂u and
R̃u defined in Sect. 4 will not, in general, be standard, nor will the conjugation
commute with the adjoint. Nevertheless the following result holds.

A.9 Lemma Let u 7→ Ru be a standard choice of solutions of the conjugate

equations then the set of objects u such that R̂u, R̂u is a standard solution of the
conjugate equations for µu is closed under tensor products subobjects, direct
sums and conjugates.

Proof Suppose R̂u, R̂u is standard andW ∈ (v, u) is an isometry then by Lemma
A.8, R̂v = µ(W •∗)⊗ µ(W ∗) ◦ R̂u. Now

R̂∗

v ◦ R̂v = R̂∗

u ◦ µ(E
•)⊗ µ(E) ◦ R̂u = R̂∗

u ◦ 1µu
⊗ µ(E) ◦ R̂u = φµu

(E),

where φu is the standard left inverse of µu. By the tracial property of the
standard left inverse, φµu

(E) = φµu
(W ∗ ◦W ) = φµv

(1µv
) = d(µv). Similarly

R̂
∗

v ◦ R̂v = d(µv) and R̂v, R̂v are standard. Now suppose R̂ui
, R̂ui

are standard
and Wi ∈ (ui, u) are isometries with

∑
iWi ◦W

∗
i = 1u then by Lemma A.7,

R̂u =
∑
iW

•
i ⊗Wi ◦ R̂ui

hence R̂∗
u ◦ R̂u =

∑
i R̂

∗
ui

◦ R̂ui
=

∑
i d(µui

) = d(µu).

Similarly, R̂
∗

u ◦ R̂u = d(µu) so that R̂u, R̂u is standard. Again, if R̂u is standard,

by Lemma A.7, there is a unitary V ∈ (u, u) such that R̂u = µ(V )⊗1µu
◦R̂u thus

R̂∗
u ◦ R̂u = R̂

∗

u ◦ R̂u = d(µu) = d(µu) and similarly R̂
∗

u ◦ R̂u = d(µu). Thus R̂u
is standard. The question of whether R̂u is standard is obviously independent
of the choice of standard solution Ru. If Ru⊗v is chosen to be of product form
then the same is true of R̂u⊗v. Thus R̂u and R̂v standard imply that R̂u⊗v is
standard.

A.10 Corollary If u 7→ Ru is standard and µv is an irreducible generator of

M then u 7→ R̂u is standard. If d(u) = d(µu) then R̂u, R̂u is standard.

Proof The first statement follows since, µv being irreducible, R̂v, R̂v is automat-
ically standard. Now d(µu) ≤ R̂∗

u ◦ R̂u = µ(R∗
u) ◦ Eu,u ◦ µ(Ru) ≤ R∗

u ◦ Ru =
d(u) = d(µu) and the result follows.
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[1] T. Banica: Théorie des représentations du groupe quantique compact libre
O(n), C.R. Acad. Sci. Paris, 322 (1996), 241–244.

[2] T. Banica: Le groupe quantique compact libre U(n), Comm. Math. Phys.,
190 (1997), 143–172.

[3] J. Bichon, A. De Rijdt, S. Vaes: Ergodic coactions with large multiplicity
and monoidal equivalence of quantum groups, Comm. Math. Phys., 262
(2006), 703–728.



REFERENCES 32

[4] F. Boca: Ergodic actions of compact matrix pseudgroups on C∗–algebras,
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