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Abstract In this paper we study the Dirichlet problem for two related equa-
tions involving the 1–Laplacian and a total variation term as reaction, namely:

g(u)− div
( Du
|Du|

)
= |Du|+ f(x) , (1)

−div
( Du
|Du|

)
= |Du|+ f(x) , (2)

with homogeneous Dirichlet boundary conditions on ∂Ω, where Ω is a regular,
bounded domain in RN . Here f is a measurable function belonging to some
suitable Lebesgue space, while g(u) is a continuous function having the same
sign as u and such that g(±∞) = ±∞. As far as equation (1) is concerned,
we show that a bounded solution exists if the datum f belongs to LN (Ω).
When the absorption term g(u) is missing, i.e. in the case of equation (2),
we show that if f ∈ LN (Ω), and its norm is small, then the only solution of
(2) is u ≡ 0. In the case where the norm of f is not small, several cases may
happen. Depending on Ω and f , we show examples where no solution of (2)
exists, other examples where u ≡ 0 is still a solution, and finally examples
with nontrivial solutions. Some of these results can be viewed as a translation
to the 1–Laplacian operator of known results by Ferone and Murat (see [14],
[15] and [16]).
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1 Introduction and Statement of Main Results

In this paper we study two related Dirichlet problems involving the 1-Laplacian
and a total variation term. The first one is g(u)− div

(
Du

|Du|

)
= |Du|+ f(x) in Ω ;

u = 0 on ∂Ω .
(3)

Here Ω is an open, bounded, regular subset of RN , f(x) is a function which
belongs to LN (Ω), while g(s) : R → R is a continuous function such that
g(s) s ≥ 0 and g(±∞) = ±∞. The second problem is similar, but without the
zero-order term g(u):−div

(
Du

|Du|

)
= |Du|+ f(x) in Ω ;

u = 0 on ∂Ω .
(4)

We are interested in existence, regularity and nonexistence results for a solu-
tion to these two problems.

The concept of solution to equations involving the 1–Laplacian was de-
veloped by Andreu, Ballester, Caselles and Mazón (see [3] and the book [4]).
The natural energy space for this operator is the space BV (Ω) of functions
having bounded variation. Using the theory by Anzellotti [6], they introduce
a bounded vector field z which plays the role of the ratio Du

|Du| . The boundary

condition must not be understood in terms of the trace of BV –functions, but
in a weaker sense involving the vector field z (see Section 3).

In the case where g(u) = u, problem (3) was studied by Andreu, Dall’Aglio
and Segura de León in [5]. In that paper, they proved that there exists a
bounded solution u when f ∈ Lm(Ω), with m > N . Moreover, that solution
is unique under the stronger assumption 0 ≤ f(x) ≤ α < 2.

Later on, in [1], Abdellaoui, Dall’Aglio and Segura de León studied the
existence of infinitely many unbounded solutions of problems (3) and (4). This
solutions may have prescribed singularities and are related to some elliptic
problems involving singular Radon measures.

In the present paper, we prove that problem (3) admits a bounded solution
even in the limit case f ∈ LN (Ω). This result is somewhat surprising, because,
for the similar problems for the p-laplacian, with p > 1, i.e.{

g(u)− div
(
|∇u|p−2∇u

)
= |∇u|p + f(x) in Ω ;

u = 0 on ∂Ω ,
(5)
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one can prove the existence of bounded solutions for f ∈ Lm(Ω), m > N/p, but
solutions are usually unbounded in the limit case f ∈ LN/p(Ω) (see Boccardo,
Murat and Puel [8], Ferone and Murat [14], [15] and [16], Ferone, Poster-
aro and Rakotoson [17], Dall’Aglio, Giachetti and Puel [12]). Therefore, while
boundedness should be expected (see [5]) for problem (3) when f ∈ Lm(Ω)
and m > N , it is unexpected in the limit case f ∈ LN (Ω).

Subsequently, we study problem (4), where the term g(u) is absent. In
the case 1 < p < N , that is, for problem (5) when g ≡ 0, it was proved by
Ferone and Murat in [14] and [15] that a solution might not exist, unless an
appropriate smallness assumption is made on the datum f . This smallness
condition reads as follows:( 1

p− 1

)p−1
‖f‖N/p < S−1N,p ,

where SN,p denotes the best constant in Sobolev’s imbedding W 1,p
0 (Ω) ↪→

L
Np
N−p (Ω), that is, (∫

Ω

|u|p
∗
)p/p∗

≤ SN,p
∫
Ω

|∇u|p.

This condition is related to the regularity enjoyed by the solution, namely,

e
δ
p−1 |u| − 1 ∈W 1,p

0 (Ω)

for every δ > 0 satisfying( δ

p− 1

)p−1
‖f‖N/p < S−1N,p .

We analyze the limit problem (4), for p = 1, and prove that:

– if the datum f(x) is “small”, more precisely if f ∈ LN (Ω) and ‖f‖
N
< S−1N

(where SN = SN,1 is the Sobolev constant appearing in the embedding of

W 1,1
0 (Ω) into LN/(N−1)(Ω)), then u ≡ 0 is the only bounded solution

u ∈ BV (Ω) of problem (4). More precisely, u ≡ 0 is the only solution such
that eλu ∈ BV (Ω) for every λ > 0.

– if ‖f‖
N
> S−1N , several situations may happen, depending on the actual

form of f . We show that if f is a multiple of the characteristic function of a
ball Br ⊂ Ω, then problem (4) admits no solutions as soon as ‖f‖

N
> S−1N .

On the other hand, we show that u ≡ 0 may well be a solution when f
is a (large) multiple of a characteristic of a “thin” set, like a strip or an
annulus. We also show some cases where nonzero solutions appear.

– in the limit case ‖f‖
N

= S−1N , we show that u ≡ 0 is always a solution and

non trivial solutions exist if Ω is a ball and f is constant.

The paper is organized as follows. In Section 2, we introduce our notation
and state the main features of functions of bounded variation and of L∞–
divergence–measure vector fields. Section 3 is devoted to study problem (3),
while problem (4) is considered in Section 4. The final section is devoted to
explicit examples of existence and nonexistence for problem (4).
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2 Preliminaries

From now on, we fix an integer N ≥ 2. The symbol HN−1(E) stands for
the (N − 1)–dimensional Hausdorff measure of a set E ⊂ RN and |E| for
its Lebesgue measure. We will denote by ωN the measure of the unit ball in
RN . Moreover, Ω will always denote an open, bounded subset of RN with
Lipschitz boundary. Thus, an outward normal unit vector ν(x) is defined for
HN−1–almost every x ∈ ∂Ω.

The truncation function will be used throughout this paper. Given k > 0,
it is defined by

Tk(s) = min{|s|, k} sign (s) , (6)

for all s ∈ R. Moreover we will denote by Gk(s) the function defined by

Gk(s) = s− Tk(s) .

The space of all C∞–functions having compact support in Ω is denoted by
C∞0 (Ω). The symbol Lq(Ω), with 1 ≤ q ≤ ∞, denotes the usual Lebesgue space

with respect to Lebesgue measure and q′ is the conjugate of q: q′ =
q

q − 1
. We

will denote by W 1,q
0 (Ω) the usual Sobolev space of measurable functions having

weak gradient in Lq(Ω;RN ) and zero trace on ∂Ω. Finally, if 1 ≤ p < N , we
will denote by p∗ = Np/(N − p) its Sobolev conjugate exponent and by SN,p
the best constant in the embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω), that is,

(∫
Ω

|u|p
∗
)p/p∗

≤ SN,p
∫
Ω

|∇u|p for all u ∈W 1,p
0 (Ω) .

We will also write SN instead of SN,1.

The natural energy space to study equations involving the 1–Laplacian is
the space BV (Ω) of functions of bounded variation. It is defined as the space
of functions u ∈ L1(Ω) whose distributional gradient Du is a vector–valued
Radon measure on Ω with finite total variation. This space is a Banach space
with the norm defined by

‖u‖BV =

∫
Ω

|u| dx+ |Du|(Ω) .

We recall that the notion of trace can be extended to any u ∈ BV (Ω)
and this fact allows us to interpret it as the boundary values of u and to
write u

∣∣
∂Ω

. Moreover, it holds that the trace is a linear bounded operator

BV (Ω) → L1(∂Ω) which is onto. Using the trace, an equivalent norm in
BV (Ω) can be defined by

‖u‖ =

∫
∂Ω

|u| dHN−1 + |Du|(Ω) .
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The Sobolev embedding W 1,1
0 (Ω) ↪→ L

N
N−1 (Ω) extends to BV–Functions; it

yields (∫
Ω

|u|
N
N−1

)(N−1)/N

≤ SN
[
|Du|(Ω) +

∫
∂Ω

|u| dHN−1
]
,

for all u ∈ BV (Ω). We point out that the same constant can be taken.
For every u ∈ BV (Ω), the Radon measure Du can be decomposed into

three parts: Du = Dau+Dcu+Dju, where Dau is its absolutely continuous
part (we mean absolutely continuous with respect to Lebesgue measure), Dcu
its Cantor part and Dju its jump part. This decomposition is defined as fol-
lows. We denote by Su the set of all x ∈ Ω at which the approximate limit
of u does not exist: if x ∈ Ω\Su, we denote by ũ(x) the approximate limit
of u at x. On the other hand, we denote by Ju ⊂ Su the set of approximate
jump points of u, that is, those points where there exist “one side” limits
of u: u+(x) and u−(x). Then Dcu = Dsu (Ω\Su) and Dju = Dsu Ju,
where Dsu = Dcu + Dju stands for the singular part of Du with respect
to the Lebesgue measure. The precise representative u∗ : Ω\(Su\Ju) → R
of u is defined as equal to ũ on Ω\Su and equal to u++u−

2 on Ju. Since
HN−1(Su\Ju) = 0, due to the Federer–Vol’pert Theorem, it follows that u∗ is
defined HN−1–a.e. in Ω.

A compactness result in BV (Ω) will be used several times in what follows.
It states that every sequence that is bounded in BV (Ω) has a subsequence
which converges strongly in L1(Ω) to certain u ∈ BV (Ω).

To pass to the limit we will often apply that some functionals defined on
BV (Ω) are lower semicontinuous with respect to the convergence in L1(Ω).
We recall that the functional defined by

u 7→ |Du|(Ω) +

∫
∂Ω

|u| dHN−1 (7)

is lower semicontinuous with respect to the convergence in L1(Ω). Similarly,
if we fix ϕ ∈ C1

0 (Ω), with ϕ ≥ 0, the functional defined by

u 7→
∫
Ω

ϕd|Du| ,

is lower semicontinuous in L1(Ω).
For further information concerning functions of bounded variation we refer

to [2] or [22].
In our definition of solution we will need some features of L∞–divergence–

measure vector fields and functions of bounded variation (see [6] and [10]).
Basically, a type of dot product of a vector field and the gradient of a bounded
variation function is used to give sense to z = Du

|Du| , namely, z ∈ L∞(Ω;RN )

satisfies ‖z‖∞ ≤ 1 and (z, Du) = |Du|.
From now on, we denote by DM∞(Ω) the space of all vector fields z ∈

L∞(Ω;RN ) whose divergence in the sense of distributions is a Radon measure
with finite total variation.
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To define (z, Dv) in Anzellotti’s theory, we need some compatibility con-
ditions, for instance div z is a Radon measure with finite total variation and
v ∈ BV (Ω) ∩ L∞(Ω) ∩ C(Ω). In this case, we define the dot product as a
distribution: for every ϕ ∈ C∞0 (Ω), we write

〈(z, Du), ϕ〉 = −
∫
Ω

u∗ ϕdµ−
∫
Ω

uz · ∇ϕ ,

where µ = div z. This distribution (z, Dv) is actually a Radon measure. More-
over, the following basic inequality holds: |(z, Dv)| ≤ ‖z‖∞|Dv|. On the other
hand, for every z ∈ DM∞(Ω), a weak trace on ∂Ω of the normal component
of z is defined in [6] and denoted by [z, ν]. Anzellotti’s definition of (z, Dv)
can be extended to the case where div z is a Radon measure with finite total
variation and v ∈ BV (Ω) ∩ L∞(Ω) (see [20, Appendix A] and [9, Section 5]).
A further extension can be found in [1, Section 3] for bounded vector fields
z ∈ DM∞(Ω) satisfying −div z ≥ f ∈ LN (Ω) and a general v ∈ BV (Ω). (We
also refer to [11] for additional information.) These extensions will be used
throughout this paper.

Under these extended assumptions, a Green formula holds.

Proposition 1 (see [6], [20], [9], [1]). Let z ∈ L∞(Ω;RN ) be such that
−div z = β + f , where β is a nonnegative Radon measure on Ω, and f ∈
LN (Ω). Let u ∈ BV (Ω). Then, with the above definitions, u∗ ∈ L1(Ω, dµ),
and the following Green formula holds∫

Ω

u∗ dµ+

∫
Ω

d(z, Du) =

∫
∂Ω

[z, ν]u dHN−1 , (8)

where µ = div z.

3 Existence of a solution to (3)

This Section is devoted to obtain an existence result for problem (3), where
f ∈ LN (Ω).

Definition 1 A solution of problem (3) is a function u ∈ BV (Ω), with an
associated vector field z ∈ L∞(Ω;RN ) satisfying

‖z‖∞ ≤ 1 ; (9)

g(u)− div z = |Du|+ f(x) in the sense of distributions; (10)

(z, Du) = |Du| as measures; (11)

[z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω; (12)

Dju = 0. (13)

Theorem 1 For every f ∈ LN (Ω) there exists a bounded solution to problem
(3).
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Proof The proof will be divided into several steps.
Step 1: Approximating problems: p > 1. Assume for the moment that

f ∈ L∞(Ω). We consider the following problems, for p > 1:{
g(up)− div

(
|∇up|p−2∇up

)
= |∇up|p + f(x) in Ω ;

up ∈W 1,p
0 (Ω) .

(14)

By the results proved by Ferone and Murat in [16], for every p > 1 there
exists a solution up ∈ L∞(Ω) ∩W 1,p(Ω) of (14). We wish to show that the
L∞–estimate does not depend on p. Indeed, we can multiply the equation in
(14) by

v =
(
eλ|Gk(up)| − 1

)
signup ,

for λ > 1 and for some positive k. Since g(s) has the same sign as s, we easily
obtain∫

Ω

|g(up)|
(
eλ|Gk(up)| − 1

)
+ λ

∫
Ω

|∇Gk(up)|p eλ|Gk(up)|

≤
∫
Ω

|∇Gk(up)|p
(
eλ|Gk(up)| − 1

)
+ ‖f‖

∞

∫
Ω

(
eλ|Gk(up)| − 1

)
. (15)

By the assumptions on g, there exists k > 0 such that |g(s)| > ‖f‖
∞

for all s

such that |s| > k. With this choice of k, one has∫
Ω

|g(up)|
(
eλ|Gk(up)| − 1

)
≥ ‖f‖

∞

∫
Ω

(
eλ|Gk(up)| − 1

)
,

therefore the two integrals in (15) cancel out, and one can conclude that

(λ− 1)

∫
Ω

|∇Gk(up)|p
(
eλ|Gk(up)| − 1

)
≤ 0 ,

which gives

‖up‖∞ ≤ k = k(g, ‖f‖
∞

) .

We emphasize that this estimate is independent on p.
Once this estimate is proved, one can follow the same steps as in [5], pass

to the limit for p ↓ 1 and conclude that, when f ∈ L∞(Ω), there exists a
bounded solution of problem (3) .

Step 2: L∞–estimate for unbounded f . Assume now that f ∈ LN (Ω).
Then, for n ∈ N, let un be a solution of problem g(un)− div

(
Dun
|Dun|

)
= |Dun|+ Tn(f(x)) , in Ω ;

un = 0 , on ∂Ω .
(16)
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Such a solution exists by Step 1. Let zn be the associated vector field according
to Definition 1. For every k > 0, by taking (e2|Gk(un)| − 1)signun as test
function in (16) (see (10) for the meaning), we get∫

Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+

∫
Ω

(
zn, D

[(
e2|Gk(un)|−1

)
signun

])
−
∫
∂Ω

(
e2|Gk(un)|−1

)
signun [zn, ν] dHN−1

≤
∫
Ω

(
e2|Gk(un)| − 1

)∗
|Dun|+

∫
Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
. (17)

Taking into account Djun = 0, we may apply [18, Proposition 2.7] to the

Lipschitz-continuous function s 7→
(
e2|Gk(s)| − 1

)
sign s and deduce from (11)

that (
zn, D

[(
e2|Gk(un)| − 1

)
signun

])
=
∣∣∣D[(e2|Gk(un)| − 1

)
signun

]∣∣∣ .
Now the chain rule (for a BV–function without jump part) yields

(
zn, D

[(
e2|Gk(un)| − 1

)
signun

])
= 2
(
e2|Gk(un)|

)∗
|DGk(un)| .

On the other hand, [zn, ν] ∈ sign (−un) on ∂Ω. Hence, inequality (17)
becomes∫

Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+ 2

∫
Ω

(
e2|Gk(un)|

)∗
|DGk(un)|+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤
∫
Ω

(
e2|Gk(un)| − 1

)∗
|Dun|+

∫
Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
.

Since e2|Gk(un)| − 1 vanishes on {|un| > k}, simplifying and dropping nonneg-
ative terms, it yields∫

Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+

∫
Ω

(
e2|Gk(un)|

)∗
|DGk(un)|+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤
∫
Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
≤ h

∫
{|Tn(f)|≤h}

(
e2|Gk(un)| − 1

)
+

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
,



Bounded solutions to the 1–Laplacian equation with a total variation term 9

for some h > 0 to be chosen hereafter. As before, we can take k = k(h) such
that |g(s)| ≥ h for |s| > k. With this choice of k, one has

h

∫
Ω

(
e2|Gk(un)|−1

)
+

1

2

∫
Ω

∣∣∣D(e2|Gk(un)|−1
)∣∣∣+∫

∂Ω

(
e2|Gk(un)|−1

)
dHN−1

≤ h
∫
{|Tn(f)|≤h}

(
e2|Gk(un)| − 1

)
+

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
,

so that the first integral of each side cancels, and Hölder’s inequality implies∫
Ω

∣∣∣D(e2|Gk(un)| − 1
)∣∣∣+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤ 2

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
≤ 2‖Tn(f)χ{|Tn(f)|>h}‖N ‖e

2|Gk(un)| − 1‖
N/(N−1)

.

Applying Sobolev’s inequality, we can write

‖e2|Gk(un)| − 1‖
N/(N−1)

≤ SN
[ ∫

Ω

∣∣∣D(e2|Gk(un)| − 1
)∣∣∣+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

]
≤ 2SN‖Tn(f)χ{|Tn(f)|>h}‖N‖e

2|Gk(un)| − 1‖
N/(N−1)

≤ 2SN‖fχ{|f |>h}‖
N
‖e2|Gk(un)| − 1‖

N/(N−1)
,

wherewith the right hand side can be absorbed if ‖fχ{|f |>h}‖N is small enough,

that is, if we choose h large enough. Thus, for k = k(h), this leads to ‖e2|Gk(un)|−
1‖
N/(N−1)

= 0 for all n ∈ N, and as a consequence ‖un‖∞ ≤ k = k(f, g) for

all n ∈ N.

Step 3: BV –estimate. We take
(
e2|un|−1

)
sign un as test function in (16),

obtaining∫
Ω

|g(un)|
(
e2|un| − 1

)
+

∫
Ω

(
zn , D

[(
e2|un| − 1

)
sign un

])
−
∫
∂Ω

(
e2|un| − 1

)
sign un [zn, ν] dHN−1

≤
∫
Ω

(
e2|un| − 1

)∗|Dun|+ ∫
Ω

|f |
(
e2|un| − 1

)
.

Having in mind (11) and (12), applying the chain rule and disregarding non-
negative terms, it yields∫
Ω

(
e2|un|

)∗|Dun|+ ∫
Ω

|Dun|+
∫
∂Ω

(
e2|un| − 1

)
dHN−1 ≤

∫
Ω

|f |
(
e2|un| − 1

)
.
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Observe that the right hand side is bounded due to the L∞–estimate. Hence,
in addition to be bounded in L∞(Ω), we have that the sequence

(
e2|un| − 1

)
n

is bounded in BV (Ω), so that (up to subsequences) there exists u ∈ BV (Ω)∩
L∞(Ω) satisfying e2|u| − 1 ∈ BV (Ω) and

De2|un| ⇀ De2|u| *–weakly as measures

un → u pointwise a.e in Ω

un → u strongly in Lr(Ω) , 1 ≤ r <∞

Step 4: Convergence of (zn)n. It follows from (9) that there exists z ∈
L∞(Ω;RN ) such that (up subsequences) zn ⇀ z *–weakly in L∞(Ω;RN ).
Obviously, ‖z‖∞ ≤ 1 holds.

Now, we may take eunϕ, where ϕ ∈ C∞0 (Ω), as test function in (16),
simplify and pass to the limit which leads to −div (euz) = eu (f − g(u)) in the
sense of distributions. Thus, div (euz) ∈ LN (Ω).

In a similar way, choosing ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 as test function in (10),
the lower–semicontinuity of the total variation implies that∫

Ω

g(u)ϕ+

∫
Ω

z · ∇ϕ ≥
∫
Ω

ϕ|Du|+
∫
Ω

fϕ .

Therefore, the inequality g(u) − div z ≥ |Du| + f(x) holds in the sense of
distributions. As a consequence, div z is a Radon measure. Furthermore, it
follows from (10) that the sequence of measures (div zn)n is bounded, and so
(up to subsequences) it converges *–weakly in the sense of measures. Since its
limit must be div z, it follows that div z is a Radon measure with finite total
variation.

It remains to prove the points:

Dju = 0 ;

g(u)− div z = |Du|+ f(x) in the sense of distributions;

(z, Du) = |Du| as measures;

[z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω;

To see them, we may follow the steps 7–10 of the proof of [5, Theorem 1].

Remark 1 It is worth observing that the same proof works for any increasing
real function g such that g(±∞) = ±∞. We just have to replace g(s) with
g(s)− g(0) and the datum f(x) with f(x)− g(0).

Remark 2 We point out that a similar argument to that used in the proof of
Theorem 1 leads to the boundedness of the solutions to the Dirichlet problem
for

g(u)− div
( Du
|Du|

)
= f(x) ,

with f ∈ LN (Ω).
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4 Existence of a solution to (4)

In this Section we will study existence and non existence for the Dirichlet
problem (4).

Theorem 2 If f ∈ LN (Ω) satisfies ‖f‖N < S−1N , then u ≡ 0 is the only
solution to problem (4) satisfying eλu ∈ BV (Ω) for all λ > 1.

Proof Step 1: Existence. Since a solution of (4) is actually the pair (u, z),
we still have to get the vector field z. To this end, apply a duality argument
to obtain the embedding LN (Ω) ↪→ W−1,∞(Ω). Thus, given f ∈ LN (Ω), we
find z ∈ L∞(Ω;RN ) satisfying f = −div z and ‖z‖∞ = ‖div z‖W−1,∞(Ω).
Moreover,

‖div z‖W−1,∞(Ω) = sup

{∫
Ω

z · ∇u : u ∈W 1,1
0 (Ω) ,

∫
Ω

|∇u| ≤ 1

}
= sup

{∫
Ω

fu : u ∈W 1,1
0 (Ω) ,

∫
Ω

|∇u| ≤ 1

}
≤ sup

{∫
Ω

fu : u ∈ L
N
N−1 (Ω) , ‖u‖ N

N−1
≤ SN

}
≤ ‖f‖NSN < 1 .

Hence, ‖z‖∞ < 1.
Finally, taking u ≡ 0, we have seen that

−div z = |Du|+ f , in D′(Ω)

(z, Du) = |Du| , as measures

u
∣∣
∂Ω

= 0 in the sense of traces, which imply condition (12).

Therefore, u ≡ 0 is a solution to problem (4).

Step 2: Uniqueness. Assume that u ∈ BV (Ω) is a solution to problem
(4) satisfying eλu ∈ BV (Ω) for all λ > 1. Then Dju = 0 and there exists
z ∈ DM∞(Ω) such that

i) −div z = |Du|+ f in D′(Ω)
ii) (z, Du) = |Du| as measures

iii) [z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω

Fix λ such that λ−1
λ > ‖f‖NSN and apply Green’s formula to get∫

Ω

(z, D(eλu − 1))−
∫
∂Ω

(eλu − 1)[z, ν] dHN−1

=

∫
Ω

(eλu − 1)∗|Du|+
∫
Ω

f(eλu − 1) . (18)

We now consider each term appearing in (18). By Lemma 1 below,∫
Ω

(z, D(eλu − 1)) =

∫
Ω

∣∣D(eλu − 1)
∣∣ . (19)
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As far as the right hand side of (18) is concerned, the chain rule leads to∫
Ω

(eλu − 1)∗|Du| = 1

λ

∫
Ω

|D(eλu − 1)| −
∫
Ω

|Du| . (20)

Finally, it follows from condition iii) that∫
∂Ω

(eλu − 1)[z, ν] dHN−1 = −
∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 . (21)

Having in mind (19), (20) and (21), equation (18) becomes

λ− 1

λ

∫
Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 +

∫
Ω

|Du| =
∫
Ω

f(eλu − 1) .

Applying Hölder’s and Sobolev’s inequalities on the right hand side, it yields∫
Ω

f(eλu − 1) ≤ ‖f‖NSN
[∫

Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1] ,

wherewith(λ− 1

λ
− ‖f‖NSN

)[∫
Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1] ≤ 0 .

Since λ−1
λ − ‖f‖NSN is positive, it follows that∫

Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 = 0 ,

and so eλu − 1 ≡ 0. Therefore, u ≡ 0.

Remark 3 As far as existence of trivial solutions is concerned, we point out
that the same proof leads to the following result:

If f ∈ LN (Ω) satisfies ‖f‖N ≤ S−1N , then u ≡ 0 is a solution to problem
(4).

Lemma 1 Let z ∈ L∞(Ω;RN ) be such that −div z = β + f , where β is
a nonnegative Radon measure on Ω, and f ∈ LN (Ω). Assume that u is a
function in BV (Ω), with Dj(u) = 0, and that ψ(s) : R→ R is an increasing
locally Lipschitz function, such that w = ψ(u) ∈ BV (Ω).

If (z,Du) = |Du| as measures, then

(z , Dw) = |Dw| as measures. (22)

Proof We first remark that

|Du| = (z, Du) = (z, DTk(u)) + (z, DGk(u))

≤ |DTk(u)|+ |DGk(u)| = |Du|

and consequently the inequality is actually an equality. Thus, as measures,
(z, DTk(u)) = |DTk(u)| for every k > 0. We also write wk = ψ(Tk(u)) for all
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k > 0. We remark that |Dwk| = |Dw|χ{|u|<k} holds for all k > 0. Indeed, since
Tk(u) is bounded, and ψ is Lipschitz-continuous in the interval [−k, k], it is
enough to apply the chain rule [2, Theorem 99] to deduce from Dju = 0 that
Djwk = 0 for all k > 0. Hence, fixed k > 0, we obtain from the chain rule that
|Dwk| = |Dwh|χ{|u|<k} for all h > k, so that |Dwk| = |Dw|χ{|u|<k} holds.

On the other hand, having in mind again that Tk(u) is bounded, and ψ
is Lipschitz-continuous in the interval [−k, k], and applying [18, Proposition
2.7], we deduce that the Radon–Nikodým derivative of (z, Dwk) with respect
to |Dwk| coincides with the Radon–Nikodým derivative of (z, DTk(u)) with
respect to |DTk(u)|. Thus, (z, DTk(u)) = |DTk(u)| implies (z, Dwk) = |Dwk|
for every k > 0. Then, for each nonnegative ϕ ∈ C∞0 (Ω), we have∫

Ω

ϕ |Dwk| =
∫
Ω

ϕ (z, Dwk) = −
∫
Ω

wkϕdiv z−
∫
Ω

wkz · ∇ϕ

=

∫
Ω

wkϕdβ +

∫
Ω

wkϕf −
∫
Ω

wkz · ∇ϕ . (23)

In order to let k go to infinity, we apply Levi’s monotone convergence theorem
to deal with the left hand side:

lim
k→∞

∫
Ω

ϕ |Dwk| = lim
k→∞

∫
{|u|<k}

ϕ |Dw| =
∫
Ω

ϕ |Dw| .

Moreover, by Proposition 1, w is summable with respect to the measure β. It
follows from Lebesgue’s dominated convergence theorem that

lim
k→∞

∫
Ω

wkϕdβ =

∫
Ω

wϕdβ .

Applying again Lebesgue’s dominated convergence theorem, we obtain

lim
k→∞

(∫
Ω

wkϕf −
∫
Ω

wkz · ∇ϕ
)

=

∫
Ω

wϕf −
∫
Ω

wz · ∇ϕ ,

due to w ∈ BV (Ω) ⊂ L
N
N−1 (Ω), f ∈ LN (Ω) and z ∈ L∞(Ω;RN ). Hence, we

may take the limit in (23) to conclude that∫
Ω

ϕ |Dw| = −
∫
Ω

wϕdiv z−
∫
Ω

wz · ∇ϕ =

∫
Ω

ϕ (z, Dw)

for every nonnegative ϕ ∈ C∞0 (Ω). Therefore, (22) holds true.

5 Examples of existence and non existence for (4)

This final section is devoted to several examples of existence and non existence
of solutions for problem (4).
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We will use several times the well-known fact that the Sobolev constant
SN is indeed the isoperimetric constant, that is,

SN =
|BR(x0)|(N−1)/N

HN−1(∂BR(x0))
=

1

N ω
1/N
N

. (24)

The first two examples will show that, even when ‖f‖N is larger than S−1N ,
there are cases where u ≡ 0 is still a solution of problem (4).

Example 1 Let Ω be a bounded domain with Lipschitz boundary. We will see
that for every t > S−1N there exists f such that ‖f‖N = t and problem (4)
admits the trivial solution. There is no loss of generality in assuming 0 ∈ Ω.

Fix R > 0 such that BR(0) ⊂ Ω, choose ε such that 0 < ε < 1 and
take ρ > 0 satisfying ρN = (1 − ε)RN . Consider λ = N

Rε and the datum
f = λχBR(0)\Bρ(0). Then

‖f‖NN = λNωN (RN − ρN ) = λNωNR
Nε =

ωNN
N

εN−1
.

Note that, using (24), the norm ‖f‖N takes all values larger than S−1N when ε
varies between 0 and 1.

Now it is easy to check that u ≡ 0 is a solution with a vector field given by

z(x) =


0 , if |x| ≤ ρ ;

−xξ(|x|) , if ρ < |x| < R ;

−RNξ(R) x
|x|N , if |x| ≥ R ;

where ξ(r) =
λ

N

(
1−

(ρ
r

)N)
. Indeed, ‖z‖∞ ≤ 1 since Rξ(R) = 1 as a conse-

quence of our choice of λ. On the other hand, ξ(ρ) = 0 and

−div z(x) =


0 , if |x| ≤ ρ ;

Nξ(|x|) + |x|ξ′(|x|) , if ρ < |x| < R ;

0 , if |x| ≥ R .

The result follows from the identity Nξ(r) + rξ′(r) = λ, for ρ < r < R.

Example 2 We now consider a two dimensional example, though it can easily
be generalized to a higher dimension. Let Ω ⊂ R2 be a bounded domain with
Lipschitz boundary and containing the origin, and choose ` > 0. Denote by

Ω` = Ω ∩ {(x, y) ∈ R2 : |y| ≤ 1/`} .

For the sake of simplicity, assume that Ω` is a rectangle of sides 2/` and L,
centered in the origin. Taking f = `χΩ` , its L2-norm is

‖f‖2 = `
√
|Ω`| = `

√
2L

`
=
√

2L` ,
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which can be made as large or as small as we wish, by choosing ` accordingly.
Now, considering f as a datum, it is easy to check that u ≡ 0 is a solution

to problem (4) with vector field defined by

z(x) =


(0,−1) , if y > 1/` ;

(0,−y`) , if |y| < 1/` ;

(0, 1) , if y < −1/` .

The following example shows that the threshold S−1N is sharp for the exis-
tence of a solution solution to problem (4).

Example 3 Fix x0 ∈ Ω and let R > 0 satisfy BR(x0) ⊂ Ω. Let t be any number
larger than S−1N . Consider f = λχBR(x0), where λ = t

|BR(x0)|1/N
is chosen such

that ‖f‖N = t.
Assume, by contradiction, that there exists a solution u ∈ BV (Ω) to prob-

lem (4). Hence, we can find a vector field z ∈ L∞(Ω;RN ) satisfying ‖z‖∞ ≤ 1
and −div z = |Du| + f in the sense of distributions. Integrating in the ball
BR(x0) and applying the Green formula, we get

−
∫
∂BR(x0)

[z, ν] dHN−1 =

∫
BR(x0)

|Du|+
∫
BR(x0)

f(x) dx ≥ λ|BR(x0)| .

Observe that the left-hand side is smaller than HN−1(∂BR(x0)). Therefore
HN−1(∂BR(x0)) ≥ λ|BR(x0)|, which gives

t = λ|BR(x0)|1/N ≤ H
N−1(∂BR(x0))

|BR(x0)|(N−1)/N
= S−1N ,

a contradiction.

The previous examples show that, in the case where f is constant on some
set, the isoperimetric inequality plays an important role for existence and
nonexistence of solutions. For instance, in the Examples 1 and 2, f is different
from zero on some very “thin” sets, for which the isoperimetric ratio is far from
optimal. On the contrary, in the example given in Example 3 f is a multiple
of a characteristic function of a ball.

We summarize the previous examples in the following result:

Proposition 2 Assume that Ω is a bounded domain with Lipschitz boundary.
Then, for every t > S−1N , there exists f ∈ LN (Ω) such that ‖f‖N = t and
problem (4) has no solution. On the other hand, there exists f ∈ LN (Ω) such
that ‖f‖N = t and problem (4) has the trivial solution.

One may wonder whether there exist nontrivial solutions to problem (4).
This is indeed the case, as we will show in the following three examples, which
examine different cases, according to the size of the datum.
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Example 4 (The case of f small and regular enough) More precisely, f ∈
Lm(Ω) with m > N and

‖f‖m <
( m−N
N(m− 1)

)m−1
m |Ω| 1m− 1

N

SN
.

In [1] non regular solutions to problem (4) have been studied. The main result
states, under the above smallness condition on the datum, the existence of
unbounded solutions to (4). These solutions u ∈ BV (Ω) do not contradict
Theorem 2, since eλu /∈ BV (Ω) for λ ≥ 1.

Example 5 (The critical case ‖f‖N = S−1N ) Let Ω is a ball, say BR, and f is
a constant datum. Let f(x) = λ, it follows from ‖f‖N = S−1N that

λ = S−1N |BR|
−1/N =

HN−1(∂BR)

|BR|
=
N

R
.

Then any positive constant is a solution to (4) with vector field given by z(x) =

− x
R

, since ‖z‖∞ = 1, −div z = λ = |Du|+ λ and [z(x), ν(x)] = − x
R ·

x
|x| = −1

on ∂BR.

Example 6 (The case ‖f‖N > S−1N ) Let Ω be a bounded domain with Lipschitz
boundary; for t > S−1N we will find a nonnegative datum f such that ‖f‖N =
t and problem (4) has a nontrivial solution. As above, there is no loss of
generality in assuming 0 ∈ Ω. Fix R > 0 such that BR(0) ⊂ Ω and take
ρ ∈ (0, R), to be determined later.

We define

f(x) =
N

ρ
χBρ(0) +

µ

|x|
χBR(0)\Bρ(0)

for some 0 < µ < N − 1. It is straightforward that

‖f‖NN = NNωN + µNNωN log
(R
ρ

)
= S−NN + µNNωN log

(R
ρ

)
,

which (by suitably choosing ρ) can take any value larger than S−NN .

Now consider the real function given by

g(r) = (N − 1− µ) log
(R
r

)
and define

u(x) =


g(ρ) , if |x| ≤ ρ ;

g(|x|) , if ρ < |x| < R ;

0 , if |x| ≥ R .
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Then it is easy to check that u is a solution to problem (4) with an auxiliary
vector field defined by

z(x) =


−xρ , if |x| ≤ ρ ;

− x
|x| , if ρ < |x| < R ;

−RN−1 x
|x|N , if |x| ≥ R .

Finally, we point out that, when Ω = BR(0), then v(x) = u(x) + C, where
C > 0, is also a solution to this problem, with the same choice of z.
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