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Abstract: This paper presents a robust defence strategy in reaction to destabilizing cyber-physical attacks launched against linear
time invariant systems and its application to power systems. The proposed protection scheme aims at making the dynamics of
a selected subsystem decoupled from the dynamics of the subsystem targeted by the attack. The standard decoupling methods
are made robust, in spite of poor information about plant parameters and lack of state measurement, with the aid of an extended
observer. In this way it is possible to keep the protected dynamics arbitrarily close to the one of a suitably chosen stable system, so
long as the dynamics being targeted by the attack remain within prescribed bounds. The proposed defence strategy is presented
in the context of modern power systems, wherein generators and transmission network are operated by different players, and
shown to be effective using the Western System Coordinating Council 9-bus test power network.

1 Introduction1

Over the last two decades the cyber physical systems have2

increasingly attracted the attention of academics and industry, posing3

new opportunities and challenges. Indeed, nowadays the integra-4

tion of information and communication technology into physical5

processes is commonly recognized as fundamental to improve the6

operation of industrial plants and large scale infrastructures dedi-7

cated to the production of goods and the provisioning of primary8

importance services. Despite of this, the new paradigm increases the9

vulnerability of this class of systems, which are exposed to attacks10

leveraging the potential access to operational data in order to alter the11

behaviour of the underlying physical process. Well-known examples12

are the Maroochy Water breach [1] in 2000, the SQL Slammer worm13

attack on the Ohio nuclear plant network [2] in 2002, the coordinated14

attack on the Ukrainian power grid [3] in 2016.15

The cyber-physical system security topic is receiving a lot of16

attention within the control theory community, as witnessed by the17

growing number of papers and special issues in relevant journals,18

e.g., [4][5] and references therein. Several classes of attack design19

and detection have been identified and studied, among the oth-20

ers: deception and denial of service attacks [6][7], replay attacks21

[8][9], false data injection attacks [10][11], random and constant22

bias attacks [12], and zero dynamics attacks [13][14][15].23

In particular, it has been observed that systems having unstable24

zero dynamics are vulnerable to stealthy attacks. In fact, as shown25

e.g. in [16], in a system whose zero dynamics are unstable, with26

an (output feedback) control chosen so as to guarantee asymptotic27

stability in the absence of attacks, an attack generator may inject28

signals that make the internal state diverge, while the effects of such29

attack are not visible from the mere observation of the output (on the30

measure of which the stabilizing control is designed). An attack of31

this kind is commonly referred to as a zero-dynamics attack. Recent32

researches have focused on the design of a zero dynamics attack as33

well as on the detection of (or defence from) such an attack. In par-34

ticular, [16] shows how a zero dynamics attack can be implemented35

that is robust in spite of model uncertainties, by means of a tech-36

nique reposing on the design of a robust disturbance observer [17].37

Researches on the detection of zero dynamics attacks are based on38

the design of centralized and decentralized observers [15], Kalman39

filtering [18], adaptive sliding mode observers [19], or by suitably40

altering the input behaviour of the process [20].41

In this paper we focus on the design of defence strategies and42

we consider a slightly different scenario. Specifically we address the43

case in which the purpose of the attacker is to influence a portion 44

of the dynamics of the plant (for instance in such a way that the 45

zero dynamics associated with a selected output become unstable, 46

so as to make a zero-dynamics attack possible) in a malicious way. 47

The defence strategy is based on the (indeed elementary) idea of 48

making the portion of the dynamics affected by the attack decou- 49

pled from the portion of the dynamics that needs to be defended. 50

In this context, though, the standard decoupling methods are of no 51

use because relying upon exact cancelation of coupling terms and 52

availability of a measure of the entire state of the plant. Instead, we 53

propose a design technique by means of which the result in question 54

is achieved, robustly, in “practical terms", over a finite time hori- 55

zon. The method in question basically reposes on some fundamental 56

results of [21], in which a high-gain extended observer is employed, 57

to the purpose of obtaining a robust “proxy" of a control law based 58

on exact cancelation. 59

Among the application fields of interest, power systems are typ- 60

ical cyber physical systems, characterized by lack of information, 61

asking for enhanced defence schemes. It is well known that power 62

system dynamics results from the interconnection of synchronous 63

machines, whose electromechanical behaviour is controlled by local 64

prime mover governors. A fundamental role of the governor is the 65

one of keeping the machine angular speed constant, against the oscil- 66

lations of the electrical torque, by acting on the mechanical torque 67

applied to the rotor. A malicious intervention on this control has the 68

effect of inducing oscillations on the other machines in the network 69

through the interconnections. In this context, a zero dynamics attack 70

can be seen as the action of altering the mechanical torque of a prop- 71

erly selected set of machines, in order to induce instability in some 72

machines without having an impact on some others. Conversely net- 73

work decoupling can be achieved via feedback in order to allow a 74

power plants operator to protect its machines. 75

Both the destabilization and the exact decoupling require a sig- 76

nificant amount of information about the network model and full 77

information about the rotor angle and the angular speed of machines. 78

Despite the availability of measurements does not constitute a prob- 79

lem from the technological point of view in modern power systems, 80

all the above information together are typically not available in prac- 81

tice. Indeed, following the unbundling of the electricity systems and 82

the establishment of electricity market in most industrialized coun- 83

tries, the transmission network and the power plants have started to 84

be operated by different operators, which typically share a limited 85

amount of data about their infrastructures. Then a requirement for 86
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applying both the nominal attack and defence controls is the access87

to information owned by different players.88

In the light of the above, this paper presents a robust defence strat-89

egy to attacks launched against linear time invariant systems and its90

application to power systems.91

The paper is organized as follows. Section 2 recalls the model92

of a power system, describes the attack scenario and clarifies the93

requirements for a successful defence. Section 3 presents the attack94

model. Section 4 presents the robust decoupling control at the basis95

of the defence. In section 5 the proposed strategy is applied to a test96

power network in order to show the potential of the proposed defence97

strategy. Finally section 6 is dedicated to the concluding remarks.98

2 Reference scenario99

2.1 Power system model100

In this section the power system model is recalled. The generic101

network here considered is constituted by m̄ power plants and q102

load buses. It is well known that the electromechanical dynamics103

of a power system results from the composition of second order104

swing equations, through the nonlinear algebraic power flow equa-105

tions [22][23]. As reported in [24], under the assumptions of lossless106

network, small angular differences and small deviations of bus volt-107

ages from rated values, the power system dynamics is described by108

the following time invariant linear descriptor model109 I 0 0
0 M 0
0 0 0

 δ̇ω̇
θ̇

 = −

 0 −I 0
Lgg D Lg`
L`g 0 L``

δω
θ

+

 0
Pg

P`


(1)

In (1) δ = col(δ1, δ2, . . . , δm̄) and ω = col(ω1, ω2, . . . , ωm̄)110

denote the vectors of machines rotor angles and angular speeds, θ =111

col(θ1, θ2, . . . , θq) denotes the vector of load angles at load buses,112

Pg = col(Pg1, Pg2, . . . , Pgm̄) and P` = col(P`1, P`2, . . . , P`q)113

are the vectors of mechanical input powers at generator114

buses and electrical powers at load buses, the matrices M =115

diag(M1, . . . ,Mm̄) and D = diag(D1, . . . , , Dm̄) model the116

machines inertia and damping coefficients; finallyLgg,Lg`,L`g and117

L`` are properly sized submatrices of the network laplacian matrix118

LN =

(
Lgg Lg`
L`g L``

)
(2)

where Lgg is diagonal and L`` is invertible. The model can be fur-119

ther simplified by explicity calculating θ from the third component120

of (1) as121

θ = −L−1
`` [L`gδ + P`] (3)

and substituting it into the angular speed dynamics to obtain122 (
δ̇
ω̇

)
=

(
0 I

M−1(−Lgg + Lg`L
−1
`` L`g) −M−1D

)(
δ
ω

)
+

+

(
0

M−1

)
Pg +

(
0

M−1Lg`L
−1
``

)
P`

(4)
Without loss of generality, it is possible to put P` = 0, mean-123

ing that in what follows Pg will be intended as the deviation of the124

mechanical power from the value allowing to sustain a given loading125

condition during normal operation.126

The resulting model has the standard linear time invariant form127

ẋ = Ax+ B̄ū (5)

where x = col(δ, ω) ∈ R2m̄ , ū = Pg ∈ Rm̄.128

2.2 Attack scenario and defence requirements129

In this section the attack scenario under investigation is described,130

raising the requirements for the defence design. In the reference131

scenario the m̄ power plants are divided into three groups:132

• a set of ma power plants under the control of an attacker, able to 133

alter the mechanical power input in order to induce instability in the 134

rotor angle and angular speed dynamics of the other power plants in 135

the network; 136

• a set ofmp power plants to be protected by a defender against the 137

oscillations induced by the machines controlled by the attacker; 138

• a set of mu unprotected power plants, which are exposed to the 139

effect ot the attack. 140

As a result of this classification, the input to model (5) is 141

partitioned as ū = col(ua, up, uu) where ua ∈ Rma is the input 142

available to the attacker, up ∈ Rmp is the input of the protected 143

machines and uu ∈ Rmu is the input of unprotected machines, the 144

latter assumed not active in what follows. 145

This scenario is sufficiently general to cover some situations of 146

practical interest; in this paper we take the perspective of a genera- 147

tion company operatingmp power plants and interested in protecting 148

them from the spread of the instability occurring in other machines 149

through network interconnections; the alteration of dynamics is sup- 150

posed to be induced by the action of an hacker which, taking 151

advantage of the vulnerabilty of the ICT infrastructure of a separate 152

set of ma power plants, uses their actuators to inject destabilizing 153

signals out of the respective generation company’s will. 154

The defender is supposed to have control on a limited number 155

mp of machines. Also, as a consequence of the power system indus- 156

try unbundling, the defender is supposed to not have access to the 157

state of the power plants which are not under its control (being oper- 158

ated by other generation companies) and to not know the laplacian 159

matrix characterizing the connections in the network (which is an 160

information owned by the transmission system operator); addition- 161

ally it is assumed to have uncertain knowledge about the inertia and 162

damping of its own machines. Notice that, in an attack scenario, even 163

though the state of the attacked machines could be made available to 164

the defender, such measurements should be considered unreliable, as 165

coming from power plants under the influence of the attack. 166

In the light of the above, the fundamental requirements of the 167

control strategy aimed at protecting the dynamics of interest are the 168

following: 169

• the purpose of the defence control up is to decouple the dynamics 170

(rotor and angular speed) of protected machines from the dynamics 171

of the other machines operating in the network; 172

• the decoupling has to be robust, meaning that it has to be achieved 173

without relying on the knowledge of machines state and network 174

parameters. 175

To this purpose, a protected output yp ∈ Rmp is defined as the 176

vector of protected machines’ rotor angles; in this regard notice that 177

the protection of rotor angles dynamics implies the one of angu- 178

lar speed dynamics, being the latter variable defined as the time 179

derivative of the former. 180

In order to use standard notation, in what follows the subscript p 181

will be omitted when referring to the decoupling control and the 182

protected output, which will be denoted simply as u ∈ Rm and 183

y ∈ Rm. 184

3 An Attack Model 185

In what follows, we consider a system modeled by equations of 186

the form 187

ẋ = Ax+Bpu+Baua

y = Cpx
(6)

with state x ∈ Rn, control u ∈ Rm, output y ∈ Rm, in which the 188

input ua plays the role of an exogenous attacker. We focus our atten- 189

tion on the case in which the purpose of the attacker is to perturb the 190

dynamics of the system and we describe how the input u can be 191

designed so as to counter, in a sense that will be specified, the effects 192

of such attack on the behavior of the protected output y. 193
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To simplify matters, we consider hereafter the case in which194

CpBp = CpABp = · · · = CpA
r−2Bp = 0

CpA
r−1Bp = diag(b1, b2, . . . , bm)

(7)

where bi 6= 0 for i = 1, . . . ,m, i.e. the case in which system (6),195

viewed by the defender as a system with input u and output y, has196

vector relative degree {r, r, . . . , r} and a purely diagonal “high-197

frequency gain matrix". This, in fact, is the case for the specific198

class of systems discussed in the previous section, consisting of199

the interconnection of a set of identical sub-systems, all of them200

independently actuated. However, we stress that without much com-201

plications one could as well address the more general case in which202

system (6) has vector relative degree {r1, r2, . . . , rm} or even does203

not have a vector relative degree but has an invertible transfer204

function matrix T (s) = Cp(sI −A)−1Bp.205

It is also assumed206  Cp

CpA
· · ·

CpA
r−1

Ba = 0 . (8)

which is yet another feature of the class of systems considered in the207

previous section.208

As it is well known, under these assumptions system (6) can be –209

by means of a suitable change of coordinates – expressed in normal210

form as211

ż0 = F0z0 +G0ξ +G0,aua

ξ̇i = Aiξi +Bi(Hi,0z0 +Kiξ + biui)

yi = Ciξi i = 1, . . . ,m

(9)

in which212

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

 , Bi =


0
0
· · ·
0
1

 ,

213

Ci =
(
1 0 · · · 0

)
and ξ = col(ξ1, . . . , ξm), dim(z0) = n−mr, dim(ξi) = r.214

Remark. In geometric terms, the previous setup can be characterized215

as follows (see [25, pp.87-90] and [25, pp.104-113] for definitions216

and basic properties related to the concepts of (A,B)-invariant sub-217

space and of controllability subspace). Set B̄ =
(
Bp Ba

)
. If (7)218

holds, then V∗, the largest (A, B̄)-invariant subspace contained in219

Ker(Cp), is given by220

V∗ = Ker

 Cp

CpA
· · ·

CpA
r−1

 .

In the coordinates of (9)221

V∗ = {(z, ξ) : ξ = 0},

and (8) is equivalent to222

Im(Ba) ⊂ V∗ .

Moreover R∗, the largest controllability subspace of (A, B̄) con-223

tained in Ker(Cp), can be identified with the reachable set of the224

pair (F0, G0,a). If such pair is controllable, thenR∗ = V∗. /225

The attacker can perturb the dynamics of (6) in various ways, 226

depending on the information available. For instance, if the pair 227

(F0, G0,a) is controllable and z0 is available for measurement, the 228

attacker ua can choose the strategy 229

ua = Kaz0 (10)

so as to assign eigenvalues with positive real parts to the matrix 230

(F0 +G0,aKa). The effect of such attack is that of forcing, on 231

the resulting system with input u and output y, an antistable zero 232

dynamics. 233

This strategy presumes the availability of z0 as well as an accurate 234

knowledge of F0 andG0,a. If this is not the case, an equivalent result 235

could be obtained by means of a dynamic control law 236

ζ̇ = Ãaζ + B̃aya

ua = C̃aζ + D̃aya
(11)

driven by a set of auxiliary measurements ya = M0z0 +Nξ, so 237

long as the system 238

ż0 = F0z0 +G0,a(C̃aζ + D̃aM0z0)

ζ̇ = Ãaζ + B̃a(C̃aζ + D̃aM0z0)

can be rendered antistable. 239

Simple manipulations show that if the attack strategy is chosen as 240

in (11), a system of the form 241

ż = Fz +Gξ

ξ̇i = Aiξi +Bi(Hiz +Kiξ + biui)

yi = Ciξi i = 1, . . . ,m

(12)

is obtained, where z = col(ζ, z0), and the matrix F is anti-stable. 242

While the specific target of the attack strategies (10) and (11) 243

are the zero dynamics associated with the protected output y, it 244

should be stressed that – because of the inherent coupling between 245

the z’s and the ξ’s (which reflects, in the present context, the cou- 246

pling between the protected, unprotected and attacked power plants 247

of (4)) – any malicious signal ua deliberately injected by the attacker 248

might have a serious adverse effect on the behavior of the protected 249

output y. 250

A simple strategy meant to counter the effects of an attack is 251

indeed that of making the protected output y decoupled from ua. 252

As it is well-known, this is achieved if u is chosen as 253

u = −B−1Hz + v , (13)

in which, for convenience, we have set 254

B = diag(b1, b2, . . . , bm), H =

H1
· · ·
Hm

 .

The control (13) renders the behavior of ξ, and consequently that 255

of the protected output y, decoupled from z and hence unaffected 256

by the attack. In fact, such control renders the state z unobservable 257

through the output y. Moreover, one could pick the residual control 258

v in (13) in such a way as to force a prescribed behavior of the ξi’s. 259

Setting, for convenience, 260

K =

K1
K2
· · ·
Km

 K0 =

K01 0 · · · 0
0 K02 · · · 0
· · · · · ·
0 0 · · · K0m


one could pick, to this end, 261

v = B−1[−Kξ +K0ξ] (14)

so as to impose any prescribed (stable) dynamics on ξ. Note that the 262

composition of (13) and (14) is a control of the form 263

u = B−1[−Hz −Kξ +K0ξ] . (15)

264
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The defence control (13), though, is not appropriate for various265

reasons. The main reason resides in its lack of robustness. In fact,266

the implementation of such control needs an accurate knowledge of267

B and H , as well as the availability of a measurement of z. Another268

reason is that, even if B and H were known and z were available for269

feedback, if the target of the attacker are the zero dynamics the state270

z will eventually diverge and so will the control u. Thus, the resulting271

control is sustainable only if implemented over a finite interval of272

time.273

In what follows, we show that – from a practical viewpoint – the274

effect of decoupling y from z can be achieved by means of a robust275

control law that does not rely upon exact knowledge ofB andH nor276

on availability of z, but rather appeals to techniques borrowed from277

the theory of the so-called extended high-gain observer, so long as278

the state z does not exceed a fixed (but that can be otherwise cho-279

sen arbitrarily large in the design stage) bound. In other words, we280

show that given any arbitrarily large number M̄ and any arbitrarily281

small number ε̄, it is possible to design a robust control law such282

that, so long as the norm of z(t) does not exceed the bound M̄ , the283

behavior of ξ(t) differs from the “ideal" behavior resulting from the284

implementation of the (“ideal" but not robust) control law (15) by a285

quantity that does not exceed ε̄.286

4 Robust Defence Against Destabilizing Attacks287

4.1 The proposed defence strategy288

We assume in what follows that all the bi’s are bounded from289

below and from above by fixed numbers, that is there exists numbers290

0 < bmin < bmax such that291

bmin ≤ |bi| ≤ bmax for all i = 1, . . . ,m.

If this is the case, one can find a number b0 and a number δ0 < 1292

such that293 ∣∣∣ bi − b0
b0

∣∣∣ ≤ δ0 < 1 for all i = 1, . . . ,m. (16)

This number b0 will be used in the design of the control.294

With K0 defined as above, let ψ(ξ, σ) be the function defined as295

ψ(ξ, σ) = B−1
0 [K0ξ − σ] ,

in which ξ ∈ Rmr , σ ∈ Rm and B0 = diag(b0, b0, . . . , b0).296

Let gL : R→ R be a smooth “saturation" function, that is a297

function characterized by the following properties:298

• gL(s) = s if |s| ≤ L,299

• gL(s) is odd and monotonically increasing, with 0 < g ′L(s) ≤ 1,300

• lims→∞ gL(s) = L(1 + c) with 0 < c� 1.301

With this in mind, define a function GL : Rm → Rm as302

GL(s) = col(gL(s1), . . . , gL(sm))

in which gL(·) is a fixed saturation function.303

System (12) will be controlled by a control law of the form304

u = GL(ψ(ξ̂, σ)) =

 gL(ψ1(ξ̂, σ))
· · ·

gL(ψm(ξ̂, σ))

 (17)

in which305

ξ̂ = col(ξ̂1, ξ̂2, . . . , ξ̂m)
σ = col(σ1, σ1, . . . , σm)

where, for i = 1, 2, . . . ,m, the vector306

ξ̂i = col(ξ̂i,1, ξ̂i,2, . . . , ξ̂i,r)

and the scalar σi are states of a dynamical system described by 307

equations of the form 308

˙̂
ξi,1 = ξ̂i,2 + κci,r(yi − ξ̂i,1)

˙̂
ξi,2 = ξ̂i,3 + κ2ci,r−1(yi − ξ̂i,1)

· · ·
˙̂
ξi,r−1 = ξ̂i,r + κr−1ci,2(yi − ξ̂i,1)

˙̂
ξi,r = σi + b0gL(ψi(ξ̂, σ)) + κrci,1(yi − ξ̂i,1)

σ̇i = κr+1ci,0(yi − ξ̂i,1).

(18)

In these equations, the coefficient κ and ci,0, ci,1, · · · , ci,r are 309

design parameters. 310

4.2 Main result 311

The controller proposed in this paper is defined by the couple 312

of equations (17)–(18). This controller is completely specified by 313

the set of parameters B0,K0, L, ci,0, ci,1, · · · , ci,r and κ. In the 314

previous subsection, structure and values of B0 and K0 have been 315

specified. In what follows, we will show how the remaining design 316

parameters can be chosen so as to obtain the desired goal, which – 317

in a nutshell – is to (practically) decouple the “protected" output y 318

from the “attacked" set z of state variables, so long as z(t) remains 319

bounded by a fixed – but otherwise arbitrary – number M̄ . 320

More specifically, we will prove that, if the design parameters 321

are appropriately chosen, the response ξ(t) can be made arbitrar- 322

ily close (so long as z(t) remains bounded by M̄ ) to the response 323

resulting from the implementation of the “ideal" control (15). In this 324

respect, observe that, under the effect of the control law (15), one 325

would obtain for ξ(t) a response 326

ξ(t) = col(ξid
1 (t), . . . , ξid

m(t))

in which ξid
i (t) is a solution of 327

ξ̇id
i = (Ai +BiK0,i)ξ

id
i .

The Proposition that follows (in which we use BR to denote the 328

closed ball of radius R and ξ̂ext = col(ξ̂, σ)) is main result of the 329

paper . 330

Proposition 1. Consider system (12) with control (17)–(18). Let 331

R and R∗ >> R be fixed. Assume x(0) ∈ BR and ξ̂ext(0) ∈ BR. 332

There is a choice of saturation level L and of the design parameters 333

ci,0, · · · , ci,r such that, for any choice of ε̄ > 0 there exists a num- 334

ber κ∗ such that, if κ ≥ κ∗, then for all t such that x(t) ∈ BR∗ the 335

components ξ1(t), . . . , ξm(t) of the response ξ(t) satisfy 336

‖ξi(t)− ξid
i (t)‖ ≤ ε̄ .

4.3 Proof of the main result: a change of coordinates 337

The arguments used in the proof of the main result are essentially 338

the same as those used to show that a feedback law of the form (17)– 339

(18) is able to induce – under the assumption that the zero-dynamics 340

of the controlled system are asymptotically stable – an input-output 341

behavior that asymptotically recovers the behavior obtained under 342

the action of a control of the form (15) (see [21][26]). The novelty 343

here is that we no longer assume that the zero dynamics are globally 344

asymptotically stable and we show that those arguments can be used 345

to prove “practical" decoupling of ξ(t), and hence y(t), from z(t), 346

so long as the latter remains bounded. 347

In order to analyze the response of the closed-loop system defined 348

by (12)–(17)–(18), it is useful to make a change of the variables, 349
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introducing350

ei,1 = κr(ξi,1 − ξ̂i,1)

ei,2 = κr−1(ξi,2 − ξ̂i,2)

. . .

ei,r = κ(ξi,r − ξ̂i,r)
ei,r+1 = Hiz +Kiξ + [bi − b0]gL(ψi(ξ, σ))− σi .

(19)
Setting351

e = col(e1, . . . , em)

ei = col(ei,1, ei,2, . . . , ei,ri+1) , i = 1, . . . ,m

equations (19) define a map352

T : Rm(r+1) → Rm(r+1)

ξ̂ext 7→ e = T (z, ξ, ξ̂ext)
(20)

As shown in [27, pp.300-301]), the following property holds.353

Lemma 1. If assumption (16) is fulfilled, the map (20) is globally354

invertible.355

As consequence, (19) define a legitimate (partial) change of coor-356

dinates and we can express the closed-loop system in the coordinates357

x = col(z, ξ) and e. Note that e is a function of (x, ξ̂ext) and,358

conversely, that ξ̂ext is as a function of (x, e).359

We make now some manipulations in the equations that describe360

the closed-loop system, so as to put it in a form of two mutually361

“coupled" subsystems, one with state x and the other with state e.362

Later, we will discuss the effects of the couplings.363

So long as the dynamics of x is concerned, adding and subtracting364

the function (15) to the control u defined in (17), one obtains365

u = B−1(−Hz −Kξ +K0ξ) + ∆3(x, e)

in which (recall that (ξ̂, σ) can be regarded as a function (x, e))366

∆3(x, e) = GL(ψ(ξ̂, σ))−B−1(−Hz −Kξ +K0ξ) .

As a consequence, the equations of system (12) controlled by (17)367

can be regarded as equations of the form368

ż = Fz +Gξ

ξ̇i = (Ai +BiK0,i)ξi +Bi∆3,i(x, e)
(21)

in which ∆3,i(x, e) is the i-th row of ∆3(x, e). These equations369

appear as a perturbed version of the equations resulting from the370

implementation of the “ideal" control (15). Recall also that K0,i is371

chosen in such a way as to make (Ai +BiK0,i) a Hurwitz matrix.372

So long as the dynamics of the ei’s are concerned, appropriate373

calculations show that374

ėi,1 = κ(ei,2 − ci,rei,1)
ėi,2 = κ(ei,3 − ci,r−1ei,1)

· · ·
ėi,r−1 = κ(ei,r − ci,2ei,1)

(22)

375
ėi,r = κ[ei,r+1 − ci,1ei,1] + ∆1,i(x, e) , (23)

in which

∆1,i(x, e) = κ[bi − b0][gL(ψi(ξ̂, σ))− gL(ψi(ξ, σ))] ,

and that376

ėi,r+1 = −κci,0ei,1− κ∆0,i(x, e)

 c1,0e1,1
c2,0e2,1
· · ·

cm,0em,1

+∆2,i(x, e) .

(24)

in which 377

∆0,i(x, e) = [bi − b0]g′L(ψi(ξ, σ))b−1
0 ,

378

∆2,i(x, e) = Hiż +Kiξ̇ + [bi − b0]g ′L(ψi(ξ, σ))b−1
0 K0iξ̇i .

Altogether, (22), (23) and (24) characterize a system of the form 379

ėi = κAe,iei − κBe2,i∆0,i(x, e)

 Ce,1e1
· · ·

Ce,mem

+

+Be1,i∆1,i(x, e) +Be2,i∆2,i(x, e)

(25)

in which Ae,i ∈ R(r+1)×(r+1), Be1,i ∈ R(r+1), Be2,i ∈ R(r+1), 380

CT
e,i ∈ R(ri+1) are matrices defined as 381

Ae,i =


−ci,r 1 0 · · · 0 0
−ci,r−1 0 1 · · · 0 0
· · · · · · · ·
−ci,1 0 0 · · · 0 1
−ci,0 0 0 · · · 0 0

 ,

382

Be1,i =


0
0
· · ·
1
0

 , Be2,i =


0
0
· · ·
0
1

 ,

383

Ce,i =
(
ci,0 0 0 · · · 0 0

)
.

Relevant, in the analysis that follows, is the possibility of show- 384

ing that the functions ∆0,i(x, e),∆1,i(x, e),∆2,i(x, e), have the 385

following properties (see, in this respect, [27, 304-305]). 386

Lemma 2. If (16) holds and κ ≥ 1, there exist numbers δ0 < 1 and 387

δ1 such that 388

‖∆0,i(x, e)‖ ≤ δ0 < 1 for all (x, e) and all κ
‖∆1,i(x, e)‖ ≤ δ1‖e‖ for all (x, e) and all κ .

(26)

Moreover, for each R > 0 there is a number MR such that 389

‖x‖ ≤ R ⇒ ‖∆2,i(x, e)‖ ≤MR for all e and all κ.
(27)

Finally, note that (x, e) = (0, 0) is an equilibrium point of the 390

system defined by (21)–(25). 391

4.4 Proof of the main result: analysis of the response 392

We assume in what follows that the initial conditions 393

(x(0), ξ̂ext(0)) of the controlled system are in a fixed bounded set, 394

that is we assume that x(0) ∈ BR and ξ̂ext(0) ∈ BR, for some 395

R > 0. Pick any number R∗ >> R and let [0, Tmax] be a time 396

interval such that x(t) ∈ BR∗ for all t ∈ [0, Tmax]. We will prove 397

that, if the design parameters are appropriately chosen, on the entire 398

time interval [0, Tmax], the states ξi(t) remain arbitrarily close to 399

the trajectories of the stable systems ξ̇i = (Ai +BiK0,i)ξi. 400

First of all, the threshold L of the saturation function is fixed, as 401

L = max
x∈BR∗

‖B−1(−Hz −Kξ +K0ξ)‖+ 1 . (28)

Then, observe that, since GL(·) is bounded by L(c+ 1), the 402

quantity ∆3(x, e) remains bounded so long as x(t) ∈ BR∗ , by a 403

bound that does not depend on the design parameter κ (rather, this 404

bound only depends on the choice of R∗). As a consequence, with 405

x(0) ∈ BR and ξ̂ext(0) ∈ BR, given any arbitrarily small number 406

0 < δ << (R∗ −R) there is a time T0, independent of the design 407
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parameter κ, such that, for all times t ∈ [0, T0], x(t) ∈ BR+δ. Dur-408

ing the time interval [0, T0] also the state e(t) remains bounded.409

This is seen from the bottom equation of (25), using the bounds410

determined for ∆0,i(x, e), ∆1,i(x, e), ∆2,i(x, e) and the fact that411

x(t) ∈ BR∗ for all t ∈ [0, T0]. It is worth observing, in this respect,412

that the value of κ does affect the bound on e(t). In fact, looking at413

the definitions of the various components of e, it is seen that ‖e(0)‖414

grows with κ (despite of the fact that, by assumption, ‖x(0)‖ ≤ M̄415

and ‖ξ̂ext(0)‖ ≤ M̄ ). This is not a problem, though, as it will be416

shown in the sequel.417

We study now the behavior of e(t) for times larger than T0. To418

this end, we make use of the following results (see, in this respect,419

[27, pp.308-312]).420

Lemma 3. Consider the set of systems421

ėi = Ae,iei −Be2,i∆0,i(x, e)

 Ce,1e1
· · ·

Ce,mem

 i = 1, . . . ,m

where Ae,i, Be2,i, Ce,i and ∆0,i(x, e) are defined as in (25). There422

is a choice of the coefficients ci,0, · · · , ci,r such with this system423

is asymptotically stable, with a quadratic, x-independent, Lyapunov424

function.425

Lemma 4. Let the ci,j ’s be chosen so as to make stability prop-
erty indicated in Lemma 3 fulfilled. Suppose x(t) ∈ BR∗ for all
t ∈ [0, Tmax) and suppose that ξext(0) ∈ BR. Then, for every 0 <
T0 ≤ Tmax and every ε > 0, there is a κ∗ such that, for all κ ≥ κ∗,

‖e(t)‖ ≤ 2ε for all t ∈ [T0, Tmax).

Lemma 5. Suppose ‖e(t)‖ ≤ 2ε for all t ∈ [T0, Tmax). If ε is small426

enough, then427

‖ψ(ξ, σ)‖ ≤ L− 1

2
.

As a consequence, GL(ψ(ξ, σ)) = ψ(ξ, σ).428

From Lemma 3 and 4, we learn that there is a choice of the design429

parameters ci,0, · · · , ci,r such that, for any choice of ε, there is a430

number κ∗ such that, for any κ ≥ κ∗, so long as x(t) remains in431

the set BR∗ on the time interval [T0, Tmax), on the same time inter-432

val ‖e(t)‖ is bounded by 2ε. From Lemma 5 we see that, if ε is433

chosen sufficiently small, on the same intervalGL(ψ(ξ(t), σ(t))) =434

ψ(ξ(t), σ(t)). We use this latter property to show that, on the same435

time interval,436

GL(ψ(ξ̂(t), σ(t))) = ψ(ξ̂(t), σ(t)), (29)

i.e. that none of the components of the control (17) is “saturated".437

To this end, observe that438

ξ̂ = ξ −D(κ)e (30)

in which D(κ) = diag(D1(κ), · · · , Dm(κ)) where Di(κ) is the439

ri × (ri + 1) matrix440

Di(κ) =


κ−ri 0 . . . 0 0

0 κ−ri−1 . . . 0 0
· · · · · · ·
0 0 . . . κ−1 0


and note that, if (without loss of generality) κ ≥ 1, then ‖D(κ)‖ ≤
1. Since,

ψ(ξ̂, σ) = ψ(ξ, σ)−B−1
0 K0D(κ)e ,

if κ > 1 we have

‖ψ(ξ̂, σ)‖ ≤ ‖ψ(ξ, σ)‖+ ‖B−1
0 ‖‖K0‖‖e‖.

Thus, if ‖e‖ ≤ 2ε and ε is small enough we conclude from the pre-441

vious Lemma that ‖ψ(ξ̂, σ)‖ < L, and this proves that (29) holds on442

the time interval [T0, Tmax).443

We return now to equation (21) and observe that, for all t ∈ 444

[T0, Tmax), 445

∆3(x, e) = GL(ψ(ξ̂, σ))−B−1(−Hz −Kξ +K0ξ)

= ψ(ξ̂, σ)−B−1(−Hz −Kξ +K0ξ)

= ψ(ξ, σ)−B−1
0 K0D(κ)e−B−1(−Hz−Kξ+K0ξ) .

In this expression, ψ(ξ, σ) can be replaced by 446

ψ(ξ, σ) = B−1(−Hz −Kξ +K0ξ + ς) (31)

in which ς = col(e1,r+1, e2,r+1, . . . , em,r+1). In fact, from the 447

last of (19) it is seen that 448

ς = Hz +Kξ + [B −B0]GL(ψ(ξ, σ))− σ .

Adding and subtracting K0ξ, using the fact that GL(ψ(ξ, σ)) = 449

ψ(ξ, σ) = B−1
0 [K0ξ − σ], we obtain 450

ς = Hz +Kξ −K0ξ +Bψ(ξ, σ)

from which (31) follows. 451

As a consequence, it is seen that 452

∆3(x, e) = −B−1
0 K0D(κ)e+B−1ς .

Recalling that ς is part of e and using again the property ‖D(κ)‖ ≤ 453

1, we see that 454

‖∆3(x, e)‖ ≤ (‖B−1
0 ‖ ‖K0‖+ ‖B−1‖)‖e‖ . (32)

It is seen from this estimate that on the time interval [T0, Tmax), 455

on which ‖e(t)‖ ≤ 2ε, the dynamics of the ξi(t)’s can be made arbi- 456

trarily close (by lowering the value of ε) to those of the “ideally 457

decoupled" systems 458

ξ̇id
i = (Ai +BiK0,i)ξ

id
i .

Specifically, observe that the difference δξi = ξi − ξid
i obeys 459

˙δξi = (Ai +BiK0,i)δξi +Bi∆3,i(x, e)

with initial condition δξi(0) = 0. As a consequence 460

δξi(t) =

∫T0

0
e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ+

+

∫ t
T0

e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ

in which (Ai +BiK0,i) is a Hurwitz matrix. The first term of this 461

expression can be arbitrarily lowered by lowering the value of T0 462

(recall that ∆3,i(x, e) is bounded). Note, in this respect, that T0 can 463

be arbitrarily lowered by increasing κ (see Lemma 4). The second 464

term, on the other hand, using the bound (16) can be bounded as 465∫ t
T0

e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ ≤ M̄ sup
τ∈[T0,t)

‖e(τ)‖

Thanks to Lemma 4, this term can be arbitrarily lowered by lowering 466

ε. Thus, in summary, we conclude that, given any choice of ε̄, if we 467

pick a sufficiently large value of κ, we have 468

‖δξi(t)‖ ≤ ε for all t ∈ [T0, Tmax).

and this proves Proposition 1. 469
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4.5 Remarks470

It is worth stressing that we have considered a scenario in which a471

fixed set of generators is to be protected by attacks affecting a differ-472

ent set of generators. The proposed control (17)–(18) does not rely473

on any information about the entry points of the attack in the system474

(in the context of power systems represented by the generators under475

the control of the hacker); it only uses data from the generators that476

have to be protected.477

By means of the control law (17)–(18) we are able to practi-478

cally decouple ξ(t) from z(t) on the finite time internal [0, Tmax),479

in which Tmax is determined by the bound R∗ chosen for x(t),480

bound which in turn determines the values of the design parame-481

ters L, ci,0, ci,1, · · · , ci,r and κ∗. In practice, as kindly pointed out482

by an anonymous reviewer, this should not be seen as a limitation483

of the method. In fact, it is reasonable to conceive that in prac-484

tice z(t) will remain bounded for all t, in which case we may well485

take Tmax =∞. As a matter of fact, the attack on z(t) takes place486

through actuators that have saturations. This means that, although487

the goal of the attacker is to make the zero dynamics anti-stable,488

z(t) will only diverge so long as the actuators are not saturated. In489

the end, if the un-attacked zero dynamics is stable, a consequence of490

a saturated attack is a bounded attacked z(t). Another reason why491

one can consider Tmax =∞ is that, since the attacked generators492

have automatic protections, if z(t) gets excessively large then such493

generators at some time will be automatically disconnected from the494

network. In this case, our defence strategy is effective on the finite495

time interval during which the attacked generators are connected and496

will be no longer needed after the disconnection of such generators.497

5 Simulation Results498

5.1 Case study499

In order to validate the proposed decoupling strategy, the WSCC500

9-bus test power network reported in Fig. 1 has been consid-501

ered [24]; it represents an approximation of the Western Sys-502

tem Coordinating Council (WSCC) to an equivalent system with503

3 generation buses and 6 load buses [28]. For this power sys-504

tem the inertia and damping matrices characterizing the power505

plants are respectively M = diag(0.125, 0.034, 0.016) and D =506

diag(0.125, 0.068, 0.048), while the interconnections within the507

network are characterized by the laplacian matrix indicated in508

eq. (33).509

In the considered test case the power plant 1 is unprotected, the510

power plant 2 is the one used for launching the attack, while the511

power plant 3 is the one to be protected using the proposed decou-512

pling approach. With reference to the nomenclature used in section 3513

(see in particular eq. (9)), in this case n = 6, m = 1, r = 2; the514

controls used by the attacker and by the defender are ua = Pg2515

and, respectively, u = Pg3 and the protected output is y = δ3 (recall516

that ω3 = δ̇3). The simulations reported in the following have been517

performed using Simulink.518

The attack control has been chosen so as to force an anti-stable519

zero dynamics characterized by four identical positive real eigen-520

values with time constant τ = 20 s. The attack is triggered by a521

small initial condition on the angular speed of machine 2 (ω2(0) =522

1.3× 10−2rad/s), and all the machines are affected by the attack523

due to their mutual coupling.524

During the time period considered for running the simulation, the 525

attack control remains approximately in the range of 0.1 p.u.. Also 526

the largest differences among angles occur at the interconnection of 527

generators to load buses, and remain below 0.5 rad (see Fig. 2), 528

value beyond which the linear model approximating the behaviour 529

of the power system becomes questionable. Then the validation of 530

the proposed approach is here performed considering a time horizon 531

of approximately 6 s. 532

5.2 Protected case 533

In order to test the effectiveness of the proposed approach, both 534

the cases of ideal and robust decoupling of the protected dynamics 535

are analyzed and compared. For the purpose of tuning both con- 536

trollers, the matrix K0 = [−9 − 6] has been chosen, using which, 537

under the assumption of exact decoupling, the protected dynamics 538

is characterized by two identical negative real eigenvalues with time 539

constant τ ≈ 0.33 s. 540

POWER PLANT 1
(UNPROTECTED)

POWER PLANT 2 
(UNDER ATTACK)

POWER PLANT 3
(PROTECTED)

(δ1, ω1)

(δ2, ω2)
(δ3, ω3)

θ1

θ6θ2 θ3

θ5θ4

Fig. 1: The WSCC 9-bus power network.
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Fig. 2: Differences among angles at the interconnection of genera-
tors to load buses, in absence of defence.

LN =



0.058 0 0 −0.058 0 0 0 0 0
0 0.063 0 0 −0.063 0 0 0 0
0 0 0.059 0 0 −0.059 0 0 0

−0.058 0 0 0.235 0 0 −0.085 −0.092 0
0 −0.063 0 0 0.296 0 −0.161 0 −0.072
0 0 −0.059 0 0 0.330 0 −0.170 −0.101
0 0 0 −0.085 −0.161 0 0.246 0 0
0 0 0 −0.092 0 −0.170 0 0.262 0
0 0 0 0 −0.072 −0.101 0 0 0.173


(33)
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As far as the robust controller is concerned, at first the matrix541

B0 (reduced here to a single scalar coefficient b0) has been set to542

0.8b = 0.8M−1
3 . Then, according to Lemma 3, the choice c0 =543

6, c1 = 11, c2 = 6 has been performed, which guarantees asymp-544

totic stability of the observer’s error dynamics resulting from the545

robust control.546

Fig. 3 and 4 report respectively the evolution of the error com- 547

ponents and its norm for three different values of the gain (κ ∈ 548

{50, 100, 200}): the higher is κ, the shorter are the transient and 549

the residual magnitude of the error. As a matter of fact it is seen that 550

if the value ε = 0.01 is chosen, the value κ = 200 guarantees that 551

the error’s norm reduces to and remains below the threshold 2ε (-34 552

dB) approximately after T0 = 32 ms. 553

Fig. 5 reports the unsaturated defence control ψ, the actual control 554

Pg3 subject to saturation and the deviation ∆3 between the robust 555

and ideal control (for each of the different values of κ considered 556

before). As observed in the general analysis, the higher is κ, the 557

higher is the ”peak” in ψ(t), which explains why for larger values of 558

κ a saturation in the actual control may occur (Fig. 5). 559

In the light of the above, the decoupling control becomes effective 560

after approximately T0 seconds, and in particular on a time scale that 561

is one order of magnitude smaller than the time constant imposed by 562

the choice of the matrix K0. 563

Having completed the tuning phase, the effectiveness of the 564

decouping control is here analyzed on a larger time scale. Fig. 6 565

reports the rotor angles for all the machines in the network, show- 566

ing the comparison between the evolutions obtained when the robust 567

and ideal controls are applied to the plant. Differently from the ideal 568

case, in which the exact decoupling is achieved along the whole 569

considered time period, in the robust case the rotor angle δ3 of the 570

protected machine experiences a transient, due to the initial coupling 571

with the infected zero dynamics, after which δ3 becomes very small, 572

meaning that the decoupling is occurring in practice over the entire 573

period in which machines 1 and 2 loses stability. Compared to the 574

ideal case, notice that the deviation of δ3 from zero remains in the 575

order of 10−2 rad. Similar considerations hold for the evolutions of 576

machines’ angular speeds reported in Fig. 7; again notice how ω1 577

and ω2 diverge, while the angular speed ω3 remains substantially 578

unaffected by the attack. 579

Finally Fig. 8 shows the attack and defence controls, again the 580

ones resulting from the evolution of the power system state when the 581

ideal and robust decoupling controls are applied to the plant. It can 582

be seen here that, evaluated on the whole considered time period, the 583

defence control has an opposite sign with respect to the attack, due 584

to the need of balancing the excess energy introduced by the attack 585

in the power system; also the defence effort is smaller with respect to 586

the attack, considered that the attack energy is distributed among all 587

the machines in the network. Again deviations among the controls 588

in the ideal and robust cases appear, due to the different evolutions 589

characterizing the state of the system. 590

6 Conclusions 591

In this paper a robust protection scheme in reaction to destabiliz- 592

ing attacks operated against linear cyber-physical systems has been 593

presented. The proposed defence control is able to decouple the pro- 594

tected dynamics from the infected one, the latter seen by the defender 595

as the zero dynamics of the system at study; the distinctive aspect of 596

the proposed method lays in its robustness, meaning that the con- 597

trol objective is achieved in practice despite the lack of information 598

about the plant model and state. 599

The application to power systems has been shown to be effec- 600

tive in relation to the protection of power plants electromechanical 601

dynamics (rotor angles and angular speeds) against attacks operated 602

using the governing system of vulnerable machines. In particu- 603

lar the robust control approaches the ideal control (allowing exact 604

decoupling) on a time scale smaller than the one characterizing the 605

attack. 606

Motivated by the need of extending the rotor angles and speeds 607

operational range in which the decoupling is required to be effective, 608

a future direction for this research stream considers the design of a 609

robust decoupling control in the context of the nonlinear-descriptor 610

representation of power systems. 611
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Fig. 6: Rotor angles dynamics in case of robust control (black solid
line) and ideal control (red dashed line).
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