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ABSTRACT 
 

One of the main objectives in seismic design of buildings is to prevent the damage concentration in certain stories. 

As shown by past earthquakes the damage concentration leads to severe damage and even collapse of the structure, 

especially for near field ground motions. Energy-based design methods address explicitly the tendency of a given 

story to concentrate damage, and evaluate it through a parameter that measures the deviation of the actual lateral 

strength of the story with respect to an optimum (yet ideal) value that would make the plastic strain energy, 

normalized by the yield strength and yield displacement of the story, approximately equal in all stories.  The 

objective of this methodology is to obtain the optimum lateral strength distribution expressed in terms of yield-

shear force coefficient.  The yield-shear force coefficient is defined as the ratio between the i-th story yield-shear 

force and the total upward weight born by the story. The optimal yield-force coefficient distribution is defined as 

one that makes the normalized plastic strain energy equal in all stories, thus preventing damage concentration in a 

given story. This paper proposes a new procedure to estimate for a given building and exciting ground motion the 

optimal yield-force coefficient distribution. The optimal distribution is estimated by means of the Pattern Search 

Method by iteratively changing the shear strength distribution until a uniform normalized distribution of damage 

is obtained. A comparison is carried out between the seismic behaviour of two case study structures designed using 

the proposed procedure and alternative proposals taken from the literature. The response is estimated in terms of 

distribution of damage and inelastic deformation. 
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1. INTRODUCTION  

 

The effect of damage concentration in buildings subjected to seismic actions has been widely reported 

(Rodriguez and Diaz, 1989)(Meli and Avila, 1989)(Benavent-Climent et al., 2014). In fact, the 

consequences of this phenomenon in buildings are usually catastrophic triggering the collapse in the 

majority of the cases. Seismic codes try to guarantee this objective in a simple way e.g. by requiring in 

frame structures a minimum value for the column-to-beam strength ratio. Furthermore, design 

requirements are prescribed to avoid sharp in-elevation changes in both the lateral stiffness and mass 

distributions. Very few codes, however, explicitly evaluate whether or not the structure is prone to 

damage concentration. As far as the authors know, only the Japanese code includes a quantitative 

estimation of the damage distribution (Building Research Institute, 2009).  

The energy-based methodology makes use of parameters to design the structure that derive from the 

energy balance equation EI=We+W+Wp, where EI is the input energy at the base of the building, We the 

elastic vibrational energy, W is the damping energy and Wp the energy dissipated through hysteretic 

plastic deformation (Housner, 1956)(Akiyama, 1980). Based on the Housner-Akiyama energy balance 
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equation, the damage at the generic i-th story of the structure can be assessed as being the energy 

dissipated at that story through plastic deformations, Wpi. Damage concentration is assumed to be 

prevented if Wpi normalized by the product of the yield strength and yield displacement of the story, 

Qyiyi, is equal at all stories. This normalized energy will be denoted hereafter by the coefficient i 

(=Wpi/Qyiyi). The distribution of Wpi among stories is governed by the distribution of the yield-shear 

strength coefficient i that is defined as the ratio between Qyi and the total upward weight born by the 

story. The yield-shear force coefficient distribution, i /1, which leads to an even distribution of i 

along the height of the building is defined as the optimum distribution and is referred to hereafter as 

, 1/i i opt   . Akiyama (1980) proposed an expression for i  which was derived from non-linear time 

history analyses of numerical models subjected to a single ground motion record (El Centro, 1940). 

Other expressions for i  have been also proposed by seismic codes (Building Research Institute, 2009) 

and in the literature (Benavent-Climent, 2011). Such expressions for i , however, provide only a rough 

approximation of the “exact” optimum distribution since the latter depends actually on the specific 

characteristic of the exciting ground motion.  

This study puts forward a new approach to obtain the “exact” optimal shear-force coefficient distribution 

for a given earthquake, which is based on a number of non-linear time history analyses carried out on 

the structure by varying its lateral strength distribution. For this purpose, the direct search optimization 

methodology is used to find the shear-force distribution which leads to an even distribution of i for a 

given ground motion. The method is applied to a 3- and a 6-story prototype building. The “exact” 

optimum distribution obtained using the proposed approach is compared with the approximate optimum 

distributions proposed in the literature. Both near and far field ground motions recorded during real 

earthquakes are used. 

 

2. ENERGY BASED DESIGN METHODOLOGY 

 

As noted above, the energy-balance approach to seismic design is based on the following equation: 

 

e p IW W W E              (1) 

 

Akiyama, (1980) showed that EI is a very stable quantity which depends mainly on the mass, M, and the 

fundamental period of the structure, T. This equation, can be rewritten for practical use as follows: 
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where ED is the energy that contributes to damage and 2 /D DV E M
 
is the corresponding equivalent 

velocity. 

There are many expressions proposed in the literature to relate ED with EI. In this study, the one proposed 

by Akiyama, (1980) is used: 
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where  is the inherent damping ratio of the structure and VE is calculated from EI by 2 /E IV E M  .  

 

2.1 Elastic vibrational energy 

 

By adopting an equivalent continuum shear strut model for representing the structure, the elastic 

vibrational energy, We, can be expressed as follows (Akiyama, 1980): 
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where g is the acceleration of gravity and 1 is the yield shear-force coefficient for the ground floor, 

being the general expression for the yield-force coefficient the following one: 
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where N is the number of stories and mi is the mass of the i-th story.  

 

2.2 Energy dissipated by plastic deformations 

 

The energy dissipated through plastic deformations by the overall building, Wp, is simply the sum of the 

energy dissipated by plastic deformation by each story, Wpi, and it can be expressed in terms of i as 

follows: 
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Wpi can be also expressed (Akiyama, 1980) in terms of 1 as follows: 
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 . The value of 𝜒𝑖 for the ith-story is defined as the ratio /i eqk k , where ki 

is the ith-story lateral stiffness and keq is the lateral stiffness of an equivalent SDOF (Single Degree of 

Freedom) system with a mass of M and a period of T , that is, 
2 24 /eqk M T . 

 

2.3 The standard damage distribution and the optimal yield-shear force coefficient distribution 

 

By definition, when the distribution of the lateral strength along the building height follows the optimum 

distribution i , the coefficient i which characterizes the damage is constant and equal to  at all stories. 

In this case, for structures with elastic-perfectly plastic restoring force characteristics, the distribution 

of the plastic strain energy among the stories, Wpi/Wp, can be expressed as follows: 
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 . The coefficient i is called dispersion damage index for 

the i-th story. The damage distribution given by Equation (8) is hereafter referred as the standard damage 

distribution. 

Akiyama (1980)  proposed the following expression for i  to be used for MDOF (multi degree of 

freedom) systems with even mass and variable stiffness distributions:  
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where  / ( 1) /x x H i N    ,  with x being the height of the i-th story with respect to the base and H 

the total height of the building . This equation can be applied also when the maximum value of the mass 

ratio mi/m1 is lower than 2, by calculating x’ of the i-th story with 1 /
n

j

j i

x m M


   .  

2.4. Design method 

 

The design of structures according to the energy-balance approach is based on the Equation (2). Using 

Equations (4, (7 and (8), for a structure whose lateral strength follows the optimum distribution of the 

yield shear force coefficient , 1/i i opt   , the left side of Equation (2), can be expressed as follows: 
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By solving Equation (10, the value i1 of the yield shear force coefficient at the ground story that leads 

to a given amount of (normalized) plastic deformation   in each story is given by: 
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Based on the results of a large number of non-linear time history analyses, for reinforced concrete SDOF 

systems, Akiyama (1980) put forward the following expression: 
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where Qy and y are the yield strength and yield displacement of the SDOF system.   / 2      

is the average inelastic deformation ratio, and + and - are defined for each domain of loading by  

max( ) /y y     , where max is the maximum interstory drift. Moreover,  is related to ductility 

(µd=max/y) throughout the expression µd = µ + 1. 

From Equation (12 the value of   is derived as 3.5  . In a structure whose lateral strength follows 

the optimum yield shear force coefficient distribution it can be assumed that the relationship between  

and 𝜇̅  is equal in all stories. By using the relationship  3.5   proposed by Akiyama and substituting 

in Equation (11 gives the following expression is obtained for i=1:   
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Equation (13 provides the base shear force coefficient required in a RC structure whose lateral strength 

follows the optimum distribution so that it can endure a ground motion characterized by VD, by 
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experiencing a constant displacement ductility 𝜇̅ and a cumulative plastic deformation 3.5  at each 

story. The term 2VD/Tg (=e) in the right side of Equation (13 represents the required base shear force 

coefficient for the structure remaining elastic under a ground motion characterized by VD, that is, the 

required value of 1 so that  𝜇̅ = 0 and  = 0. 

Eventually, recalling Equation (5 and noting that , 1/i i opt   , the lateral strength Qyi required at the 

i-th story that leads to the optimum yield-shear force coefficient distribution for a ground motion 

characterized by VD is given by: 
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Finally, yi is readily obtained as the quotient Qyi/ki. 

 

3. NEW APPROACH TO OBTAIN THE OPTIMAL YIELD-SHEAR DISTRIBUTION 

 

In order to obtain the “exact” optimal yield-shear force distribution of a MDOF lumped-mass system 

subjected to a given ground motion a new procedure is proposed. The procedure involves iterative non-

linear time history analyses of a numerical model whose lateral strength distribution is modified at each 

iteration so that to approach the one that makes i equal at all stories. For this purpose, the Pattern Search 

Method (PSM) which belongs to the direct search methodology for optimization of n-dimensional 

functions (Michael, Torczon and Trosset, 2000) is used.  The core of the method is based on the 

sequential examination of trial solutions involving comparison of each of them with the best obtained 

up to the time. Moreover, a plan must be layout to find the next best solution from the trials. These 

methods are often described as derivative-free or zero-order methods because they do not use 

derivatives.  

The PSM is characterized by the evaluation of the objective function at a pattern of points of a rational 

lattice around the current state, according to a systematic strategy for visiting these points. If the trial is 

successful in one point of the lattice (a lower value for the objective function is obtained), this will be 

the new reference point from which a new lattice is built with a greater step size. Otherwise, the point 

is held but the step size is reduced to build a new lattice. This procedure is particularly appropriate, 

because of the high sensitivity of the damage distribution respect to the values of the yield-shear 

coefficient distribution. 

Therefore, the procedure is summarized as follows: 

• Define an initial benchmark numerical model where 1 is obtained with Equation (13 and in 

which the value of 1 is obtained with Equation (8 taking into account the value of i  proposed 

by Akiyama (Equation (9), hereafter referred to as ,Aki i . Two “approximated” optimum shear 

force coefficient distributions are used to calculate the values of i for the other stories (

1ii   ): the aforementioned ,Aki i  and another one, ,JBC i , which is obtained using the Japan 

Building Code (JBC) (Building Research Institute, 2009), , and is given by the following 

expression: 
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• Set-up the PSM and establish the following constraint for the possible trials of i : (i) its value 

for the first story (i=1) is always equal to 1; (ii) its distribution is monotonic growing with the 

height of the structure. Fix the maximum and minimum step size and define the increasing and 
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decreasing factor for the step size in successful or unsuccessful evaluation.   

• Apply the PSM. The first trial will be ,Aki i . For the following trials, the test value of i  

proposed by the PSM is used. Then, the values of Qy,i are obtained to each one by applying  

Equation (14, and using the 1 obtained for the benchmark numerical model. Non-linear time 

history analysis (NLTHA) is carried out. The i distribution is obtained and then its standard 

deviation. The last one is considered as the objective function. 

• Keep iterating until one of the following conditions is met: (i) the standard deviation is null; (ii) 

the step size attains the minimum limit; (iii) other possible limitations such as the minimum 

change in two consecutive evaluations of the objective function are attained. Eventually, ,PSM i  
is obtained. 

 

4. CASES STUDIES  

 

4.1 Prototype buildings 

 

Two prototype buildings with N=3 and N=6 stories are considered. The mass mi of each floor is 450 

kN/981 cm/s2 = 0.458 kNs2/cm. The distribution of lateral stiffness ki of the stories is forced to follow a 

linear law characterized by the ratio k1/kT, where k1 and kT is the lateral stiffness of the first and top story, 

respectively. Once M is fixed, it is possible to obtain keq. On the other hand 𝜒1 can be approximated with 

the simplified expression 𝜒1= 0.52N+0.48 proposed by Akiyama, (1980), and k1 can be readily obtained 

as 1 eqk . The values of the parameters that characterize the investigated buildings are shown in the Table 

1, where mT is the mass of the top floor. 

  
Table 1. Design data of the prototypes 

 

N k1/kT m1/mT 
M 

(kNs2/cm) 
T  
(s) 

keq 
(kN/cm) 

1 
k1 

(kN/cm) 
kT 

(kN/cm) 

3 1 1 1.38 0.4 339.55 2.04 692.69 692.69 

6 1.5 1 2.75 0.8 169.78 3.60 611.19 407.46 

 

4.2 Benchmark numerical models 

 

The two buildings are modeled as MDOF lumped-mass systems with one translational degree of 

freedom per floor. Two sets of seven ground motion records (for details see the Appendix) representing 

near and far field earthquakes, are considered. The required yield-shear force at the i-th story, Qyi is 

calculated for each record using the data shown in Table 1 as follows.   

Firstly, the elastic input energy VE is obtained from the input energy spectrum of the record, and then, 

the value of VD is calculated by applying Equation (3. Secondly, the value of 1 is obtained from the 

Equation (13, using: (i) the optimum distribution ,Aki i ; (ii) the value of 1 obtained with Equation (8; 

and (iii) assuming  𝜇̅1 = 2. 

Eventually, the value of Qyi for each i-th story is obtained from Equation (14, and the counterpart yi 

obtained the quotient Qyi/ki. 

 

4.3 Pattern Search Method 

 

The PSM is used to improve the initial optimum yield shear force distribution ,Aki i  imposed to the 

model, in order to obtain the ,PSM i  that makes i equal at all stories for a given ground motion.  The 

objective function is made up throughout the damage distribution obtained from NLTHA carried out on 

the numerical models that minimizes the standard deviation of i. Therefore, it is not explicitly outlined 

but it is underlying on them. 
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4.4 Optimal distribution of the yield-shear force coefficient 

 

Figure 1 shows for the 3-story building the optimal yield-shear force coefficient distributions proposed 

by Akiyama, the one implemented in Japanese Building Code (JBC) and the one obtained by applying 

the PSM procedure for each record. It can be noted that the Akiyama’s distribution and the JBC one are 

similar, and they both overestimate the required “exact” lateral strength value especially at the top story.  

Moreover, distributions obtained with the PSM approach show a lower standard deviation (denoted as 

 in the figure) in the case of the near field ground motions than the far field ground motions.  

 

 
(a) 

 
(b) 

 

Figure 1. i  obtained for the 3-story building using:  (a) near field records; (b) far field records 

 

Figure 2 shows the distribution of the , ,/Aki i PSM i   ratio. Both the mean and the mean ±  of this ratio 

are also reported. The observed mean is about 5% and 30% are observed at the second and the third 

story, respectively. This means that the value of the yield shear force at these stories is larger when the 

structure is designed using the Akiyama’s approach. About the near and far field records, no significant 

differences in the obtained , ,/Aki i PSM i   values can be observed. 
  

 
(a) 

 
(b) 

 

Figure 2. ,Aki i  normalized by ,PSM i  for the 3-story building using: (a) near field records; (b) far field records  

 

For the 6-story building, the results are lightly different. Figure 3 shows that even though the Akiyama 

and the JBC distributions provide values that are larger than the mean values obtained with the PSM 

approach, the observed difference is not significant. The value of   is again larger for the far field than 
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the near field records. It is worth emphasizing that differences are meaningful only in the upper third of 

the building height (starting from the 4-th story, in particular), as also noted Akiyama (1980), that is, 

where the response of the building is more significantly influenced by the higher modes of vibration. 

 

 
(a) 

 
(b) 

 

Figure 3. i  obtained for the 6-story building using:  (a) near field records; (b) far field records 

 
 

Figure 4 shows the ratio between ,Aki i  and ,PSM i . For the near field records, the higher deviation of 

the mean value of the ratio is larger at the top story, being equal to 15%. For the far field records the 

value is lightly larger, being equal to 20%. However, differences at intermediate stories are more 

significant, especially in the case of the far field records.  

 

 
(a) 

 
(b) 

 

Figure 4. ,Aki i  normalized by ,PSM i  for the 6-story building using: (a) near field records; (b) far field records 

 

4.5 Distribution of damage  

 

Figure 5 and Figure 6 show the damage distribution obtained with the Akiyama’s approach, ,Aki i , 

normalized by that obtained with the PSM approach, ,PSM i . It can be observed that by using the 

Akiyama’s approach, damage concentrates at the lower stories in the case of the 3-story building, 

especially for the near field records (see Figure 5). This is due to the fact that Akiyama’s approach tends 

to overestimate the required lateral strength in the upper stories. This trend is not so evident in the case 

of 6-story building (see Figure 6) because of the influence of the higher modes of vibration. 
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(a) 

 
(b) 

 

Figure 5. Aki,i normalized by PSM,i for the 3-story building using: (a) near field records; (b) far field records  

 

 

 
(a) 

 
(b) 

 
Figure 6. Aki,i normalized by PSM,i for the 6-story building using: (a) near field records; (b) far field records 

 

 

Table 2 and Table 3 report the coefficient of variation (COV) the damage distribution expressed in terms 

of i. COV_Aki, COV_JBC and COV_PSM denote the values of COV obtained with ,Aki i , ,JBC i  and 

,PSM i , respectively. The mean and the standard deviation of COV with respect to the ground motion 

variability are also included in the tables.  

It can be noted that by using the Akiyama’s approach larger values of COV are obtained, regardless of 

the considered exciting ground motion or building. The values obtained by applying the PSM approach 

are significantly lower than those obtained with both the Akiyama’s approach and the JBC.   

 

 

 

 

 

 

 
Table 2. COV of i for near field records 

 

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

/Aki PSM 

S
to
ry

 Tolmezzo

 Lorca

 Korinthos

 kobe

 Kalamata

 Duzce

 Centro

 mean+

 mean-

 mean

 PSM
1

2

3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

/Aki PSM 

S
to
ry

 Taft

 Tabas

 Petrovac

 Montebello

 Hachinoe

 Itzmit

 Calitri

 mean+

 mean-

 mean

 PSM

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

/Aki PSM 

S
to
ry

 Tolmezzo

 Lorca

 Korinthos

 kobe

 Kalamata

 Duzce

 Centro

 mean+

 mean-

 mean

 PSM 1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

/Aki PSM 

S
to
ry

 Taft

 Tabas

 Petrovac

 Montebello

 Hachinoe

 Itzmit

 Calitri

 mean+

 mean-

 mean

 PSM



10 

 

 

COV 
Centr

o 

Duzc

e 

Kalamat

a 

Kob

e 

Korintho

s 

Lorc

a 

Tolmezz

o 

Mea

n 


3-Story          

COV_Aki 0.70 0.64 0.65 0.72 0.76 0.64 0.52 0.66 
0.0

7 

COV_JBC 0.61 0.51 0.64 0.66 0.74 0.59 0.41 0.59 
0.1

0 

COV_PS

M 
0.04 0.05 0.01 0.03 0.02 0.04 0.01 0.03 

0.0

1 

6-Story          

COV_Aki 0.62 0.48 0.12 0.50 0.42 0.24 0.47 0.41 
0.1

5 

COV_JBC 0.36 0.33 0.31 0.42 0.47 0.30 0.55 0.39 
0.0

9 

COV_PS

M 
0.13 0.02 0.02 0.03 0.03 0.04 0.00 0.04 

0.0

4 

 
Table 3. COV of i for far field records 

 

COV Calitri Itzmit Hachinoe Montebello Petrovac Tabas Taft Mean 

3-Story          

COV_Aki 0.64 0.70 0.61 0.63 0.72 0.49 0.64 0.63 0.07 

COV_JBC 0.49 0.66 0.46 0.38 0.69 0.31 0.49 0.48 0.13 

COV_PSM 0.01 0.01 0.02 0.00 0.02 0.02 0.01 0.01 0.01 

6-Story          

COV_JBC 0.68 0.57 0.66 0.45 0.34 0.51 0.66 0.55 0.12 

COV_Ec8 0.54 0.58 0.94 0.58 0.19 0.21 0.34 0.48 0.24 

COV_PSM 0.06 0.06 0.08 0.09 0.01 0.06 0.03 0.06 0.03 

 

 

4.6 Distribution of inelastic deformation 

 

Figure 7 and Figure 8 show the maximum inelastic deformation ratio obtained with the Akiyama’s 

approach, ,Aki i , normalized by that obtained with the PSM approach, ,PSM i .  
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(b) 
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Figure 7. ,Aki i
 
normalized by ,PSM i

 
for the 3-story building using: (a) near field records; (b) far field records 

 

 

For the 3-story building (see Figure 7), the ,PSM i  values at the upper stories are significantly lower than 

those of ,Aki i . For the 6-story building (see Figure 8) such differences between ,PSM i  and ,Aki i  are 

larger both at intermediate and upper stories. 

 

 
(a) 

 
(b) 

 

Figure 8. ,Aki i
 
normalized by ,PSM i

 
for the 6-story building using: (a) near field records; (b) far field records 

 

5. CONCLUSIONS 

 

A new procedure to obtain the optimal lateral shear distribution of a structure subjected to a given ground 

motion is presented in this study. The procedure uses the Pattern Search Method (PSM) approach for 

minimizing the variation of the damage distribution across the stories. The procedure involves iterative 

non-linear time history analyses with MDOF lumped-mass models of the structure until an even 

distribution of damage among the stories is attained. Damage in a given story is characterized in terms 

of the amount of energy dissipated through plastic deformations normalized by the product of the yield 

shear force and the yield displacement of the story. The study shows that the proposed procedure 

provides a distribution of lateral strength that significantly reduces the COV of the damage distribution 

among the stories that derives from a lateral strength distribution determined according to the proposal 

of Akiyama or that by the Japanese Building Code.   
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APPENDIX 

 

The records used in this study are reported in the following table: 

 
Table 4. Near and far field records used in this study 

 
Near Field Far Field 

Earthquak

e 
Station 

Countr

y 

Yea

r 

PGA 
(cm2/s

) 

Earthquak

e 
Station 

Countr

y 

Yea

r 

PGA 
(cm2/s

) 

El Centro El Centro EE.UU 1940 341.3 Itzmit Duzce Turkey 1999 303.8 

Hyogo-k.N. Kobe Japan 1995 820.3 Northridge 
Montebell

o 
EE.UU 1994 163.3 

Lorca Lorca Spain 2011 325.8 Montenegro Petrovac Mont. 1979 445.3 

Friuli 
Tolmezz

o 
Italy 1976 349.9 

Tokachi-

Oki 
Hachinoe Japan 1968 224.4 

Alkion 
Korintho

s 
Greece 1981 225.7 

Kern 

County 
Taft EE.UU 1952 152.9 

Duzce Duzce Turkey 1999 369.9 
Campano 

Luc. 
Calitri Italy 1980 155.0 

Kalamata Kalamata Greece 1986 327.5 Tabas Tabas Iran 1978 908.3 

 

 

 

  

 


