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Abstract

Image inpainting consists in restoring a missing or a damaged part
of an image on the basis of the signal information in the pixels sur-
rounding the missing domain. To this aim a suitable image model is
needed to represent the signal features to be reproduced within the
inpainting domain, also depending on the size of the missing area.
With no claim of completeness, in this paper the main streamline of
the development of the PDE based models is retraced. Then, the
Cahn-Hillard model for binary images is analyzed in detail and its
performances are evaluated on some numerical experiments.
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1 Introduction

Inpainting process has been known for a long time: a missing/damaged
area within an image is reconstructed in order to recover its visual qual-
ity. Originally dedicated to the restoration of artistic works (retouching), it
has nowadays spread in many areas due to the success of digital imaging:
restoring photos from scratches or text overlays, recovery from loss due to
impaired image transmission, object disocclusion of pictures, removing logos
from videos, just to mention a few. Since the image signal within the oc-
cluded area is completely unknown, the problem of inpainting can be solved
only by assuming suitable priors on the image features that are likely shared
between the occluded and non-occluded parts. Generally speaking an im-
age can be modeled as the collection of homogeneous structures (shapes,
objects, texture) separated by sharp edges. Image priors therefore have ei-
ther local nature, like the geometrical structures, or global nature like the
textures. These features need to be smoothly continued inside the occluded
or missing domain. As pointed out in [1], two main approaches to the
image inpainting problem has been developed, according to the nature of
the information to be propagated: the variational image inpainting and the
texture synthesis. Variational image inpainting is focused on the continu-
ity of the geometrical structures of an image that are evolved by means of
partial differential equations (PDE) models; these methods generally have
good performances in filling narrow gaps in piecewise smooth images, see
for instance [2]. Texture synthesis deals with the problem of producing new
instances of a texture from a smaller sample, and therefore can be applied
to the inpainting of images characterized by many textured (non-smooth)
areas, [3]. As real images contain both smooth and texture properties, com-
bined methods in image inpainting were also developed to exploit features
from both main approaches in different ways and go by the name of image
completion [4], [5].

This work lies within the variational inpainting framework, and a sur-
vey of the most influential papers will be given. It is acknowledged that
Bertalmio et. al. [6] pioneered the inpainting problem in digital image pro-
cessing. The authors model the professional restorators inpaint artwork that
follows some basic principles

• Inpainting is supposed to restor the original picture visual quality and
unity.

• The structure of the area surrounding the missing domain is continued
into the gap, contour lines are drawn via the prolongation of those

2



arriving at the boundary.

• Every structure part inside the region is filled with colour that matches
its colours at the missing domain boundary.

• Texture is added to the inpainted area.

Referring to gray scale images for simplicity, let Ω be the domain to be in-
painted, and ∂Ω its boundary; the idea is to propagate the constant gray
level lines (isophotes) from outside Ω to inside in an iterative manner pro-
ducing a sequence In(i, j) of improved images that converge as n increases
to a restored version of the initial damaged image I0(i, j)

In+1(i, j) = In(i, j) + ∆tInt (i, j), ∀(i, j) ∈ Ω

where (i, j) denote the image pixel, n is the inpainting time, ∆t is the rate of
improvement, Int (i, j) is the update of In(i, j). This term is constructed by
an image smoothness estimator given by the discrete Laplacian Ln(i, j) =
Inxx(i, j)+Inyy(i, j) whose variation δLn(i, j) is propagated along the direction
given by the discretized image gradient ∇In(i, j) which is orthogonal to the
isphotes direction given by ∇⊥In(i, j)

Int (i, j) = (δLn(i, j) · ∇
⊥In(i, j)

|∇⊥In(i, j)|
|∇In(i, j)|

Since the direction field ∇⊥In(i, j)/|∇⊥In(i, j)| is not a priori known
but is progressively estimated, to prevent isphotes to cross each other, every
few steps of the inpainting algoritm an anisotropic diffusion is applied ([7])
to also maintain the image sharpness

∂I

∂t
(x, y, t) = gε(x, y)k(x, y, t)|∇I(x, y, t)|, ∀x, y ∈ Ωε

where k(x, y, t) is the euclidean curvature of the isophotes, Ωε is the
dilation of Ω with a ball of radius ε, and gε is a smooth function with value
0 on ∂Ωε and with value 1 in Ω (to impose Dirichlet boundary conditions).

Figure 1 shows the general result obtainable on a color image (the algo-
rithm is applied on any color plane independently) showing a good visual
result, on the detail of Figure 2 some drawback is highlighted.

Similar concepts can be found in [2] and [8]. In the former the inpainting
problem is formulated as a disocclusion problem. The authors define the T-
junctions, the points where visible edges intersect the occluding objects.
Pairs of T-junctions must be connected, which belong to the same edge
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Figure 1: Example of inpainting of a color image with no large gaps by the
Bertalmio et al. algorithm; the picture is taken from [6].

Figure 2: A detail of the previous picture showing a blurring effect with an
insufficient diffusion; the picture is taken from [1].

hidden behind the occluding object. As pointed out in [1], curvature is not
preserved at the boundary of the occluding domain, and a simple topology
(no holes allowed) is required, therefore the method is only applicable to
narrow gaps. In the latter paper the dynamical model introduced in [6]
is shown to have a strong connection with two dimensional fluid dynamics
based on the Navier-Stokes equations. Indeed it is equivalent to the inviscid
Euler equations for incompressible flow.

A different approach was proposed in [9] where a Total Variation (TV)
method is presented, stemming from the classical restoration model of Rudin
et. al. [10]. This method searches for a function Î(x, y) of bounded variation
on Ω that minimize the functional of the total variation on the image domain
D (first term in the integral) with a constraint given by a fidelity term
(second term in the integral)

TV (Î) =

∫
D
|∇Î(x, y)|dxdy + λ

∫
D\Ω

(I(x, y)− Î(x, y))2dxdy

This model can propagate sharp edges within the missing domain but,
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because of the regularization term (first term in the integral), the length
of the edges is penalized and therefore can not propagate through large
areas; moreover there are some connectivity problems since the direction of
isophotes is not extended with continuity across ∂Ω. The authors amended
these drawbacks in [11], where a new regularization term is adopted that
penalizes the integral of the square of the curvature along the isophotes
(Euler’s elastica). Let Î be an admissible inpainting of image I, along any
isophote curve γλ : Î = λ the curvature is defined as

k = ∇ · −→n = ∇ · ∇Î
|∇Î|

Along the length element dt in the normal direction −→n we have that

dλ = |∇Î|dt
and therefore the integrated elastica energy extended on Î is

∫ 1

0
w(λ)

∫
γλ:Î=λ

(a+ bk2)dsdλ =

∫
D
w(Î)

(
a+ b

(
∇ · ∇Î
|∇Î|

)2) |∇Î|dxdy
where a, b are two positive constant weights. For piece-wise smooth images
(non texture images) function w should weigh more the edges, therefore it
should assume the value zeros within the homogeneous objects of the scene,
and the value one on the edges. A possible choice could be w(λ) = (1−h(λ)),
where h(λ) is the image histogram. The new ealstica formulation guarantees
that the isophotes can be connected across large areas and their direction
is kept continuous across ∂Ω. Numerical experiments on phantom images
show the difference betweem TV and Elastica inpainting (see Figure 3).

Following the argument developed in [11], Esedoglu and Shen ([12])
adapt to the inpainting problem the Munford-Shah model for image seg-
mentation [13]. By adopting the elliptic approximation to the Mumford-
Shah model developed in [14], they obtain equations where the highest order
derivatives are linear and therefore deliver a fast numerical scheme that, any-
way, penalizes the length of edges, preventing its application to large gaps.
Therefore the Euler elastica correction is adopted as in [11] that penalizes
the square of the curvature along the edges.

Bertozzi et al. [16], propose a model that features some of the interesting
properties of model developed in [12], but less involved and delivering a
fast numerical scheme for the solution. This model is analyzed in detail
in the next Section and its performances will be tested in some numerical
experiments. Some conclusions and possible developments will be discussed.
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Figure 3: A large weight b against the curvature term delivers a better visual
quality in term of smoothness of egdes and isophotes; the picture is taken
from [11].

2 The Cahn-Hillard model

In order to approch fourth-order inpainting algorithms, in [16] is proposed
a modified Cahn-Hilliard model for the evolution of the inpainted version I
of the damaged image I0 ∈ L2(D):

∂I
∂t = −∆(ε∆I − 1

εW
′(I)) + λ(x)(I0 − I), (t, x) ∈ R×D

λ(x) = χD\Ω(x)λ0

W (u) = u2(1− u)2.

(1)

where χA represent the indicator function of the set A (we recall from the
previous section that Ω is the domain to be inpainted). Here W is a potential
with wells corresponding to different grayscale values. In our case W has
wells at values 0 and 1, so we describe the simplest model concerning binary
images. The difference between the standard Cahn-Hilliard model (which
describes the process of phase separation of a binary fluid) and model (1)
is the so called fidelity term λ(x)(I0 − I). Its role is to keep the solution
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of the model close to the initial data I0 in D \ Ω, where a complete image
information is available.

In [17] has been proved the existence of a unique global weak solution of
(1) belonging to C([0, T ];L2(D) ∩ L2([0, T ], H2

0 )) where

H2
0 (D) := {u ∈ H2(D) | ∂u

∂ν
= 0 on ∂D}.

Further the authors showed that in the limit λ0 → ∞, for any given initial
data I0 ∈ C2(D), a stationary solution of (1) solves the problem

−∆(ε∆I − 1
εW

′(I)) = 0, on Ω

I = I0 on ∂Ω

∇I = ∇I0 on ∂Ω

(2)

which points out a fundamental property of inpainting models described in
the previous section, such as the smooth continuation of the isophotes into
the missing domain.

Despite the advantages of not dealing with curvature based model, the
main difficulty, because of the fidelity term, is that equation (1) is not a
gradient flow in some Banach space. A possible strategy is to consider the
convexity splitting idea [18]. In fact we know that the standard Cahn-Hilliard
equation is a gradient flow in H−1 for the functional

L1(I) =

∫
Ω

ε

2
|∇I|2 +

1

ε
W (I)dx. (3)

On the other hand it is easy to verify that λ(I0− I) is a gradient flow in L2

for the energy:

L2(I) =
1

2

∫
Ω
λ(x)(I0 − I)2dx, (4)

so we can think to split both L1 and L2 into convex functionals. A possible
choice proposed in [16] is, for example

L1 = L1,a − L1,b =

∫
Ω

ε

2
|∇I|2 +

C1

2
|I|2dx−

∫
Ω
−W (I) +

C2

2
|I|2dx (5)

L2 = L2,a − L2,b =

∫
D

C2

2
|I|2dx− 1

2

∫
D
−λ(x)(I0 − I)2 +

C2

2
|I|2dx (6)
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In order to guarantee the convexity of these functionals, Li,j must satisfy
the following inequality for all i = 1, 2 and j = a, b:

〈D2(∇Li,j)(I)I, I〉B > l > 0 (7)

where D2 represents the second variation and 〈·, ·〉B is the inner product
defined in the Banach space B (we work with L2 or H−1 depending on the
energy ). The convexity condition (7) is ensured by choosing the positive
constants such that

C1 >
1

ε
and C2 > λ0.

The splitting (3) and (4) leads to the following discrete time-stepping scheme

In+1 − In

∆t
= −∇H−1

(
L1,a(I

n+1)− L1,b(I
n)
)
−∇L2

(
L2,a(I

n+1)− L2,b(I
n)
)
,

corresponding to the numerical scheme

In+1(x)− In(x)

∆t
+ ε∆ ◦∆In+1(x)− C1∆In+1(x) + C2I

n+1(x)

= ∆

(
1

ε
W ′(In(x))

)
+ λ(x)(I0(x)− In(x))

− C1∆In(x) + C2I
n(x).

(8)

By the results of their numerical tests, the authors in [16] inferred the un-
conditional stability of the scheme (8). It is worth noting that, as pointed
out before, this model is not given by a gradient flow, so the definition of
stability is not the standard one ([15]). Precisely a numerical scheme cor-
responding to those kind of evolution equation is unconditionally stable if,
for any time step ∆t, there exist 0 < T <∞ such that for all k∆t ≤ T the
solutions of (8) are bounded in [0, T ].

In order to compute In+1 we want to use the cosine discrete transform
(see [19]) assuming Neumann boundary condition

∂In+1

∂ν
(x) =

∂∆In+1

∂ν
(x) = 0, ∀x ∈ ∂Ω. (9)

The transform coefficients of In are

Îni,j = αiβj

M∑
r=1

N∑
s=1

Inr,s cos
(2r − 1)(i− 1)π

2M
cos

(2s− 1)(j − 1)π

2N
(10)
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for given data {Inr,s|r = 1, · · · ,M ; s = 1, · · ·N}. In the previous equation αi
and βj are given by

αi =


√

1
M , i = 1√
2
M , i ∈ [2,M ]

and βj =


√

1
N , j = 1√
2
N , j ∈ [2, N ].

(11)

Taking (x, y) ∈ [0, lx] × [0, ly], in the discrete cosine space the Laplacian
reads

∆I(x, y, k∆t) = −
M∑
i=1

N∑
j=1

(
λ2
i + λ2

j

)
αiβj Î

n
i,j cos(λix) cos(λjy)

where

λi =
(i− 1)π

lx
e λj =

(j − 1)π

ly
.

Putting the last results in the numerical scheme (8) we obtain an explicit
equation for the coefficients În+1

i,j :

În+1
i,j =

(1− C1∆tAij + C2∆t)Îni,j + ∆t
ε ∆Ŵ ′(Ini,j) + ∆tλ(I0 − Îni,j)

1 + C2∆t+ ε∆tA2
ij − C1∆tAij

with Aij = λ2
i + λ2

j . Finally, from (10), we recover In+1
r,s by means of the

inverse of the discrete cosine transform:

In+1
r,s =

M∑
i=1

N∑
j=1

αrβsÎ
n+1
i,j cos

λr(2i− 1)lx
2M

cos
λs(2j − 1)ly

2N
.

3 Numerical experiments

In this section numerical results are presented. We implemented the numer-
ical scheme (8) in a MATLAB code. The corresponding numerical scheme
obtained by assuming Dirichlet boundary conditions is implemented too,
presenting results on the same examples. As test binary image we chose a
black square of size N = 300, with a white circle of radius r = 80 in the
centre. Starting from this picture, some inpainting domains (the gray zone)
have been builted, using squares and strips, which are easier to treat with
binary inpainting Cahn-Hilliard model. For each example we report three
different pictures representing the initial data, the intermediate state after
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Figure 4: Cross, Neumann boundary conditions. Parameters: λ0 = 105;
ε = 0.8; ε′ = 0.01; C1 = 300; C2 = 3 · λ0.

Figure 5: Cross, Dirichlet boundary conditions. Parameters: λ0 = 105;
ε = 0.8; ε′ = 0.01; C1 = 300; C2 = 3 · λ0.

Figure 6: Strips, Neumann conditions (first row), Dirichlet condition (second
row).

n = 100 steps with ε fixed and a finally state achived after 100 steps more,
with ε updated to a smaller value ε′.
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Figure 7: Square, Neumann boundary conditions.

Figure 8: Square, Dirichlet boundary conditions.

Figures 4-5 show the results for an inpainted region given by a cross in the
centre of the test image, assuming Neumann and Dirichlet condition rispec-
tively, and assuming initial condition zero on the inpainting region. We can
see in this case that the algorithm with Neumann condition performs better
than the one with Dirichlet conditions because of the smooth continuation
of the derivative on the border. We can value this difference much better
with an inpainting region given by several strips (Figure 6). Neverthless we
can improve the result a little bit choosing λ0 = 104. Finally in Figures 7-8
is reported one of the example presented in [16], in which the authors used
a Fast Fourier Transform (fft2 in MATLAB) method. The parameters are
setting as before, and the result with Dirichlet boundary condition is good
as the Neumann one, due to the uniformity of the inpainting region.

As a further experiment we simply increased the number of iterations to
achieve a better reconstruction accuracy. In Figure 9 the same experiment of
Figure 4 is reported with n = 200 iterations, and in Figure 10 the experiment
of Figure 5 is reported with n = 400 iterations. In both cases we can
appreciate a substantial improvement of the reconstruction, again with a
better performance in the Neumann case as compared to the Dirichlet one.

As a general remark we can say that, while the inpainting algorithm
has a satisfactory behavior in many different situations, indeed the same
parameters setting provides better performances on some test as compared
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Figure 9: Cross, Neumann boundary conditions. Parameters: λ0 = 105;
ε = 0.8; ε′ = 0.01; C1 = 300; C2 = 3 · λ0.

Figure 10: Cross, Dirichlet boundary conditions. Parameters: λ0 = 105;
ε = 0.8; ε′ = 0.01; C1 = 300; C2 = 3 · λ0.

to others. For instance, tests of Figures 7-8 denote a better boundary re-
construction than in the other cases. Moreover there are even some fine
differences between Figure 7 and 8, at a closer visual inspection the former
seems to better reconstruct the white disk. Therefore, while the numeri-
cal scheme is unconditionally stable and therefore as n increases a bounded
solution is obtained, the accuracy of the inpainting area reconstruction de-
pends on the parameters setting, that therefore need to be tuned for any
particular experiment.

4 Conclusion

In this work a sufficiently complete survey on image inpainting methods in
provided, by highlighting the points of strength and weakness of each of
them. Within the framework of the variational methods we focused on the
Cahn-Hilliard model that, avoiding the involved mathematics typical of vari-
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ational models, maintains the ability to deliver a good inpainting comparable
to the more complex models, but in a simpler and faster way. The rapidity
mainly depends on the splitting of the energy functional to be minimized
in a convex term and a concave one. This convexity splitting procedure de-
livers a fast numerical scheme for the computation of the optimal solution,
based on FFT, that is unconditionally stable. Indeed, we used the cosine
transform instead of the FFT and obtained a fast numerical scheme as well.
In all the numerical experiments formed with different inpainting domains
a general setting for the algorithm was found that gave satisfactory results
both in terms of convergence rate and accuracy of the reconstruction. Nev-
ertheless a given setting may well feature better performances in some tests
than in others, suggesting that the parameters setting is an issue to improve
the accuracy of the optimal solution. As a final remark, the algorithm is
designed to deal with high contrast binary images but in a further investi-
gation it can be well extended to images with more that two levels. To this
aim two possible techniques can be adopted: a nonlinear potential function
W can be designed with wells in any of the image level and applying the
same algorithm; a multilevel image is usually obtained by a segmentation of
an original picture by applying successive binarization, and therefore to each
stage the Cahn-Hilliard model can be applied with the binary potential.
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