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Abstract

With reference to robots that are redundant for a given task, we present a novel

and intuitive approach allowing to define a discrete-time joint velocity command

that shares the same characteristics of a second-order inverse differential scheme,

with specified properties in terms of joint acceleration or torque. Our main

goal is to show how commands in the null space of the task can yield different

locally optimal solutions, working only at the velocity control level. By following

our general method, it is possible to obtain simple implementations of possibly

complex robot control laws that i) can be directly interfaced to the low-level

servo loops of a robot, ii) require less task information and on-line computations,

iii) are still provably good with respect to some target performance. The method

is illustrated by considering the conversion into discrete-time velocity commands

of control schemes for redundant robots that minimize the (weighted and/or

biased) norm of joint acceleration or joint torque. The approach can be extended

to auxiliary tasks, possibly organized with priority. Numerical simulations and

experimental results are presented for the control of a 7R KUKA LWR IV robot.
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1. Introduction

Robot motion interfaces are usually defined at the position/velocity level,

and rely on a two-level control architecture (Fig. 1). A low-level controller, or

direct layer of joint-level servos, imposes currents to the motors, and thus joint

torques to the robot; a high-level, user-defined control program sends desired5

position/velocity references to the servos, based on proprioceptive sensing (en-

coders, joint torque sensors), exteroceptive sensing (e.g., visual feedback), and

input from the task/trajectory planner. This two-level architecture is used in

industrial robots [1, 2] but also in most of the robots designed for research [3, 4].

In this framework, kinematic control schemes are designed without consider-10

ation of robot dynamics, assuming that reference position/velocity commands

are accurately reproduced by the robot, thanks to the presence of fast and

well-tuned low-level loops, to the use of sufficiently small sampling times, and

assuming that speed and acceleration involved in the motion task are moderate.

It is well known that dynamic control can outperform conventional kinematic15

controllers, both in terms of speed and precision [5]. For this to happen, we

require a relatively complete and accurate dynamic model of the robot and of

its actuating devices, together with a so-called open architecture that allows to

impose joint torques (or motor currents) as user commands.

It has been shown in [4, 6] that one can get around closed control architecture20

and still be able to generate suitable velocity references at the user level, so as to

apply desired torque commands to the robot. However, this torque transformer

requires a good knowledge of the structure and parameters of the low-level

control loops, an information that is typically unavailable to a generic end-user.

On the other hand, the latest generation of research-oriented manipulators25

allows a torque-controlled behavior [7, 8, 9]. In order to take full advantage of

this possibility, a dynamic model of the robot is needed, possibly including also

joint/transmission compliance [10]. Moreover, the whole task and control treat-

ment should be moved up to a second-order differential level (acceleration or

torques) [11]. This complicates the on-line specification of sensor-based behav-30
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Figure 1: Example of a two-level control architecture. The Inverse Kinematics (IK) solver

works at the differential level and in discrete time; the KUKA controller KR C2 lr sends to the

KUKA LWR IV robot the motor currents necessary to reach the desired joint configuration.

iors, since designing an acceleration command to accomplish a desired reactive

task is harder than doing the same with a velocity command. Therefore, the

use of velocity commands is still an appealing approach.

In fact, velocity control laws are simpler to implement, require the least

amount of data (e.g., no need of derivatives involving the Jacobian) and measure-35

ments, and can easily accommodate additional constraints, such as the presence

of joint range limits and command saturation in redundant robots [12]. Con-

versely, first-order kinematic laws do not share the smoothness and dynamic

optimality properties of acceleration or torque control laws (nor their level of

variety).40

The objective of this paper is to show how to define a kinematic control

scheme at the velocity level2 that inherits as much as possible the properties

and target performance of a given second-order control scheme. We will consider

the following working assumptions:

2In the rest of the paper, we assume that velocity reference commands can be directly fed

to the low-level controller of the robot. If instead a position reference is required by the robot

control interface, a one step discrete-time integration of the velocity command can be used.
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1. Low-level servo loops are present that guarantee ideal execution of any45

joint velocity (position) command. The reference model of the controlled

robot can be considered as a pure integration between joint velocity com-

mands and measured positions.

2. The high-level kinematic controller generates joint velocity references in

discrete time, with sufficiently high sampling rate.50

3. Task or Cartesian desired commands are available to the robot on line,

but only up to the velocity level. Only local optimization schemes are

considered.

4. Measurement in the joint space is limited to position, as provided by

encoders.55

5. The robot is kinematically redundant with respect to the given task.

While the last assumption is not strictly needed, it enlarges considerably the

scope and interest of the present analysis. Some early results on the equivalence

of velocity and acceleration redundancy resolution schemes in continuous time

can be found in [13], while the emphasis is given here to the discrete-time60

implementation, as well as to the possible inclusion of robot dynamic model

information.

The paper consolidates and expands the results of our recent work [14]. With

respect to the conference version, the additional contributions of the present pa-

per include a more detailed presentation of the method and new numerical re-65

sults, with the addition of dynamic simulations for the torque optimization case.

Moreover, we present now also experiments on a 7-DOF robot manipulator.

After summarizing redundancy control schemes and discretization issues in

Sect. 2, we present our main analytical results in Sects. 3 and 4. In the former,

we show how to design discrete-time velocity commands that are equivalent to70

a joint acceleration solution of minimum norm or may include the addition of

null-space auxiliary tasks, in particular of a damping action for stabilizing joint

motion. In the latter, we extend our design to velocity commands that are

equivalent to optimal joint torque solutions. Section 5 reports numerical results
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when the task is to execute a desired trajectory for the end-effector position and75

our discrete-time velocity control method is used for optimizing acceleration or

torque. Experimental results on a KUKA LWR IV robot are presented in Sect. 6

and in the accompanying video.

2. Preliminaries

2.1. Redundancy resolution80

Let q ∈ Rn be the generalized (joint) coordinates of a n-DOF robot and

x ∈ Rm be the variables describing a generic m-dimensional task, with m ≤ n.

The task kinematics is given by the direct map x = f(q). The first-order task

kinematics is

ẋ = J(q)q̇, (1)

where J = ∂f/∂q is the m× n task Jacobian matrix. At a given configuration

q, all joint velocity solutions to (1) can be expressed as

q̇ = J#ẋ+ P q̇N , (2)

where J# is the (Moore-Penrose) pseudoinverse of the task Jacobian [15], P =

I − J#J is the n × n orthogonal projector in the Jacobian null space, and

q̇N ∈ Rn is a generic joint velocity that can be used for auxiliary tasks.

There is a close relation between weighted pseudoinversion and equality-

constrained least squares programs [16]. The above scheme, as well as most

of the other local methods for optimal use of robot redundancy existing in

the literature, can be obtained from a general Quadratic Programming (QP)

formulation (see, e.g., [13] or [17]), as reported for convenience and completeness

in Appendix A. In particular, the joint velocity command (2) is the solution of

the QP problem

q̇ = arg min
q̇∈S

1
2
‖q̇ − q̇N‖2

with S =
{

arg min
q̇∈Rn

1
2
‖Jq̇ − ẋ‖2

}
.

(3)
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Figure 2: Representation of the velocity solution (2) in the joint velocity space of a 2-DOF

robot executing a one-dimensional task.

Figure 2 shows a pictorial view of the optimal solution (2) to the QP problem (3),

where the joint velocity q̇ executes the task while minimizing the distance to85

the auxiliary (or biased) joint velocity q̇N . This property is used in our method.

Differentiating (1), the second-order task kinematics is

ẍ = J(q)q̈ + J̇(q)q̇. (4)

At a given robot state (q, q̇), all joint acceleration solutions to (4) can be ex-

pressed as

q̈ = J#
(
ẍ− J̇ q̇

)
+ P q̈N . (5)

being q̈N ∈ Rn a generic (preferred) joint acceleration. Assuming full rank

for J , the first term on the right side of (5) provides the solution to (4) with

minimum joint acceleration norm.

Let the dynamics of a fully actuated robot in free motion be compactly

described by3

M(q)q̈ + n(q, q̇) = τ , (6)

with positive definite inertia matrix M , Coriolis, centrifugal, and gravitational

terms n, and input torque τ ∈ Rn. Based on (6), several local optimization-

based control schemes have been proposed at the torque level [18, 19, 20, 21]

3For the sake of simplicity, external forces and friction effects are not considered.
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for realizing a desired task acceleration ẍ (possibly including also a PD action

on the trajectory error). For instance, at a given robot state (q, q̇), the solution

with minimum torque norm of [18] is given by

τ =
(
JM−1

)# (
ẍ− J̇ q̇ + JM−1 n

)
. (7)

When J has full rank,
(
JM−1

)#
= M−1JT (JM−2JT )−1.90

2.2. Discrete-time implementation

Assume that a user-defined control law is implemented in discrete time, with

control samples defined at times t = tk = kT , k = 0, 1, . . . , and kept constant

for a sufficiently small sampling time T (say, in the order of few msec). Denote

by uk = u(tk) the sample of a generic vector or matrix variable u. Let the95

robot be driven by joint velocity commands q̇k.

In the common practice, a desired nominal task acceleration ẍk is approxi-

mated as

ẍk '
ẋk − ẋk−1

T
, (8)

so that the task information needed (e.g., about the desired end-effector trajec-

tory) is limited to the velocity level. The time-derivative of the task Jacobian

J at t = tk can be approximated as

J̇k '
Jk − Jk−1

T
, (9)

where Jk = J(qk). Only the current and previous joint position measurements

qk and qk−1 are used in (9). Finally, wherever a joint velocity q̇ appears in the

continuous-time version of a second-order control law, we need to evaluate this

quantity as

q̇ ' q̇k−1

(
'
qk − qk−1

T

)
, (10)

namely using the last velocity command computed at the previous sampling

instant, or the current and previous joint position measurements. The latter uses

the forward differences formula to approximate time differentiation. Indeed, one

can simply combine (9) and (10) to directly obtain a discrete-time approximation100

of J̇ q̇.
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To check the significance of the choices (8)–(10), consider the standard con-

troller in the absence of redundancy (and with the robot in a nonsingular con-

figuration) that realizes a desired task acceleration ẍ by imposing the joint

acceleration

q̈ = J−1(q)
(
ẍ− J̇(q)q̇

)
. (11)

In discrete time, using the above approximations, one obtains

q̈k = J−1(qk)
(
ẍk − J̇(qk)q̇k

)
' J−1

k

(
ẋk − ẋk−1

T
− Jk − Jk−1

T
q̇k−1

)
=

1
T

(
J−1

k ẋk − q̇k−1

)
,

(12)

where we used the identity Jk−1q̇k−1 = ẋk−1, due to our working assump-

tion of perfect joint velocity execution. Using (12) and backward differences to

approximate integration over time, i.e.,

q̇k = q̇k−1 + q̈kT, (13)

the joint velocity command at tk is obtained as

q̇k = q̇k−1 + q̈kT = J−1
k ẋk, (14)

which is exactly what we would have obtained from the direct discretization of a

first-order velocity controller. This shows that the chosen approximation steps

provide a consistent evaluation in discrete time, and we will use them next with

confidence also for dealing with redundancy.105

3. Velocity control for acceleration optimization

As a first illustrative example, we will apply the discretization method of

Sect. 2.2 to define a joint velocity control law that minimizes the joint accel-

eration norm. In terms of discrete-time velocity, this is intuitively obtained by

minimizing the variations in the sequence of velocity commands, which means

taking the joint velocity that solves the task (1) and minimizes the distance

to the previous velocity command q̇k−1. With this in mind, considering the

property (3) in Sect. 2.1 the solution follows as

q̇k = J#
k ẋk + P k q̇k−1, (15)
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where P k = I−J#
k Jk. It is easly recognized that equation (15) is the discrete-

time evaluation of the general first-order solution (2), with q̇N,k = q̇k−1.

Considering first the case of a full rank Jacobian J , we verify that the veloc-

ity law (15) corresponds to our discretization method applied to the minimum

acceleration norm control law (obtained from eq. (5), when q̈N = 0), namely

q̈k = J#
k

(
ẍk − J̇kq̇k

)
. (16)

In fact, from (13) and (16), using the rules in Sec. 2.2 we have

q̇k = q̇k−1 + q̈kT

' q̇k−1 + J#
k

(
ẋk − ẋk−1

T
− Jk − Jk−1

T
q̇k−1

)
T

= q̇k−1 + J#
k

(
ẋk − Jkq̇k−1

)
, (17)

which is identical to (15). Therefore, the velocity control law (17) shares the110

same optimal properties of the acceleration-level solution (16). In other words,

a particular null-space vector in the velocity law (15) guarantees a second-order

property to the solution —an interesting new insight in the role of this auxil-

iary term. Besides, eq. (17) is very simple to implement, as it does not require

differentiating the task Jacobian4, nor to compute and then numerically inte-115

grate the second-order law. Thus, there is also no need to define a desired task

acceleration ẍ.

When the Jacobian J is close to a singularity, a damped pseudoinverse is

mandatory in order to avoid discontinuities and unfeasible commands [24]. In

this case, task execution is slightly deformed in general and the control law (17)120

is not fully equivalent to (16). Nonetheless, the variation of the velocity will

still be minimized.

4The evaluation of J̇(q)q̇ in (11) could be efficiently obtained as part of the forward

kinematic pass of a recursive Newton-Euler algorithm (i.e., by setting q̈ = 0) [22, 23]. In

comparison, the present method does not need at all this computational pass.
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3.1. Including auxiliary tasks

An important feature of redundancy is the possibility of using motions in the

null space of the primary task to accomplish auxiliary tasks, e.g., with the Pro-125

jected Gradient (PG) method [25], where a preferred joint velocity/acceleration

is specified according to the gradient direction of some cost function. Since the

null-space vector is already used to suitably modify the property of the solution

—see eq. (15), it is not immediate to see how this capability can be maintained.

We show next how to accommodate auxiliary tasks in the same framework.130

At the acceleration command level, consider a preferred joint acceleration

q̈N,k projected in the null space of the task Jacobian

q̈k = J#
k

(
ẍk − J̇kq̇k

)
+ P kq̈N,k. (18)

Proceeding as before, the rules of conversion of (18) into a discrete-time velocity

control law, with sampling time T > 0, provide

q̇k = J#
k ẋk + P k

(
q̇k−1 + q̈N,k T

)
. (19)

The above reasoning for conversion to velocity control laws can be applied sim-

ilarly also in the case of l multiple tasks, without or with priority [26]. Assume

that the multi-task case has been solved at the velocity level by any known

methodology, say [27] or [28]. The resulting solution q̇l,k accomplishes (ex-

actly, or as much as possible according to the hierarchy of tasks) all l tasks,

while minimizing the joint velocity norm. Then, as for the single-task case, the

discrete-time velocity control law that minimizes the joint acceleration norm is

the one that minimizes the variation of the joint velocity command, namely

q̇k = q̇l,k + P l,k

(
q̇k−1 + q̈N,k T

)
, (20)

where P l,k is the projector in the null space of all l tasks.

3.2. Null-space motion damping

As an interesting example of inclusion of auxiliary tasks in the presented

framework, we consider the issue of damping the floating robot behavior which

may arise in the null space of a given motion task.135
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When a redundant robot is controlled using minimum norm commands at

the second- or higher-order differential level (i.e., from acceleration upwards),

one can typically observe the joint variables starting to float over time on the

self-motion manifold associated to the task.

This drift phenomenon has a simple explanation. With the robot being140

controlled at the velocity level, any joint velocity contribution in the null space

of the task Jacobian will be set to zero, because of the minimum velocity norm

property. A simple case to analyze is when the generic joint i is not useful for

performing the task, i.e., the i-th column of the task Jacobian is zero. In the

minimum joint velocity norm solution, the ith component of q̇ is automatically145

set to zero (joint i will not move). Similarly, when the robot is controlled at the

acceleration level, joint accelerations in the null space will be set to zero in the

minimum norm solution. However, in the same simple case considered above,

while the ith component of q̈ is kept at zero, joint i it will drift at constant

velocity if it was not initially at rest, producing a floating motion in the null150

space of the task Jacobian.

To remove this undesired behavior, occurring especially over long task tra-

jectories, different possibilities have been explored [13, 29, 30]. The simplest

approach is to introduce damping on the null-space motion, as proposed, e.g.,

in [13]. This can be easily specified at the acceleration level, since the choice

q̈ = −kd q̇, kd ≥ 0, (21)

in the unconstrained case, i.e., when no task is assigned, will bring the robot to

a rest configuration at an exponential rate, tuned by the positive damping factor

kd (which can be in principle arbitrarily large in the continuous time domain).

Therefore, the preferred choice in (5) will be q̈N = −kd q̇, providing

q̈ = J#
(
ẍ− J̇ q̇

)
− kdP q̇. (22)

Applying the discrete-time conversion procedure to (22), from (19) we obtain

q̇k = J#
k ẋk + λP kq̇k−1, λ = 1− kdT, (23)
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again with a specific term in the null space of the task Jacobian.

It can be recognized that the scalar λ ≤ 1 in (23) acts as a forgetting factor

on the previous joint velocity command —a typical tool used in recursive least

squares sequences of sampled data [31]. An analysis of the stability behavior of155

the velocity solution (23) with respect to λ is reported in App. B, and provides

good insight on the choice of kd for null-space floating motion suppression at

the acceleration level.

4. Extension to torque optimization

Having recognized that all possible discrete-time velocity control solutions160

differ only for the choice of a specific null-space vector, extending the proce-

dure from an acceleration-level scheme to conversion of a torque-level scheme

is rather straightforward. Two analytical examples of interest are presented,

which illustrate also the different complexity resulting from slightly different

local optimization formulations that deal with robot dynamics. Again, for the165

sake of simplicity we assume that the Jacobian J has full rank at the current

configuration.

4.1. Minimum weighted norm of the torque

Following [19] and later [21], a convenient robot behavior is obtained when

minimizing the joint torque in terms of a norm weighted by the squared inverse

of the inertia matrix:

τ = arg min
τ∈S

1
2
τTM−2τ

with S =

 arg min
τ∈Rn

1
2
‖Jq̈ − ẍ+ J̇ q̇‖2

s.t. Mq̈ + n = τ .

 .

(24)

In this way, the robot joint motion remains typically bounded even for longer

motion tasks, as opposed to the case of the minimum (unweighted) torque norm170

solution [18].
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The optimal solution to (24) is

τ = MJ#
(
ẍ− J̇ q̇ + JM−1n

)
. (25)

Associated to this torque, there is a unique joint acceleration

q̈ = J#
(
ẍ− J̇ q̇

)
− PM−1n. (26)

Conversion to the equivalent discrete-time velocity control is easily obtained

when starting from (26). Define first the notation nk|k−1 = n(qk, q̇k−1), where

all quadratic velocity terms are evaluated using the previous joint velocity sam-

ple5. Proceeding as in Sect. 3, we obtain

q̇k = J#
k ẋk + P k

(
q̇k−1 − TM

−1
k nk|k−1

)
. (27)

Note that all the needed dynamic information is contained only in the last extra

term, which is also scaled by the sampling time T .

4.2. Dynamically consistent redundancy resolution

The other considered torque-level control method for redundant robots is

the dynamically consistent approach of [20], which is based on a task-oriented

decomposition of the joint torques. Also in this case the problem can be for-

mulated as a QP where the torque difference with respect to a biased reference

τN is minimized, using a norm weighted by the simple inverse of the inertia

matrix:
τ = arg min

τ∈S

1
2

(τ − τN )T
M−1 (τ − τN )

with S =

 arg min
τ∈Rn

1
2
‖Jq̈ − ẍ+ J̇ q̇‖2

s.t. Mq̈ + n = τ .

 .

(28)

The optimal solution to (28) is

τ = JT
(
JM−1JT

)−1 (
ẍ− J̇ q̇ + JM−1n

)
+
(
I − JT (JT )#M

)
τN , (29)

5This is different from [32], where Coriolis and centrifugal terms were evaluated mixing

previous and current velocities.

13



with the inertia-weighted pseudoinverse of the Jacobian transpose given by

(JT )#M =
(
JM−1JT

)−1

JM−1. (30)

The matrix P ⊥M = I − JT (JT )#M in (29) is an operator that annihilates all

joint torques lying in the range of JT . The unique joint acceleration associated

to (29) can be rewritten as

q̈ = J#
M

(
ẍ− J̇ q̇

)
− PMM−1 (n− τN ) (31)

where PM is the inertia-weighted projector in the null space of J . Equation (31)

serves again as a basis for deriving the discrete-time velocity control, which is

q̇k = J#
M ,k ẋk + PM ,k

(
q̇k−1 − TM

−1
k

(
nk|k−1 − τN,k

))
. (32)

The complexity of the control law is indeed increased in this case. For

instance, the expression of the weighted projector PM ,k is

PM ,k = I −M−1
k JT

k

(
JkM

−1
k JT

k

)−1

Jk. (33)

On the other hand, a damping torque may be used for stabilizing robot self-

motions. As an additional benefit, this term can be devised so as to simplify

the null-space vector in (32). For this, choose the torque τN so as to oppose

the generalized momentum Mq̇ with a suitable damping gain kd = 1/T . The

continuous time and the realized discrete time versions are

τN = −kdM(q)q̇ ⇒ τN,k = − 1
T
Mkq̇k−1. (34)

Using this in (32) yields the simpler form

q̇k = J#
M ,k ẋk − TPM ,kM

−1
k nk|k−1. (35)

5. Numerical results175

Taking into account the working assumptions detailed in Sec. 1, the method

has been tested first with Matlab simulations using a model of the KUKA LWR

robot with n = 7 joints.
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A multiple point-to-point motion task is specified for the position x = f(q)

of the robot end-effector (the dimension of the task variables is m = 3). The

robot starts at time t = 0 from the initial configuration

q(0) =
(

28.08 104.12 114.59 94.85 14.32 −28.12 0
)T

[deg]

corresponding to the Cartesian point x0 = (−0.4, 0.36, 0.01) [m], and moves to

three Cartesian points x1 = (−0.4,−0.36, 0.01), x2 = (−0.4,−0.36, 1.16), and

x3 = (−0.4, 0.36, 1.16) [m]. These four points are on the same vertical plane.

The trajectory between two generic points xA and xB is a linear path, with

rest-to-rest timing law given by a doubly-normalized quintic polynomial s(ξ):

xd(t) = xA + (xB − xA) s(ξ),

s(ξ) = 6ξ5 − 15ξ4 + 10ξ3, ξ =
t

TAB
∈ [0, 1],

ẋd(t) =
xB − xA

TAB

(
30ξ4 − 60ξ3 + 30ξ2

)
.

(36)

where TAB = 3 [s] is the motion time (for each segment). The reference task

velocity is given by the desired one complemented by a Cartesian error feedback

to recover linearization errors

ẋ = ẋd +KP (xd − f(q)) , (37)

with KP = kP I and the scalar parameter set to kP = 10. When approaching

the desired end-point xB = xd(TAB) of a generic segment AB, the task planner180

switches to the next desired Cartesian position when the error ‖xB − f(q)‖ < ε,

with ε = 1 [mm]. The sampling time is T = 1 [ms].

5.1. Acceleration optimization

Figures 3–4 show the results obtained using the discrete-time velocity con-

trol (23) with forgetting factor λ = 0.99, equivalent to a damping of kd = 10185

in the acceleration-level control eq. (22). The Cartesian motion of the robot

end-effector and elbow (i.e., the tip of the third link) are shown in Fig. 3. Fig-

ure 4 reports the evolution of the norms of three quantities used as indices of
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Figure 3: Execution of the multiple point-to-point motion task with the proposed discrete-

time velocity control with null-space damping (λ = 0.99 in eq. (23)): (a) end-effector (black)
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damping (λ = 0.99 in eq. (23)): [top] norm of the joint acceleration ‖q̈k‖; [center] norm of

the null-space contribution ‖λP kq̇k−1‖; [bottom] norm of the joint velocity ‖q̇k‖.
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Figure 5: Norm of the difference between the joint velocity command q̇I from the discrete-

time velocity control law (23) with λ = 0.99 and the joint velocity q̇II obtained from the

acceleration command (22) with damping gain kd = 10.

performance: joint acceleration, null-space contribution, and joint velocity (the

actual command).190

For validation, the same task has been performed with the acceleration-level

control law (22). The equivalence between the proposed discrete-time velocity

control approach and the velocity resulting from the acceleration-level command

is confirmed by the plot of the difference between the joint velocity in the two

simulations (Fig. 5), which is zero up to numerical rounding.195

A similar consistent result about equivalence was obtained also when using

the minimum acceleration norm control without damping (i.e., with λ = 1).

However, the original control law displayed a joint motion drift, letting the

robot approach a singular configuration with an increase in acceleration peaks

by a factor of 40 (despite a change in λ by just 1%). Even in the presence of200

such negative event, the sought equivalence was still in place and the converted

discrete-time velocity control law displayed exactly the same robot behavior.

5.2. Torque optimization

We have compared also the dynamically consistent torque control law (29),

using a null-space damping action as in (34), with its conversion into the205

discrete-time velocity control law (35) obtained using the proposed method.

For this simulation, the dynamics of the KUKA LWR robot was derived using

the Robotics Toolbook6, modeling each link as a uniform rod of unitary mass.

6http://petercorke.com/Robotics Toolbox.html
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Figure 6: Execution of the multiple point-to-point motion task with the discrete-time velocity

control law optimizing torque as in eq. (35): (a) end-effector (black) and elbow (blue) traced

path; (b) screenshots from the simulation.
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Figure 7: Numerical results for the discrete-time velocity control law in eq. (35): [top] norm

of the joint torque ‖τ‖; [bottom] norm of the joint velocity ‖q̇‖.

Figures 6–8 refer to the same previous point-to-point task with multiple

points obtained when using the discrete-time velocity control law (35). As210

expected the joint velocity norm (Fig. 7) is larger than in the previous simulation

(Fig. 4). In fact, the dynamically consistent torque command (29) produces

faster motion for those joints that move relatively low inertia.
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Figure 8: Norm of the difference between the joint velocity command q̇I from the discrete-time

velocity control law (35) and the joint velocity q̇II obtained from the torque command (29)

with damping (34).

Finally, the equivalence between the proposed discrete-time velocity control

law (35) and the dynamically consistent torque control (29) with damping (34)215

is confirmed by Fig. 8, where the norm of the difference between the actual joint

velocity obtained with the two methods is shown to be totally negligible.

6. Experimental results

Experiments have been conducted on a KUKA LWR IV robot to prove the

practical effectiveness of the proposed method. The LWR is commanded using220

the Fast Research Interface (FRI), which allows controlling the desired joint

position at high frequency rates, 500 [Hz] in our experiments (T = 2 [ms]). The

control schemes have been implemented in C++, using the Eigen library [33] for

algebraic computations, and working in a ROS environment [34] on a Intel Core

i7-2600 CPU 3.4GHz, with 8Gb of RAM. The FRI outputs at every sampling in-225

stant tk the current robot configuration qk. The experimental joint velocity and

acceleration profiles that we report in this section have been computed offline

by an accurate numerical differentiation of the joint position measures provided

by the robot encoders. The estimations were obtained using a Savitzky-Golay

filter [35] with a window of W = 400 samples and a polynomial of fifth degree.230

Due to the filter characteristics, the first and last W/2 samples have been dis-

carded (as apparent in the plots). For the experiments, we have considered the

same motion task and used the same parameters as in the simulations.
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6.1. Acceleration optimization

In a first set of experiments, the standard velocity control law (2) and the235

acceleration control law (22) have been considered, as well as the proposed con-

version of the latter into a discrete-time velocity control law. The accompanying

video shows the experiments presented in this section.

Figures 9–10 show the results obtained with the minimum joint velocity

norm control law, i.e., eq. (2) with q̇N = 0. In this experiment, the robot was240

not able to reach the final position because the commanded motion requested

an acceleration beyond the robot capabilities, and thus the KUKA low-level

controller stopped the robot to prevent damages. The critical peaks can be seen

after t = 7 s in the joint acceleration norm plotted in Fig. 10.

We considered next the discrete-time velocity control law (23) with λ = 0.99,245

which is our conversion of the acceleration control law (22) when the joint

velocity damping gain is kd = 5. The obtained experimental results are shown

in Figs. 11–12. During the first part of task execution, the robot motion is very

similar to the one obtained with the standard minimum norm velocity control

law. However, in the second part the robot is able to reach the final position,250

thanks to the strategy of minimizing the variation of the joint velocity. This

can also be appreciated when comparing the joint acceleration norm plots of

Figs. 10 and 12. It should be emphasized that the obtained behavior depends

mainly from the configuration space trajectory exploited by the control law (22)

while executing the desired Cartesian trajectory.255

Apart from the above desirable property, our objective was also to verify the

equivalence of the robot behavior obtained using the proposed discrete-time ve-

locity control design with that resulting from the acceleration-level control (22).

This comparison is made in Fig. 13. It is rather evident that the robot controlled

in acceleration or with the proposed discrete-time velocity control law performs260

practically in the same way. The negligible differences reported are mainly due

to numerical rounding, non-synchronization of the two experiments, and the

limited real time capability of ROS which does not guarantee the acquisition of

all joint positions at the same time.
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Figure 9: Minimum joint velocity control: (a) end-effector (black) and elbow (blue) traced

path; (b) screenshots from the experiment. The robot was not able to complete the task.
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Figure 10: Experiment with minimum joint velocity control: [top] norm of joint acceleration

‖q̈‖; [bottom] norm of joint velocity ‖q̇‖.
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Figure 11: Discrete-time velocity control (23) with null-space damping λ = 0.99: (a) end-

effector (black) and elbow (blue) traced path; (b) screenshots from the experiment.
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Figure 12: Experiment with the discrete-time velocity control (23) with null-space damping

λ = 0.99: [top] norm of joint acceleration ‖q̈‖; [bottom] norm of joint velocity ‖q̇‖.
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Figure 13: Norm of the difference between the joint velocity command q̇I from the discrete-

time velocity control law (23) with λ = 0.99 and the experimental joint velocity q̇II associated

to the acceleration control (22) with kd = 5.

6.2. Torque optimization265

As in the simulations of Sec. 5.2), we have compared also in experiments

the dynamically consistent torque control law (29) with damping (34) to its

implementation as discrete-time velocity control law (35), converted using the

proposed method. In these experiments, we have used the accurate dynamic

model of the KUKA LWR IV robot identified in [36].270

The desired point-to-point motion task between multiple points is identical

to the one considered so far, except that the points are now traversed in the

reverse order. This has been necessary in order to avoid joint range limits

during task execution. Figures 14–16 refer to the results obtained when using

the discrete-time velocity control law (35). Remember that this law has the275

property of optimizing the norm of the joint torques, weighted by the inverse

inertia matrix and biased by the joint torque used for self-motion damping.

Figure 16 shows the difference between the joint velocity command obtained

with the discrete-time velocity control law (35) and the joint velocity obtained

with the dynamically consistent torque command (29) with damping (34). The280

practical equivalence is then confirmed.

7. Conclusions

We have presented a systematic method for converting any motion con-

trol law defined at the acceleration or torque level for redundant robots into a

discrete-time joint velocity control law, preserving the same properties of the285

23



−0.4

−0.2

0

−0.4

−0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

1.2

X
Y

Z

(a) (b)

Figure 14: Discrete-time velocity control law (35) associated to torque optimization: (a)

end-effector (black) and elbow (blue) traced path; (b) screenshots from the experiment.
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Figure 15: Experiment with the discrete-time velocity control law (35): [top] norm of the joint

torque ‖τ‖; [bottom] norm of the joint velocity ‖q̇‖.

original second-order scheme. The method has been illustrated with a few kine-

matic and dynamic examples, including control laws that minimize in norm the

joint acceleration, possibly biased towards a preferred value used for damping

self-motions, or minimize weighted norms of the instantaneous joint torque. The

equivalent robot behavior obtained with the proposed conversion into a discrete-290

24



0 2 4 6 8
0

0.5

1

1.5
x 10

−3

‖
q̇
I−

q̇
I
I
‖

[r
a
d
/
s]

Figure 16: Norm of the difference between the joint velocity command q̇I from the discrete-

time velocity control law (35) and the experimental joint velocity q̇II associated to the torque

control (29) with damping (34).

time velocity control law has been verified through simulations and experiments

on a 7R KUKA LWR IV robot performing three-dimensional tasks.

A convenient feature is that the conversion of different control laws leads to

velocity laws that differ only by the choice of the joint vector in the null space of

the task Jacobian. Moreover, the method allows to handle auxiliary tasks in the295

original control law, such as when locally optimizing an objective function with

the projected gradient method or when introducing a hierarchy of multiple tasks

with priority. In doing the conversion, we found also a nice analogy between

the addition of null-space damping in acceleration/torque second-order schemes

and the introduction of a forgetting factor in discrete-time velocity control.300

More in general, all the obtained results can be formally derived from a general

QP formulation, which provides also insights on the role of kinematic/dynamic

terms in the null space of a given task.

The main use of our results is that the obtained velocity control laws can

be interfaced directly to the low-level servo loops in any (closed) control ar-305

chitecture for robots. The method preserves the same performance of any tar-

get second-order motion control scheme at no additional computational cost,

without requiring velocity measurements or numerical differentiation of posi-

tion measurements. As a further benefit, the implementation avoids the use

of a desired task acceleration, which is not trivial to define for sensor-based310

reactive tasks (e.g., collision avoidance).

We are currently working on the integration with a discrete-time version of

our SNS (Saturation in the Null Space) method that deals explicitly with hard
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bounds in the joint space for redundant robots [37]. This will allow taking into

account joint acceleration or torque limits even if the robot is controlled at the315

velocity level. Another interesting issue to be investigated in our future work

is how to use the proposed conversion method to implement velocity-level laws

that achieve highly dynamic tasks such as controlling contact forces or realizing

desired impedance behaviors in human-robot interaction.
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A. QP formulation for optimal use of redundancy

We recall here the relation between equality-constrained least squares programs430

and weighted pseudoinverse solutions.

Consider the following Quadratic Programming (QP) problem

y∗ = arg min
y∈S

1
2
‖y − yN‖2W (38)

with S =
{

arg min
y∈Rn

1
2
‖Ay − b‖2

}
. (39)

where W is a symmetric, positive definite matrix, A is the (m× n) constraint

matrix, with m ≤ n. The manifold S in (39) can be given the explicit structure

S =
{
y ∈ Rn s.t. y = A#

Hb+ PHy0

}
(40)

with y0 ∈ Rn and where we have used the weighted pseudoinverse matrix

A#
H [15], with the symmetric matrix H > 0 of weights, and being

PH =
(
I −A#

HA
)
H−1 (41)

a symmetric projector in the null space of A. In case A has full rank

A#
H = H−1AT

(
AH−1AT

)−1

. (42)
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The QP problem (38–39) can be rewritten as

y∗ = arg min
y0∈Rn

1
2
‖y − yN‖2W

s.t. y = A#
Hb+ PHy0

(43)

Define the Lagrangian function

L(y0) = 1
2 ‖y − yN‖

2
W

= 1
2

(
A#
Hb+ PHy0

)T

W
(
A#
Hb+ PHy0

)
−yT

NW
(
A#
Hb+ PHy0

)
+ c,

(44)

where c is a constant, thus negligible for the minimization.

The necessary and sufficient conditions for optimality are [38]

∇y0
L =

(
∂L

∂y0

)T

= PHWA#
Hb+ PHWPHy0 − PHWyN = 0, (45)

∇2
y0
L =PHWPH ≥ 0. (46)

Choosing H = W we have

PWWA#
W b =

(
I −A#

WA
)
A#
W b = 0 (47)

because of the defining property of the weighted pseudoinverse. Thus, condi-

tion (45) becomes

PWWPWy0 − PWWyN = 0, (48)

which is satisfied by taking

y0 = WyN , (49)

and using the idempotency of P̃W = PWW .

By combining (40) with (49), we obtain finally

y∗ = A#
W b+

(
I −A#

WA
)
yN . (50)

By properly defining terms, equation (50) covers all optimization formulas

found in this paper (and in most of the redundancy resolution literature). For

example, the minimum torque norm solution (7) is obtained using

y = q̈, W = M2, A = J ,

b = ẍ− J̇ q̇, yN = −M−1n,

(51)
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and then inserting the resulting optimal acceleration in (6).

In case matrixA is close to singularity, a damped pseudoinversion is required435

for stability, and the (weighted) projector PW has to be computed considering

only the linearly independent rows of A [39].

B. Stability analysis of the floating motion damping

For the choice of the scalar forgetting factor λ in (23), a stability analysis can

be performed for a particular but significant situation. Suppose that the robot

has accomplished its original task and that a specific task is no longer required.

Reset the time counter (k = 0), and let the initial joint position and velocity at

this time instant be, respectively, q0 and q̇0 6= 0 (some joint is still in motion).

Since there is no task from now, we set Jk = 0, ∀k ≥ 0, and thus P k = I

(all joint motions are in the null space of this vanishing task). Equation (23)

becomes then

q̇k = λq̇k−1. (52)

Values such that |λ| > 1 should be discarded, leading to velocity divergence.

Moreover, non-negative values of λ will avoid oscillations. For λ = 1, the joint

velocity will not change, and the joint acceleration is clearly zero (minimized in

norm). However, the sequence of position samples will diverge, ‖qk‖ → ∞ (in

practice, some joints will move to their range limits). For |λ| < 1, equation (52)

is a contraction mapping and the robot configuration will converge to

q∞ = q0 +
T q̇0

1− λ
, (53)

In particular, for λ = 0, the robot will stop at the next step, at the cost of a

very high joint acceleration.440

We can backtrack this analysis to set actual bounds for kd = (1− λ)/T ≥ 0

in the continuous-time acceleration solution (22), taking into account the need

of its discretization to a velocity control law. In fact, for kd ∈ (0, 1/T ), an

uniformly stable behavior is obtained. For kd = 1/T , the acceleration-level

law leads to a first-order control with minimum velocity norm. Convergence is445
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obtained also for kd ∈ (1/T, 2/T ), but pseudo-oscillating in nature, while for

kd = 2/T the self-motion will be persistently oscillating. Finally, for kd > 2/T

there will be a divergent oscillatory motion in the null space of the task.
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