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Abstract
In this note, we give a rigorous proof that the NLS periodic Akhmediev breather
is unstable. The proof follows the ideas in Muñoz (Proyecciones (Antofagasta)
36(4):653–683, 2017), in the sense that a suitable modification of the Stokes wave
is the global attractor of the local Akhmediev dynamics for sufficiently large time,
and therefore the latter cannot be stable in any suitable finite energy periodic Sobolev
space.
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1 Introduction

Let a ∈ (0, 1
2 ). The Akhmediev breather [2]

A(t, x) := eit
[
1+ α2 cosh(βt)+ iβ sinh(βt)√

2a cos(αx) − cosh(βt)

]
, t, x ∈ R,

β = (8a(1 − 2a))1/2, α = (2(1 − 2a))1/2, (1.1)

is a 2π
a -periodic in space, localized in time smooth solution to the focusing cubic

nonlinear Schrödinger equation (NLS) in one dimension:

i∂t u + ∂2x u + |u|2u = 0, u = u(t, x) ∈ C, t, x ∈ R. (1.2)

See Figs.1 and 2 for details. This equation appears as amodel of propagation of light in
nonlinear optical fibers (with different meanings for time and space variables), as well
as in small-amplitude gravitywaves on the surface of deep inviscidwater. Additionally,
this equation is completely integrable, as showed by Zakharov and Shabat [20].

A particular feature of A above is its nonzero boundary value at infinity in time
and space. Indeed, A converges, as t → ±∞, to the Stokes wave eit , also solution of
(1.2):

lim
t→±∞

‖A(t, x) − e±iθeit‖H1
&
= 0, eiθ = 1 − α2 − iβ. (1.3)

Here, Hs
& := Hs

& ((0,
2π
a )) denotes the standard Sobolev space Hs of 2π

a -space
periodic functions. Consequently, A(t, x) exemplifies the modulational instability
phenomenon, which—roughly speaking—says that small perturbations of the Stokes
wave are unstable and grow quickly. This unstable growth leads to a nontrivial com-

Fig. 1 |A| with a = 0.2
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Fig. 2 |A| with a = 0.4

petition with the (focusing) nonlinearity, time at which the solution is apparently
stabilized. The Akhmediev breather is also a candidate to explain the famous rogue
waves. An alternative explanation to the rogue wave phenomena is given by the notion
of dispersive blow-up, see Bona and Saut [10].

Two standard conserved quantities for (1.2) in the periodic setting are

M[u] :=
∫ 2π

a

0
(|u|2 − 1), (Mass) (1.4)

and

E[u] :=
∫ 2π

a

0

(
|ux |2 − 1

2
(|u|2 − 1)2

)
, (Energy). (1.5)

A third one is given by [5]

F[u] :=
∫ 2π

a

0

(
|uxx |2 − 3(|u|2 − 1)|ux |2 − 1

2
((|u|2)x )2 +

1
2
(|u|2 − 1)3

)
. (1.6)

This third conserved quantity appears from the integrability of the equation.
In this paper, we continue the work started by one of us in [17], where we proved

that the Peregrine [1,19] andKuznetsov–Ma [13,15] breathers are unstable under finite
energy perturbations in any Sobolev space Hs(R), s > 1

2 . Previously, the Peregrine
soliton was showed to be numerically unstable under small perturbations by Klein and
Haragus [12]. See [17] for more details on those breathers, as well as a more or less
accurate account of the current literature.
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However, the stability analysis of (1.1) was left open because of its spatial periodic
behavior. Our first and main result is the following:

Theorem 1.1 The Akhmediev breather (1.1) is unstable under small perturbations in
Hs

& , s >
1
2 .

By stability, wemean the following concept [17]. Fix s > 1
2 , and t0 ∈ R.We say that

a particular 2π
a -periodic globally defined solutionU = eit (1+W ) of (1.2) is orbitally

stable in Hs
& (

2π
a ) if there are constants C0, ε0 > 0 such that, for any 0 < ε < ε0,

‖u0− U (t0)‖Hs
&
< ε

⇓
∃ x0(t), γ0(t) ∈ R such that sup

t∈R
‖u(t) − eiγ (t)U (t, x − x0(t))‖Hs

&
< C0 ε.

(1.7)

Here u(t) is the solution to the IVP (1.2) with initial datum u(t0) = u0 (see Proposi-
tion 2.1), and x0(t), γ0(t) can be assumed continuous because the IVP is well-posed
in a continuous-in-time Sobolev space. If (1.7) is not satisfied, we will say that U is
unstable. Note additionally that condition (1.7) requiresw globally defined, otherwise
U is trivially unstable, since U is globally defined.

The proof of Theorem 1.1 uses (1.3) in a crucial way: a modified Stokes wave
is an attractor of the dynamics around the Akhmediev breather for large time. See
also [8,9] for numerical studies of the stability of mKdV and Sine-Gordon breathers
in the periodic and nonperiodic settings. Other rigorous stability results for breathers
can be found in [3,6,7,16,18].

No NLS (1.2) breather seems to be stable. In fact, Peregrine, Kuznetsov–Ma and
nowAkhmediev were shown to be unstable. This is not necessarily consequence of the
nonzero background. Indeed, even breathers on zero background [5], called Satsuma–
Yajima breathers, are unstable.

Being A unstable, it does not mean that it has no structure at all. In this paper we
advance, following the ideas introduced in [5], that indeed, A has a very rich (unstable)
variational structure. In particular,

Theorem 1.2 The Akhmediev breather A (1.1) is a critical point of the functional

H[u] := F[u] − α2E[u],

that is to say, H′[A][w] = 0 for all w ∈ H2
& . In particular, for each t ∈ R A(t, x)

satisfies the nonlinear ODE

A(4x) + 3A2
x Ā + (4|A|2 − 3)Axx + A2 Āxx + 2|Ax |2A

+ 3
2
(|A|2 − 1)2A + α2(Axx + (|A|2 − 1)A) = 0. (1.8)
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The proof of this result follows easily from themethods in [5], inwhich one expands
H[A + w]. We get

H[A + w] = H[A] +H′[A][w] + O(‖w‖2
H2

&
).

Then, performing some lengthy computations, one proves that H′[A][w] = 0 inde-
pendently of w. See Sect. 3 for the proof.

We believe that the variational structure appearing in breather solutions is inde-
pendent of the well-posed character of the equation. In particular, we claim that the
explicit breather of the strongly ill-posed bad Boussinesq equation

utt − uxx −
(
uxx +

3
2
u2

)

xx
= 0. (1.9)

has an associated rich variational structure [4].

2 Proof of Theorem 1.1

The proof is not difficult at all. We just need a preliminary well-posedness result. Set

u(t, x) = A(t, x)+ w(t, x), w unknown. (2.1)

Then (1.2) becomes a modified NLS equation

i∂tw + ∂2xw = − G[w],
G[w] := |A + w|2(A + w) − |A|2A.

(2.2)

Proposition 2.1 The NLS Eq. (1.2) is locally well-posed for any initial data at time
t = t0 of the form A(t0, x)+ w0(x), with w0 ∈ Hs

& , s >
1
2 .

Proof See “Appendix B”. *+

Note that there is always a local solution u of (1.2) such that u(t) = A(t)+ w(t),
with w ∈ Hs

& . In particular, given time dependent parameters x0(t), γ0(t) ∈ R, if the
decomposition u(t) = eiγ0(t)A(t, x − x0(t))+ w̃(t) holds, then w̃(t) still belongs to
Hs

& . This is not true in the non periodic case, see [17].
We did not try to improve the local well-posedness result for (2.2) because the flow

contains a non oscillatory bad component in the case of small frequencies, see [17]
for details. In particular, Strichartz estimates are not available in this case. Also, the
global well-posedness of (2.2) is an open question.
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2.1 End of proof

We only treat the case t → +∞, the other being very similar. Fix s > 1
2 . Let us

assume that the Akhmediev breather A in (1.1) is orbitally stable, as in (1.7). Write
(see (1.3))

A(t, x) = eit (eiθ + Q(t, x)),

Q(t, x) := α2 cosh(βt)+ iβ sinh(βt)√
2a cos(αx) − cosh(βt)

+ (α2 + iβ). (2.3)

Now consider, as a perturbation of the Akhmediev breather, the 2π
a -periodic Stokes

wave eiθeit . Indeed, we have [see (2.3)],

lim
t→+∞

‖A(t) − eiθeit‖Hs
&
= lim

t→+∞
‖Q(t)‖Hs

&
= 0.

Indeed, this follows from the identity

Q(t, x) = α2

(

1 − 1

1 −
√
2a cos(αx)

cosh(βt)

)

+ iβ

(

1 − tanh(βt)

1 −
√
2a cos(αx)

cosh(βt)

)

. (2.4)

Therefore,we have two solutions to (1.2) that converge to the same profile as t → +∞.
This fact contradicts the orbital stability, since for x0(t), γ0(t) ∈ R given in (1.7), and
the definition of A in (1.1),

‖eiθ − eiγ0(0)A(0, x − x0(0))‖Hs
&

=
∥∥∥∥e

iθ − eiγ0(0)
[
1+ α2

√
2a cos(α(x − x0(0)) − 1

]∥∥∥∥
Hs

&

= cs > 0,

is a fixed number, but if t0 = T is taken large enough, ‖Q(T )‖Hs
&
can be made

arbitrarily small. Indeed, by classical interpolation (‖u‖2Hs
&
:= ∑

n≥0 n
2s |û(n)|2, and

n2s = n2(0+s.1) and Hölder)

‖Q(T )‖Hs
&

!s ‖Q(T )‖1−s
L2

&

‖Q(T )‖s
H1

&
, s ∈ (0, 1). (2.5)

Now, to evaluate limt→+∞ ‖Q(t)‖L2
&
requires some care. Clearly from (2.4) we have

Q(t, x) → 0 as t → +∞, for all x ∈ [0, 2π
α ). Also,

|Q(t, x)| ! α2
√
2a

(1 −
√
2a) cosh(βt)

+ β

(1 −
√
2a)

(

(1 − tanh(βt))+
√
2a

cosh(βt)

)

.
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Therefore, by using dominated convergence we conclude. As for the derivative, note
that

∂x Q(t, x) = α3
√
2a sin(αx)

cosh(βt)
(
1 −

√
2a cos(αx)

cosh(βt)

)2 + i
αβ

√
2a tanh(βt) sin(αx)

(
1 −

√
2a cos(αx)

cosh(βt)

)2 . (2.6)

Proceeding in a similar fashion as in the L2 norm, we have limt→+∞ ‖∂x Q(t)‖L2
&
= 0.

Therefore, we conclude from (2.5) that ‖Q(T )‖Hs
&
can be made arbitrarily small if T

is sufficiently large.
Note finally that the Cauchy problem for (1.2) with initial data at time T given

by u0 = eiT eiθ = A(T ) − eiT Q(T ) is well-defined from Proposition 2.1, since
eiT Q(T ) ∈ Hs

& . This proves Theorem 1.1.

Remark 2.1 We conjecture that any soliton solution constructed using Bäcklund trans-
formations, with attached Akhmediev breathers, must be unstable.

3 Proof of Theorem 1.2

Explicitly, we have from (1.5) and (1.6), integration by parts, and the periodic character
of A and its spatial derivatives at the boundaries, and w its first and second spatial
derivatives,

H[A + w] = F[A + w] − α2E[A + w]

=
∫ 2π

a

0

(
|Axx + wxx |2 − 3(|A + w|2 − 1)|Ax + wx |2 − 1

2
((|A + w|2)x )2

+ 1
2
(|A + w|2 − 1)3

)

− α2
∫ 2π

a

0

(
|Ax + wx |2 − 1

2
(|A + w|2 − 1)2

)

= H[A] +
∫ 2π

a

0

(
2Re(A4x w̄) − 3(|A|2 − 1)2Re(Ax w̄x )

− 3(2Re(Aw̄))|Ax |2

− (|A|2)x (2Re(Aw̄))x +
3
2
(|A|2 − 1)22 Re(Aw̄))

− α2
∫ 2π

a

0

(
− 2Re(Axx w̄) − (|A|2 − 1)2Re(Aw̄)

)
+ O(‖w‖2

H2
&
)

= H[A] + 2Re
∫ 2π

a

0

(
A4x w̄

− 3(|A|2 − 1)Ax w̄x − 3Aw̄|Ax |2 + (|A|2)xx Aw̄
+ 3

2
(|A|2 − 1)2Aw̄ − α2

[
− Axx w̄ − (|A|2 − 1)Aw̄

])
+ O(‖w‖2

H2
&
)
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= H[A]

+ 2Re
∫ 2π

a

0
w̄

(
A4x + 3(|A|2 − 1)Axx + 3(A2

x Ā + A|Ax |2) − 3A|Ax |2

+ Axx |A|2 + A2 Āxx + 2A|Ax |2 +
3
2
(|A|2 − 1)2A

+α2(Axx + (|A|2 − 1)A)
)
+ O(‖w‖2

H2
&
)

= H[A] + 2Re
∫ 2π

a

0
w̄

(
A(4x) + 3A2

x Ā + (4|A|2 − 3)Axx

+ A2 Āxx + 2|Ax |2A
+ 3

2
(|A|2 − 1)2A + α2(Axx + (|A|2 − 1)A)

)
+ O(‖w‖2

H2
&
),

and therefore we get

H[A + w] = H[A] +H′[A][w] + O(‖w‖2
H2

&
).

Then, performing some lengthy computations (see “Appendix A”) one proves that
H′[A][w] = 0 independently of w. This proves Theorem 1.2.
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Appendix A: Proof of (1.8)

Following [5], let us use the notation for the Akhmediev breather solution (1.1):

A = eit
(
1+ M

N

)
, with

M := α2 cosh(βt)+ iβ sinh(βt),

N :=
√
2a cos(αx) − cosh(βt). (A.1)

Now, we rewrite the identity (1.8) in terms of M, N in the following way

(1.8) = eit

N 5

6∑

i=1

Ri , (A.2)
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with Ri given explicitly by:

R1 :=
1
2
N

(
6iMNt N 2

x − 2i N (Nx (Mt Nx + M(i Nx + 2Nxt ))+ Nt (2MxNx + MNxx ))

+ N 3(Mxx − iMxxt )+ N 2(−2Mx (Nx − i Nxt )

+ i(2NxMxt + NtMxx + iMNxx + Mt Nxx + MNxxt ))
)
, (A.3)

R2 :=
1
2

(
2M(M̄ + N )+ N (2M̄ + (α2 − 1)N )

)

·
(
2MN 2

x + N 2Mxx − N (2Mx Nx + MNxx )
)
, (A.4)

R3 := (M + N )(−NMx + MNx )(N M̄x − M̄Nx ), (A.5)

R4 :=
1
2
(M̄ + N )(NMx − MNx )

2, (A.6)

R5 :=
1
2
N 2(M + N )

((3
2

− α2
)
N 2 + (−3+ α2)(M̄ + N )(M + N )

)
, (A.7)

and
R6 :=

3
4
(M + N )3(M̄ + N )2. (A.8)

Now substituting the explicit functions M, N (A.1) in Ri , i = 1, . . . , 6 and collecting
terms, we get

6∑

i=1

Ri = a1 cosh(tβ)+ a2 cosh3(βt)+ a3 cosh5(βt)+ a4 sinh(tβ)

+ a5 cosh2(βt) sinh(βt)

+ a6 cosh4(βt) sinh(βt)+ a7 cos(αx)+ a8 cosh2(βt) cos(αt)

+ a9 cosh4(βt) cos(αx)

+ a10 cosh(βt) sinh(βt) cos(αx)+ a11 cosh3(βt) sinh(βt) cos(αx)

+ a12 cosh(βt) cos2(αx)

+ a13 cosh3(βt) cos2(αx)+ a14 cosh2(βt) cos3(αx)+ a15 cosh(βt) cos4(αx),

with coefficients ai , i = 1, . . . , 15 given as follows

a1 = 3
2
(−1+ α2)β2(−4aα2 + β2),

a2 = (−(−1+ α2)β2(−5α2 + 3α4 + 3β2)+ 2a(−5α6 + 3α8 − α2β2 + 3α4β2)),

a3 = 1
2
(−1+ α2)(−10α6 + 3α8 − 10α2β2 + 3β4 + α4(8+ 6β2)),

a4 = 3
2
iβ3(−4aα2 + β2),

a5 = iβ(β2(5α2 − 3α4 − 3β2)+ a(−8α4 + 6α6 + 6α2β2)),

a6 = 1
2
iβ(−10α6 + 3α8 − 10α2β2 + 3β4 + α4(8+ 6β2)),
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a7 = 3
2

√
2aβ2(−4aα2 + β2),

a8 = −
√
2a(β2(−7α2 + 5α4 + 3β2)+ a(−6α6 + 2α2β2)),

a9 = 1
2

√
2a(−24α6 + 7α8 − 16α2β2 + 3β4 + 10α4(2+ β2)),

a10 = 2i
√
2aα2β(4aα2 − β2),

a11 = 2i
√
2aα2β(−2α2 + α4 + β2),

a12 = 4aα2(−β2 + 2a(α4 + β2)),

a13 = 6aα2(−2α2 + α4 + β2),

a14 = 2
√
2aaα2(−2α2 + α4 + β2),

a15 = −4a2α2(−2α2 + α4 + β2).

Finally, using that α = √
2(1 − 2a) and β = √

8a(1 − 2a), we have that all ai vanish,
and we conclude.

Appendix B: Sketch of Proof of Proposition 2.1

First of all, we have from (2.2) that

G[w] = 2ARe(Aw̄)+ |A|2w + A|w|2 + 2Re(Aw̄)w + |w|2w.

By scaling and the subcritical character of (2.2), we can assume that the linear term
in G[w] above is small. We can also assume the initial time t0 = 0. By the Duhamel’s
formula, we have

w(t) = eit∂
2
xw0 −

∫ t

0
ei(t−s)∂2x G[w](s)ds.

Hence, applying the standard Sobolev estimates in Hs
& , with s >

1
2 , we readily obtain

the contraction principle required. Note that no use of Strichartz estimates is needed.
See [11] or [14] for additional details on the fixed point argument. We skip the details.
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