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Abstract. The in-plane response of masonry walls is analyzed by using a novel macromechani-
cal damage model. This is able to capture the directional mechanical properties characterizing
regular masonry textures by adopting an orthotropic description of the elastic and inelastic
behavior. A damage matrix, defined in terms of damage independent scalar variables, is in-
troduced in the constitutive law to describe and distinguish the stiffness degradation due to
tensile, compressive and shear states along masonry natural axes, fixed as the parallel and nor-
mal direction to bed joints. The model is implemented in a finite element procedure, where the
mesh-dependency drawback is overcome by adopting a classical nonlocal integral approach.
Comparisons of numerical and experimental results are performed to test the model capability
of describing influence of the orientation of applied stresses with respect to bed joints direction.
Moreover, a numerical study is conducted with reference to different masonry textures with the
aim of evaluating the effect of bricks and mortar relative arrangement on the elastic properties
of the homogenized material. Finally, the response of a large scale masonry wall subjected to
seismic loads is studied and the obtained pushover curve is compared with those collected from
existing literature models .
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1 INTRODUCTION

Masonry is a composite material, made of units, bricks or blocks, properly connected with or
without mortar. Its heterogeneous nature leads to mechanical behavior characterized by com-
plex stress distributions in the constituent materials, with nonlinear, non-symmetric and usually
anisotropic macroscopic response. To numerically reproduce these peculiar features several
modeling strategies [1] have been developed, ranging from simplified to very sophisticated
models. Within the Finite Element (FE) framework, multiscale [2, 3, 4] and micromechanical
[5, 6] approaches provide accurate predictions of the structural response, as these naturally ac-
count for geometry, arrangement and constitutive behavior of masonry constituents. Enhanced
formulations were also proposed based on multidomain models [7, 8]. The main drawback of
such modeling techniques consists in the high computational burden required and, consequently,
their applicability is limited to the analysis of small elements or structural details.

To date, macromechanical models, which consider masonry as an equivalent homogeneous
medium where the constituent materials are no longer distinguishable, represent the best com-
promise between accuracy and computational cost. These models establish proper relationships
between average masonry strains and stresses, commonly making use of constitutive laws with
damage and plasticity inner variables. Despite isotropic models are largely adopted [9, 10, 11],
because of their simplicity and reduced number of material parameters needed, these do not
allow to describe the anisotropic nature of the response, typical of masonry with regular texture
in which mortar joints act as plane of weakness. Thus, the most advanced macromodels account
for the substantial discrepancy among mechanical properties observed in different material di-
rections by making use of anisotropic plasticity or damage formulations [12, 13, 14].

It should be remarked that the anisotropic behavior usually reduces to an orthotropic one,
as shown by the experimental correlation [15] between the ratios Young’s modulus-to-Poisson
coefficient defined along the masonry natural/material axes, fixed as the normal and parallel
direction to bed joints orientation. In heterogeneous materials, onset and evolution of nonlinear
phenomena can modify the initial orthotropic response, leading to a more general anisotropic
behavior. However, for masonry it is reasonable to assume that damage development does not
alter the initial material symmetries [13], as microcracks are usually located at brick-mortar
interface and follow the directions of material axes. Hence, failure criteria for masonry can
not be expressed only in terms of principal stresses or strains, as usually adopted for isotropic
materials, but have to take into account influence of orientation of applied stresses with respect
to bed joints direction. As suggested in [16], two alternative representations are possible: the
criterion can be expressed either in terms of principal stresses and their orientation with respect
to bed joints or in terms of stresses referred to the natural axes, being this latter representation
more suitable for finite element modeling.

Basing on the previous considerations, this paper presents an orthotropic macromechanical
model with damage tailored to the 2D analysis of masonry structures, able to distinguish stiff-
ness and strength mechanical properties along the material axes. Failure mechanisms due to
crushing, cracking and shear are captured by properly defining a damage matrix, considering
independent damage variables. Model performance is evaluated through numerical and experi-
mental comparisons and, then, the effect of adopted masonry texture on the level of orthotropy
of the elastic response is evaluated. Finally, the pushover analysis of a masonry wall is per-
formed and the effect of damaging mechanisms on the structural response is investigated.
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2 ORTHOTROPIC MACROMECHANICAL DAMAGE MODEL

The real heterogeneous masonry material is modeled as a fictitious 2D homogenized or-
thotropic medium with the natural axes (T,N ) as axes of orthotropy. First, the constitutive law
is defined in the material axes system (T,N ), then, is expressed in the global (x, y) coordinate
(see Figure 1) by using standard transformation rules.

Homogenization

x

y
TN

ϑ 

Figure 1: Global (x, y) and material (T,N ) axes of the homogenized masonry material.

The stress-strain relationship, derived on the basis of the damage mechanics energy equivalence
principle, results as:

σTN = (I−D)TCTN(I−D)εTN (1)

In Eq. 1, CTN is the elastic orthotropic constitutive matrix of the undamaged material for plane
stress conditions, I is the 3 × 3 identity matrix and D the damage matrix containing the three
scalar variables DT , DN and DTN , as follows:

D =

DT 0 0
0 DN 0
0 0 DTN

 (2)

To account for the unilateral effect typical of masonry material, the introduced damage variables
DT and DN are defined as a proper combination of damage parameters for tensile, Dit, and
compressive, Dic (i = T,N ), strain states, as follows:

DT = αTDTt + (1− αT )DTc

DN = αNDNt + (1− αN)DNc

(3)

The weighting coefficients, αT and αN , are introduced to rule the stiffness recovery related to
the re-closure of tensile cracks when the material undergoes compressive states.

All the damage variables, Dit, Dic and DTN , can range between 0, corresponding to the
undamaged material, and 1, representing the completely degraded state. Furthermore, these
have to satisfy the irreversible thermodynamic condition such that Ḋit ≥ 0, Ḋic ≥ 0 and
ḊTN ≥ 0 and the constraints Dit ≥ Dic. Each damage variable is associated to a peculiar
failure mode, as sketched in Figure 2, thus distinguishing degrading mechanisms due to tensile
and compressive states, parallel and normal to bed joints, and shear states. Accordingly, to drive
the evolution of damage, associated variables are defined on the basis of the strain state acting
in the material axes system. These result as:

YT = εT + ν̃NT εN

YN = εN + ν̃TNεT

YTN = γTN

(4)
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where ν̃NT = [(1−DN)/(1−DT )]νNT and ν̃TN = [(1−DT )/(1−DN)]νTN are the degraded
Poisson ratios under uni-axial stress state.

(a) (b) (c) (d) (e)

Figure 2: Failure modes associated to (a) DTt, (b) DNt, (c) DTc, (d) DNc and (e) DTN .

Furthermore, a proper limit surface is introduced to rule damage activation, being geometri-
cally defined as the intersection of an ellipsoid and an elliptic cone in the space of the damage
associated variables. Only few material parameters are needed to construct the surface, that
is the uni-axial damage thresholds in the parallel, YTt0 and YTc0, and normal, YNt0 and YNc0,
direction to the bed joints orientation (by distinguishing them to account for the non-symmetric
behavior in tension and compression, as the subscripts ‘t’ and ‘c’ indicate), the pure shear Ys0
threshold and bi-axial compressive Ycc0 threshold (see Figure 3).
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Figure 3: Damage limit surface in the (a) YTN -positive damage associated variables space and (b) YT -YN plane.

According to the damaging criterion, points lying inside the surface represent material elastic
states, otherwise damage evolution occurs and the damage thresholds YT0, YN0, YTN0 have to
be identified. Once evaluated the activation thresholds, the following rational evolution rules
are assumed:

Dit =
Yi − Yi0
atYi + bt

(Yi ≥ 0) , Dic =
|Yi|−|Yi0|
ac|Yi|+bc

(Yi < 0) , DTN =
|YTN |−|YTN0|
as|YTN |+b̄s

(5)
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with i = T,N and at, ac, as, bt, bc, b̄s material parameters selected on the basis of uni-axial
tension, compression and pure shear tests. Peak strengths of stress-strain relationships are
mainly governed by bt, bc and b̄s parameters, while at, ac and as influence the slope of soft-
ening branches. It should be underlined that a linear variation of b̄s with the compressive stress
σc
N (b̄s = bs + |σc

N |bs) is introduced to phenomenologically capture the well-known increment
of the fracture energy associated to MODE II of failure with the normal compressive stress. As
emerges from Eq. 5, the sign of YT and YN variables permits to distinguish between damage in
tension and compression along each material axis.

The presented model is introduced in a 4-node isoparametric FE and implemented in the
FEAP code [17]. A classical nonlocal integral procedure [18] is adopted to overcome the mesh-
dependency drawback emerging in case of strain-softening behavior. Thus, the local damage
associated variables in Eq. 4 are replaced by their integral definition, depending on the nonlocal
radius lc.

3 BI-AXIAL FAILURE DOMAINS

To validate the proposed model and show its capability of describing influence of the applied
stresses with respect to bed joint direction, the experimental tests performed by Page [19, 20]
are numerically reproduced. Test conditions were designed to impose bi-axial stresses, oriented
at various angles ϑ with respect to the bed joints, on square panels made of half-scale solid clay
units arranged in running bond texture. Failure surfaces were obtained in terms of principal
applied stresses and their orientation with respect to the material axes.

Table 1 contains the material parameters used to perform the numerical analyses, which are
selected according to data provided by Page et al. [19, 20, 21].

Elastic parameters
ET [MPa] EN [MPa] νTN GTN [MPa]

5700 5600 0.19 2350

Damage parameters
at/c/s bt bc bs
0.99 4E-05 2E-03 1E-04

Damage thresholds
YTt0 YTc0 YNt0 YNc0 Ys0 Ycc0

6.8E-05 6.8E-04 4.2E-05 1.2E-03 1.3E-04 1.1YNc0

Table 1: Material parameters for Page panels.

A good agreement emerges between numerical and experimental outcomes, as Figure 4 shows
by comparing the experimental (dots) and numerical (solid lines) failure domains for different
values of ϑ angle. To be noted is that, in case of ϑ = 0°, non-symmetric shape of the failure
surface, with respect to the bisecting axis, is found. This is due to the different mechanical
properties defined along material axes T -N , which correspond to the principal stress directions.
By varying ϑ, the asymmetric characteristic of the failure surface is gradually lost until the
symmetric shape is fully resorted at ϑ = 45°(see Figure 4(c)), as a consequence of the stress
acting along the material axes.
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Figure 4: Failure surface for (a) ϑ = 0°, (b) ϑ = 22.5°and (c) ϑ = 45°: comparison between numerical (solid line)
and experimental (dots) results from Page [19, 20].

4 EFFECT OF TEXTURE

As known, the level of orthotropy of the homogenized material response depends on ge-
ometry, size, mechanical properties and arrangement of the constituent materials. Hence, to
investigate the effect of bricks and mortar relative arrangement on the elastic properties of the
homogenized material, different masonry textures are here analyzed.

Figures 5(a-d) show examples of masonry-like composite textures with rectangular bricks,
namely running, English, Flemish and header bond. Brick dimensions are 250 ×120 ×60 mm3,
whereas 10 mm thick mortar is considered.
To evaluate the effective elastic properties, a homogenization procedure [22] is adopted, based
on the selection of a cell representative of the periodic masonry (RVE), which generates the
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regular arrangement by repeating itself in the real medium. The selected cells for each texture
are highlighted in Figure 5 with white blue windows.

(a) (b)

(c) (d)

Figure 5: Masonry textures: (a) running, (b) English, (c) Flemish and (d) header bond.

Each RVE is modeled at the microlevel by separately discretizing bricks ′b′ and mortar ′m′

by 4-node quadrilateral FEs. Linear elastic isotropic constitutive laws are adopted for both with
Young’s moduli Eb = 10000 MPa and Em = 1000 MPa, and Poisson ratios νb = νm = 0.15.
Then, the macroscopic strain vectors [1 0 0], [0 1 0] and [0 0 1] are sequentially imposed to the
RVE as input kinematic conditions. On the basis of these, the microscopic displacement field
at each point of the RVE is expressed as the superposition of two different parts, as follows:

u = ū + ũ (6)

where ū is the assigned displacement, depending on the kinematic map linking the macro and
micro level, and ũ is the fluctuation field satisfying the periodicity conditions on the RVE
boundary. The microscopic strain field is then derived by applying the compatibility conditions
and the stresses are computed on the basis of the constitutive response of each constituents.
Then, by applying the Hill-Mandel equivalence principle, the macroscopic stresses associated
to the assigned macroscopic strains, and representing the columns of the homogenized elas-
tic matrix CTN , are obtained as shown in Table 2. Here, it can be noted that different levels
of orthotropy emerge depending on the adopted masonry texture, with the more significant
anisotropic response obtained for the running bond arrangement.

Moduli [MPa] CTN(1, 1) CTN(1, 2) = CTN(2, 1) CTN(2, 2) CTN(3, 3)
Running bond 6988.3 584.7 4367.1 1745.7
English bond 6260.4 551.9 4313.3 1681.9
Flemish bond 6494.6 562.3 4331.2 1701.5
Header bond 5610.8 524.1 4259.8 1625.9

Table 2: Elastic moduli of the homogenized masonry in Figure 5.

To summarize, notwithstanding the initial elastic characteristics can be significantly modified
due to onset of nonlinear mechanisms, these can provide useful information to identify cases
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where it is required to resort to anisotropic material description instead of a simplified isotropic
one.

5 PUSHOVER RESPONSE OF A TWO-STORY MASONRY WALL

To further validate the proposed model, the response to lateral loads of a one-bay unrein-
forced masonry wall is analyzed and compared with that obtained by existing literature models
[23, 24]. Geometry of the structure (thickness t = 0.6 m) and loading conditions are shown
in Figure 6(a). The wall is subjected to self-weight (ρ = 2 t/m3) and uniformly distributed
masses at floor levels, resulting in additional vertical loads about equal to p1 = 60 kN/m and
p2 = 40 kN/m at first and second floor, respectively. Then, horizontal forces are applied mim-
icking a first mode distribution as sketched in Figure 6(a), where V represents the value of the
base shear force.

As concerns the mechanical parameters, these are selected according to the data adopted by
Salonikios et al. [23]. The authors considered different modeling strategies based on equivalent
frame model, macromechanical and discrete element approaches. In the discrete model, bricks
and mortar were modeled as elastic material and elastic-plastic interface elements, respectively
(Eb = 2400 MPa and Em = 400 MPa). The assumed tensile and compressive strengths for
joints were ft = 0.1 MPa and fc = 3 MPa, whereas cohesion was set equal to 0.09 MPa. More-
over, to reduce the computational effort, overvalued size of brick was assumed (0.50 × 0.25 m
instead of 0.2× 0.1 m). On the basis of these mechanical and geometrical parameters, the elas-
tic properties of the homogenized masonry are here derived through the procedure described in
Section 4 with reference to the RVE depicted in Figure 6(a) and setting νm = νb = 0.2. Further-
more, to distinguish between strength properties along masonry natural axes, the representative
cell is analyzed at microlevel by using the micromechanical model adopted by Sacco [25], that
assumes all the nonlinear mechanisms occurring in mortar joints and accounts for damage and
friction phenomena. Setting mechanical properties of constituent materials according to Sa-
lonikios et al., the RVE is subjected to macroscopic tensile strain histories parallel and normal
to bed joints. The responses plotted in Figure 6(b) in terms of homogenized strain and stress
components (red lines) are obtained. On the basis of these, the material parameters to be used in
the proposed orthotropic model are derived as contained in Table 3. These correspond to tensile
strengths parallel and normal to bed joints equal to 0.15 MPa and 0.1 MPa respectively, accord-
ing to micromechanical analyses results (see Figure 6(b)) . Shear strength is assumed equal to
0.09 MPa, whereas compressive strengths parallel and normal to bed joints are 2.5 MPa and
3 MPa.

Elastic parameters
ET [MPa] EN [MPa] νTN GTN [MPa]

1838.8 1610.4 0.18 617.4

Damage parameters
at/c/s bt bc bs
0.99 1.0E-05 3.5E-03 1.0E-04

Damage thresholds
YTt0 YTc0 YNt0 YNc0 Ys0 Ycc0

7.9E-05 7.9E-04 6.0E-05 1.5E-03 1.5E-04 1.1YNc0

Table 3: Material parameters for the two-story masonry wall.
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Figure 6: Two-story wall: (a) geometry (dimension in [m]) and loading conditions, (b) responses to tensile strains
parallel and normal to bed joints direction.

A mesh made of 444 4-node FEs is used to perform the numerical simulation, setting the
nonlocal radius lc = 350 mm on the basis of mesh and brick sizes. A two-step analysis is carried
out: first the vertical loads are applied, then, the wall is subjected to incremental horizontal
forces at floor levels, as shown in Figure 6(a). The structural response, in terms of pushover
curve (base shear vs. horizontal displacement of the middle point at the top of the building) is
depicted in Figure 7(a) with black line. To be noted is that due to the force-controlled loading, it
can not be captured the possible softening branch. The obtained curve correlates well with the
results deriving from others studies, as emerges from the comparison provided in Figure 7(a).

As concerns the activated failure modes, Figure 7(b) and Figure 8(a,b) show the damage
maps for DT , DN and DTN at the end of the analysis. These are in agreement with the failure
patterns obtained by Salonikios et al. [23] with damage mainly located at the base of the piers
of first floor due to the rocking failure mechanisms and in the spandrels at both levels. Damage
DT localizes at the corners of the openings, whereas damage DN is located at base of piers of
the both levels, where the maximum tensile stresses normal to bed joints occur.

6 CONCLUSIONS

• An orthotropic macromechanical model with damage has been proposed to analyze the
in-plane response of masonry walls. The model, accounting for the variation of the me-
chanical properties observed for different material directions, has been implemented in a
4-node isoparametric finite element in the FEAP code.

• A study has been performed to analyze the effect of bricks and mortar relative arrange-
ment on the elastic properties of the homogenized material. It has emerged that different
level of orthotropy can occur depending on the adopted masonry texture, thus provid-
ing useful information to identify cases in which it can not be neglected the anisotropic
macroscopic characteristic of the response.
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Figure 7: Two-story wall: (a) comparison between different models and the obtained load-displacement curve, (b)
distribution of damage DT at the end of the analysis (amplified deformation).
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Figure 8: Two-story wall: distributions of damage (a) DN and (b) DTN at the end of the analysis (amplified
deformation).

• Numerical analyses have been performed to test the capability of the proposed model of
describing masonry nonlinear behavior. The comparison between numerical and exper-
imental failure domains obtained under bi-axial stress states have highlighted the model
ability in capturing influence of orientation of the applied stresses with respect to bed
joints. Moreover, the seismic response of a two-story masonry wall, simulated by means
of horizontal loads mimicking the first mode shape distribution, has correlated well with
results obtained by existing literature models both in terms of pushover curve and damage
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distributions.
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