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Abstract
In this paper, we study the convergence of a block-coordinate incremental gradient method. Under some specific assumptions
on the objective function, we prove that the block-coordinate incremental gradient method can be seen as a gradient method
with errors and convergence can be proved by showing the error at each iteration satisfies some standard conditions. Thus, we
can prove convergence towards stationary points when the block incremental gradient method is coupled with a diminishing
stepsize and towards an ε-approximate solution when a bounded away from zero stepsize is employed.

Keywords Incremental gradient · Block-coordinate decomposition · Online optimization

1 Introduction

In this paper, we consider a block-coordinate incremental
gradient algorithm, hereafter called BIG, for minimizing a
finite-sum function

minimize
w∈Rn

f (w) =
H∑

h=1

fh(w). (1)

and study its convergence when f : Rn → R is a continu-
ously differentiable function.

Problem (1) is a well-known optimization problem that
arises in many practical applications including the regular-
ized empirical risk minimization (ERM)where fh represents
the loss function of the h−th data block and constitutes a stan-
dard approach when training machine learning models (see
e.g. Bertsekas 2011; Bottou et al. 2018; Goodfellow et al.
2016 and reference therein). We focus on the case where
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both the number of components H and the dimension of
the space n are very large, which arises in machine learn-
ing training problems when tackling Big Data applications
by means of over-parametrized models such as Deep Net-
works. Indeed, one of the main issues when solving problem
(1) through standard batch methods, namely methods that
use all the terms fh at each iteration, is related to the high
computational effort needed for each objective function and
gradient evaluations. The per-iteration cost depends on the
size of H and n, so that when both of them are large there is
an incentive to use less expensive per-iteration methods that
exploit the structure of the objective function to reduce the
computational burden and avoid slowing down the optimiza-
tion process.

In order to overcome this computational burden, problem
(1) has been mainly tackled by means of online algorithms,
namelymethods that at each iteration k use one ormore terms
fh in the objective function to compute an update of the cur-
rent solution wk . The reason for the great success of online
methods lies mainly in the different balance of per-iteration
costs and expected per-iteration improvement in the objec-
tive function, particularly in the Big Data setting when the
size of H becomes very large [see e.g. comments in Bottou
et al. (2018)]. Online methods can be roughly distinguished
in two kinds: incremental gradient (IG) methods where the
order in which the elements fh are considered is fixed a
priori and not changed over the iterations; stochastic gradi-
ent (SG) methods where elements fh are chosen according
to some probability distribution. IG methods can be applied
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only to finite-sum functions, while SG methods also apply
to functions with infinite terms fh (e.g. function represent-
ing expected values). Concerning the convergence theory,
while incremental methods can be considered and analysed
as deterministic methods, stochastic frameworks are usu-
ally analysed recurring to probabilistic analysis. The former
method and its convergence have been deeply investigated
in, e.g. Bertsekas (1996), Bertsekas (2015), Bertsekas and
Tsitsiklis (2000) and Solodov (1998), while the latter in, e.g.
Bertsekas and Tsitsiklis (2000), Bottou (2010) and Robbins
and Monro (1951).

As pointed out in Palagi and Seccia (2020), even though
online methods can effectively tackle optimization problems
where the dimension of H is very large, they still suffer
when the search space n becomes large as well, namely when
the number of variables increases. It is often the case when
dealing with applications where deep learning models are
employed (e.g. image recognition applications) that the num-
ber of parameters to be estimated can go above hundreds of
millions (Simonyan and Zisserman 2014). An efficient solu-
tion to tackle optimization problems with a large number
of variables n is represented by Block-Coordinate Descent
(BCD) methods, which update at each iteration only a subset
of the whole variables, keeping the other fixed to the current
value. By exploiting the structure of the objective function
(e.g. fixing some variables makes the subproblem convex or
allows for parallel updates) and thanks to the lower cost of
calculating the block component of the gradient, these meth-
ods lend themselves well to efficient implementations and
can greatly improve optimization performance and reduce
the computational effort (see e.g. Bertsekas and Tsitsiklis
1989; Buzzi et al. 2001; Grippo et al. 2016; Palagi and Seccia
2020). Their convergence has already been analysed in many
works with different assumptions on both the block selection
rule and the properties of the update (Beck and Tetruashvili
2013; Bertsekas and Tsitsiklis 1989; Grippo and Sciandrone
1999; Lu and Xiao 2015; Nesterov 2012; Wright 2015).

In order to leverage both the sample decomposition with
respect to the elements fh composing the objective function,
typical of online methods, and the block-wise decomposition
with respect to the variables, typical of BCD frameworks, an
effective solution is represented by block-coordinate online
methods. Block-coordinate online methods aim to reduce the
per-iteration costs by operating along a twofold line: updat-
ing only on a subset of the variables w as in BCD methods,
and on a subset (i.e. mini-batch) of the components fh as in
online methods. The behaviour of block-coordinate online
methods has already been investigated in Wang and Baner-
jee (2014)where the strongly convex case is considered and a
geometric rate of convergence in expectation has been estab-
lished. Moreover, in Zhao et al. (2014) and Chauhan et al.
(2017) the effectiveness of this approach has already been
tested in strongly convex sparse problems such as LASSO or

sparse logistic regression, respectively. In Bravi and Scian-
drone (2014), a two-block decomposition method is applied
for training a neural network where the objective function is
assumed to be convex with respect to one of the block com-
ponents (the output weights) so that exact optimization can
be used for the convex block update while the other block
(hidden weights) is updated using an incremental gradient
update. In Palagi and Seccia (2020), the layered structure of
a deep neural network has been explored to define a block
layer incremental gradient (BLInG) algorithm which uses
an incremental approach for updating the weights over each
single layer. Numerical effectiveness of embedding block-
coordinate modifications in online frameworks has already
been tested and turned out to be a promising approach
(Chauhan et al. 2017; Palagi and Seccia 2020; Wang and
Banerjee 2014; Zhao et al. 2014).

In this paper, we present a block-coordinate incremental
gradient method (BIG), which generalizes the BLInG algo-
rithm presented in Palagi and Seccia (2020) for the deep
networks training problem, and we focus on its convergence
analysis. BIG can be seen as a deterministic gradient method
with errors, since the selection of both the elements fh and
the blocks of variables is fixed a priori and not changed
over the iterations so that the algorithm can be analysed as a
gradient method with deterministic errors. Thus, taking steps
from the deterministic convergence results for gradientmeth-
ods with errors reported in Bertsekas and Tsitsiklis (2000)
and Solodov (1998), we prove convergence of BIG towards
stationary points and to an ε-approximate solution, respec-
tively, when a diminishing and a bounded away from zero
stepsizes are employed. We do not report numerical results
that can be found in Palagi and Seccia (2020) where the opti-
mization problem arising in training deep neural networks
is considered. Overall, the numerical results in Palagi and
Seccia (2020) suggest the effectiveness of BIG in exploiting
the finite-sum objective function and the inherent block layer
structure of deep neural networks.

The paper is organized as follows: in Sect. 2, prelimi-
nary results on the convergence theory of gradient methods
with errors are recalled and the convergence analysis of IG
is provided following standard analysis of gradient methods
with errors fromBertsekas and Tsitsiklis (2000) and Solodov
(1998). In Sect. 3, we show how BIG can be regarded as
a gradient method with errors and prove its convergence
properties. In Sect. 4, we discuss numerical performance
of BIG when compared with its non-decomposed counter-
part IG. Finally, in Sect. 5 conclusions are drawn and in the
“Appendix” supporting material is provided.

Notation.We use boldface for denoting vectors, e.g. w =
(w1, . . . , wn) and ‖ · ‖ to denote the euclidean norm of a
vector. Given a set of indexes � ⊆ {1, . . . , n}, we denote by
w� the subvector of w made up of the components i ∈ �,
namely w� = (wi )i∈� ∈ R|�|. The gradient of the function is
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denoted by ∇ f (w) ∈ Rn and, given a subvectorw� ofw, we
use the short notation ∇� f (w) ∈ R|�| to denote the partial
derivative with respect to the block w�, i.e. ∇w�

f (w).
Given a partition L = {�1, . . . , �L} of the indexes

{1, . . . , n}, namely ∪L
i=1�i = {1, . . . , n} and �i ∩ � j = ∅

for all i 
= j , a vector w can be written, by reordering its
components, as w = (w�1 , . . . ,w�L ) and correspondingly
∇ f (w) = (∇ f (w)�1 . . . ,∇ f (w)�L ). Further, we use the
notation [·]� to define a vector in Rn where all the compo-
nents are set to zero except those corresponding to the block
�, namely given a vector w ∈ Rn the vector [w]� is defined
component-wise as

([w]�)k =
{

wk if k ∈ �

0 otherwise.

Thanks to this notation, we have w = ∑L
i=1[w]�i and

∇ f (w) = ∑L
i=1[∇ f (w)]�i . Moreover note that [w]�i ∈ Rn

while w�i ∈ R|�i |.

2 Background on Gradient method with
errors

In this section, we report twomain results concerning conver-
gence of gradient methods with errors which will be useful
for proving the convergence properties of BIG in Sect. 3. In
particular, we consider two results, one concerning the adop-
tion of a diminishing stepsize and the other considering a
bounded away from zero stepsize, respectively, from Bert-
sekas and Tsitsiklis (2000) and Solodov (1998). To the best
of author knowledge, these two results are among the most
significant, with the former being among the ones with the
less restrictive assumptions when a diminishing stepsize is
employed (as highlighted by the authors neither convexity
of the function nor boundedness conditions on the function
or the sequence generated {wk} are required to prove con-
vergence), and the latter being the first convergence result
for incremental methods with bounded away from zero step-
sizes. After having introduced and briefly discussed these
two results, in the remainder of this section we recall their
implications for the standard incremental gradient method.

In both the next two propositions, it is assumed that the
function f is continuously differentiable with M-Lipschitz
continuous gradient, that is

‖∇ f (u) − ∇ f (v)‖ ≤ M‖u − v‖ ∀u, v ∈ Rn . (2)

We start by considering the work done by Bertsekas and
Tsitsiklis (2000) where a diminishing stepsize is considered.
Themain idea is that a gradient method with errors where the

error is proportional to the stepsize converges to a stationary
point provided that the stepsize goes to zero but not too fast.

Proposition 1 (Proposition 1 in Bertsekas and Tsitsiklis
2000) Let f be continuously differentiable over Rn satis-
fying (2). Let {wk} be a sequence generated by the method

wk+1 = wk + αk(dk + ek)

where dk is a descent direction satisfying for some positive
scalars c1 and c2 and all k,

c1‖∇ f (wk)‖2 ≤ −∇ f (wk)T dk ‖dk‖ ≤ c2(1 + ‖∇ f (wk)‖)

and ek is an error vector satisfying for all k,

‖ek‖ ≤ αk(p + q‖∇ f (wk)‖) (3)

where p and q are positive scalars. Assume that the stepsize
αk is chosen according to a diminishing stepsize condition,
that is

∞∑

k=0

αk = ∞
∞∑

k=0

(αk)2 < ∞. (4)

Then either limk→∞ f (wk) = −∞ or { f (wk)} converges to
a finite value and limk→∞ ∇ f (wk) = 0. Furthermore every
accumulation point of wk is a stationary point of f .

On the other hand, when it comes to the case of stepsizes
bounded away from zero, Solodov proves in Solodov (1998)
that a gradient method with errors has at least an accumu-
lation point w̄ that is an ε-approximate solution, with the
tolerance value ε at least linearly depending on the limiting
value of the stepsize ᾱ > 0.

Proposition 2 (Proposition 2.2 in Solodov 1998) Let f be
continuously differentiable over a bounded set D and let f
satisfying condition (2). Let {wk} ⊂ D be a sequence gener-
ated by

wk+1 = wk − αk(∇ f (wk) − ek).

Assume limk→∞ αk = ᾱ > 0 with αk ∈ (θ, 2/M − θ) with
θ ∈ (0, 1/M], and

‖ek‖ ≤ αk B̄ (5)

with B̄ > 0.
Then there exist a constant C > 0 (independent of ᾱ) and

an accumulation point w̄ of the sequence
{
wk

}
such that

‖∇ f (w̄)‖ ≤ C ᾱ (6)
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Furthermore, if the sequence
{
f
(
wk

)}
converges then every

accumulation point w̄ of the sequence
{
wk

}
satisfies (6).

Comparing the hypothesis inPropositions 1 and2,wehave
that the former result considers a gradient related direction
while the latter is stated only with respect to the antigradient.
Moreover, the former does not require the sequence {wk} to
stay within a bounded set, thing that instead is needed by the
latter Proposition. Finally, Proposition 2 makes a stronger
assumption on the error term compared to Proposition 1,
which, however, can be relaxed so to consider the samebound
as in (3) (see Solodov 1998 and the discussion in the follow-
ing Sect. 3.2).

2.1 Incremental Gradient as Gradient method with
error

The incremental gradient framework updates the point wk

by moving along the gradient direction of one or few terms
fh , which are used in a fixed order. Once all the elements H
composing the function in problem (1) have been considered,
the outer iteration counter k is increased and the stepsize αk

is updated. The inner iteration starts with the current iterate
wk , and it loops over the indexes h = 1 . . . , H using a fixed
stepsize αk ; that is

yk0 = wk

ykh = ykh−1 − αk∇ fh(ykh−1) h = 1, . . . , H
wk+1 = ykH

(7)

Thus, an iteration of the IG method can be written as

wk+1 = wk + αkdk, (8)

with the direction dk defined through the intermediate
updates ykh defined as in (7), i.e.

dk = −
H∑

h=1

∇ fh(ykh−1). (9)

For the sake of notation, in the following we do not report
explicitly the number of terms fh used to determine the direc-
tion, but without loss of generality we assume that the index
h can represent either one index or a set of indexes. In both of
the two cases, the same arguments directly apply. A general
scheme of an IG method is reported in Algorithm 1.

Convergence of IG has been proved both in the case a
diminishing stepsize and a bounded away from zero step-
size is employed, respectively, in Bertsekas and Tsitsiklis
(2000) and Solodov (1998), by showing that it satisfies the
assumptions of Propositions 1 and 2. Since we follow a
similar approach to prove convergence of BIG in the next

Algorithm 1 Incremental Gradient (IG)
1: Choose w0 ∈ Rn, α0 > 0 and set k = 0;
2: while (stopping criterion not met) do
3: Set yk0 = wk ;
4: for h=1,…,H do
5: ykh = ykh−1 − αk∇ fh(ykh−1)

6: end for
7: wk+1 = ykH
8: Update αk

9: k = k + 1
10: end while

section, below we report the main convergence result for the
IG method when a diminishing stepsize is employed.

Proposition 3 (Proposition 2 in Bertsekas and Tsitsiklis
2000) Let {wk} be a sequence generated by (7), (8) and (9).
Assume that for all h = 1, . . . , H there exist positive con-
stants M, a, b such that

‖∇ fh(u) − ∇ fh(w)‖ ≤ M‖u − w‖ ∀ u,w ∈ Rn (10)

‖∇ fh(w)‖ ≤ a + b‖∇ f (w)‖ ∀ w ∈ Rn . (11)

Then the direction defined in (9) can be written as

dk = −∇ f (wk) + ek

with ek satisfying for some positive constants p, q

‖ek‖ ≤ αk(p + q‖∇ f (wk)‖).

Proposition 3 states that an IG iteration satisfies the
hypothesis ofProposition1 andconvergence follows.Namely,
it shows that IG can be viewed as a batch gradient method
where the gradient is perturbed by an error term that is pro-
portional to the stepsize. Thus, roughly speaking, driving the
stepsize to zero will drive the error to zero as well, allowing
to prove convergence. The proof of Proposition 3 provided in
Bertsekas and Tsitsiklis (2000) is only shown for the case of
H = 2, for reasons of simplicity. For the sake of complete-
ness and to help the reader with the following convergence
result, we provide in “Appendix A” the proof of Proposi-
tion 3 in the more generic case of any number of elements
H . Finally, we note that condition (10) could be stated using
a different Lipschitz constant for each h. However, for the
sake of simplicity, we omit this detail.

We do not report the convergence result of IG in case a
bounded away from zero stepsize is applied since it is not
useful for proving convergence of BIG in case of a bounded
away from zero stepsize. (Its convergence can be proved by
following a similar reasoning to the one applied in the fol-
lowing Proposition 4). However, we remark that in Solodov
(1998) to ensure that the error term in IG satisfies assump-
tion (5) it is assumed that each ∇ fh is Lipschitz continuous
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and that the norm of each ∇ fh is bounded above by some
positive constant [cfr Proposition 2.1 in Solodov (1998)].

3 The block-coordinate incremental gradient
method

As already discussed in the introduction, incremental meth-
ods rely on the reduction of the complexity of a single
iteration by exploiting the sum in the objective function.
However, they still suffer when the dimension of the space
n is large. On the other hand, BCD methods resort to sim-
pler optimization problems by working only on a subset of
variables.

Given a partition L = {�1, . . . , �L} of the indexes
{1, . . . , n} with w�i ∈ RNi and

∑L
i=1 Ni = n, a standard

BCD method selects at a generic iteration one block �i (we
omit the possible dependence on k) and updates only the
block wk

�i
while keeping all the other blocks fixed at the cur-

rent iteration, i.e. wk+1
� j

= wk
� j

for j 
= i . By fixing some
variables, the obtained subproblem, besides being smaller,
might have a special structure in the remaining variables that
can be conveniently exploited. Further, these methods might
allow a distributed/parallel implementation that can speed up
the overall process (Bertsekas and Tsitsiklis 1989; Grippo
and Sciandrone 1999; Wright 2015).

In order to leverage the structure of the objective function
and mitigate the influence of both the number of variables n
and the number of terms H , a solution is to embed the online
framework into a block-coordinate decomposition scheme.
Following this idea, the block-coordinate incremental gradi-
ent (BIG) method proposed here consists in updating each
block of variables w� j using only one or a few terms fh of
the objective function. As done for the presentation of the IG
methods, for the sake of notation, we do not report explic-
itly the number of terms fh used in the updating rule, and
without loss of generality we assume that the index h repre-
sents either one single term or a batch of terms. All the next
arguments apply with only slight changes in the notation.

More formally, given a partition L = {�1, . . . , �L} of
the indexes {1, . . . , n}, the BIG method selects a term h ∈
{1, . . . , H} and updates all the blocks w� j sequentially with
j = 1, . . . , L by moving with a fixed stepsize along the
gradient of fh evaluated in successive points. Once all the
elements H have been selected, the outer iteration counter
k is increased and the stepsize αk is updated. Similarly to
the IG method, the BIG iteration from wk to wk+1 can be
described by using vectors ykh, j obtained in the inner itera-
tions by sequentially using in a fixed order both the terms
h and blocks j . For the sake of simplicity, we omit in the
description below the dependence on k. For any fixed value

of h, the inner iteration on the blocks � j is defined as

yh,0 = yh−1,L

yh, j = yh, j−1 − α[∇ fh(yh, j−1)]� j for j = 1, . . . , L

where y1,0 = wk . Applying iteratively, we get for any h

yh, j = yh−1,L − α

j∑

i=1

[∇ fh(yh,i−1)]�i for j = 1, . . . , L.

Developing now iteratively on h, we get

yh, j = yh−2,L − α

L∑

i=1

[∇ fh−1(yh−1,i−1)]�i
−α

∑ j
i=1[∇ fh(yh,i−1)]�i

= wk − α

h−1∑

t=1

L∑

i=1

[∇ ft (yt,i−1)]�i
−α

∑ j
i=1[∇ fh(yh,i−1)]�i

and we finally set wk+1 = yH ,L .
Hence, an iteration of BIG method can be written as

wk+1 = wk + αkdk (12)

where the direction dk is defined through the intermediate
updates ykh, j ∈ Rn as

dk = −
H∑

h=1

L∑

j=1

[∇ fh(ykh, j−1)]� j (13)

with

yk1,0 = wk, ykh,0 = ykh−1,L
ykh, j = wk − αk
(∑h−1

t=1
∑L

i=1[∇ ft (ykt,i−1)]�i + ∑ j
i=1[∇ fh(ykh,i−1)]�i

)

wk+1 = ykH ,L .

(14)

The scheme of BIG is reported in Algorithm 2.

3.1 Convergence of BIG with diminishing stepsize

Convergence of BIG can be proved under suitable assump-
tions by looking at the iteration generated by the algorithm as
a gradientmethodwith errors. Belowwe report themain con-
vergence result in case a diminishing stepsize is employed,
namely when αk is updated according to (4).

Proposition 4 (Convergence of BIG - Diminishing stepsize)
Let {wk} be a sequence generated by (12), (13) and (14).
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Algorithm 2 Block-coordinate incremental gradient (BIG)
1: Given L = {�1, . . . , �L }
2: Choose w0 ∈ Rn, α0 > 0, and set k = 0;
3: while (stopping criterion not met) do
4: Set yk1,0 = wk ;
5: for h = 1, . . . , H do
6: for j = 1, . . . , L do
7: ykh, j = ykh, j−1 − αk [∇ fh(ykh, j−1)]� j

8: end for
9: ykh+1,0 = ykh,L
10: end for
11: wk+1 = ykH ,L

12: Update αk

13: k = k + 1
14: end while

Assume that (10) and (11) hold for each h = 1, . . . , H, i.e.
there exist positive constants M, a, b such that

‖∇ fh(u) − ∇ fh(w)‖ ≤ M‖u − w‖ ∀ u,w ∈ Rn

‖∇ fh(w)‖ ≤ a + b‖∇ f (w)‖ ∀ w ∈ Rn .

Further assume that the stepsize αk satisfies (4), i.e.

∞∑

k=0

αk = ∞
∞∑

k=0

(αk)2 < ∞.

Then we have that either limk→∞ f (wk) = −∞ or f (wk)

converges to a finite value and limk→∞ ∇ f (wk) = 0. Fur-
thermore every accumulation point ofwk is a stationary point
of f .

Proof We show that the assumptions of Proposition 1 are
satisfied.
First of all, note that by the definition of norm we have
‖[w]� j ‖ ≤ ‖w‖ for all w ∈ Rn and j = {1, . . . , L}. In
turn, this yields for each h = 1, . . . , H and j = 1, . . . , L

‖[∇ fh(u)−∇ fh(v)]� j ‖≤‖∇ fh(u)−∇ fh(v)‖≤M‖u−v‖ ∀u, v∈Rn

and

‖[∇ fh(u)]� j ‖ ≤ ‖∇ fh(u)‖ ≤ a + b‖∇ f (u)‖ ∀u ∈ Rn .

We start by remarking that (10) implies (2). Indeed, ∀u, v ∈
Rn we have that

‖∇ f (u) − ∇ f (v)‖ =
∥∥∥∥∥

H∑

h=1

(
∇ fh(u) − ∇ fh(v)

)∥∥∥∥∥

≤
H∑

h=1

‖∇ fh(u) − ∇ fh(v)‖

≤ M
H∑

h=1

‖u − v‖ ≤ M̃‖u − v‖.

For the sake of simplicity, we report the proof for the case
H = 2, L = 2. The proof in the case of generic values H , L
is reported in “Appendix B”. TheBIG iteration can bewritten
as

wk+1 = wk − αk

⎛

⎝
2∑

h=1

2∑

j=1

[
∇ fh(ykh, j−1)

]

� j

⎞

⎠

which can be seen as

wk+1 = wk − αk
(
∇ f (wk) + ek

)

with the error

ek =
2∑

h=1

2∑

j=1

[
∇ fh(ykh, j−1) − ∇ fh(wk)

]

� j
.

Then we have

‖ek‖ =
∥∥∥∥∥∥

2∑

h=1

2∑

j=1

[
∇ fh(ykh, j−1) − ∇ fh(wk)

]

� j

∥∥∥∥∥∥

≤
2∑

h=1

2∑

j=1

∥∥∥∇ fh(ykh, j−1) − ∇ fh(wk)

∥∥∥

≤ M
2∑

h=1

2∑

j=1

∥∥∥ykh, j−1 − wk
∥∥∥

= M
(∥∥∥yk1,0 − wk

∥∥∥ +
∥∥∥yk1,1 − wk

∥∥∥

+
∥∥∥yk2,0 − wk

∥∥∥ +
∥∥∥yk2,1 − wk

∥∥∥
)

.

Let focus on the terms in the last inequality one by one
taking into account the inner iterations which are written as

yk1,0 = wk

yk1,1 = yk1,0 − αk
[
∇ f1(yk1,0)

]

�1

yk1,2 = yk1,1 − αk
[
∇ f1(yk1,1)

]

�2

yk2,0 = yk1,2

yk2,1 = yk2,0 − αk
[
∇ f2(yk2,0)

]

�1

yk2,2 = yk2,1 − αk
[
∇ f2(yk2,1)

]

�2

wk+1 = yk2,2.
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Hence we have

∥∥∥yk1,0 − wk
∥∥∥ = 0

∥∥∥yk1,1 − wk
∥∥∥ ≤ αk

∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥ ≤ αk
(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

∥∥∥yk2,0 − wk
∥∥∥ ≤

∥∥∥yk2,0 − yk1,1
∥∥∥ +

∥∥∥yk1,1 − wk
∥∥∥

= αk
(∥∥∥∥

[
∇ f1(yk1,1)

]

�2

∥∥∥∥ +
∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥

)

≤ αk
(∥∥∥∥

[
∇ f1(yk1,1) − ∇ f1(wk)

]

�2

∥∥∥∥

+
∥∥∥∥
[
∇ f1(wk)

]

�2

∥∥∥∥ +
∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥

)

≤ αk
(
M

∥∥∥yk1,1 − wk
∥∥∥ +

∥∥∥∥
[
∇ f1(wk)

]

�2

∥∥∥∥

+
∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥

)

≤ αk
(
M

∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥ +
∥∥∥∥
[
∇ f1(wk)

]

�2

∥∥∥∥

+
∥∥∥∥
[
∇ f1(wk)

]

�1

∥∥∥∥

)

≤ αk (M + 2)
(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

≤ αk
(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

where without loss of generality we have redefined a(M+2)
and b(M + 2) as a and b.

∥∥∥yk2,1 − wk
∥∥∥ ≤

∥∥∥yk2,1 − yk2,0
∥∥∥ +

∥∥∥yk2,0 − wk
∥∥∥

= αk
∥∥∥∥
[
∇ f2(yk2,0)

]

�1

∥∥∥∥ +
∥∥∥yk2,0 − wk

∥∥∥

≤ αk
∥∥∥∥
[
∇ f2(yk2,0) − ∇ f2(wk)

]

�1

∥∥∥∥

+ αk
∥∥∥∥
[
∇ f2(wk)

]

�1

∥∥∥∥ +
∥∥∥yk2,0 − wk

∥∥∥

≤ αkM
∥∥∥yk2,0 − wk

∥∥∥ + αk
∥∥∥∥
[
∇ f2(wk)

]

�1

∥∥∥∥

+
∥∥∥yk2,0 − wk

∥∥∥

≤
(
αkM + 1

) ∥∥∥yk2,0 − wk
∥∥∥

+ αk
∥∥∥∥
[
∇ f2(wk)

]

�1

∥∥∥∥

≤
(
αkM + 1

)
αk

(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

+ αk
(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

≤ αk
(
â + b̂

∥∥∥∇ f (wk)

∥∥∥
)

.

This implies there exist positive constants A, B such that

‖ek‖ ≤ αk
(
A + B

∥∥∥∇ f (wk)

∥∥∥
)

.

Then all the hypothesis of Proposition 1 hold and the thesis
follows. ��

The assumptions done in Proposition 4 are the same of
those donewhen proving convergence of IG in Proposition 3.
Overall, the Lipschitz condition (10) is quite natural when
studying convergence analysis of finite-sum problems and
directly implies that the whole objective function has a Lips-
chitz gradient. On the other hand, condition (11) is a stronger
and less usual assumption, requiring the gradient of each term
to be linearly bounded by the real gradient. As observed in
Bertsekas and Tsitsiklis (2000), this assumption is guaran-
teed to hold when the functions fh are quadratic convex as
in the case of linear least squares.

3.2 Convergence of BIG with bounded away from
zero stepsize

So far we have shown that a block incremental gradient
method converges to a stationary point as long as a diminish-
ing stepsize is employed. However, the diminishing stepsize
rule could be cumbersome to implement leading to slow con-
vergence in case it is not properly tuned. As a consequence,
a more practical updating rule commonly used when dealing
with incremental gradient methods is to keep the stepsize
fixed for a certain number of iterations and then reduce it
by a small factor. This updating rule is straightforward to
be implemented and can be controlled more easily than the
diminishing one.

We have already seen that BIG can bewritten as a gradient
method with error, i.e.

wk+1 = wk − αk(∇ f (wk) − ek).

Hence, in order to apply the results of Proposition2 to theBIG
method, we need to show that under some standard assump-
tions the error term in BIG satisfies condition (5). This is the
aim of the following proposition.

Proposition 5 Let {wk} be a sequence generated by (12), (13)
and (14). Assume that for each h ∈ {1, . . . , H} condition
(10) is satisfied, namely

‖∇ fh(u) − ∇ fh(w)‖ ≤ M‖u − w‖ ∀ u,w ∈ Rn

and there exist a positive constant B̄ such that it holds

‖∇ fh(wk)‖ ≤ B̄ ∀ h ∈ {1, . . . , H}. (15)
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Further assume that the stepsize αk satisfies

lim
k→∞ αk = ᾱ > 0.

Then the error term ek satisfies condition (5).

Proof Similarly to what done in Proposition 4 (cfr the
extended proof in “Appendix B”) the general BIG iteration
can be written as

wk+1 = wk − αk(∇ f (wk) − ek)

where

ek =
H∑

h=1

L∑

j=1

(
[∇ fh(ykh, j−1)]� j − [∇ fh(wk)]� j

)
.

As done in “Appendix B” to prove (19), thanks to the sample
Lipschitz condition (10), we obtain the bound

∥∥∥ek
∥∥∥ ≤ M

H∑

h=1

L−1∑

j=0

∥∥∥ykh, j − wk
∥∥∥ .

Now reasoning in a similar way to what done in Eq. (21)
and thanks to the hypothesis (15), we can get the following
bound on two iterates

∥∥∥ykh, j − wk
∥∥∥ ≤ (αkM + 1)

∥∥∥ykp(h, j−1) − wk
∥∥∥ + αk B̄

where p(h, j − 1) is used to denote the estimate before
considering the term ykh, j , as described in (20). Thus, by
iteratively applying this bound, we obtain

‖ek‖ ≤ αk B̄

for some positive constant B̄. ��

Then the following convergence result for BIG with a
bounded away from zero stepsize directly applies by con-
sidering the results from Propositions 2 and 5.

Proposition 6 (Convergence of BIG - Bounded away from
zero stepsize) Let {wk} be a sequence generated by (12), (13)
and (14). Assume that all the iterates wk and ykh, j belong to
some bounded set D.
Assume that for each h ∈ {1, . . . , H} conditions (10) and
(15) hold and that the stepsize αk satisfies

lim
k→∞ αk = ᾱ > 0,

where αk ∈ (θ, 2/L − θ) with θ ∈ (0, 1/L]. Then there exist
a constant C > 0 (independent of ᾱ ) and an accumulation
point w̄ of the sequence {wk} such that

‖∇ f (Nw)‖ ≤ C ᾱ (16)

Furthermore, if the sequence { f (wk)} converges, then every
accumulation point w̄ of the sequence {wk} satisfies (16).

Thus Proposition 6 implies that BIGwith a bounded away
from zero stepsize can only achieve a neighbourhood of a
stationary point. Overall, it was a predictable result. Indeed,
since the error term satisfies (5), if we consider the scalar
product ∇ f (wk)Tdk and assume that αk = ᾱ > 0, it yields

∇ f (wk)Tdk = ∇ f (wk)T
(
−∇ f (wk) + ek

)

≤ −‖∇ f (wk)‖2 + ‖∇ f (wk)‖‖ek‖
≤ −‖∇ f (wk)‖2 + ‖∇ f (wk)‖ᾱ B̄.

This shows how within the region

{
w ∈ Rn : ‖∇ f (w)‖ > ᾱ B̄

}

BIG computes directions which are actually descent direc-
tions, while in the complementary region the behaviour
is unpredictable. Moreover the size of this region linearly
depends on the constant stepsize ᾱ employed.

It is interesting to note that, by fixing θ = 0 we get the
stepsize α ∈ (0, 2

L̄
], which is the same stepsize needed to

prove convergence towards exact stationary points for the
standard gradient descent method. That is, if BIG has a cost
per iteration much cheaper than the batch gradient descent,
up to H times, the price to pay is that it does not converge
towards stationary points, but lends in a ε-accurate solution.

As underlined in Solodov (1998), the assumptions on the
normof the error term inProposition 2 (namely condition (5))
could be relaxed so to consider the more general case ‖ek‖ ≤
αk(a+b∇ f (wk)) for some positive constants a, b. However,
this would lead to a third-degree inequality to determine the
allowed interval for the stepsize αk which is not trivial to
solve.

Moreover, note that the boundedness assumption on the
iterates is not very restrictive. Indeed, it is satisfied as long
as the level set {w | f (w) ≤ ρ1} is bounded for some ρ1 >

f (w0) and the iterates stay within that region, as is usually
the case in the optimization problem behind training a Deep
Neural Network (Solodov 1998; Zhi-Quan and Paul 1994).
Note that also the Lipschitz and boundedness conditions on
the gradient of the objective function are satisfied whenever
each term fh is twice continuously differentiable and the
iterates stay within a compact set.

Finally, we remark that as a further example of an opti-
mization problemwhere conditions (10) and (15) are satisfied
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(and consequently (11) holds as well), we can consider the
LogitBoost algorithm (Collins et al. 2002). Indeed, given a
classification problem, in the nonlinearly separable case and
when the features are linearly independent on the training set,
then the objective function has a sample Lipschitz gradient
and each gradient can be bounded above [see Remark 3 on
Blatt et al. (2007) for a deeper discussion on the properties
of the LogitBoost algorithm].

4 Discussion on numerical performance

As a block-coordinate descent method BIG can lead to
improvements in performance in all those cases where the
structure of the objective function can be leveraged to define
problems easier to solve (e.g. subproblems might be less
computationally expensive to treat or might become sepa-
rable). On the other hand, as an incremental method, BIG
owns good properties when dealing with large-scale finite-
sum problems, namely in all those cases where the function
can be expressed as a large sum of similar terms so that
each gradient and objective function computations might
require an excessive computational effort. Thus, BIG might
be employed in all those cases where the objective function
has both some block structure that can be exploited and a
finite-sum structure.

With the aim to provide the reader with an application
of BIG to a real problem, we can consider an estimation
problem where given some data {xh, yh}Hh=1, where xh ∈ Rd

represents the input features and yh ∈ R is the output we
want to estimate, we want to determine the relation between
the input and the output by means of a nonlinear least-square
function of the form

minimize
w,v

H∑

h=1

(
φ(w; xh)T v − yh

)2 + ρ‖w‖2 + ρ‖v‖2

(17)

where φ(w; xh) represents a nonlinear transformation of the
input xh. This formulation is quite general and includes sev-
eral applications such as somekernelmethods (Shawe-Taylor
and Cristianini 2004) and neural networks (Goodfellow et al.
2016). Problem (17) presents a finite-sum with two-block
structure that perfectly fit with the advantages led by BIG.
Indeed, when considering the general term fh only with
respect to the block v it is strictly convex while when con-
sidering the block w the problem is still nonlinear but has a
smaller size and other interesting properties might come out
according to the type of nonlinear transformation φ.

As a particular instance of problem (17), in Palagi and
Seccia (2020) extensive numerical results have been reported
when dealingwith themean squared error optimization prob-

lem behind the training phase of a deep neural network. In
this class of problems, indeed, a natural block decomposi-
tion with respect to the weights of each layer appears. Then
the performance of BIG has been analysed when the layered
structure of the model is exploited. In particular, the standard
IG method is compared to the application of BIG when each
layer of the model defines a block of variablesw‘ and several
numerical results are discussed. We do not report numerical
results here which can be found in Palagi and Seccia (2020).
However, we remark how numerical results in Palagi and
Seccia (2020) suggest that BIG outperform IG, especially
when considering deeper and wider models, namely neural
networks with a larger number of layers or neurons per layer.
Moreover, from amachine learning perspective, it is interest-
ing to underline howBIG seems to lead to better performance
compared to IG also on the generalization error, namely the
error on new samples never seen before by the estimation
model.

5 Conclusion

In this paper, we have extended the convergence theory of
incremental methods by providing convergence results of
a block-coordinate incremental gradient method under two
different stepsize updating rules. The analysis has shown
how the BIG algorithm can be seen as a gradient method
with errors; thus, its convergence can be proved by recalling
known convergence results (Bertsekas and Tsitsiklis 2000;
Solodov 1998).
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A Proof of Proposition 3

Here we report a proof of Proposition 3 for a general number
of terms H .

Proof First we recall that condition (10) implies the gradient
satisfies the Lipschitz condition (2) with constant at most
equal to HM as shown in Sect. 3.1.

Let consider now the general kth iteration of IG

wk+1 = wk−αk
H∑

h=1

∇ fh(ykh−1) = wk+αk
(
−∇ f (wk) + ek

)
,

where

ek =
H∑

h=1

(
∇ fh(wk) − ∇ fh(ykh−1)

)

=
H∑

h=2

(
∇ fh(wk) − ∇ fh(ykh−1)

)
.

Taking the norm of the error and recalling (10), we obtain

∥∥ek
∥∥ =

∥∥∥∥∥

H∑

h=2

(
∇ fh(wk) − ∇ fh(ykh−1)

)∥∥∥∥∥

≤
H∑

h=2

M
∥∥∥wk − ykh−1

∥∥∥ = M
H−1∑

h=1

∥∥∥wk − ykh
∥∥∥ .

Now, for each of the element in the last sum it holds

∥∥wk − ykh
∥∥ =

∥∥∥∥∥∥
wk +

h−1∑

j=1

(−ykh− j + ykh− j ) − ykh

∥∥∥∥∥∥
= ∥∥(yk0 − yk1) + (yk1 − yk2) + · · · + (ykh−1 − ykh)

∥∥

=
∥∥∥∥∥∥
αk

h∑

j=1

∇ f j (ykj−1)

∥∥∥∥∥∥
≤ αk

h∑

j=1

∥∥∥∇ f j (ykj−1)

∥∥∥

= αk

⎛

⎝
h∑

j=1

∥∥∥∇ f j (ykj−1) − ∇ f j (wk) + ∇ f j (wk)

∥∥∥

⎞

⎠

≤ αk

⎛

⎝
h∑

j=1

∥∥∥∇ f j (wk)

∥∥∥ +
h∑

j=1

∥∥∥∇ f j (wk) − ∇ f j (ykj−1)

∥∥∥

⎞

⎠

≤ αk

⎛

⎝
h∑

j=1

∥∥∥∇ f j (wk)

∥∥∥ + M
h∑

j=1

∥∥∥wk − ykj−1

∥∥∥

⎞

⎠

≤ αk

⎛

⎝ha + hb
∥∥∥∇ f (wk)

∥∥∥ + M
h∑

j=1

∥∥∥wk − ykj−1

∥∥∥

⎞

⎠ .

Recalling that wk = yk0, we get

∥∥∥wk − ykh

∥∥∥ ≤ αk

⎛

⎝ha + hb
∥∥∥∇ f (wk)

∥∥∥

+M
h∑

j=2

∥∥∥wk − ykj−1

∥∥∥

⎞

⎠ , (18)

with

‖wk − yk1‖ = αk‖∇ f1(wk)‖ ≤ αk(a + b‖∇ f (wk)‖).

So

‖ek‖ ≤ Mαk

(
H−1∑

h=1

(
ha + hb

∥∥∥∇ f (wk)

∥∥∥
)

+
H−1∑

h=1

h∑

j=2

∥∥∥wk − ykj−1

∥∥∥

⎞

⎠ .

By recursively applying (18) to the elements of the last
sum, and recalling that αk is bounded above, we get a bound
like (3). Then the hypothesis of Proposition 1 hold and the
thesis follows. ��

B Proof of Proposition 4

Proof A general iteration of BIG method is defined as

yk1,0 = wk

yk1,1 = yk1,0 − αk
[
∇ f1(yk1,0)

]

�1

...

yk1,L = yk1,L−1 − αk
[
∇ f1(yk1,L−1)

]

�L

yk2,0 = yk1,L

yk2,1 = yk2,0 − αk
[
∇ f2(yk2,0)

]

�1

...

ykH ,L = ykH ,L−1 − αk
[
∇ fH (ykH ,L−1)

]

�L−1

wk+1 = ykH ,L

Summing up these equations, we get that the new pointwk+1

is a gradient descent method plus an error, that is

wk+1 = wk + αk(∇ f (wk) − ek)
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with

ek =
H∑

h=1

L∑

j=1

(
[∇ fh(ykh, j−1) − ∇ fh(wk)]� j

)
.

By using the sample Lipschitz hypothesis (10), we obtain

∥∥∥ek
∥∥∥ =

∥∥∥∥∥∥

H∑

h=1

L∑

j=1

(
[∇ fh(ykh, j−1) − ∇ fh(wk)]� j

)
∥∥∥∥∥∥

≤ M
H∑

h=1

L∑

j=1

∥∥∥ykh, j−1 − wk
∥∥∥

= M
H∑

h=1

L−1∑

j=0

∥∥∥ykh, j − wk
∥∥∥ . (19)

We want to prove that each term in (19) is bounded by a
quantity which satisfies (3). Given the general update ykh, j ,
the previous point depends on both the values of h and j .
Then, to make notation easier, we introduce the following
notation p(h, j − 1)

p(h, j − 1) =
{

(h, j − 1) if j − 1 > 0

(h − 1, L − 1) if j − 1 = 0.
(20)

We can now bound the general term
∥∥∥ykh, j − wk

∥∥∥ as follows
∥∥∥ykh, j − wk

∥∥∥ =
∥∥∥ykh, j − ykp(h, j−1) + ykp(h, j−1) − wk

∥∥∥

≤
∥∥∥ykh, j − ykp(h, j−1)

∥∥∥ +
∥∥∥ykp(h, j−1) − wk

∥∥∥

= αk
∥∥∥[∇ fh(ykp(h, j−1))]� j

∥∥∥ +
∥∥∥ykp(h, j−1) − wk

∥∥∥

≤ αk
∥∥∥[∇ fh(ykp(h, j−1))

−∇ fh(wk) + ∇ fh(wk)]� j

∥∥∥

+
∥∥∥ykp(h, j−1) − wk

∥∥∥

≤ αkM
∥∥∥ykp(h, j−1) − wk

∥∥∥ + αk
∥∥∥∇ fh(wk)

∥∥∥

+
∥∥∥ykp(h, j−1) − wk

∥∥∥

≤ (αkM + 1)
∥∥∥ykp(h, j−1) − wk

∥∥∥ + αk
∥∥∥∇ fh(wk)

∥∥∥

≤ (αkM + 1)
∥∥∥ykp(h, j−1) − wk

∥∥∥

+ αk(a + b
∥∥∥∇ f (wk)

∥∥∥).

(21)

By iteratively applying this bound on each term of (19), and
recalling that

∥∥∥yk1,0 − wk
∥∥∥ = αk

∥∥∥∥
[
∇ f1(yk1,0)

]

�1

∥∥∥∥ ,

we get there exist positive constants a and b such that

‖ek‖ ≤ αk
(
a + b

∥∥∥∇ f (wk)

∥∥∥
)

.

Then all the hypothesis of Proposition 1 hold and the thesis
follows. ��
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