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Abstract—The new challenge in power systems design and
operation is to organize and control smart micro grids supply-
ing aggregation of users and special loads as electric vehicles
charging stations. The presence of renewable and storage can
help the optimal operation only if a good control manages all
the elements of the grid. New models of green buildings and
energy communities are proposed. For a real application they
need an appropriate and advanced power system equipped with
a building automation control system. This paper presents an
economic model predictive control approach to the problem of
managing in a coordinated way the electric and heating resources
in a smart building, for the purpose of achieving in real time
nearly zero energy consumption and automated participation to
demand response programs. The proposed control, leveraging a
mixed integer quadratic programming problem, allows to meet
manifold thermal and electric users’ requirements and react
to inbound demand response signals, while still guaranteeing
stable operation of the building’s electric and thermal storage
equipment. The simulation results, performed for a real case
study in Italy, highlight the peculiarities of the proposed approach
in the joint handling of electric and thermal building flexibility.

Index Terms—Economic Model Predictive Control, Heating
Systems, Demand Side Management, Smart Buildings.

NOMENCLATURE

Indices
e Index of the generic electric vehicle EV
i Time index in the MPC window
k Absolute time index
l Index of the generic plannable load
u Index of the generic housing unit
Parameters
γ Heat pump coefficient of performance
T Sampling period [s]
ρair Air density [kg/m3]
ξess Loss factor of the ESS battery pack
ξesse Loss factor of the eth EV battery pack
Cfloor, Cwall Heat capacity of the floor and walls [kJ/K]
Ci Electricity tariff at time i [EUR/kWh]
ci Cost of energy consumption at time i [EUR]
cair, cw Specific heat of the air and water [kJ/(kg · K)]
Eess Capacity of the ESS [kWh]
Eev

e Energy capacity of the eth EV [kWh]
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Fe End time of recharging session of EV e [s]
Fl Latest allowed finish time of appliance l [s]
Li Set of plannable loads active at time i
M Boiler water mass [kg]
N Length of the MPC time window [s]
Nl Duration of appliance program l [s]
P ev,max
e Maximum charging/discharging power of EV e [kW]
Pnpl
i Non plannable loads power absorption at time i [kW]
P pl
i Power absorbed by the plannable loads at time i [kW]
P pv
i Power produced by the PV panel at time i [kW]
Rair

floor Thermal resistance of the floor [K/kW]
Rext

wall Thermal resistance of the external walls [K/kW]
Rpipes

floor Thermal resistance between the floor and the pipes
[K/kW]

Rwalls
air Thermal resistance of the walls [K/kW]

Se Start time of recharging session of EV e [s]
Sl Earliest allowed start time for the program of appli-

ance lth [s]
U Set of building’s units
Vu Air volume in building’s unit u [m3]
Variables
˜SOC

ess

i Reference state of charge of the ESS at time i [%]
T̃ air
u,i Reference air temperature in unit u at time i [°C]
T̃ boiler
i Reference boiler water temperature at time i [°C]
P ess
i Power injected or absorbed by the ESS at time i [kW]
P ev
i Aggregated power injected/absorbed by EVs at i [kW]
P poc
i Power flow at the grid point of connection at i [kW]
SOCess

i State of charge of the ESS at time i [%]
T air
u,i Air temperature in unit u at time i [°C]
T boiler
i Boiler water temperature at time i [°C]
T pipes
u,i , T floor

u,i , Twalls
u,i Pipes, floor and Walls temperature in

unit u at time i [°C]
T ext
i External air temperature at time i [°C]

Control Variables
cessi cessi ∈ {0, 1}, cessi = 1 if the ESS recharges at i
ceve,i ceve,i ∈ {0, 1}, ceve,i = 1 if EV e recharges at i
dessi dessi ∈ {0, 1}, dessi = 1 if the ESS discharges at i
devi,e devi,e ∈ {0, 1}, devi,e = 1 if EV e discharges at i
Gu,i Water mass flow intake of housing unit u at i [kg/s]
P ess,c
i , P ess,d

i Charging/discharging ESS power at i [kW]
P ev,c
e,i , P ev,d

e,i Charging/discharging power of EV e at i [kW]
P ev
i,e Power injected or absorbed by the EV e at i [kW]
Php
i Power absorbed by the heat pump at time i [kW]
sl,j sl,j ∈ {0, 1}, sl,j = 1 if the plannable program l is

set to start at time j
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I. INTRODUCTION

A. Motivation

BUILDINGS and the construction sector are responsible,
according to [1], for 30% of the final energy consump-

tion, for more than 55% of the global electricity demand and
for around 40% of the CO2 emissions. Increasing efficiency
and smartness of the building stock is therefore fundamental
to reduce greenhouse gas emissions, energy consumption and
increase the share of Renewable Energy Sources (RES).

In Europe, the Energy Performance of Buildings Directive
(2010/31/EU) [2], as amended in 2018 by the Directive (EU)
2018/844 [3], has established key principles, measures and
binding targets, such as the introduction of minimum energy
performance requirements for buildings, energy certification,
mandates for nearly zero-energy performance in new build-
ings, for the installation of recharging points for Plug-in
Electric Vehicles (PEVs), etc. The Directive also envisages
separate regulation of the temperature in each room, vehicle
to grid, deployment of high-capacity communication networks,
building automation and control system to “support energy
efficient, economical and safe operation of technical building
systems through automatic controls. . . ” [3] and introduces “the
smart readiness indicator” for buildings, which ”should be
used to measure the capacity of buildings to use information
and communication technologies and electronic systems to
adapt the operation of buildings to the needs of the occupants
and the grid and to improve the energy efficiency and overall
performance of buildings” [3]. The aggregation of small and
medium users in a cluster or community is one of the most
exciting challenges in the field of power systems, in which the
building automation and the controls play a fundamental role.

B. Purpose of the paper

This paper proposes a Model Predictive Control (MPC)
approach to the problem of managing, in a coordinated and
synergic way, the electric and heating resources in a smart
building, for the purpose of achieving, in real time, nearly zero
energy consumption and automated participation to Demand
Response (DR) programs, while satisfying users comfort. The
reference scenario (Fig. 1) considers a mixed-use building
consisting of several units (e.g. shops, common areas, res-
idential units, etc.), equipped with centralized local energy
resources, such as: photovoltaic (PV) panels, electric storage
system (ESS), heating system, ground-source heat pump, and
individual electricity smart (controllable/plannable) loads such
as appliances and PEVs charging stations. A centralized hot
water storage provides heating to each unit and can be used
as a controllable thermal storage.

The controllable variables of the system (i.e., the variables
manipulated in order to control the behavior of the system)
include the power absorption of the heat pump and the opening
of the hot water flow valves at the single building units (which
affect both the temperature of the water in the boiler and the
air temperature in the single units of the building), the start
times of smart appliances, the charging and discharging power
of the ESS and the PEVs (which, together with the heat pump
control and the local power generation, affect the overall net

Fig. 1. Reference architecture of a smart building, consisting of several units
heated by a centralized controlled system.

power withdrawal of the building). The controlled variables
of the system are the temperature of the hot water storage,
the air temperature in the building’s units, the State of Charge
(SOC) of the ESS, the PEVs’ SOC and the overall building
net power withdrawn from the grid. More in particular, the
control objectives include: 1) to ensure comfort of the building
occupants, in particular, to ensure that the set temperature in
each unit (possibly different from unit to unit) is tracked when
the inhabitant desires; 2) to minimize the electricity bill of the
building, also in presence of complex electricity tariff models;
3) to minimize the power flow at the point of coupling of
the building with the grid; 4) more in general, to be able to
control the power flow at the point of connection with the grid,
thus enabling the building e.g. to participate in DR programs;
5) to control the ESS SOC and the temperature of the hot
water storage (which, together with the air temperature in the
units, are the state variables of the overall controlled system),
so that they remain close to an appropriate reference value to
guarantee sufficient upside and downside control margins for
the system. The overall control problem formulation includes
terms accounting for all of the above objectives, so that
the resulting system will be able to work in all of the use
cases resulting from prioritizing one or more of the control
objectives over the remaining ones. The proposed problem
falls into the category of Economic Model Predictive Control
(EMPC), which is an optimization-based control technique
in which the objective function has an economic or general
performance based meaning (rather than a stabilizing meaning,
as in classical MPC [4]). The objective function is quadratic
(to penalize deviations of the controlled temperatures and
SOC from the reference setpoints) and includes mixed-integer
terms, also to be able to model and correctly price power
flows from/to the grid. Constraints include user comfort and
systems’ technical constraints, and the dynamics equations of
the system, which model the evolution of air temperature in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIA.2019.2932954

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 3

the building’s units, water temperature in the boiler, and SOC
of the ESS and PEVs.

A real case study of a building with a micro grid in
Italy is taken into account for the modelling, dimensioning
and calibration of the system’s equations. Simulation results
are proposed to show how the performance of the building
(in terms of the control objectives proposed above) can be
optimized by leveraging synergies of the heat and electric re-
sources available, by maximizing self-consumption of locally
generated power, (heat and electric) storage (also including
buildings thermal inertia), modulation and shifting of loads to
exploit tariff valleys, etc.

C. Structure of the paper

The remainder of the paper is organised as follows. Section
II discusses the state of the art, providing an overview about
the factors influencing the design of Energy Management
Systems (EMSs) in buildings and the main approaches used
to address the electric and thermal load management problem.
Section III presents the control problem formalization. Section
IV presents the case study and reports the simulation results.
Finally, Section V concludes the work.

II. STATE OF THE ART AND PROPOSED CONTRIBUTION

In recent years, the topic of load control as a mean for
enabling smart households and buildings to nearly zero energy
consumption and DR functionalities has been the subject of
intense research. Reviews of the many concepts and methods
in EMSs design and DR problems can be found, e.g., in [5],
[6] and [7]. For the sake of what follows, it is instrumental to
remark that the load control problem is influenced by several
factors, such as the type of loads [8] and generation [9], the
pricing scheme [10], the occupancy of the household [11] and
the weather [12]. All these factors result in a variability of
performances, as testified by a variety of pilot projects running
in Germany [13], Belgium [14], the Netherlands [15], etc.

As a matter of fact, the use of an EMS for automated partici-
pation in DR programs is largely recognized as fundamental in
challenging scenarios, in which multiple sources of energy like
local generators from RES and an ESS have to be managed,
in combination with several classes of loads, such as smart
appliances, PEVs, and in presence of complex electricity price
structures such as Time Of Use (TOU), Day Ahead Pricing
(DAP), Critical Peak Pricing (CPP), Real Time Pricing (RTP)
[16], Multi-TOU and Multi-CPP [17]; such pricing schemes
are introduced by retailers to achieve responsiveness of users
and share the risk of market volatility. Furthermore, the
problem complexity is emphasized by the need of considering
the heating system as part of the problem, in order to achieve
control on the overall building energy consumption.

Rule-based methods are widely used in practice in current
EMSs because of their simplicity and low computation effort
[18]. Though easy to implement, these methods may be
oversimplified and do not allow to capture the near future
behaviour of the process under control. Advanced EMSs
typically rely on different forms of optimization, such as linear

programming [19], binary linear programming [20], non-
linear programming [21], Mixed Integer Linear Programming
(MILP) [22], [23], [24], mixed-integer nonlinear programming
[25] and multiparametric programming [26]. A detailed de-
scription of the above mentioned papers can be found in [27].
In particular MILP formulations are useful not only to man-
age loads characterized by different levels of controllability
(on/off, continuous and semicontinuous controls), but also to
handle nonlinearities introduced by the different prices that
energy may have depending on its flow direction at the point of
connection between the building and the grid [28]. In general,
optimization is currently recognized to be effective when
integrated in a MPC framework, due to its intrinsic ability
to handle multivariable and non-stationary control problems,
also in presence of inaccurate models.

When the optimization problem is too complex to be
solved leveraging standard methods, techniques such as ge-
netic algorithms [29], particle swarm optimization [30] and
metaheuristic tabu search [31] are used. Other approaches that
can be found applied in this research area are the Lagrangian
relaxation [32] and Benders decomposition [33]. In-depth
reviews about the used optimization techniques can be found
in [34] and [35]. Finally, also learning techniques have been
applied in the context of residential EMSs, such as artificial
neural networks [36] and reinforcement learning applied to
Markov decision processes [37]. Interested readers may refer
to [7] for an insight on artificial intelligence based EMSs.

Though the building heating system is commonly recog-
nized as a potential source of flexibility, most of the re-
lated articles in literature have their special focuses with
limited attention on the interactions among thermal equip-
ment/requirements and other controllable electric loads for the
purpose of overall nearly zero energy consumption and DR.

Some papers are available on the partial integration of
controllable appliances and Heating, Ventilation and Air Con-
ditioning (HVAC) systems, which mainly focus on Combined
Heat and Power (CHP) management [38], [39], [40] and [41].
In [42] an optimization based strategy is proposed for integrat-
ing variable wind power with the CHP, while still satisfying
customers heating demand changes. In [43] it is shown how
aggregates of thermostatically controlled loads (refrigerators,
air-conditioners and space heaters) offer significant potential
for the provisioning of frequency response services.

In [44], an EMPC strategy is proposed to shift the heating
energy consumption according to the time varying energy
price. The investigated heating system consists of a heat pump
integrated with a hot water tank as active thermal energy
storage; two optimization problems are integrated together to
optimize both the heat pump electricity consumption and the
building heating consumption. In [45], a similar problem is
faced, with a focus on the use of price signals to defer the
heating loads so that the profit of the retailer is maximized.
Finally, in [46] a similar MPC strategy is proposed for the
integration of thermal energy storage, HVAC and local RES.
The last three papers, though taking into account limited
scenarios in terms of managed equipment and resources,
incorporate in a basic form some concepts which are at the
basis of the present work, like the use of thermal flexibility
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as a mean for shaping the net building electricity withdrawal,
optimally exploiting local RES and providing power balancing
services to market players.

In the present work, the performance of the building is
optimized by leveraging synergies of the heat and electric
resources. The main contribution of the paper and consequent
advancement beyond the state of the art is given by the
completeness and detail of the scenario investigated (in terms
of controlled equipment, control objectives and business cases
enabled) and the proposition of a particularly advanced and
again complete mathematical problem formulation in address-
ing combined and synergic management of heat and electric
resources. The paper achieves this by combining and extending
two lines of research from the authors, one focused mainly on
building thermal management [47], and the second, developed
in the series of works [20],[22],[27] dedicated to the control
of electric building resources for the purpose of automated
participation to DR programs. The analysis, and consequent
design, of the MPC controller presented in [47] was tailored
by the authors specifically for the heating system control of a
Nearly Zero Energy Building (NZEB), without considerations
on potential synergies with power component of the building.
This integration required a re-modeling of the thermal dynam-
ics and considerations of the system (as described by (21)-(28)
below), to cope with the increased complexity bought by the
MILP formulation of the electrical subsystem. Regarding DR,
a first contribution was given by the authors in [48] and [49],
where the aggregation of housing units of a NZEB is envisaged
for the participation of the building to DR programs. In those
papers, the authors dealt with the control issue empirically,
with discrete actions on the setpoints of the local controllers.
The present paper, combining the complex specifics of the
proposed load controllers, as [27], to EMSs interfaced with
HVAC units, and PEV charging stations, deals with a different
approach to the combined control of electric and thermal
loads, based on MPC, which enables integrated scenarios
characterized by significant control flexibility and exploitation
of the integration into the problem formulation of the system
dynamics models.

Finally, the present paper also includes, in Section III.D,
a discussion of the stability properties of the control system,
something that is rarely found in literature for such rich prob-
lem formulations deriving from real application requirements.

III. MATHEMATICAL FORMULATION

A. Objective function

As customary in EMPC, we consider a multi-objective
function that captures the physical behaviour of the system
and also its economical performance:

V =
k+N−1∑

i=k

{
a1ci + a2

∑
u∈U

(T air
u,i − T̃ air

u,i )
2+

+ a3(T
boiler
i − T̃ boiler

i )2+

+ a4(SOC
ess
i − ˜SOC

ess

i )2 + a5(P
poc
i )2

}
,

(1)

in which k is the current time and {ai}i=1,...,5 are the weights
of the different terms, dictating their relative importance in

the multi-objective problem. The summation over N steps
into the future represents the so-called “prediction horizon”
of the EMPC, since it allows the controller to take actions
accounting also for the predicted behaviour of the system.
The predictions needed for the evaluation of a cost function
with the structure of (1) are obtained thanks to the model of
the system that is embedded in the controller itself and, for
exogenous signals, from short-term predictions. Parameter N ,
the length of the prediction horizon, is tunable. The longer the
prediction horizon, the higher is the complexity of the problem
(the higher the number of variables of the problem). In a
nominal setting (without any uncertainty), a longer prediction
horizon brings the performance of the MPC algorithm closer to
the optimum achievable value (i.e. the solution of an infinite-
horizon open loop optimization problem). The adoption of a
large N is however not advisable because of the uncertainty
affecting the forecasts. Given the dynamics of the systems at
study, a reasonable value for N in our view is from some
minutes to less than 24 hours (we chose N = 3 hours, which
results in fast solving time and good performance).

EMPC follows the receding horizon paradigm introduced
for MPC, as the open-loop problem of the minimization of
(1) is repeated at every time step k, consequently applying
to the system only the first element of the control sequence
that optimized the objective function. At each iteration the
optimization is done after having observed the system state,
hence compensating any discrepancies between the predicted
evolution of the system and its real behaviour. This combina-
tion of optimization and the iterative state feedback is what
gives MPC/EMPC high performance and robustness.

We now briefly discuss (1). The first term accounts for the
minimization of the overall electricity bill of the building, and
is defined further below. The second term is related to users’
comfort and penalizes the deviations of the air temperature
in each unit from a given set-point. Air temperature set-
points are typically preset by the building manager; they are
usually time-varying and they can be changed by the users
via the thermostats in the units. The third and the fourth
terms penalize, respectively, the deviations of the boiler water
temperature and of the ESS SOC from given set-points. They
are included to keep the boiler and the ESS close to a
state in which they can exchange significant amounts of heat
and electric energy (i.e. so to have significant upward and
downward control margins). A reasonable choice for T̃ boiler

i

and ˜SOC
ess

i can be therefore 50% of the allowed temperature
and SOC range. The last term penalizes high electric power
flows at the point of connection with the grid.

B. Constraints

One of the main advantages of EMPC is its ability to handle
constraints with ease, thanks to the receding horizon paradigm
that leads to subsequent optimizations over a limited prediction
horizon. Constraints below hold for all i ∈ [k, k + N − 1],
u ∈ U , e ∈ E (the sets of building units and PEVs controlled).

Definition of ci: The term ci in (1) is the cost/profit deriving
from the energy absorbed or injected into the grid at time i.
It is a nonlinear term because, to make the formulation of
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the problem more general and aligned with the reality, it is
assumed here that the energy tariff depends on the sign of
P poc
i . That is, the cost for buying energy (i.e. when P poc

i ≥ 0)
is assumed different in general from the remuneration received
when power is injected into the grid (i.e. when P poc

i ≤ 0). Let
us then denote the tariff at i with Ci(P

poc
i ), to make explicit its

dependence on P poc
i . Given this additional notation, it is ci =

T P poc
i Ci(P

poc
i ). The term can be replaced with an equivalent

linear one adapting the approach explained in [27]. Boolean
variables δ1i and δ2i are added, with the following constraints:

δ1i + δ2i = 1

P poc,minδ1i ≤ P
poc
i ≤ P poc,maxδ2i

(2)

It can be verified that, with the above positions, it is δ1i = 1
if and only if P poc

i ≤ 0 and δ2i = 1 if and only if P poc
i ≥ 0.

Next, let us further denote with c1i the remuneration price
obtained at i when power is injected into the grid (i.e. when
δ1i = 1, P poc

i ≤ 0 ) and with c2i the energy cost when power
is consumed from the grid (i.e. when δ2i = 1, P poc

i ≥ 0).
With the above definitions and constraints, the cost at i can be
written as ci = T P poc

i (δ1i c
1
i +δ

2
i c

2
i ). It is only left to transform

the products P poc
i δ1i and P poc

i δ2i into a linear expression,
which can be done by adding two additional real valued
variables, z1i and z2i , together with the following constraints:

P poc,minδ1i ≤ z1i ≤ P poc,maxδ1i

P poc,minδ2i ≤ z2i ≤ P poc,maxδ2i

P poc
i − (1− δ1i )P poc,max ≤ z1i ≤ P

poc
i − (1− δ1i )P poc,min

P poc
i − (1− δ2i )P poc,max ≤ z2i ≤ P

poc
i − (1− δ2i )P poc,min

(3)
It can be verified that, with the above additional constraints,
it is z1i = P poc

i δ1i and z2i = P poc
i δ2i . Hence, finally, the cost

term ci can be rewritten in linear form as:

ci = (c1i z
1
i + c2i z

2
i )T (4)

Definition of P poc
i : The electric power flow is defined by

the following power balance equation.

P poc
i = Php

i + P ev
i + P ess

i + P pl
i + Pnpl

i + P pv
i , (5)

where, in particular:
• Php

i is the power consumption of the heat pump;
• P ev

i (the aggregated power consumption of the PEVs) is:

P ev
i =

∑
e∈Ei

P ev
e,i , (6)

where Ei is the set of PEVs connected at time i (Ei :=
{e ∈ E : Se ≤ k ≤ Fe}) and P ev

e,i (the power from/to the
single PEV) is defined as in (5)-(8) in [27]:

P ev
e,i = P ev,c

e,i + P ev,d
e,i , (7)

subject to

0 ≤ P ev,c
e,i ≤ P

ev,max
e ceve,i (8)

0 ≤ −P ev,d
e,i ≤ −P

ev,min
e devi,e (9)

ceve,i + devi,e ≤ 1 (10)

where P ev,c
e,i and P ev,d

e,i are, respectively, the charging
and discharging power, P ev,max the maximum charg-
ing/discharging power, ceve,i a charging indicator variable
(equal to 1 if PEV e is charging at time i) and devi,e the
Boolean discharging indicator variable;

• P ess
i is similarly defined as

P ess
i = P ess,c

i + P ess,d
i (11)

subject to

0 ≤ P ess,c
i ≤ P ess,maxcessi (12)

0 ≤ −P ess,d
i ≤ −P ess,mindessi (13)

cessi + dessi ≤ 1 (14)

with similar variables and parameters defined;
• P pl

i (the aggregated consumption of plannable loads) is
defined as in (3) in [27]:

P pl
i =

∑
l∈Li

j2l∑
j=j1l

Pl,i−j+1sl,j , (15)

where P pl
i denotes the sum of the power consumed by

the plannable loads at time i. Variable sl,j is a Boolean
decision variable and it is sl,j = 1 if the plannable load l
is started at time j. P pl

i is hence derived by considering
the set of loads Li potentially active at i:

Li := {l ∈ Lk : Sl ≤ i ≤ min(Fl, k +N − 1)} (16)

Lk in turn denotes the set of loads to be managed at time
k, i.e. the set of loads that have been requested by the
users before k and are not started yet:

Lk := {l ∈ L : (Rl ≤ k)&(statel,k = 0)} (17)

statel,k is the state of the load at k: equal to 0 if the
load has not started yet, equal to 1 otherwise if the load
is already in execution at k.
The update equation for the generic load is:

statel,i+1 =


1, if statel,i = 1
1, if s∗l,k = 1

0, if s∗l,k = 0
(18)

where s∗l,k denotes the optimal value of sl,k.
Coming back to (15), for each load i, the exact power
consumption of the load at time i depends on the user
preferences: j1l denotes the earliest possible starting time
such that the load will have power consumption at i, while
j2l is the last start time such that the load will contribute
to power consumption at i. They are given by:

j1l = max(max(k, Sl), i−Nl + 1)

j2l = min(i,min(Fl, k +N − 1)−Nl + 1).
(19)

Exactly one starting time is decided for each load:

Fl−Nl+1∑
i=Sl

sl,i = 1 (20)
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Dynamics of the boiler’s water temperature (i.e. definition
of T boiler

i ):

T boiler
i+1 =T boiler

i +
T

Mcw

[
γPhp

i +

−
∑
u∈U

Gu,icw(T
boiler
i − T pipes

u,i )− αT boiler
i

]
,

T boiler
k = T boiler,k,

(21)

where γ is the Coefficient of Performance (COP) of the heat
pump, a positive value (larger than one) that captures the
power required to move heat from an energy source (e.g.,
water, air, ground) to the boiler. The rest of the equation is
derived from a simple energy balance, as the control variable
Gu,i, the heated water mass flow governed by the valve that
regulates the heating of the housing unit u, governs the flow
that transfers heat from the boiler to the housing unit u. The
sum of all of these heat flows represents the total heat demand
that the boiler should satisfy. The last term in (21) represents
the heat loss of the boiler, governed by the factor α ≥ 0.

Due to the presence of the product between a control
variable, Gu,i, and state variables, considering equation (21) as
a constraint for our problem would cause a significant increase
in computational complexity. For this reason, we transform
(21) into a liner equivalent with the following substitution:∑

u∈U
Gu,icw(T

boiler
i − T pipes

u,i ) =
∑
u∈U

(T pipes
u,i − T floor

u,i )

Rpipes
floor

.

(22)
The right hand side of (22) represents the heat exchanged
between the heating pipes and the floors of the various housing
units, utilizing the concept of thermal resistance. Under the
assumption that no heat is lost in the distribution system, the
two sides of (22) represent the same quantity, i.e., the heat flow
that the boiler provides, overall, to the housing units. Equation
(21) then becomes

T boiler
i+1 =T boiler

i +
T

Mcw

[
γPhp

i +

−
∑
u∈U

(T pipes
u,i − T floor

u,i )

Rpipes
floor

− αT boiler
i

]
,

T boiler
k = T boiler,k.

(23)

Due to substitution (22), the control variable in the equation is
no longer Gu,i, but T pipes

u,i instead. This change of variable is
legitimate, as we can show that, under reasonable assumptions,
there exists an invertible relation between the two.

Assuming a linear relation between the opening of the
control valve and the mass flow Gu,i through it, as well as
ideal mixing condition in the pipes, we can write

T pipes
u,i = T floor

u,i +
Gu,i

Gmax
u

(T boiler
i − T floor

u,i ), (24)

with Gmax
u the maximum mass flow that the valves allow,

making the substitution possible from a mathematical point of
view. Moreover, to reflect the physical limitation of the mass

flow (i.e., 0 ≤ Gu,i ≤ Gmax
u ) on the new control variable, two

constraint are added to specify that the temperature of water in
the pipes: i) cannot exceed the temperature of the boiler (that
is reached when the control valve is completely open) and ii)
is at least at temperature equilibrium with the floor (the case
when the control valve is completely closed):

T floor
u,i ≤ T pipes

u,i ≤ T boiler
i . (25)

We detail in the following the dynamics of the various
temperatures of interest characterizing each building unit.

Dynamics of the units’ floor temperature (i.e. definition of
T floor
u,i ):

T floor
u,i+1 = T floor

u,i +
T

Cfloor

[
T air
u,i − T

floor
u,i

Rair
floor

+

+
T pipes
u,i − T floor

u,i

Rpipes
floor

]
,

T floor
u,k = T floor,k

u ,

(26)

Equation (26) describes the effects of the control variable
T pipes
i on T floor

u,i+1 . The floor exchanges heat with both the
pipes it contains and with the air of the unit. These exchanges
are driven, respectively, by the temperature differences T air

u,i −
T floor
u,i and T pipes

u,i − T floor
u,i . The thermal resistances Rair

floor

and Rpipes
floor determine the heat transfer velocity and depend on

the materials (as all the other thermal resistances considered).
Dynamics of the units’ air temperature (definition of T air

u,i ):

T air
u,i+1 = T air

u,i +
T

cairρairVu

[
T floor
u,i − T air

u,i

Rair
floor

+

+
Twalls
u,i − T air

u,i

Rwalls
air

]
,

T air
u,k = T air,k

u ,

(27)

where cair is the specific heat of the air and ρair the density,
while Vu is the air volume in unit u. Equation (27) describes
the heat exchanged between the air in the unit and the
architectural elements. We did not include the effect of air
ventilation and heat flows from powered appliances, due to
their negligible effects on the heating system in winter days.

Dynamics of the units’ walls temperature (definition of
Twalls
u,i ):

Twalls
u,i+1 = Twalls

u,i +
T

Cwall

[
T air
u,i − Twalls

u,i

Rwalls
air

+
T ext
i − Twalls

u,i

Rext
walls

]
,

Twalls
u,k = Twalls,k

u

(28)

where T ext
i is the external air temperature at time i, causing

a heat loss for the building and a decrease in the ambient air
temperatures, to be compensated by the heating controller.

Finally, operational constraints can be added, typically on
the maximum or minimum allowed temperatures of operations,
such as, in our case, T boiler

i > 38 °C (to make sure there is
always enough domestic hot water) and T floor

u,i < 35 °C (as
maximum floor temperatures is limited by comfort issues).
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Dynamics of the ESS (i.e. definition of SOCess
i ):

SOCess
i+1=SOC

ess
i +

T · (P ess
i −ξess|P ess

i |)
Eess

100,

SOCess
k = SOCess,k

(29)

The SOC is expressed in % of the full charge. The term
ξess|P ess

i | models the power losses associated with charging
and discharging operation, and can be easily linearised con-
sidering that |P ess

i | = P ess,c
i + P ess,d

i .
Dynamics of the PEVs (i.e. definition of SOCev

e,i):

SOCev
e,i+1 = SOCev

e,i +
T · (P ev

e,i−ξeve |P ev
e,i |)

Eev
e

100,

SOCev
e,k = SOCev,e,k

SOCev
e,Fe

= SOCev,e,Fe

(30)

where SOCev,e,Fe is the desired final SOC.
Variables range: The controlled variables must lie in a

range between a minimum and a maximum allowed value.

T air,min
u,i ≤ T air

u,i ≤ T
air,max
u,i

T boiler,min
i ≤ T boiler

i ≤ T bolier,max
i

SOCess,min ≤ SOCess
i ≤ SOCess,max

SOCev,min
e ≤ SOCev

e,i ≤ SOCev,max
e

(31)

Notice that the constraints on power and SOC cannot be
physically violated if min and max are 0% and 100% of
the allowed range. Instead the constraints on temperature can
be physically violated (they are soft constraints).

Variables nature:
SOCess, SOCpev, P, P ess ∈ R

P pl, P pev, P ess,d, P ess,c, P pev,d, P pev,c ∈ R
T boiler, T pipes, T floor, T air, Twalls ∈ R

sl, c
ess, dess, cpev ∈ {0, 1}
dpev, δPj , zj ∈ {0, 1}

(32)

C. Summary of the inputs and outputs of the control system,
and of the overall MPC iteration

The MPC control signals are summarized in the nomencla-
ture section, under the label “control variables” and mainly
consist in power profiles for the active elements of the system
(ESS, PEVs, heat pump, plannable loads) and the actuation
profile of the heating system valves. The inputs needed from
the controller are also reported in the nomenclature, under
the “variables” label. Inputs are mainly given by the feedback
on the current state of the system and the reference signals
(reference temperatures, reference ESS SOC). All the other
symbols introduced in the previous sections are parameters
and auxiliary variables needed to build the MPC model.

The MPC control algorithm can be summarized as follows.
At each time k, k + 1, ... do:

1) Solve:

min (1)
subject to
(2)− (20), (23), (25)− (32)

(33)

2) Apply to the system the first sample of the found optimal
control variables.

Fig. 2. Solving time (a) and number of variables and constraints for the
optimization problem to be solved at each time (b) in Simulation 3.

D. Problem Complexity, Feasibility and Stability

1) Problem Complexity: Figure 2 reports, in the first sub-
plot, the solving time of each of the MPC iterations done
in Simulation 3 (the most complex one). The second subplot
reports the total number of constraints and variables in each
iteration. This gives an idea of the dimension of the MPC iter-
ations and the time complexity. Time complexity is compatible
with the real implementation of the controller (the solving time
is well below the sampling time, 5 minutes).

2) Problem Feasibility: The constraints that can generate
infeasibility are the ones reflecting real physical constraints or
limitations existing in the controlled system, that is, (2) and (3)
(limits of the power at the point of connection, P poc); (8) and
(9) (PEV power charging limits); (12) and (13) (ESS power
charging limits); the thermal constraints (23), (26), (27), (28),
which all have a similar mathematical structure, (25) on the
valve opening limits; (29) and (30) (on the SOC of the ESS
and the PEV), and finally the variables’ box constraints (31).
The remaining constraints do not reflect actual limitations, but
are instead needed to define auxiliary variables (see e.g. (4))
or to enforce logical constraints (see e.g. (14) and (20)).

In general, the MPC iteration (33) will be infeasible when-
ever there is an issue of scarcity of resources within the
building. For example, (2) and (3) are violated in case of
overload, (8) and (9) in case there is not sufficient time to
recharge the vehicle or the ESS, (27) in case there is not
enough time and/or energy available to heat the building
satisfying the minimum required temperature, etc. In this
respect, some considerations have to be made: first of all,
proper dimensioning of the thermal and electrical systems
should make the occurrence of overloads very rare. Secondly,
notice that, event assuming the building to be in a potential
overloading condition (e.g. cold winter day with numerous
demanding load request, such as many concurrent EV recharg-
ing requests), the proposed method makes sure that a feasible
solution is returned, provided that it exists (this is because it
is based on constrained optimization, i.e., it directly embeds
the constraints which may lead to infeasibility).

When instead constraints cannot be satisfied, different
strategies can be adopted, such as: selective shedding of
loads, possibly based on a shedding priority list (see e.g.
[50]), relaxation of (soft) constraints (such as the ones on
temperature bounds), as discussed, e.g., in [51], Section 1.2.5.
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By adopting the latter strategy for example, the soft constraints
will be violated every time there are no sufficient resources to
satisfy them, and the violation will be the least necessary to
keep the problem feasible.

A second question concerns recursive feasibility, i.e., the
assurance that, if the MPC problem is feasible at a given
time, then it will remain feasible for all the successive it-
erations. Also in this case, from a theoretical point of view,
the presented problem cannot be guaranteed to be recursive
feasible. To see this, consider the generic MPC iteration at a
given time k and assume it is feasible (feasibility depending
on the value of all the problem parameters and inputs in
the prediction window [k, k + N − 1]). The feasibility or
infeasibility of the following MPC iteration at k + 1 will
depend on the value of the problem inputs at time k+N (i.e.,
the new time interval entering the prediction window), which
could be such that the iteration is infeasible. As explained
e.g. in [51], recursive feasibility could be ensured by proper
design of additional terminal constraints and terminal cost
terms (denoted in the following as “terminal ingredients”), and
with the inclusion of assumptions on the exogenous signals
(i.e., the external temperature T ext, the renewable power
profile P pv , the power profiles P pl, P ev associated to the
user requests, etc.). However, on one hand, this could be a
very complex task and, on the other hand, ensuring recursive
feasibility would be obtained at the expense of a decrease
of the feasibility region of the problem (due to the inclusion
of the terminal ingredients, which could over constraint the
problem). For this reason, the implementation of dedicated
infeasibility management strategies (as the two ones outlined
in the above), appears a practical and convenient solution.

3) MPC Stability: A full and comprehensive analysis of the
stability properties of the presented control system is beyond
the scope of the paper and constitutes future works. The anal-
ysis is made complex in particular by the presence of Boolean
variables and of the exogenous signals. In the following, we
highlight the theoretical properties that differentiate the present
problem from standard MPC (for which many stability results
are known, see e.g. [51]), and we sketch a stability proof in a
simplified yet meaningful scenario, with punctual references
to the specialised literature of interest. To start, we denote with
l(xi, ui) the stage cost in (1) (i.e., V =

∑k+N−1
i=k l(xi, ui)).

In this section, xi denotes the vector grouping all the state
variables of the system at i (the state of charge variables
SOCess and all the controlled temperature variables, T air,
T floor, Twall, T boiler, in the building units), while ui denotes
the control variables, which ultimately reduces to P poc

i , as
explained in the following. We consider a setting in which all
the exogenous signals are constant, because, in the opposite
case, the state trajectories would depend on the characteristics
of those signals, and the stability problem would be properly
framed as a problem of stability of trajectories, rather than
stability of states (an even more complex stability question,
that could be tackled in future works based on the research on
periodic MPC, see e.g. [52]). Notice further that no Boolean
variables appear in the objective function (1), which explicitly
depends on the control variable P poc only (which in turn
depends only on Php

i , being all the remaining variables in (5)

assumed constant). Therefore, we reduce to the analysis of a
simplified problem which includes the objective function (1),
and the dynamics equations (23), (26), (27), (28), (29), which
are collectively denoted generically as xi+1 = f(xi, ui), plus
all the remaining constraints rewritten in general form as
xi ∈ X and ui ∈ U, with X and U compact sets. A first
aspect which differentiates the formulation in this paper from
standard MPC is as follows. If we denote with (xs, us) the
best feasible steady-state control-input pair (i.e. the state-
control pair that minimizes l, such that xs = f(xs, us),
xs ∈ X and us ∈ U), we have that l(x, u) ≤ l(xs, us) for
some feasible (x, u) not corresponding to any equilibrium
pair (i.e. the best feasible steady-state control-input pair is
not in general the minimizer of the stage cost function, and
there are other feasible, non-equilibrium input-state couples
with smaller associated stage cost). This fact, which is the
characterizing aspect of economic MPC [53], complicates the
stability study, since the objective function cannot be directly
used as Lyapunov function for the stability proof [53]. In
addition, no specific terminal ingredients are introduced in
the formulation, in order not to reduce the feasibility region
of the algorithm, as discussed in the previous subsection,
and this further complicates the stability analysis (a typical
terminal constraint considered which ensures stability under
mild conditions is xN − xs = 0, i.e., to require the state
at the end of the control window to coincide with the least-
cost equilibrium state, xs). A theoretical result present in
literature and of interest for the present case is illustrated in
[54], Theorem 4.1, on the practical stability of EMPC without
terminal ingredients. The theorem states that, under certain
assumptions, outlined below, the EMPC scheme is such that
the equilibrium xs is practically asymptotically stable (see
[54], Definition 4.1), that is, the state trajectories converge
to a neighbourhood of xs. The same theorem proves that the
neighbourhood shrinks to xs as N → ∞ (incidentally, the
same theory also proves recursive feasibility of the EMPC
control - here addressed, we remind, in a simplified setting).
The key assumptions needed to establish the above result are:
i) a strict dissipativity of the MPC iteration, ii) exponential
reachibility of xs, and iii) an additional nx-step reachibility
condition of the Jacobian linearization of system f(x, u) (with
nx the dimension of x). These three assumptions are defined in
details in [54], Definition 3.2, Assumption 4.2 and Assumption
4.3, respectively. Given the system at study, assumptions ii)
and iii) are satisfied provided that the system is correctly
dimensioned (e.g., so that it is physically possible to steer the
state to xs, as requested by ii)), while Proposition 4.3 in [55]
presents mild conditions (the presence of a Slater condition)
under which assumption i) is satisfied, in a problem setting to
which the case discussed in this paper can be reduced (control
of linear systems and a linear-quadratic stage cost).

As explained above, in the full, complex scenario, the
controller will have to find an optimal trade-off between its
objectives, and the resulting feasible operating point (i.e., the
state trajectories) will be in general time-varying, according
to the characteristics of the exogenous signals.
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IV. VALIDATION

In this section, the building EMS is validated via simulation.
The section discusses the simulation cases study, the imple-
mentation of the algorithm and a set of validation simulations.

A. Implementation of the algorithm

The overall MPC problem presented in this paper
has been coded using the Julia programming language
(https://julialang.org/) [56], version 0.7. The quadratic opti-
mization problem constituting the MPC iteration has been
modeled using the Julia library JuMP [57] and solved with
Gurobi (http://www.gurobi.com/). The simulations have been
performed on a Window 10 machine, 64 bit, equipped with
an Intel I7-5500U CPU 2.40 GHz and 8 GB RAM.

B. Case study and simulation setup

A real case study of a smart building under construction
in Italy, is considered. The architecture of the micro grid is
an innovative fully electric system. The building is completely
gas free as all systems are electrically supplied. The suggested
micro grid consists of an innovative electric-power system
characterized by the following: 1) a single point of connection
to the grid; 2) a low-voltage main switch board (MSB) to
supply both the common services (heating, elevators, etc.) and
the units; 3) a common PV installed on the roof of the building
and connected to the MSB; 4) a distribution power system
from the MSB for all common technical building systems
(TBS); 5) a feeder distribution from the MSB supplying
each unit by an independent feeder in a radial scheme; 6)
a common ESS with a capacity of 100 kWh and a maximum
power of 10 kW is connected to the micro grid. The building
is composed of 20 units, with a peak demand of 50 kW.
The micro grid supplies: the units of the building (lighting
and sockets), the smart loads of the units (one dishwasher
and one washing machine for each unit), the central heating
system consisting in a heat pump, a charging station for 5
PEVs. The main simulation parameters are as follows: 5 PEV
recharging requests and 31 load requests are considered during
the day in order to create a realistic power demand profile
and to demonstrate the ability of the controller to manage
loads while satisfying user preferences. Heating (HVAC) and
domestic hot water (DHW) systems are composed of: 1) a
central heating and cooling station with electricity-driven heat
pumps; 2) heating, cooling, and DHW distribution system for
each unit; 3) a central thermal storage; 4) a metering satellite
(SC) for each unit with meters. Heating energy demand of
the building is limited by the thick insulation of the envelope.
The sampling time T is equal to 5 minutes. The micro grid
requires a building automation control system to improve its
effectiveness. The technical building systems are flanked by a
building automation control system with a main server able to
host a supervisory system.

In the following, to simulate realistic operation conditions
and to account for disturbances and modeling uncertainties, a
zero-mean Gaussian noise is added to the state feedback taken
by the controller at each time, i.e., in particular to the various

Fig. 3. Simulation 1: power flow at point of connection with the grid.

Fig. 4. Simulation 1: temperatures in building unit 1.

temperature measurements taken (i.e., to the feedback of the
units’ temperature and boiler temperature). The variance of the
added Gaussian noise is 0, 19 °C, meaning that in the 99% of
the cases, the added noise will be less than 0, 5 °C.

C. Simulation 1: Baseline scenario with standard control

The first simulation considers standard control of the build-
ing, in order to provide a baseline and a benchmark case
for evaluating, in the following simulations, the increase in
performance assured by the proposed control scheme. The
control assumed here is: i) constant charging of the vehicles,
at the maximum power allowed at the time of charging; ii)
plannable loads are started at the first feasible time; iii) on/off
control of the temperature (i.e., heating at maximum level
when the temperature is outside of a band of 1 degree around
the reference temperature); iv) the storage is always off.

Figure 3 reports the resulting power flow at the point of
connection with the grid. As it could be expected, the power
flow is not smooth and exhibits significant variations when
plannable loads or PEV charging start (in particular, the 20 kW
spikes in the figure correspond to the uncontrolled PEV charg-
ing processes). Figure 4 reports the temperature profile in the
first building unit (temperature shows a similar pattern in the
other units). The pattern of on-off control is recognised. Table
I reports a more quantitative evaluation of the simulation for
one sample unit (unit 1), in terms of: i) the average temperature
error in the unit (avg(errTair )) and ii) the standard deviation
of the temperature error (std(errTair )), both as a proxy of
the achieved user comfort; iii) the standard deviation of the
power flow at the point of connection (std(P poc), as a measure
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TABLE I
KEY PERFORMANCE INDICATORSS (KPIS) OF SIMULATION 1 (BASELINE

SCENARIO).

avg(errTair ) std(errTair ) std(P poc)
∫
P poc max(P poc)

1.4 ◦C 1.9 ◦C 12.34 kW 248.17 kWh 52.64 kW

Fig. 5. Simulation 2: temperatures in building unit 1.

of the smoothness of the flow); iv) the total energy flowing
at the point of connection with the grid (

∫
P poc, the lower,

the better); and v) the electrical power peak (max(P poc),
the lower, the better). After a baseline scenario has been
established, in the following sections the performance of the
proposed controller is showcased under different scenarios of
growing complexity and completeness.

D. Simulation 2: Pure thermal management

We show in this simulation the performance of the controller
when its only goal is to best manage thermal loads in the
building and satisfy the associated user preferences. To this
end, a1 = a4 = a5 = 0 is selected in (1) (the other
weights are set to 1). PEVs and plannable loads are still started
manually, as in the previous simulation. Similarly, the ESS is
not activated. This is done in order to show how the controller
performs when the only load to manage is the thermal one.

Figure 5 shows the evolution of the temperature in unit 1.
It shows that accurate tracking of the reference temperature is
achieved. The power profile at the point of connection is not
shown here as it is almost the same as the one in Simulation 1.
Table II reports the KPIs for this simulation (the peak power
reduction and the cost saving compared to Simulation 1 are
also reported in this case). Temperature tracking performance
is excellent, while it is not surprising that the two other KPIs
have values comparable with those in Simulation 1.

E. Simulation 3: Joint thermal/electrical load management

In this section all the terms in the objective function are
enabled (all weights in (1) are set to one).

Figure 7 reports the profile of the power flow between the
building and the grid. By comparing it with Fig. 3 it is seen that

TABLE II
KPIS OF SIMULATION 2 (PURE TEMPERATURE CONTROL).

avg(errTair ) std(errTair ) std(P poc)
∫
P poc max(P poc) Peak Reduction Saving

0.36 ◦C 0.7 ◦C 12.39 kW 249.20 kWh 52.57 kW 0,13% 0,31%

Fig. 6. Simulation 3: temperatures in building unit 1.

Fig. 7. Simulation 3: power flow at point of connection with the grid.

a much smoother flow is achieved. Figure 6 and 8 report the
temperature profiles in unit 1 and in unit 11 (two representative
units in the building). The two units have different occupancy
times, and the controller ensures excellent performances in
both cases. Notice how the controller manages the thermal
storage property of the building by “pre-heating” the structures
in advance of the hours when temperature tracking has to be
ensured. The above qualitative behaviour of the controller
is confirmed by the quantitative KPIs resulting from the
simulation, reported in table III.

TABLE III
KPIS OF SIMULATION 3 (FULL CONTROL).

avg(errTair ) std(errTair ) std(P poc)
∫
P poc max(P poc) Peak Reduction Saving

0.36 ◦C 0.7 ◦C 6.25 kW 205.9 kWh 23.2 kW -55,93% -19,35%

It is seen that the controller significantly smooths the power

Fig. 8. Simulation 3: temperatures in building unit 11.
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Fig. 9. Simulation 3: evolution of the ESS state of charge.

Fig. 10. Simulation 3: Opening position of the hot water valve in unit 1.

flow at the point of connection with the grid, ensures the same
temperature control performance as in the previous case and
achieves a significant reduction of the energy cost. Moreover, a
halving of the peak power withdrawn from the grid is achieved.
This is done by intelligent management of the ESS, of the
recharging process of the PEVs, of the thermal storage of the
building and of the start time of the plannable appliances.
Also, the amount of energy flowing at the point of connection
is significantly reduced as well, thanks to the self consumption
of locally produced PV power.

To showcase how the controller manages loads’ flexibility,
Fig. 9 reports the evolution of the SOC of the ESS. It is seen
how the ESS is controlled to contribute to optimizing the
building’s energy management, while keeping the evolution
of the SOC close to the reference value (50%), so to ensure
adequate control margins.

Finally, we report in Fig. 10 the hot water flow valve
opening position for unit 1, to show that the proposed control
does not introduce undesired chattering behaviour on the
actuators. Rate of change constraints and or specific terms
in the objective function (to penalise excessive variations in
the actuators’ inputs) can be added in general to avoid that the
resulting control cause high fatigue on the actuators.

F. Reaction to demand side management signals

Buildings will be in the near future one of the main source
of flexibility in the local flexibility electricity markets. Aggre-
gators will pool coalitions of buildings to create a critical mass
sufficient to participate in local markets. Price and volume
signals will be exchanged between the aggregator and the

buildings as a tool to explore the flexibility available at the
building side to modify the demand profile.

The proposed algorithm is naturally capable to re-program
the management of the building’s load in order to react to a
price signal from the aggregator, that is, a variation of the price
of the energy in a given time interval. Volume signals can be
considered as well, that is, requests of reduction/increase of
the power flow in a given temporal interval.

G. “Gentle service degradation”

The proposed controller can cover emergency scenarios and
for example ensure quality of experience preservation or gentle
service degradation in presence of disruption events, like the
temporal loss of the main supply from the grid. The proposed
controller is capable to react to notification of the interruption
of the power supply from the grid. The controller is capable of
reacting as well to abrupt interruption of main power supply,
however it would have naturally reduced control margin.

H. Tuning of the controller parameters

The quantitative performance and the behaviour of the
building will vary depending on the selected parameters of the
controller, principally the 5 weights in the objective function.
The above simulations were meant to show the performance
of the controller in different scenarios and were carried out
with an empirical selection of the weights of the objective
function. One way to tune the proposer controller is to test
the performance in typical operating conditions of the building
and varying the weights of the objective function. The KPIs
examined in the above sections will form a Pareto frontier.
By having these charts the building manager would be able
to select the weights depending on his/her optimization goals
and priorities (e.g. cost optimization or power smoothing).

V. CONCLUSION

This paper has presented a model predictive control based
energy management algorithm for managing heating and elec-
tricity loads in a smart building. The managed loads include a
heat pump, an electricity storage, electric vehicles and flexible
loads. The control objective has been to minimize costs of
energy consumption while ensure that the technical constraints
of the system are met and the user preference are satisfied, in
terms of thermal comfort and execution of loads according
to the schedule set by the user (notably including control
of electric vehicles). Explicative simulations and KPIs have
been presented to show the effectiveness of the controller in
optimising resources in a complex and realistic scenario.

Future works will regard the integration of the proposed
control scheme with additional control devices, such as air
conditioners, and with the description of other relevant physi-
cal phenomena, such as radiant and convective loads. More
extensive simulations will also be conducted, spacing over
different seasonal conditions, in order to fully validate the ap-
proach and obtain a complete performance assessment before
being validated on real equipment.
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