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Abstract

Background: Research investigating treatments and interventions for cognitive

decline fail due to difficulties in accurately recognizing behavioral signatures in the

presymptomatic stages of the disease. For this validation study, we took our previously

constructed digital biomarker-based prognostic models and focused on generalizabil-

ity and robustness of themodels.

Method: We validated prognostic models characterizing subjects using digital

biomarkers in a longitudinal, multi-site, 40-month prospective study collecting data in

memory clinics, general practitioner offices, and home environments.

Results: Our models were able to accurately discriminate between healthy subjects

and individuals at risk to progress to dementia within 3 years. Themodel was also able

to differentiate between people with or without amyloid neuropathology and classify

fast and slow cognitive decliners with a very good diagnostic performance.

Conclusion: Digital biomarker prognostic models can be a useful tool to assist large-

scale population screening for the early detection of cognitive impairment and patient

monitoring over time.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most common form of neurodegener-

ation, with an estimated 6 million North Americans and 46.8 million

people worldwide living with the disease, costing health care and sup-

port systems approximately $1 trillion. AD’s long prodromal phase ren-

ders the a priori identification of the individuals at risk complicated, yet

roughly 50% of the people with incidental mild cognitive impairment

(MCI) develop dementia within 3 years.1,2 Intriguingly, other forms of

dementia not associated to AD, such as vascular dementia, frontotem-

poral and Lewy Body dementia, are also characterized by an initial

period of MCI negative to AD biomarkers (eg, increase amyloid beta

[Aβ] load) often with multiple cognitive domain impairment (naMCI),

leading to dementia within the same average 3-year period.2 What is

still a matter of debate is who, among the subjects diagnosed with inci-

dental MCI, will develop dementia and who will not? Several attempts

were made to identify MCI subgroups, defined by impaired neuropsy-

chological domains or presence of certain AD biomarkers that would

provide this prediction, with interesting, but not definitive, results.2,3

Among them, one of the most promising efforts has been proposed

by theABIDE (Alzheimer’sBiomarkers inDailyPractice) project,whose

ATN biomarker-based prediction models combine the AD biomarkers

for amyloid beta (Aβ) load (“A”), tauopathy (“T”), and atrophy neurode-
generation (“N”) in the context of the individual characteristics.4 Once

the large prospective, longitudinal validation study aimed to compare

expected versus observed MCI conversion into AD dementia will be

completed, a wealth of data will be available for building reliable pre-

dictive (or “prognostic”)models thatwill haveprofound implications for

timely interventions and treatment planning forMCI patients, in accor-

dance to the American Academy of Neurology guidelines.5

Current innovation in how to build predictive models stems from

the rapidly evolving field of machine-learning (ML) and artificial neu-

ral networks (ANN) algorithms.6-12 However, to date, only a few stud-

ies have been focusing on the validation of specific biomarker-based

predictive models using longitudinal clinical data with the aim to pro-

vide useful prognostic information of individual risk rather than group

statistics.9-11 Proper validation of predictive models based on ML-

ANN requires large and high-quality databases obtained from lon-

gitudinal cohort studies, ideally planned to include different popula-

tions so as to reflect the heterogeneity observed in the real world.

So far, most successful ML-ANN studies have used biomarkers from a

restrictednumber of publicly available databaseswith relatively homo-

geneous populations, namely Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) or Australian Imaging, Biomarker & Lifestyle Flagship

Study of Aging (AIBL),12-14 with few exceptions.15,16 This is of rele-

vance because important differences (up to three-fold) in the conver-

sion rate MCI-to-dementia have been reported depending if the study

population was recruited inmemory clinics or from the community.17

The recent widespread availability of digital devices and applica-

tions running on smartphones and tablets assessing cognition and

behavior has recently opened the possibility to add other biomark-

ers with potential prognostic value that could be easily used in clin-

ical and community settings. In a first, proof-of-concept study,18 we

proposed a smartphone/tablet-based digital biomarker implementing
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HIGHLIGHTS

∙ Digital biomarker prognostic models can accurately classify individuals at risk to progress to dementia within 3 years.

∙ Digital biomarker prognostic models can accurately classify individuals with amyloid neuropathology.

∙ Digital biomarker prognostic models can accurately classify individuals with slow or rapid cognitive decline.

∙ Digital biomarker prognostic models show similar performance in both supervised and unsupervised environments.

∙ Digital biomarker prognostic models can be a useful tool to assist large-scale population screening.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature using traditional (eg, PubMed) sources and meeting abstracts and presen-

tations, searching, without language restriction, for articles published up to April 1, 2020, on prognosis in people with mild cogni-

tive impairment (MCI), at an individual level, on the basis of digital or biological biomarker evidence, using the terms “([mild cognitive

impairment] AND [prognosis] OR [prognostic factor] OR [digital biomarker] OR [prediction model]).” We found a wealth of literature

on the prognostic performance of biological biomarkers in individuals withMCI at the group level and very few that directly translate

to the individual. On the other hand, we found no prospective studies on the prognostic performance of digital biomarkers, besides

our own study that examined a complex instrumental activity of daily living marker on an individual level in people with MCI. For this

validation study, we took our previously constructed digital biomarker-based prognostic models and focused on the generalizability

and robustness of our prediction models (external validation) during a 3-year clinical trial at different clinical sites both in Europe and

the United States.

2. Interpretation: In the current study of 496 individualswith diagnosis of cognitively normal orMCI frommulticenter cohorts in Europe

and North America, we validated and updated, according to the TRIPOD (transparent reporting of a multivariable prediction model

for individual prognosis or diagnosis) guidelines, multivariable, biomarker-basedmodels for the prediction of dementia on the basis of

digital biomarkers only. We showed that the models had good generalizability and were well calibrated up to more than 40months of

follow-up.

3. Future directions: A validated digital biomarker has significant implications on clinical practice and clinical decision-making for people

withmild cognitive impairment.We have shown generalizability and robustness of our predictions. Ourmodels could facilitate amore

timely and accurate diagnosis and prognosis of MCI, which is of high importance at the clinical practice. As a next step our models

can allow clinical researchers to calculate trajectories of dementia progression within a given period of time and design therapeutic

interventions that stabilize or reverse those trajectories, as a good starting point for dementia care.

augmented reality tasks inspired by complex functional instrumental

activities of daily living (Altoida iADL tasks), mostly related to spatial

memory and navigation abilities. During a predefined task sequence,

the app collected data from the smartphone/tablet built-in sensors,

profiling hands’ micromovements, screen touch frequency, reaction

time, correct responses, walking bouts and speed, navigation trajec-

tory, and many others,19 presently defined as Neuro Motor Index

(NMI). The study was held in two memory clinics, recruiting 215 sub-

jects that were either cognitively normal (NC), with MCI or early

dementia followed over the course of 60 months.20 In that study the

digital biomarker alone explained most of the variability for impaired

executive function assessed with ADNI-Exec score compared to other

biomarkers, while prediction of MCI-to-dementia transition assessed

using Cox proportional hazard model showed specificity and sensitiv-

ity>90%.

In the present article we report the outcome of a novel multisite,

prospective cohort study that followed 548 subjects with either pre-

clinical ADwith no cognitive deficits orwithMCI diagnosis, for up to 40

months (AltoidaML).21 These subjects were recruited to be assessed

in memory clinics, in community facilities, or at home. Data from each

subjectwere obtained at baseline using smartphone/tablet augmented

reality tasks whoseNMI outcomewas analyzedwith aML algorithm to

predict the progression of individuals withMCI into dementia within 3

years. Takingourprevious risk predictionmodels as a startingpoint, the

aim of this extensive external validation study was to establish robust,

generalizable predictionmodels using NMI digital biomarkers only.

2 METHODS

2.1 Database, study design, and participants

Data collected from two different studies (study A and B) that shared

similar entry criteria, clinical scale, and AD biomarker characterization
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TABLE 1 Demographic and clinical characteristics of participants in the cohorts included in the Altoida database at baseline

First study (Tarnasas et al.

2015) (n= 215)

AltoidaML study

(NCT02843529) (n= 496)

Follow-up time, years 4.5 (2.6) 2.6 (1.6)

MCI subjects 61 213

Number ofMCI subjects

progressing to

dementia

37 (60%) 100 (47%)

Number ofMCI subjects

with β-amyloid

biomarker progressing

to AD dementia

30 (49%) 79 (37%)

MCI subjects progressing

to other types of

dementia

7 (11%) 21 (10%)

Average age, years (SD) 72 (9) 67 (8)

Female 118 (55%) 306 (62%)

Male 97 (45%) 190 (38%)

MMSE 26 (2) 27 (2)

Hippocampal volume,

cmş

5.4 (1.6) 6.2 (1.2)

CSF biomarkers, pg/ML

Amyloid beta (Aβ1-42) 925 (297) 790 (378)

Total tau (t-tau and

p-tau-181/tau ratio)

286 (191) 270 (140)

Phosphorylated tau

(p-tau-181/p-tau231)

27 (15) 33 (18)

Data are n (%) or mean (SD).

Abbreviations: AD, Alzheimer’s diseaseCSF, cerebrospinal fluid; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; SD, standard devi-

ation.

were considered for the analysis. Subjects between 55 and 90 years of

age with cognitive impairments consistent with MCI and AD demen-

tia diagnosis according to core criteria of National Institute on Aging-

Alzheimer’s Association (NIA-AA) revised guidelines22 were included

independently of their biomarker status. Clinical assessment included

the Wechsler Memory Scale (adjusted for education), Mini-Mental

State Exam (MMSE), Clinical Dementia Rating (CDR), andMemory Box

score.

AD biomarkers, consisting of Aβ and tau protein cerebrospinal fluid
(CSF) levels, brain magnetic resonance imaging (MRI), and apolipopro-

tein E (APOE ɛ3/ɛ4) genotype, were collected at baseline, when also

the Altoida iADL taskswere performed. Classification in the diagnostic

clusters of MCI and dementia due to AD (aMCI and ADD) or MCI and

dementia not associated with AD (naMCI and nADD) were performed

based on the Aβ and tau protein CSF levels biomarker. Among the

exclusion criteria, any significant neurologic disease, such as Parkin-

son’s disease, Huntington’s disease, normal pressure hydrocephalus,

brain tumor, progressive supranuclear palsy, seizure disorder, subdu-

ral hematoma, multiple sclerosis, or history of significant head trauma

followed by persistent neurologic defaults or known structural brain

abnormalities. Every 12 month, each subject was assessed for their

clinical and neuropsychological conditions with either MMSE or Mon-

treal Cognitive Assessment (MOCA) tested in a clinical setting, when

decision about the occurrence of a transition fromMCI to earlyADwas

made based on the diagnostic core criteria of NIA-AA22 for the MCI

and early dementia condition, respectively. Clinical outcomes were

ascertained by investigators blinded to the predictor variables during

the various periodic visits. All studies were approved by the local Insti-

tutional Review Board (IRB). Upon enrollment, all participants gave

written informed consent for participation and for reuse of the data.

Study A was a semi-naturalistic observational study that included

215 subjects, ages 55 to 90 years, with preclinical AD, MCI, and early

AD diagnosis recruited in two memory clinics, one in Greece and one

in California. Subjects were tested every 12 months for a total dura-

tion of 60months between 2009 and 2014 and results were published

in 2015.20 A summary of the study population is shown in Table 1. At

baseline, cognitive deficits compatible with MCI diagnosis were found

in 61 subjects.

Study B (ClinicalTrials.gov Identifier: NCT02843529) was a semi-

naturalistic observational multicenter study performed in both

memory clinics and primary care centers that enrolled 496 subjects

with diagnosis of NC or MCI from 10 European memory clinics and

primary care centers and two primary care community centers in the

United States, collected between October 2017 and February 2020.
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TABLE 2 Characteristics of theMCI population included in validation analyses

Characteristic EU population (n= 170) U.S. population (n= 43)

Data collection period 2017–2020 2017–2020

Study design Multicenter longitudinal cohort study Multicenter longitudinal cohort study

Setting Memory clinics and primary care Primary care

Inclusion criteria Memory complaints verified by study partner,

abnormal memory functioning,MMSE of

24–30, Clinical Dementia Rating scale of 0⋅5,

does not fulfill the criteria for dementia

Unspecifiedmemory complaints, abnormal

memory functioning,MMSE of 24–30,

Clinical Dementia Rating scale of 0⋅5, does

not fulfill the criteria for dementia

Participants who

developed dementia

74 (44%) 16 (35%)

Follow-up Clinical follow-up every 12months 6–12-month interval

MRImeasurements

available

149 (88%) 40 (95%)

MRI quantification

method

FreeSurfer version 5.3 FreeSurfer version 5.3

CSF samples with

biomarkers

measurements

available

124 (73%) 17 (41%)

CSF platform Innotest Innotest

Abbreviations: CSF, cerebrospinal fluid; MCI, mild cognitive impairment;MRI, magnetic resonance imaging.

More specifically, a total of seven European memory clinics were:

Greek Alzheimer’s Association and Related Disorders “Ag. Giannis”

and “Ag. Eleni” memory clinics in Thessaloniki, Greece; the University

of Roma La Sapienza memory clinic in Rome; IRCCS Centro San Gio-

vanni di Dio Fatebenefratelli memory clinic in Brescia and Neuromed

IRCCSmemory clinic in Naples, Italy; Fundacion Clinic per a la Recerca

Biomédicamemory clinic in Barcelona, Spain; andUniversity of Dublin,

Trinity College, St James memory clinic in Dublin, Ireland. The three

primary care centers from Europe were: BiHELab–Bioinformatics

and Human Electrophysiology Lab and affiliated primary physicians’

network in Corfu, Greece and two offices from the Practice for Per-

sonalized Medicine of the Hirslanden Private Hospital in Switzerland

(Zurich & Aarau). Finally, the two primary care community centers in

the United States were Scripps Health at La Jolla, California and the

Center for Brain Health—The University of Texas at Dallas.

The key inclusion criteria were: (1) 55–90 years of age; (2) fluency in

English, French, Spanish, German or Italian; and (3) familiarity with dig-

ital devices, including currently possessing and actively using an iPad

Pro or iPhone with an at-home Wi-Fi network for the remote assess-

ments. Biomarkers for CSF, brainMRI, and APOE ɛ3/ɛ4 genotype were
assessed at baseline together with the Altoida iADL test. A control

group of 283 healthy individuals matched by age and that underwent

the same procedure were provided by Global Brain Health Institute

(GBHI) at Trinity College, Dublin. The summary of the study population

is shown in Table 2. At baseline, cognitive deficits compatible withMCI

diagnosis were found in 213 subjects, 170 from thememory clinics and

primary care centers in Europe, and 43 from the community centers in

the United States.

An additional substudy was included aimed to test the smartphone

version of the Altoida iADL when the subjects were at home rather

than in the clinics. It consisted of 100 subjects that were provided with

an iPhone 6 Plus to be used as their device for Altoida iADL home

assessments. The studywas approved by IRBs and is reported in accor-

dance with the TRIPOD (transparent reporting of a multivariable pre-

dictionmodel for individual prognosis or diagnosis) guidelines.23

2.2 Digital device and data generation

The Altoida iADL test is presented as a smartphone/tablet app pro-

viding augmented reality interactive taskswith varying difficulty levels

inspired by iADL that require coordination of information by eliciting

medium-to-high cognitive control, including spatial memory, prospec-

tivememory, executive function, and psychomotor processing speed.20

Initially the user is asked to follow instructions and perform fine and

grossmotor tests on the touch screen to calibrate thedevice andassess

the subject interface-use competence; then other introductive infor-

mation prompts the user to perform the navigation (NAV) task consist-

ing of “hiding” three virtual objects (eg, star, heart, teddy bear) appear-

ing on the screen while exploring the environment through the live

camera by targeting conspicuous landmarks and clicking on the home

button. After a few minutes, the subject is asked to recover the hid-

den virtual objects from the selected environmental landmarks and

find them in a different order while performing a simple odd-ball task

used as distraction to increase the task difficulty. During the object-

finding task, a total of 731 different metrics are collected from the
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F IGURE 1 Visual representation of threemotor features during augmented reality task. Visual representation of three features (out of 109
key functional motor behaviors) corresponding to the “distribution of the path complexity when finding the augmented reality objects” (see Table
S1). LEFT PANEL, Typical digital phenotype of mild cognitive impairment (MCI) subjects that will remain stable over time (n= 113). RIGHT PANEL,
Typical digital phenotype ofMCI that would progress to dementia over time for a period of 3 years

smartphone/tablet touch screen, gyroscope, and accelerometers

assessing time and intensity of various activities engaged during the

tasks. These measurements were organized in 109 key functional

motor behaviors related to the tasks, including gait strides and speed,

grip strength, purposeless screen touch, spatial distribution of the

motility path complexity when finding the augmented reality objects,

time-to-hide and time-to-find each object, location, and order errors in

object finding, etc. (see Figure 1 and Table S1 in supporting informa-

tion). These data are collectively integrated into the NMI that repre-

sent the overall outcome of the individual task performance. Results

are visualized on a dashboard available to the study team and stored

for statistical analysis. Instructions abouthowtoperform the taskwere

generally provided by trained clinical staff, but self-teaching videos

were also developed and used, in particular for the home testing.

Altoida iADL with NMI output were recognized as 513 g exempt

Class 2 medical devices by the U.S. Food and Drug Administration

(FDA) andClass1medical devicesbyCE in theEU.All data collectedare

encrypted in transit, sent to the cloud and stored on Altoida’s Digital

Biomarker Platform. This platform is compliant with the Health Insur-

ance Portability and Accountability Act and the FDA Code of Federal

Regulations (CFR) Title 21 Part 11.

From the smartphone/tablet neuro-motor recordings and individual

demographic data, 112 predictor variables were identified per subject

for use in the prediction models. These predictor variables included:

three demographic characteristics (age, years of education, and sex)

and the 109 neuro-motor parameters that generate the NMI (see

Table S1). In previous studies theseneuro-motor parameterswere seen

to correlate to different cognitive subdomains tested with validated

neuropsychological tests19,20 (ie, perceptual motor function; motor

coordination, visual perception, complex attention; processing speed,

executive function; planning and decisionmaking) as shown in the sup-

plemental material (p 5-9). No other biomarker was included in the

model, being used only to define post hoc the disease progression.

2.3 Machine learning model

We used the XGBoost classification algorithm24 as the prediction

model, using binary logistic regression of conversion to dementia or

not, as the learning objective. In addition, we used SMOTE (synthetic

minority oversampling technique)25 as the oversampling technique

during model training to address class imbalance. To improve com-

putation time, we applied hyperparameter optimization within each

training set, using the data for MCI converting to dementia. For all

other classification models, we use the thus-found optimal model. For

hyperparameter optimization, we split the data into multiple training,

validation, and test sets using nested k-fold cross-validation26 with five

outer and five inner folds. Each outer fold returned one classifier after

model building, validation, and hyperparameter optimization over

the inner folds. Generalization error for this model was estimated by

averaging test set scores over the five outer dataset splits. As a hyper-

parameter optimization strategy, we used a grid search, optimizing
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F IGURE 2 Flowchart showingmethodology for training and evaluatingmachine learningmodels

the learning rate, number of estimators, maximum tree depth, column

subsampling, and row subsampling while optimizing for area under the

receiving operating curve (ROC-AUC). The optimal parameters, 0.001,

5000, 7, 0.35, and 0.95, respectively, were then used for all classifiers.

We validated our results using both internal-external and external

validation.27 The Study A and Study B datasets consisted of data from

711 patients in total, with 109 of them diagnosed with AD and 27 with

other types of dementia as of the last study time point. For each patient

Pi (1 ≤i ≤N), the Study A and B dataset included Li separate exami-

nations by a physician and N was the total number of patients in the

dataset. Then, eachNMIexaminationof the ithpatient couldbedefined

as amultidimensional vector, where diwas the date of the examination

and ci was the clinical state of the patient (normal, MCI, or dementia)

as measured during that examination. Generally speaking, Study Awas

used as a training and internal-external validation dataset, whereas

Study Bwas used as external validation to test the ability of the trained

machine learning model to predict the progression of AD on an inde-

pendent patient population. Because the Study B data were only used

to test the machine learning models and not for training, we used a

fixed set of hyper-parameters for the XGBoost algorithm with a time

variable that represents the number of months into the future that the

machine learning model should make a prediction. The probabilities

calculated by the machine learning algorithm based on these examina-

tions were averaged to generate predicted probabilities for patient Pi

at time t. When comparing the model’s predictions against the actual

diagnoses in Study B, the predicted probability was compared to the

examination date documenting a new diagnosis in Study B. An illustra-

tion of themethod is at Figure 2.

2.4 Outcomes for machine learning

The primary outcome in the training set was the conversion fromMCI-

to-dementia assessed using clinical measurements (ie, eitherMMSE or

MOCA, and CDR) to any stage of cognitive impairment at any time. In

a secondary analysis, the same outcomewas considered for thoseMCI

subjects that would progress into dementia due to AD (aMCI) or not

associated with AD (naMCI).

2.5 Statistical analysis

To identify the size of the dataset necessary for obtaining a clinically

relevant analysis, we used the information available from NC and

MCI participants in our previous study.20 Using Clinical Dementia

Rating scale sum of boxes (CDR-SB) as an outcome at 40 months, a

minimum of 200 individuals per class was needed to demonstrate

difference in the longitudinal disease progression, that is, stability

over time or significant changes toward dementia, in keeping with

the recent literature.28 To assess real-world performance, the NMI

models were trained on the entire Study A dataset and then evaluated

on data derived from Study B and compared to actual diagnoses,

asking whether NMI can predict their later diagnoses. The training

dataset from Study A was covering 60 months with an average of

5.45 examinations per patient, totaling 1171.75 examinations. The

actual examination dates in Study B vary from patient to patient, but

they generally cover a 40-month period containing a total of 2961.12

examinations, or an average of 5.97 examinations per patient.
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TABLE 3 Performancemetrics of the NMImodel

ColumnA Column B ColumnC ColumnD

Statistic Mean SD Mean SD Mean SD Mean SD

ROC-AUC 0.91 0.03 0.92 0.03 0.94 0.01 0.91 0.01

Accuracy 0.85 0.05 0.86 0.02 0.88 0.02 0.89 0.03

Precision 0.90 0.04 0.83 0.04 0.94 0.07 0.96 0.02

F1-score 0.85 0.06 0.83 0.03 0.88 0.05 0.93 0.02

Sensitivity 0.81 0.08 0.84 0.04 0.84 0.11 0.91 0.05

Specificity 0.90 0.04 0.88 0.04 0.95 0.03 0.82 0.09

NPV 0.82 0.06 0.89 0.02 0.88 0.07 0.71 0.11

PSI 0.72 0.10 0.72 0.05 0.82 0.06 0.67 0.10

LR+ 10.98 5.92 7.90 3.52 10.20 5.42 6.40 2.50

LR- 0.22 0.09 0.18 0.04 0.19 0.04 0.11 0.05

Abbreviations: AUC, area under the curve; LR-, negative likelihood ratio; LR+, positive likelihood ratio; NMI, Neuro Motor Index; NPV, Negative Predictive

Value; PSI, Prognostic Summary Index; ROC, receiver operating characteristic.

For all analyses, except the cognitive domain comparison, we used

all 112 predictors without further feature selection. For the cognitive

domain comparison, we trained multiple prediction models using

only the predictors corresponding to each cognitive domain. For all

analyses, predictors with missing data were handled automatically by

the XGBoost algorithm andwe applied nomanual imputation.

We validated our results using both internal-external and exter-

nal validation as proposed by Steyerberg and Harrell (2016).27 For

internal-external validation, we used five-fold cross-validation using all

applicable subjects fromStudyAanda leave-maximum-one-center-out

scheme. Because not all recruitment centers had all study population

classes represented (healthy, MCI, MCI due to AD), our test sets con-

sisted of either a single center or of two centers selected such that each

test set contained all population classes. Each data collection site was

only used once in a test set. Each of the test sets was left out once for

the validation of amodel based on all remaining data. For external vali-

dation we used the Study B dataset.

Model performance was primarily measured using the ROC-AUC,

with a mean and standard deviation performance based on averages

over the testing folds. In some cases, the precision-sensitivity curve

was also used to offer information about the reliability of the predic-

tion, particularly for imbalanced data. Representative model accuracy,

sensitivity, specificity, positive predictive value (PPV), negative predic-

tive value (NPV), prognostic summary index (PSI), positive likelihood

ratio (LR+), and negative likelihood ratio (LR–) are presented regard-

ing the point on the ROC curve corresponding to Youden’s index.

3 RESULTS

We included all 496 participants in the external validation dataset,

with mean age 67 years (standard deviation [SD] 8), meanMMSE of 27

(SD 2), and of whom 306 (63%) were female (Table 2). During a mean

of 3.3 years (SD 2) of follow-up, 100 (47%) of the MCI participants

progressed to dementia, whereas 113 remained relatively stable over

time. Characteristics of theMCI participants are shown at Table 1.

3.1 Prediction of conversion from MCI to
dementia

The external validation performance of NMI for our primary outcome

was significantly better than chance. Clinically defined MCI subjects

converting to dementia, independently of their Aβ biomarker value,

when contrasted with those MCI subjects that remained stable

over the 3-year period were predicted by NMI with a ROC-AUC

of 91% after cross-validation, as shown in Figure 2, left panel, as

supported by a good discriminative metric profile described in Table 3,

column 1.

Prediction of conversion to dementia of MCI subjects, indepen-

dently of their Aβ biomarker value, was tested against a mixed popu-

lation characterized by a stable clinical profile over time for 3 years. To

this aim, MCI subjects that did not convert to dementia (n = 113) and

healthy control subjects that remained stable over 3 years (n = 283)

were included in the models and contrasted with MCI subjects that

converted to dementia (n = 100). The performance of the model was

characterized by ROC-AUC of 0.92 (SD 0.3), as shown in Figure 3, left

panel, and by a good model metric profile described in Table 3, column

2. Overall, these results are consistent with a good predictive value of

themodels.

3.2 Prediction of conversion from aMCI to AD
dementia

We also assessed a prediction model to distinguish between aMCI,

defined by positive Aβ and tau biomarker at baseline, which would

convert to AD dementia, versus a pooled population characterized by
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F IGURE 3 Receiver operating characteristic (ROC) curves for internal cross-validated results of predictingmild cognitive impairment (MCI) to
dementia. Internally five-fold cross-validated ROC-area under the curve (AUC) curves AUC-ROC analysis, in identifyingMCI subjects that
progress to dementia in a 3-year period. LEFT PANEL, Assessment versusMCI subjects that will remain stable over time (n= 113). RIGHT PANEL,
Assessment versus the combined population ofMCI and healthy control subjects that will remain stable over time for a period of 3 years

F IGURE 4 Receiver operating characteristic (ROC) curves for internal cross-validated results of predicting amnestic mild cognitive
impairment (aMCI) to Alzheimer’s disease (AD) dementia. Internally five-fold cross-validated ROC curves predicting the conversion of subjects
with aMCI to dementia due to AD versus a stable pooled population of non-converters (LEFT PANEL) and predicting aMCI subject undergoing
rapid conversion (<24month) versus late conversion (RIGHT PANEL)

a stable response over 3 years, consisting of those aMCI that do not

convert to dementia and healthy control but positive Aβ biomarker

subjects. To test this prediction model, we used 450 subjects in total

from which 67 healthy controls with Aβ biomarker measured and 167

aMCI subjects, 79 of those converting to dementia. All these subjects

were assessed in a clinical setting. After cross-validation, the estimated

generalization error of the prediction model gave a ROC-AUC of 0.94

(SD 0.01) and good model performance metrics shown in Figure 4, left

panel and Table 3, column 3. These data are consistent with a good

predictive value of themodel.
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Moreover, within the group aMCI subjects likely to convert to AD,

the predictive model was trained to discriminate between rapid pro-

gressors that convert into AD within 18 months and slow decliners

that convert into AD afterward. The generalization error of this model,

namely the rate of decline, was estimated at a ROC-AUC of 91% (SD

0.01). Performance metrics of the model are shown in Figure 4, right

panel and Table 3, column 4. Overall, these results indicate the possi-

bility to identify at baseline subpopulations of aMCI subjects that will

progress to AD within 3 years and also those with a faster rate than

other patients with positive Aβ and/or tau biomarkers.

External validation of the predictive model was further imple-

mented for the classification of MCI subjects converting to AD (aMCI)

as defined by positivity of Aβ biomarker at baseline (AD neuropathol-

ogy) versus all MCI subjects converting to other types of demen-

tia (naMCI) characterized by Aβ negative biomarker. The model was

trained using 46 naMCI (n= 46) and aMCI (n= 167) subjects. The esti-

matedgeneralizationerror gaveaROC-AUCof90% (0.01SD)with sen-

sitivity of 0.90 (SD 0.06), specificity of 0.81 (SD 0.10), precision 0.95

(SD 0.03), accuracy (0.88 [SD 0.04], NPV 0.70 [SD 0.12], and PSI 0.65

[SD 0.11]; see Figure S4 and Table S4 in supporting information).

3.3 Testing heterogeneity: predictive
performance when the task is assessed in the
community, memory clinic, or at home

Regarding the unsupervised assessment, aMCI subjects and age-

matched healthy controls agreed to volunteer for unsupervised,

home-based tests, and for yearly follow-up assessment. The predictive

ML model was trained with data from aMCI subjects (n = 45) and

control subjects (n = 55). The estimated generalization error of this

predictor gave a ROC-AUC of 0.93 (SD 0.2) with sensitivity of 0.82 (SD

0.07), specificity of 0.91 (SD 0.8), precision 0.89 (SD 0.10), accuracy

0.87 (SD 0.04), F1 0.84 (0.04), NPV 0.88 (SD 0.04), and PSI 0.76 (SD

0.09) (supplemental material p 14).

Furthermore, an internal-external validation process was per-

formed toaccount for any center-specific effects, that is,memory clinic,

primary care, and unsupervised assessment (home environment). For

this analysis, we left a maximum of two settings out at a time to cross-

validate theMLmodel developed in other settings, aimed to deliver our

primary outcome (conversion to dementia), and secondary outcome

(conversion to AD dementia). The obtained performance metrics are

described in Table 4.

3.4 Linking cognitive functions with NMI
parameter performance in predicting dementia

To assess the predictive power of the most frequently used neuro-

motor predictors, we trained multiple prediction models each using

only the predictor variables corresponding to themost frequently used

everyday function and/or cognitive domains in performing the Altoida

iADL tasks. The bar charts created show a stronger discriminative

TABLE 4 Performancemetrics for internal-external validation of
center-specific effects

Internal-external

validation (dementia)

Internal-external

validation (AD)

ROC-AUC 0.87 (0.05) 0.85 (0.12)

Accuracy 0.81 (0.06) 0.86 (0.04)

Sensitivity 0.80 (0.05) 0.90 (0.06)

Specificity 0.83 (0.13) 0.81 (0.10)

PPV 0.85 (0.09) 0.85 (0.12)

NPV 0.80 (0.04) 0.84 (0.15)

PSI 0.64 (0.11) 0.65 (0.11)

LR+ 8.15 (5.58) 6.05 (2.56)

LR– 0.25 (0.05) 0.12 (0.07)

Notes: Data are ROC-AUC (std.) Leave-maximum-two-sites-out internal-

external validation metrics for memory clinics, primary care, and unsuper-

vised, at home assessment settings. Representative accuracy, sensitivity,

specificity, PPV, NPV, PSI, LR+, and LR– are based on the point on the

receiver operating characteristic curve corresponding to Youden’s index.

Different thresholds can be taken on the basis of the requirements of the

diagnostic test.

Abbreviations: AD, Alzheimer’s disease; AUC, area under the curve; LR-,

negative likelihood ratio; LR+, positive likelihood ratio; NPV, Negative Pre-

dictive Value; PSI, Prognostic Summary Index.

capacity (ROC-AUC >0.80) for four cognitive domains, that is, per-

ceptual motor coordination, complex attention, cognitive processing

speed, and planning. Interestingly, the same cognitive dimensionswere

involved in both the primary outcome (prediction of conversion to

dementia) and the secondary outcome (prediction of conversion to AD

dementia; Figure 5).

4 DISCUSSION

In this study, we provided robust evidence that an agmented reality

(AR) digital biomarker (NMI) obtainedbyprofilingperformance in tasks

inspired to activities of daily living using a smartphone/tablet could

deliver prognosis for dementia in individuals withMCI over a period of

3 years when performed at baseline, that is, the time ofMCI diagnosis.

This result was achieved implementing ML analytics to a database

consisting of a relatively heterogeneous set of data obtained in sub-

jects with diagnosis of MCI, of relevance for the generalization value

of the model. The data were collected from subjects of both sexes

in two semi-naturalistic observational studies executed in different

periods during the last decade, recruited frombothmemory clinics and

primary care settings in various European countries and the United

States as well as at home, who spoke six different languages. This

diversification in the training set was planned to help the models to

generalize, potentially reducing the risk of cohort bias.

The ML model consisted of three demographic variables (age,

sex, and years of education) and 109 neuro-motor parameters

collected from the signal generated by built-in sensors of the smart-

phone/tablets used to perform the NMI tasks inspired by complex
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F IGURE 5 Individual performance of cognitive domains. Individual performance in each cognitive domain engaged by the NeuroMotor Index
neuro-motor parameters most critically involved in the Altoida iADL task performance that predict the conversion into either dementia (LEFT
PANEL) or Alzheimer’s disease dementia (RIGHT PANEL). The standard deviation is computed over five cross-validation folds

instrumental activities of daily living.20 The model performance for

predicting the main clinical outcome (ie, changes inMMSE/MOCA and

CRD that define the dementia condition) had an excellent performance

(ROC-AUC 0.91) in those subjects with clinical MCI that convert to

dementia compared to subjects that remain stable over 3 years. A

similar performance (ROC-AUC 0.92) was obtained in the subgroup

of aMCI subjects characterized by positive Aβ and tau biomarkers

at baseline that convert into dementia due to AD within 3 years.

Intriguingly, also the subgroup of MCI subjects converting to AD

(aMCI) as defined by positivity of Aβ biomarker only at baseline (AD

neuropathology) versus naMCI, that is, those individuals with negative

Aβ biomarkers that progress into non-ADdementia, could be identified

when tested with NMI at baseline. This result suggests a potential for

extending the predictive capacity of NMI outside the strictly defined

AD pathogenetic mechanisms, probably due to commonalities in the

early regional dysfunction of brain circuits that characterize thoseMCI

conditions evolving toward dementia.

MLmodelingwas performed on a series of neuro-motor parameters

collected from the smartphone-tablet sensors during the Altoida

iADL tasks that were previously related to a series of cognitive

domains.18-20 These parameters, all included in the NMI score, when

assessed against the cognitive domains, indicated a principal role for

perceptual motor coordination, complex attention, cognitive process-

ing speed, and planning (as indicated by ROC-AUC 0.81-0.95). These

impaired cognitive functions were similarly involved in predicting the

conversion into dementia for subjects with clinically defined MCI, as

well as the specific conversion in AD dementia in aMCI subjects with

positive Aβ biomarker at baseline, suggesting possible commonalities

on defective neural substrates already engaged at the MCI stage.

Accordingly, metabolic positron emission tomography (PET) imaging

studies consistently describe cortical hypometabolism, in the inferior

and superior temporal gyri and inferior parietal lobule, and subcortical

hypometabolism, in the primarily posterior cingulate cortex and the

hippocampus, of MCI subjects that progress to dementia.29,30 These

regions are involved in visuo-spatial motor coordination processing,

complex attention, decision making, and procedural memory, all criti-

cally involved in iADLperformance. Intriguingly, thedata collectedwith

theNMIAltoida iADL tasks and the neuroimaging profiling are in keep-

ing with recent findings on the “Motoric Cognitive Risk Syndrome”31

and the “Gait and Cognition Syndrome”32 that also occur in MCI

subjects that develop dementia. The present data also corroborate

the predictive power of impairments in spatial memory and planning

detected during walking or navigation tasks previously published.33

Another result of the present study was the application of the ML

model to discriminate between aMCI subjects that rapidly (ie, within

18 months from diagnosis) converted to dementia due to AD against

those that show a slow decline and that convert after 36 months. The

predictive performance was good (AUC 0.91). The fact of being able

to differentiate between rapid and slow decliners at baseline may

have important implications for the definition of the study population

in clinical trials for novel disease-modifying treatment. The model

was also applied to identify those naMCI subjects that convert to

non-AD dementia within 3 years, with a very good performance

(AUC 0.92).



12 of 13 BUEGLER ET AL.

One of the remarkable aspects of these results is that the predictive

capacity of the digital biomarker NML when considered alone (not

in conjunction with other biomarkers) and associated to three basic

demographic parameters (ie, age, education, and sex) is similar or

moderately better than those so far published and based on multiple

biomarkers. For example, ABIDE, a comprehensive risk prediction

model based on the ATN biomarker construct, included 2116 subjects

from different North-American and European cohorts, delivered the

highest ROC-AUC performance of 0.74,14 which is in the low range

of ROC-AUC we obtained with NMI digital biomarker. Another model

using support vector machine with linear kernel on the dataset of

the Dementia Competence Network, a German multicenter cohort

observational study performed on 115 subjects with MCI due to AD

with annual follow-up up to 3 years, showed that by combining up

to four AD biomarkers in the same model, the ROC-AUC predicting

aMCI conversion to AD dementia was 0.82, significantly superior to

the 0.77 AUC value obtained using the single best biomarker, that is,

the hippocampal volume.15

In recognition of the fact that intervention strategies are progres-

sively using high-frequency, unsupervised, home based assessments29

results from the substudy on our 100 subjects suggest that unsuper-

vised NMI obtained at home using a smartphone/tablet could also be

used to predict the risk of progression to AD within the aMCI popu-

lation (ROC-AUC 0.93). While raising possible ethical problems about

informing subjects of their risks to developing dementia, this evidence,

if confirmed, has great potential for implementation in clinical trials

and for optimizing the available treatment in a cost-effective way. In

addition, a recentmeta-analysis of data collected fromtasksperformed

at different times of the day in unsupervised environment showed a

preference for later-in-the-day testing periods, when cognition and/or

functionality could be different from themorning time according to the

literature.34-36

The present study has certain limitations. Among them, the predic-

tions of ourmodelswere calibrated every 12months (ie, assessing con-

cordance between predicted and observed clinical outcome). This sam-

ple frequency was chosen mostly for feasibility, because in this case,

higher frequency assessments, for example, every 3 months, would

constitute aburden for theparticipant andbemore expensive. Another

limitation is that we did not include APOE ɛ3/ɛ4 genotype or polygenic
risk score information in our models. Because genotyping is currently

rarely used in clinical practice andweultimatelywanted to focus on the

digital biomarker platform alone, in the present study we didn’t com-

bine the genotyping information with NMI. Finally, the time of testing

at home was not controlled in the unsupervised environment, so it is

unclear if time-of-day effects should have been added as predictors in

the current study.

In conclusion, we have shown the generalizability and robustness of

the NMI digital biomarker-basedMLmodels for prediction of progres-

sion to dementia in individuals with MCI, in particular for those pro-

gressing to AD. The ease of handling, the high diagnostic accuracy, the

assessment’s brevity, and the noninvasiveness renders NMI an ideal

tool for participant profiling, cutting downenrolment periods and costs

for cumbersome screenings, aside from risk prediction and disease

monitoring. The unique capability to distinguish individuals in the MCI

group that progress to dementia, as well as fast and slow aMCI cog-

nitive decliners, is of utmost importance in the definition of the study

population in clinical trials and for its recruitment, eventually reducing

the risks of false positives.

While many digital biomarker efforts are in progress, particularly

in neurodegenerative disorders, NMI sets itself apart through its high

sensitivity and the rapidity of the assessment. In this light, it could serve

as a starting point for precisionmedicine plans for AD.
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