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Abstract: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children.
Herein, we evaluated the relationship between the gut microbiome (GM) and disease phenotype
by an integrated omics fused approach. In a multicenter, observational cohort study, stools from
Italian JIA patients were collected at baseline, active, and inactive disease stages, and their GM
compared to healthy controls (CTRLs). The microbiota metabolome was analyzed to detect volatile-
and non-volatile organic compounds (VOCs); the data were fused with operational taxonomic units
(OTUs) from 16S RNA targeted-metagenomics and classified by chemometric models. Non-VOCs did
not characterize JIA patients nor JIA activity stages compared to CTRLs. The core of VOCs, (Ethanol,
Methyl-isobutyl-ketone, 2,6-Dimethyl-4-heptanone and Phenol) characterized patients at baseline
and inactive disease stages, while the OTUs represented by Ruminococcaceae, Lachnospiraceae and
Clostridiacea discriminated between JIA inactive stage and CTRLs. No differences were highlighted
amongst JIA activity stages. Finally, the fused data discriminated inactive and baseline stages versus
CTRLs, based on the contribution of the invariant core of VOCs while Ruminococcaceae concurred for
the inactive stage versus CTRLs comparison. In conclusion, the GM signatures enabled to distinguish
the inactive disease stage from CTRLs.
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1. Introduction

In recent years, many evidences have highlighted that alterations in the gut microbiome (GM)
were frequently associated to the development of local and systemic inflammatory and autoimmune
diseases [1], and thus, the role of GM in the pathogenesis of juvenile idiopathic arthritis (JIA) has
been also hypothesized [2]. In a recent multicenter observational cohort study, a GM dysbiosis for JIA
patients was detected, in terms of richness and compositional deviation from age-matched healthy
controls (CTRLs) [3]. Particularly, the study of van Dijkhuizen et al. [3] included a large cohort of
treated-naive JIA Dutch and Italian patients in longitudinal follow up. This experimental design,
which allowed us to compare the GM amongst patients versus CTRLs, revealed that age, geographic
origin and disease status appeared to be determinant factors for the GM signature, regardless of
the disease activity stage (i.e., baseline, inactive, active) and inflammation markers. In addition, a
recent re-evaluation of previously published data derived from USA [4], Finland [5] and Indian [6]
cohorts confirmed that the GM signature of JIA patients was different from CTRLs, on the basis of their
geographical origin [7]. Moreover, training mathematical models built on a single cohort was unable
to differentiate JIA patients from CTRLs [7]. Hence, while the JIA disease status is ascertained to be
associated to a dysbiosis, the role of GM composition in the pathogenesis of the disease must be still
deeply investigated, particularly for the aspects depending on geographical variability. The present
study highlights a progression of a previous clinical study [3]; in particular, a well-defined Italian cohort
of JIA patients at baseline, inactive and persistent stage conditions compared to CTRLs was studied
to find possible associations amongst composition (operational taxonomic units OTUs at bacterial
family level) and content of volatile organic compound (VOCs) and low weight molecules (Non-VOCs)
in the stools. The multi-omic approach, achieved by the integration of different metabolomics and
targeted-metagenomics data, might provide different profiles to better highlight the role of GM in the
JIA disease.

2. Materials and Methods

Patient Enrollment and Omics Procedures

This observational prospective cohort study was conducted in Italy at the Ospedale Pediatrico
Giannina Gaslini (OPGG) of Genoa and at the Ospedale Pediatrico Bambino Gesù (OPBG) of Rome,
Italy. The consecutive 60 patients’ cohort, 46 from OPBG and 14 from OPGG, respectively, was recruited
between October 2013 and December 2015 with a JIA diagnosis, according to International League
Against Rheumatism (ILAR) criteria [8].

Patients, 16 males and 44 females, aged 1.7 to 16.6 years (average age 7.0 years SD ± 4.11), were
aged-matched against a cohort of 25 CTRLs subjects, screened during a survey on GM programming
at the OPBG Human Microbiome Unit (Table 1). Moreover, clinical data including the JADAS- 71 [9],
CRP, ESR and the use of NSAIDs were collected (Table 1), as well as information on dietary habits
and prebiotic, probiotic administration (Table S1). At the follow up visits, disease activity status was
defined according to the Wallace criteria for inactive disease [10]. A previous study included more
detailed information on the same patient’s cohort [3].

The study was approved by the OPBG ethics committees (Code 615/2013) on 6 May 2013 and was
conducted in accordance with the Principles of Good Clinical Practice and the Declaration of Helsinki.
Written informed consent was obtained from all participants.

Eighty-five fecal samples were collected at the reference node of the Biobanking and Biomolecular
Resources Research Infrastructure of Italy (BBMRI) for human microbiome of the OPBG Human
Microbiome Unit and stored at −80 ◦C until further meta-omics processing.
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Table 1. Clinical characteristics of the patients with JIA and CTRLs.

Subjects Females Mean Age
(S.D) *

Mean
JADAS-71

(S.D)

Mean CRP
(mg/L)
(S.D)

Mean ESR
(mm/hour)

(S.D)

Use of
NSAIDs

Use of
MTX

Use of
Biologicals

JIA
Baseline

17/20
(85%)

6.4
(±4.07)

15.95
(±9.76)

1.38
(±1.61) 24.6 (±20.41) 15/20

(75%) 0/20 (0%) 0/20 (0%)

JIA
Inactive

14/19
(73.6%)

7.6
(±3.98)

0.34
(±0.70)

0.24
(±0.29) 11.10 (±5.76) 3/19

(15.8%)
14/19

(73.7%)
3/19

(15.8%)

JIA
Persistent

13/21
(61.9%)

6.9
(±4.42)

7.19
(±2.28)

0.98
(±1.43) 18.43 (±14.15) 7/21

(33.3%)
12/21

(57.1%)
3/21

(14.3%)

CTRLs 14/25
(56%)

9.76
(±2.86) Nda ** Nda Nda Nda Nda Nda

*: S.D: standard deviation; **: Nda: No data associated.

The 16S targeted-metagenomics data of the GM profiling, discussed in the previous study [3],
were harmonized and combined for omics data integration to metabolomics data obtained by both
solid phase micro-extraction coupled with gas-chromatography mass spectrometry (SPME/GC-MS)
(Table S2) and nuclear magnetic resonance (NMR) spectroscopy (Table S3), obtained as described in
the previous studies [11,12].

To integrate the multidimensional data, univariate and multivariate analyses were performed by
MATLAB toolbox or by in-house written software. The OTUs and SPME/GC-MS raw data were reduced
in order to obtain matrices considering only OTUs and metabolites detected in at least 70% of the entire
dataset, including both JIA and CTRLs subjects. On the contrary, NMR raw data matrix did not need
any reduction. Classification models were built according to Vernocchi et al. [13] and optimized for
this specific application (Figure 1). Moreover, the partial least square-discriminant analysis (PLS-DA)
was performed according to Szymańska et al. [14]; in particular, validation was carried out by means of
a combination of double cross-validation (DCV) and permutation tests. Following DCV procedure, for
each variable the geometric average was considered, and the non-parametric statistics rank product
(RP) index was applied [15]. Low values of RP indicated variables highly contributing to the model
and, accordingly, considered as candidate biomarkers.

Figure 1. Strategy for the multivariate analysis of targeted-metagenomics, gas-chromatography
mass spectrometry SPME/GC-MS and nuclear magnetic resonance NMR based metabolomics data
and low data fused (integrated platforms). Classification models, based on Partial least squares
discriminant analysis(PLS-DA) in double cross-validation (DCV), were at first established considering
the results for each omic platform and, in a second stage, according to a low-level data fusion strategy
(targeted-metagenomics, SPME/GC-MS and NMR).
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3. Results

3.1. Patients

Sixty JIA pediatric patients, (average age 7.0 years, SD ± 4.11), compared to 25 healthy age-paired
subjects, were recruited in a previous study [3], to evaluate their microbiota signatures by metabolomics
profiling and data fusion with microbiota composition. In according to the Juvenile Arthritis Disease
Activity Score in 71 joints (JADAS-71) [9,16], the disease activity varied from moderate (mean value:
15.95) for baseline, to low (mean values 0.34) for inactive and persistent (mean values 7.19) disease
stages, respectively. The mean values of C-reactive protein (CRP) showed low levels in the serum
ranging from 0.24 to 1.38 mg/L. The erythrocyte sedimentation rate (ESR) resulted higher at baseline
(mean value 24.6 mm/hour), followed by ESR values at persistent (mean value 18.4 mm/h) and inactive
disease stage (mean value 11.1 mm/h). Nonsteroidal anti-inflammatory drugs (NSAIDs) were mainly
administered to patients at baseline (15/20), followed by patients with persistent (7/21) and inactive
disease (3/19). No patients used any biologicals or synthetic antirheumatic drugs at baseline, whereas
most patients were on methotrexate (MTX) in inactive (14/19) and during persistent (12/21) disease
stages. Some patients used biological drugs (Table 1).

3.2. Omics Data and Fused Model Analysis

Different classification algorithms were created in order to achieve a functional model of the
GM in JIA. Firstly, the analysis was conducted separately on the different data resulting from single
platforms and generated variables: (i) targeted-metagenomics and OTUs; (ii) SPME/GC-MS and VOCs;
(iii) NMR and Non-VOCs (Figure 1).

The PLS-DA models were created on single and low-level fused data generated from VOCs, OTUs,
and Non-VOCs.

Focusing on VOCs, the average correct classification rate (CCR3) referring to CTRLs versus
JIA patients (total variables) comparison ranged around 77% for each paired CTRLs-disease stage.
Particularly, registered percentages were: 78.5 ± 2.6, CTRLs-JIA Baseline; 75.9 ± 4.9, CTRLs-JIA Inactive;
77.5 ± 3.2, CTRLs-JIA Persistent. Overall, CTRLs versus entire JIA phenotypes were classified by
averaged CCR 3 62.9 ± 2.7% (Table 2).

Table 2. PLS-DA models in DCV of volatile organic compounds (VOCs) data matrix.

Groups CCR* 1 (%JIA) CCR 2 (%Control) CCR 3 Average (%Total)

CTRL vs. JIA ALL 48.6 ± 3.7 99.22 ± 2.0 62.9 ± 2.7

CTRL vs. JIA Baseline 55.9 ± 4.8 98.3 ± 2.3 78.5 ± 2.6

CTRL vs. JIA Inactive 54.2 ± 8.3 93.1 ± 3.7 75.9 ± 4.9

CTRL vs. JIA Persistent 55.4 ± 4.4 96.8 ± 3.0 77.5 ± 3.2

* Correct Classification Rate: CCR.

Despite the partial CCR for each JIA disease stage was lower (CCR1 average around 55%) with
respect to CTRLs group (CCR2 average around 95%), the CCR3 for the paired CTRLs-JIA disease
stages represented a high value of classification. However, its value was principally due to CTRLs,
hence characterizing this model as having a low predictive ability to identify JIA disease stage
groups (Table 2). Nonetheless, an invariant core of metabolites such as Methyl-isobutyl-ketone,
Ethanol, 2,6-Dimethyl-4-heptanone and Phenol were shared by the metabolomics profiles of patients
at baseline and inactive disease stages, therefore resulting overrepresented in the patients’ profiles.
The Methyl-isobutyl-ketone and the 1-Hexanol represented the highest and the lowest represented
metabolite, respectively, in the JIA PLS-DA model (Table 3).
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Table 3. Metabolites derived from PLSA-DA models in DCV of VOCs data matrix.

CTRL vs. JIA All CTRL vs. JIA Baseline CTRL vs. JIA Inactive CTRL vs. JIA Persistent

Methyl-Isobutyl Ketone 1-Pentanol Methyl-isobutyl ketone Methyl-isobutyl ketone

1-Butanol Methyl-isobutyl ketone 1-Hexanol 1-Butanol

Ethanol 1-Butanol Ethanol 2-Pentanone

Benzaldehyde 2,6-Dimethyl 4
heptanone

2,6-Dimethyl 4
heptanone 1-Pentanol

2-Octanone 1-Hexanol 2-Octanone Ethanol

2-Nonanone Acetic Acid 1H-indole 4-Methyl phenol

6-Methyl-5-hepten-2-one Ethanol Benzaldehyde Acetone

1H-indole Phenol Phenol 2-Butanone

2-Pentanone 4-Methyl phenol Acetic Acid 2-Octanone

1-Hexanol Benzaldehyde 6-Methyl-5-hepten-2-one Benzaldehyde

Legend: In white and grey boxes are reported lower and higher variables detected in all patients and disease stages’,
respectively, compared to CTRLs, respectively. Only values of significant RP (p < 0.05) were reported.

Moreover, OTUs (Tables 4 and 5) and Non-VOCs (Table 6) variables, evidenced values of CCRn
that failed in the attempt to classify all groups of variables, including JIA, CTRLs and JIA at different
disease stage.

Table 4. PLS-DA models in DCV of operational taxonomic units (OTUs) at family level.

Groups CCR * 1 (%JIA) CCR 2 (%Control) CCR 3 Average (%Total)

CTRL vs. JIA ALL 60.9 ± 4.2 61.2 ± 6.0 61.0 ± 3.4

CTRL vs. JIA Baseline 48.7 ± 7.1 57.4 ± 5.1 53.3 ± 4.2

CTRL vs. JIA Inactive 67.2 ± 5.1 71.1 ± 5.7 69.4 ± 4.0

CTRL vs. JIA Persistent 58.4 ± 6.2 57.8 ± 6.6 58.1 ± 4.7

* Correct Classification Rate: CCR.

Table 5. Microbial features derived from PLS-DA models in DCV of OTUs at family level.

CTRL vs. JIA All CTRL vs. JIA Baseline CTRL vs. JIA Inactive CTRL vs. JIA Persistent

Coriobacteriaceae Clostridiaceae Ruminococcaceae Rikenellaceae

Rikenellaceae Coriobacteriaceae Lachnospiraceae Coriobacteriaceae

Clostridiaceae Streptococcaceae Clostridiaceae Others

Lachnospiraceae Enterobacteriaceae Veillonellaceae Enterobacteriaceae

Enterobacteriaceae Rikenellaceae Erysipelotrichaceae Clostridiaceae

Verrucomicrobiaceae Peptostreptococcaceae Coriobacteriaceae Peptostreptococcaceae

Veillonellaceae Others Porphyromonadaceae Mogibacteriaceae

Streptococcaceae Alcaligenaceae Enterobacteriaceae Lachnospiraceae

Ruminococcaceae Mogibacteriaceae Streptococcaceae Porphyromonadaceae

Erysipelotrichaceae Lachnospiraceae Others Veillonellaceae

Legend: In white and grey boxes are reported higher and lower variables detected in patients compared to CTRLs,
respectively. Only values of significant RP (p < 0.05) were reported.
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Table 6. PLS-DA models in DCV of Non-VOCs data matrix.

Groups CCR * 1 (%JIA) CCR 2 (%Control) CCR 3 Average (%Total)

CTRL vs. JIA ALL 54.4 ± 4.2 52.6 ± 7.0 53.9 ± 3.4

CTRL vs. JIA Baseline 57.0 ± 7.6 57.5 ± 8.7 57.3 ± 6.5

CTRL vs. JIA Inactive 46.1 ± 8.3 42.4 ± 9.0 44.0 ± 5.3

CTRL vs. JIA Persistent 44.6 ± 7.8 63.2 ± 6.9 54.5 ± 6.8

* Correct Classification Rate: CCR.

Concerning OTUs, the calculated values for each JIA disease stage (CCR1 average around 60%)
and CTRLs (CCR2 average around 61%) resulted in a low prediction model (Table 4). Particularly,
registered average percentages were: 53.3 ± 4.2, CTRLs-JIA Baseline; 69.4 ± 4.0, CTRLs-JIA Inactive;
58.1 ± 4.7, CTRLs-JIA Persistent. Therefore, the comparison between CTRLs and JIA Inactive stage
(Table 4) was characterized by the highest CCRn value. The value was achieved by the concurrent
contribution of the OTUs at family level, Ruminococcaceae, Lachnospiraceae, Clostridiaceae (Table 5).

Non-VOCs variables (Table 6) showed average and single CCRn values around 40–60%; hence the
alone NMR platform data were considered not reliable to perform a group classification validation for
both CTRLs, JIA patients and single JIA-disease stages.

Moving to the low-level fused data, the total classification ability of the model ranged from 57.6 to
81.2%. In particular, the grouping between JIA disease stage and CTRLs was classified by CCR 3 score
whose average ranged from 68.1 to 72.8% (Table 7). For the comparison CTRLs/JIA ALL, the CCR 3
average value was the lowest value compared to the other CCR3, while, within disease phenotypes,
the model recognized both JIA baseline (CCR3 71.6 ± 4.9) and JIA inactive stages (CCR3 72.8 ± 5.1)
from CTRLs, as reported in Table 7.

Table 7. PLS-DA models in DCV of low-level fused data matrix.

Groups CCR * 1 (%JIA) CCR 2 (%Control) CCR 3 Average (%Total)

CTRL vs. JIA ALL 57.6 ± 4.3 77.4 ± 5.2 63.2 ± 3.0

CTRL vs. JIA Baseline 61.7 ± 7.0 80.3 ± 7.1 71.6 ± 4.9

CTRL vs. JIA Inactive 67.4 ± 7.9 77.1 ± 7.0 72.8 ± 5.1

CTRL vs. JIA Persistent 53.0 ± 5.7 81.2 ± 7.3 68.1 ± 4.3

* Correct Classification Rate: CCR.

In the fused model, the variables OTUs and metabolites, which could be identified as significant
and predictive compared to the CTRLs, were defined by the RP obtained by DCV procedure (Figure 2).
Overall, the models built on the JIA patients at baseline, active and persistent disease stage identified
high levels of alcohols, such as 1-Butanol and 1-Pentanol. Moreover, low abundance of Coriobacteriaceae
represented an important variable for the discrimination from CTRLs of JIA Baseline and with less
representativity of persistent disease stages’ children (Figure 2a).

The VOCs Ethanol, Methyl-isobutyl-ketone, 2,6-Dimethyl-4-heptanone and Phenol represented
the metabolites discriminating JIA patients at both baseline and inactive stage from CTRLs in the
PLS-DA (Figure 2b,c). These VOCs at JIA Baseline showed RP values ranging from 3 to 10, in the
model discriminating CTRLs vs. JIA Baseline while in CTRLs vs. JIA Inactive RP values ranged from 6
to 12, identifying these molecules as highly contributing to the models, hence representing potential
biomarkers (Figure 2b,c) of the disease stages. Streptococcaceae (RP: > 10) and Enterobacteriaceae
(RP: > 10) were associated with JIA Baseline, despite low model values (Figure 2b). On the other site,
Ruminococcaceae (RP: 4) well represented JIA Inactive stage, with also the low scored contribution of
Lachnospiraceae (RP: 12.5) (Figure 2c).
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In the JIA Persistent stage patients were characterized especially by 1-Butanol, Methyl-isobutyl-
ketone, Glucose, 2-Pentanone which showed RP values ranging from 3.8 to 9. Regarding OTUs,
Rikenellaceae group decreasing was significantly associated with the JIA Persistent disease stage
(Figure 2d). Moreover, in order to achieve an insight on the relationship between omics fingerprints
and clinics, different classification models based on clinical data were also established. However, none
of these models were able to discriminate amongst JIA patients and reference CTRLs group but also
amongst baseline, inactive and persistent disease stages (p-values > 0.05) (data not shown).

On the other hand, the information about the dietary habits and the use of prebiotics, probiotics
(Table S1) did not allow to formulate any statistically meaningful hypothesis on the possible relation
amongst these three factors and the observed discrimination. However, by inspecting the scores’ plot
of the PLS-DA models discussed above, in light of the categorizations described by the three possible
confounding factors (diet, prebiotics and probiotics), the distribution of JIA samples appeared not
driven by any of these three effects (data not shown).

Figure 2. PLS-DA modeling on the low-level fused data. Graphical illustration of the variables
significantly contributing to the definition of the single models based on the values of RP resulting from
the repeated DCV procedure. The four different panels show the RP values for the models: (a) CTRLs
vs. JIA; (b) CTRLs vs. JIA Baseline; (c) CTRLs vs. JIA Inactive; (d) CTRLs vs. JIA Persistent. In each
panel, the color of the bars indicates whether, on average, the variable is higher (red) or lower (blue) in
the specific JIA disease stage with respect to the CTRLs.

3.3. Univariate Analysis

Within the group referring to the JIA Inactive-stage, most of the patients were treated with MTX
(14/19) similarly to the JIA Persistent-stage group (12/21), whereas at the JIA Baseline-stage the patients
were treated with only NSAID (15/20). In order to evaluate the effects due to the pharmacological
treatments, we compared the variables that resulted significant in the discrimination between patients
and CTRLs, and between patients treated with either NSAID or MTX and those not treated. The
results obtained from the univariate analysis (Mann–Whitney Rank Sum Test) showed no significant
differences between patients treated and not, regardless therapy type (Text S1).
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4. Discussion

The integrated metabolomics and targeted-metagenomics results suggest that the observed GM
functional and compositional profiles can be specific for the subjects affected by JIA, rather than for
each specific disease stage, and regardless of inflammation status, in agreement with previous results
obtained by van Dijkhuizen et al. [3].

High levels of Ruminococcaceae, mainly associated to inactive JIA, were also detected in a
polyarticular JIA and enthesitis-related arthritis patients (ERA) compared to CTRLs [11]. Moreover,
Forbes et al. [17] revealed Ruminococcus lactaris and Lachnospiraceae as component of the microbiota
profile in patients affected by rheumatoid arthritis (RA), along with other species such as Clostridium,
Gordonibacter, Eggerthella, Bacteroides dentium, Lactobacillus spp.

The changes in the GM profile in JIA patients at the inactive disease stage resulted to have a
higher predictive potentiality with respect to those at baseline and persistent disease stages. However,
the high levels of Ethanol and Methyl-isobutyl-ketone had invariable characteristics observable in all
PLS-DA models. Ethanol may be the end-product of fermentation of different carbohydrates by GM.
Thus, several microbial species belonging to Ruminococcaceae, Lachnospiraceae and Clostridiaceae,
as well as Enterobacteriaceae are able to produce ethanol [12]. In addition, the increased abundance
of these bacterial families was associated with high levels of Ethanol. Ethanol has also been found
in large amounts in non-alcoholic fatty liver disease (NAFLD) patients [18]. Furthermore, peculiar
changes observed in patients at baseline and persistent disease stage were linked to other alcohols
such as 1-Pentanol and 1-Butanol, detected at high levels, compared to CTRLs. On the contrary, the
differences between inactive and persistent disease stage patients were not statistically significant.

The higher level of 1-Pentanol and 1-Butanol were previously found in stools of children with
NAFLD compared to CTRLs [19], but without any metabolic similarity between the GM of JIA and
NAFLD patients. High levels of alcohols have also been observed in the stools of cystic fibrosis
children [13], but this metabolic pattern could not define a specific microbial imbalanced activity in JIA
patients. Probably, this imbalance could be related to the diet-linked intestinal environment or to a
factor linked to an unspecific pathological event than with a metabolism of specific bacteria.

Zhang et al. [20] reported that after the modification of therapy with antirheumatic drugs, there
was a partially improved dysbiosis in RA patients, but also highlighted a clinical amelioration.

Dong et al. [21] showed that anti-rheumatic treatments were linked with the partial reversion of
dysbiosis. This suggests that the GM plays a crucial role in disease promotion and clinical course and
that the intestinal homeostasis is fundamental for the host’s health. The results showed in the present
study, in agreement with the previous data [3] carried out in a broad longitudinal study, evidenced
that the GM composition and its metabolic activity were not affected by the disease stage.

These results could represent a characteristic phenotypic aspect of JIA individuals, which could be
strongly correlated to geographic origin and diet, perfectly in agreement with that previously reported.
In fact, dietary habits may represent one of the main variables contributing to the modulation of GM in
terms of composition and metabolism [20]. However, we were not able to provide association between
dietary habits and GM profiling in JIA patients due to a lack of clear dietary-induced GM modulation.
The data fused suggested that the microbiome differences observed between inactive JIA and CTRLs
might be related to an unspecific effect dependent on the therapy. Whether the GM composition in JIA
Inactive disease was affected by the underlying disease process or past pharmacological treatments, it
could not be determined in the present study. Indeed, a limitation of this study originates by an uneven
distribution of the therapeutic interventions in different disease stages, as reported in the Results. In
fact, the variance introduced by different treatments of the patient set could explain why we did not
observe any significant variation between JIA Baseline and Persistent compared to JIA Inactive stages.
Therefore, we could only consider the comparison of variables between a single subset of patients (e.g.,
MTX- or NSAID-treated patients) and related CTRLs.
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5. Conclusions

The results supported the hypothesis that GM of JIA patients showed an imbalanced state respect to
CTRLs in terms of composition and metabolic functionality. Methyl-isobutyl-ketone and Ethanol levels
were higher in all JIA patients as compared to the healthy controls’ group. Furthermore, a predictive
significant model discriminating JIA Inactive disease stage from healthy subjects was provided. At
this point, it cannot be excluded that differences in GM arose owing to therapeutic interventions.
Clearly, future investigations should be aimed at replicating these results in other populations, and in
different disease stages, elucidating the potential causal role of GM in the pathogenesis of JIA and
investigating the interaction amongst host genetics, microbiome and environmental factors that concur
in the development of JIA.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/10/1540/s1,
Table S1: Dietary habits, prebiotics and probiotics administration; Table S2: GC-SPME raw data; Table S3: NMR
raw data; Text S1: Univariate analysis.

Author Contributions: Conceptualization P.V., A.M. (Alfredo Miccheli), L.P.; Methodolody, F.M., P.V., F.D.C.,
E.H.P.v.D., C.M., G.C. (Giorgio Capuani), G.C. (Giorgia Conta), A.T.; Investigation F.M., A.M. (Alfredo Miccheli),
P.V.; Validation, F.M., A.M. (Alfredo Miccheli); Visualization F.D.B., A.M. (Alberto Martini); Supervision, L.P.,
Writing—Original Draft Preparation P.V., A.M. (Alfredo Miccheli), F.M., L.P; Writing—Review and Editing, P.V.,
G.C. (Giorgia Conta), E.H.P.v.D., A.M. (Alberto Martini), B.D., L.P.; Funding acquisition L.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by: i) Fondazione Bambino Gesù, grant number 201903_FBG and Ricerca
Corrente of the Minister of Italian Health, grant number 201905_genetica, to L.P; ii) European Commission’s
Seventh Framework Programme (Information Communication Technologies Programme 600932).

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

JIA Juvenile idiopathic arthritis
GM Gut microbiome
CTRLs Controls
OTUs Operational taxonomic units
SPME/GC-MS Solid phase microextraction/Gas-chromatography-mass spectrometry
1H-NMR Proton nuclear magnetic resonance spectroscopy
VOCs Volatile organic compounds
JADAS Juvenile Arthritis Disease Activity Score
CRP C- reactive protein level
ESR Erythrocyte sedimentation rate
NSAIDs Nonsteroidal anti-inflammatory drugs
MSC Number of misclassifications
ROC Receiver operating characteristic
PLS-DA Partial least squares discriminant analysis
RP Rank product
CCR Correct classification rate
DCV Double cross-validation
ERA Enthesitis-related arthritis patients
NAFLD Non-alcoholic fatty liver disease
OPGG Ospedale Pediatrico Giannina Gaslini
OPBG Ospedale Pediatrico Bambino Gesù
ILAR International League Against Rheumatism

http://www.mdpi.com/2076-2607/8/10/1540/s1


Microorganisms 2020, 8, 1540 10 of 11

References

1. Yeoh, N.; Burton, J.P.; Suppiah, P.; Reid, G.; Stebbings, S. The role of the microbiome in rheumatic diseases.
Curr. Rheumatol. Rep. 2013, 15, 314. [CrossRef] [PubMed]

2. Verwoerd, A.; Ter Haar, N.M.; de Roock, S.; Vastert, S.J.; Bogaert, D. The human microbiome and juvenile
idiopathic arthritis. Pediatr. Rheumatol. 2016, 14, 55. [CrossRef] [PubMed]

3. van Dijkhuizen, E.H.P.; Del Chierico, F.; Malattia, C.; Russo, A.; Pires Marafon, D.; Ter Haar, N.M.;
Magni-Manzoni, S.; Vastert, S.J.; Dallapiccola, B.; Prakken, B.; et al. Microbiome Analytics of the Gut
Microbiota in Patients With Juvenile Idiopathic Arthritis: A Longitudinal Observational Cohort Study.
Arthritis Rheumatol. 2019, 71, 1000–1010. [CrossRef] [PubMed]

4. Stoll, M.L.; Kumar, R.; Morrow, C.D.; Lefkowitz, E.J.; Cui, X.; Genin, A.; Cron, R.Q.; Elson, C.O.
Altered microbiota associated with abnormal humoral immune responses to commensal organisms in
enthesitis-related arthritis. Arthritis Res. Ther. 2014, 16, 486. [CrossRef] [PubMed]

5. Tejesvi, M.V.; Arvonen, M.; Kangas, S.M.; Keskitalo, P.L.; Pirttilä, A.M.; Karttunen, T.J.; Vähäsalo, P. Faecal
microbiome in new-onset juvenile idiopathic arthritis. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 363–370.
[CrossRef]

6. Aggarwal, A.; Sarangi, A.N.; Gaur, P.; Shukla, A.; Aggarwal, R. Gut microbiome in children with
enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin. Exp.
Immunol. 2017, 187, 480–489. [CrossRef]

7. Arvonen, M.; Vänni, P.; Sarangi, A.N.; V Tejesvi, M.; Vähäsalo, P.; Aggarwal, A.; Stoll, M.L. Microbial
orchestra in juvenile idiopathic arthritis: Sounds of disarray? Immunol. Rev. 2020, 294, 9–26. [CrossRef]

8. Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.;
Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology classification
of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392.

9. Consolaro, A.; Ruperto, N.; Bracciolini, G.; Frisina, A.; Gallo, M.C.; Pistorio, A.; Verazza, S.; Negro, G.;
Gerloni, V.; Goldenstein-Schainberg, C.; et al. Defining criteria for high disease activity in juvenile idiopathic
arthritis based on the juvenile arthritis disease activity score. Ann. Rheum. Dis. 2014, 73, 1380–1383.
[CrossRef]

10. Wallace, C.A.; Giannini, E.H.; Huang, B.; Itert, L.; Ruperto, N.; Childhood Arthritis Rheumatology Research
Alliance; Pediatric Rheumatology Collaborative Study Group; Paediatric Rheumatology International Trials
Organisation. American College of Rheumatology provisional criteria for defining clinical inactive disease
in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011, 63, 929–936. [CrossRef]

11. Di Paola, M.; Cavalieri, D.; Albanese, D.; Sordo, M.; Pindo, M.; Donati, C.; Pagnini, I.; Giani, T.; Simonini, G.;
Paladini, A.; et al. Alteration of Fecal Microbiota Profiles in Juvenile Idiopathic Arthritis. Associations with
HLA-B27 Allele and Disease Status. Front. Microbiol. 2016, 7, 1703. [CrossRef] [PubMed]

12. Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation
by-products and their impact on host health. Microbiome 2019, 7, 91. [CrossRef] [PubMed]

13. Vernocchi, P.; Del Chierico, F.; Russo, A.; Majo, F.; Rossitto, M.; Valerio, M.; Casadei, L.; La Storia, A.; De
Filippis, F.; Rizzo, C.; et al. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives
the microbiota enterophenotype. PLoS ONE 2018, 13, e0208171. [CrossRef]
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