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In this work we consider a simple random walk embedded in a generic branched structure and we find a
close-form formula to calculate the hitting time H (i,f ) between two arbitrary nodes i and j . We then use this
formula to obtain the set of hitting times {H (i,f )} for combs and their expectation values, namely, the mean
first-passage time, where the average is performed over the initial node while the final node f is given, and the
global mean first-passage time, where the average is performed over both the initial and the final node. Finally,
we discuss applications in the context of reaction-diffusion problems.
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I. INTRODUCTION

Random walks (RWs) on inhomogeneous structures were
first introduced to describe anomalous diffusion [1–3], but
they actually constitute a convenient model for many real
phenomena, ranging from soft matter (e.g., gels and biological
structures [4]) to condensed matter (e.g., fractures [5] and light
scattering [6]). Here, we focus on the so-called “branched
structures,” namely, graphs V obtained by attaching to each
vertex j of a base graph G0 a different graph Gj called the
fiber (see Fig. 1). In particular, we consider a specific class of
branched structures called combs, namely, graphs where the
base graph as well as the fiber ones are linear chains, in such a
way that Gj is site independent and equivalent toZ (see Fig. 2).
Combs and diffusion on combs are extensively used to mimic a
number of systems, e.g., branched polymers [7,8], transport of
calcium in spiny dendrites [9,10], excitation of nanoantennas
[11], anomalous diffusion in percolation structures [12–16],
cancer proliferation [17], diffusion of particles in crowded
environments [2,18], diffusion of ultracold atoms [19], and
chromatography or hydrodynamic dispersion [20], and also
to produce quantum devices, such as arrays of Josephson
junctions, microbridges, or quantum wires [21].

Diffusion on combs has been shown to display many
peculiar features, ultimately stemming from their highly
inhomogeneous topology (see, e.g., [22–26]). Now, most of
the previous results have been proven in the thermodynamic
limit, namely, for structures of infinite size, while real systems
are intrinsically finite. In this work we aim to investigate the
problem of diffusion in finite comb lattices and we especially
focus on first-passage quantities such as the hitting time
H (i,f ) from i to f (i.e., the mean time for a random walker
first to reach site f , starting from i), the mean first-passage
time to f (MFPTf ) (i.e., the mean time needed first to reach
the vertex f , averaged over the starting site), and the global
mean first-passage time GMFPT (i.e., the mean time to go
from a random vertex to a second random vertex).

These quantities are fundamental in the study of transport
limited reactions, because they provide the characteristic
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reaction time in the limit of a perfect reaction. In particular,
these quantities have been extensively studied in the past,
in relation to different applications in several research ar-
eas: pharmacokinetics [27], reaction-diffusion processes [28],
excitation transport in photosystems [29,30], target search
processes [31], spread of disease [32], and many other physical
problems [33–39]. Pharmacokinetics and reaction-diffusion
processes could also be affected by the occupation time,
namely, the mean time spent in a subset of the graph’s vertices
[40,41].

In general, mean-first-passage-related observables (e.g.,
MFPT, splitting probabilities, occupation time distributions)
permit a quantitative analysis of the kinetics of transport-
limited reactions. Moreover, such first-passage observables
have recently been shown to provide tools to unambiguously
discriminate among possible microscopic scenarios of sub-
diffusion (e.g., stemming from waiting times in the particle
dynamics or from the peculiar underlying topology) [42].

In this work we calculate the MFPT and the GMFPT for (d-
dimensional) combs using the resistance method: the original
graph V is mapped into a resistance network by replacing
any link (a,b) between two adjacent nodes a and b with a
unitary resistance R [43]. Then we use Tetali’s formula [44]
to calculate the exact value of the hitting time between i and
f as

H (i,f ) = mRi,f + 1

2

∑
z∈V

g (z) {Rf,z − Ri,z}, (1)

where m is the number of links in the graph, g(z) is the
coordination number of the vertex z, and Ra,b is the effective
resistance between vertex a and vertex b.

II. HITTING TIME OF BRANCHED STRUCTURES

In this section we use Eq. (1) to calculate the value of the
hitting time for generic branched structures (see Fig. 1). When
the starting point i and the ending point f belong to different
fibers, we can divide the vertices of V into three disjoint
subsets, referred to as I, F , and B, respectively (see Fig. 3):
V = I ∪ F ∪ B. More precisely, subset I contains all vertices
belonging to the fiber graph Gi , subset F contains all vertices
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FIG. 1. (Color online) Example of the branched structure V
obtained by joining to each point j of a graph G0, called the base
(left), a graph Gj , called the fiber (middle).

belonging to the fiber graph Gf , and, finally, subset B contains
all vertices belonging to the fiber graphs Gk corresponding to
the set of sites Kk , with k �= (i,f ), and B =⋃k �=i,f Kk .

This procedure allows us to write the sum in (1) as∑
z∈V

g (z) (Rf,z − Ri,z) =
∑
z∈I

g (z) (Rf,z − Ri,z)

+
∑
z∈F

g (z) (Rf,z − Ri,z)

+
∑
z∈B

g (z) (Rf,z − Ri,z); (2)

namely, we distinguish the case where z is in the same fiber
graph as i (z ∈ I), z is in the same fiber graph as f (z ∈ F),
and z is in a fiber graph which neither i nor f belongs to
(z ∈ B). In the following we call root ri the vertex shared by
the base graph G0 and the fiber graph Gi .

In general, when two vertices, i and f , belong to different
fiber graphs, we can write the effective resistance Ri,f between

FIG. 2. (Color online) Examples of two-dimensional combs,
where the backbone is endowed with reflecting boundary conditions
(top) or periodic boundary conditions (bottom). The size of the
backbone is referred to as 2L + 1, while the length of the teeth Ly is
taken to be uniform and to scale linearly with L, namely, Ly = αL.
For instance, at the top L = 7 and αL = 5.

V

I

B

F I B F

FIG. 3. (Color online) Schematization of the decomposition used
in Eq. (2), where V = I ∪ F ∪ B. Note that the whole set of fiber
graphs {Gk} also includes the set of nodes making up the base graph
because the joining nodes, also called “roots,” are shared.

these points as the sum of three resistances in series:

Ri,f = Ri,ri
+ Rri,rf

+ Rf,rf
. (3)

Now, recalling Eq. (2), we can note that when z ∈ B we can
use Eq. (3) for both Ri,z and Rz,f , while when z ∈ I or z ∈ F ,
we can use Eq. (3) only for Ri,z or for Ri,z, respectively. In fact,
suppose we consider a linear chain as a fiber graph Gi : when
z and i belong to the same fiber graph the effective resistance
according to Eq. (3) would be |yi | + |yz|, yi and yf being the
coordinates of i and f along the related teeth, while the correct
estimate is |yi − yf |, which recovers the former only when the
signs are different.

Exploiting this remark, the three sums appearing in Eq. (2)
can be written as∑

z∈B

g(z)(Rf,z − Ri,z) =
∑
z∈B

g(z)
{
Rrf ,rz

− Rri,rz

+Rf,rf
− Ri,ri

}
,∑

z∈I

g(z)(Rf,z − Ri,z) =
∑
z∈I

g(z)
{
Rf,rf

+ Rrf ,rz

+Rz,rz
− Ri,z

}
,∑

z∈F

g(z)(Rf,z − Ri,z) =
∑
z∈F

g(z)
{
Rf,z − Ri,ri

−Rri,rz
− Rz,rz

}
.

Then, after some algebraic manipulations we find

H (i,f ) = mRri,rf
+ 1

2

∑
z∈V

g(z)
(
Rrf ,rz

− Rri,rz

)
+ 2(m − mf )Rf,rf

+ Hi(i,ri) + Hf (rf ,f ), (4)

where mk is the number of links in subgraph Gk , and Hk(a,b)
is the mean time for a walker to go from a to b, (a,b ∈ Gk),
without ever coming out from fiber Gk .

The previous equation, (4), is similar to that with which we
began, (1), but now resistances are considered between points
of the base graph. This allows us to factorize the difference
(Rrf ,rz

− Rri,rz
), by splitting the summation over z ∈ V into

the summation over every vertex of the base graph and of all
fiber graphs:∑

z∈V
g(z)

(
Rrf ,rz

− Rri,rz

) =
∑
k∈G0

∑
z∈Gk

g(z)
(
Rrf ,rz

− Rri,rz

)
=
∑
z∈Gk

g(z)
∑
k∈G0

(
Rrf ,rk

− Rri,rk

)
=
∑
k∈G0

(
Rrf ,rk

− Rri,rk

)
2mk. (5)
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Finally, merging Eqs. (4) and (5), we get

H (i,f ) = Hi(i,ri) +
∑
k∈G0

mk

(
Rrf ,rk

− Rrk,ri

)
+mRri,rf

+ Hf (rf ,f ) + 2(m − mf )Rf,rf
. (6)

Of course, this formula recovers the Tetali one, (1), when all
the branched graphs Gk are composed of only a single vertex
(the one that is shared with G0, i.e., the root rk). The details of
the fibers only enter in the summation term, and in particular,
only their position and the number of their links mk matter,
while neither the topology nor the number of vertices of these
fiber graphs affects H (i,f ).

A. Particular cases

There are special cases where the formula in Eq. (6) can be
significantly simplified. For instance, when the ratio between
the coordination number g(rk) of any root rk belonging to the
base graph and the number of links mk in the kth subgraph
is independent of k. This allows us to write mk = γg(rk),
γ being a constant value which is the same for every
vertex of the base graph G0. Then the summation in Eq. (6)
becomes∑

k∈G0

mk

(
Rrf ,rz

− Rri,rz

) = 2γ [H0(ri,rf ) − m0Rrf ,ri
], (7)

and using this result, Eq. (6) becomes

H (i,f ) = Hi(i,ri) + 2γH0(ri,rf ) + Hf (rf ,f )

+ 2(m − mf )Rf,rf
+ (m − 2γm0)Rri,rf

, (8)

where Hi(a,b) and Hf (a,b) represent the mean time taken by
a walker first to go from a node a to a node b (with a,b ∈
I and a,b ∈ F respectively) without ever leaving I and F ,
respectively; analogously, H0(a,b) represents the mean time
first to reach b, starting from a (with a,b ∈ G0) and moving
only on the base graph. In this case the mean time to go from
i to f can be expressed by the sum of three hitting times and
a constant term.

Another interesting case appears when the position of the
root of the starting vertex ri and the root of the ending one rf

displays a symmetry such that

H (ri,rf ) = H (rf ,ri). (9)

In this case, Eq. (6) becomes

H (i,f ) = Hi(i,ri) + Hf (rf ,f )

+ 2(m − mf )Rf,rf
+ mRri,rf

. (10)

This formula allows us to calculate the hitting times for any
“symmetric structure” [according to Eq. (9)], like a Sierpinski
gasket branched with linear chains (see Fig. 4).

Let us consider a Sierpinski gasket of generation n and,
as fibers, linear chains with L vertices. The total number of
vertices in the base graph is |V |(n)

0 = 3(3n + 1)/2 and the total
number of links is m

(n)
0 = 3n+1 [45]. For instance, let us try

to evaluate the mean time first to reach the node f belonging
to a tooth stemming from a corner, starting from a node i

belonging to a tooth stemming from another corner (see Fig. 4).
As shown in [46], Rri,rf

= 2 · 5n/3n+1, while, recalling results

FIG. 4. (Color online) Example of a Sierpinski gasket of genera-
tion n = 3, branched with linear chains with L = 5 vertices.

valid for linear chains, H (i,f ) = 2L|i − f | + f 2 − i2, with
i,f = −L, . . . ,+L [37]. Inserting these partial results into
Eq. (10), we get that, for the above-mentioned choice of i and
f , the mean time reads as

H (i,f ) = 3L2 +
(

1 + L

2

)
(3n+1 + 2 · 5n) +

(
5

3

)n

L.

B. Bidimensional combs

Bidimensional combs are branched structures where the
base graphG0 is a one-dimensional lattice, like a linear chain or
a ring, usually called the backbone, and fiber graphs are linear
chains usually called teeth (see Fig. 2.) Here, we consider
two cases according to the boundary conditions applied to the
backbone: we call combs whose backbone is a linear chain
“bidimensional open combs” and combs whose backbone is
a ring “bidimensional closed combs”; teeth are always taken
as open (i.e., reflecting at boundaries). As shown in Fig. 2,
the size of the backbone is 2L + 1, and each linear chain
departing from the backbone counts αL vertices, in such a
way that α measures the relative geometrical importance of
the side branches (e.g., when α = 1 the comb is square).

Using Eq. (6) we are now able to calculate the value of
H (i,f ) for these graphs. In the following, exploiting the
fact that combs are embedded in two-dimensional lattices,
the position of the arbitrary point k is denoted {xk,yk} where
xk indicates the projection of k on the backbone, and yk its
height along the related tooth.

Let us start with open combs, where the resistance between
two generic points a = (xa,ya) and b = (xb,yb) can be written
as

Ra,b = δxa,xb
|ya − yb|

+ (1 − δxa,xb

)
(|xa − xb| + |ya| + |yb|) . (11)
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Thus, with some algebra, Eq. (6) can be restated as1

H (i,f ) = mRi,f + (y2
f − y2

i

)+ (2αL + 1)
(
x2

f − x2
i

)
+ (|y2| − |y1|)

(
L24α + 2L

)
. (12)

From this equation we can extract important information, such
as the mean time to cross the whole backbone and the mean
time to “climb” a tooth. These quantities are, respectively,

H (−L,0 → L,0) = L3 (8α) + L2 (4 + 4α)

and

H ({0,0} → {0,αL}) = L3(8α2) + L2(4α + 3α2).

Let us now consider closed combs (whose related quantities
are denoted by the symbol �), for which the resistance between
two generic points a = (xa,ya) and b = (xb,yb) is

R
�
a,b = δxa,xb

|ya − yb| + (1 − δxa,xb
)

×
(

|xa − xb| + |ya| + |yb| − (xa − xb)2

2L + 1

)
,

and the hitting time H�(i,f ) from i to f follows from Eq. (6)
as2

H
�
2 (i,f ) = mR

�
if + (|yf | − |yi |)[4αL2 + 2L + 1]

+ (y2
f − y2

i

)
. (13)

From Eq. (13) we can extract the time needed to cross half the
backbone as

H
�
2 ({0,0} → {L,0}) = L3 (6α) + L2 (3 + 2α) + L,

and the time to climb a tooth as

H
�
2 ({0,0} → {0,αL}) = L3(8α2) + L2(4α + 3α2) + L (2α) .

We note that the leading order of the mean time needed to cross
the backbone is proportional to α (consistent with results in
[37]) and the leading order of the mean time to climb a tooth
is proportional to α2.

C. d-dimensional open combs

We define d-dimensional open combs recursively (see also
Fig. 5):

(a) a one-dimensional open comb is a linear chain;
(b) a two-dimensional open comb is a branched graph G,

whose base graph is a linear chain and whose fiber graphs are
linear chains;

(c) ...;

1What we really find from Eq. (6) is (i,f ) − 2L(1 + α +
2αL)[−1 + |yi | + |yf | − |yi − yf |]δxi ,xf

. This difference is due to
the hypothesis that xi �= xf ; namely, the starting point and the final
point belong to different fiber graphs. If we use Eq. (8) instead of
Eq. (6), we introduce an additional error of (xi − xf )(xi + xf ) due to
the different value of g(x,0) between x = ±L, where g(±L,0) = 3,
and x �= ±L, where g(x,0) = 4.

2Once again, what we really find using Eq. (6) is H
�
2 (i,f ) − (1 +

2L)(1 + 2αL)[|yi | + |yf | − |yi − yf |]δxi ,xf
. This difference is due to

the hypothesis that xi �= xf . This time if we use Eq. (8) instead of
Eq. (6), we do not introduce any additional error.

FIG. 5. (Color online) Example of a three-dimensional comb.
Vertices which belong to the first generation are shown in green;
those which belong to the second, in lilac; and those which belong to
the third, in red.

(d) a d-dimensional open comb is a branched graph G
whose base graph is a (d − 1)-dimensional comb and whose
fibers are linear chains.

As shown in Sec. II B, a finite two-dimensional comb can be
defined by fixing two parameters: the length of the backbone
L and the ratio α between the length of a tooth and the length
of the backbone, in such a way that the thermodynamic limit
L → ∞ is well defined. Now, to fix a d-dimensional comb
we introduce d parameters: (L,α2, . . . ,αd ), αi being the ratio
between the length of the tooth in the ith direction (i.e., added
at the ith iteration) and the length of the backbone, αi = Li/L.

We label every vertex with d coordinates and call i =
(x1, . . . ,xd ) and f = (y1, . . . ,yd ), where the first coordinate
labels the vertices on the base graph and it takes a value from
−L to L, the second one goes from −α2L to α2L and labels
the vertices of the fiber graphs, the third one goes from −α3L

to α3L, and so on.
We define H (d) (i,f ), the hitting time from i to f in a

d-dimensional comb. Using Tetali’s equation we can see that
H (d) (i,f ) ∼ O(Ld+1). In fact, the first term on the right-hand
side in Eq. (1) is mdRi,f , and one can see that in the
d-dimensional comb the number of links md is

md ∼
(

Ld2d

d∏
k=2

αk

)
, (14)

while the maximum value of R is

R = 2L

(
1 +

d∑
k=2

αk

)
+ 1;

thus, the leading order of this first term is Ld+1. Also,
the second term on the right-hand side of Eq. (1), that is,
1
2

∑
z∈V g (z) (Rf,k − Rk,i), where g (z) � 2d = O(L0), |V| =

O(Ld ), and R = O (L), is order Ld+1. Now, using these
remarks, we can handle Eq. (6) to get a finer estimate for
the asymptotic expression of H (d) (i,f ). The leading order of
Eq. (6) is given by

H (i,f ) ∼ 1

2

L∑
k=0

{|k − y1| − |k − x1|} mk

+ 2mdR(f,rf ) + mdRri,rf
. (15)
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We have just pointed out that md ∼ (Ld2d−1∏d
k=2 αk), where

mk is the number of links in the fiber graph starting from node
k, and its leading value is mk ∼ (Ld−12d−1∏d

k=2 αk); thus

H (i,f )(d) ∼
(

Ld−12d−2
d∏

k=2

αk

) (
y2

1 − x2
1

)

+
(

Ld2d

d∏
k=2

αk

)⎡⎣|x1 − y1| + 2
d∑

j=2

|yj |
⎤⎦ .

By introducing the normalized coordinates ξi = yi/(αiL)
and ηi = xi/(αiL) (posing conventionally α1 = 1), we can
express the leading value of H (d) (i,f ):

H (−→η ,
−→
ξ ) ∼ Ld+12d−2

d∏
i=2

αi

×
[(

ξ 2
1 − η2

1

)+ 4|ξ1 − η1| + 8
d∑

k=2

αkξk

]
.

(16)

We can use Eq. (16) to calculate the mean time to cross the
backbone going from η = (−1,�0) to ξ = (+1,�0) as

H (d)({−1,�0} → {1,�0}) ∼ Ld+12d+1
d∏

i=2

αi

and its maximum value going from η = (−1,�1) to ξ = (1,�1)
as

H (d)({−1,�1} → {+1,�1}) ∼ Ld+12d+1
d∏

i=2

αi

[
1 +

d∑
k=2

αk

]
.

For instance, for a square d-dimensional comb (i.e.,
αi = 1,∀ i) we get H (d)({−1,�0} → {1,�0}) ∼ 2d+1Ld+1 and
H (d)({−1,�1} → {+1,�1}) ∼ 2d+1dLd+1.

III. TRAPPING TIMES

In this section, we analyze the MFPT, defined by MFPTf =
Ei [H (i,f )] and the GMFPT, defined by GMFPT =
Ei[Ef [H (i,f )]]. The former represents the mean time to
reach a fixed reaction node placed in f , starting from a random
one. The latter is the mean time to reach a random vertex
starting from another random one.

A. MFPT f

The MFPTf was introduced by Montroll for regular graphs
[29] to describe the excitation transfer on a photosintetic
complex. Later this quantity was extended to irregular graphs
(see [22,33,37,47–49]). Once we know every value of H (i,f )
we can calculate this quantity exactly using MFPTf =
V −1∑

i∈V H (i,f ), where V is the volume of the graph V .

1. Bidimensional open combs

Equation (12) provides the values of H (i,f ) for every
couple of nodes (i,f ), and in order to get MFPTf , it is

convenient to split Eq. (12) into three parts,

H (i,f ) = {mRif } + {(2αL + 1)
(
x2

f − x2
i

)}
+ {(y2

f − y2
i

)+ (|yf | − |yi |)(L24α + 2L)
}

= A + B + C,

and average these contributions over i separately. The first
contribution, Ei [A], can be written as

Ei [A] =
L∑

xi=−L

L∑
yi=−αL

m
[
δxi ,xf |yi − yf |

+ (1 − δxi ,xf

)
(|xi − xf | + |yi | + |yf |)] ,

and after the summation on xi it becomes

Ei [A] = m

V

αL∑
yi=−αL

{|yi − yf |

+ 2L
(|yi | + |yf | + x2

f + L + L2
)}

and, finally,

Ei [A] = y2
f

m

V
+ |yf |

[m
V

(2αL + 1) 2L
]

+ x2
f

[m
V

(2αL + 1)
]

+ m

V
[αL (αL + 1)

+ L (L + 1) (2αL + 1) + 2αL2 (αL + 1)].

Performing similar calculations for the second and third
contributions, we get, respectively,

Ei [B] =
∑
xi ,yi

[
(2αL + 1)

(
x2

f − x2
i

)]
= (2αL + 1) x2

f − 1

3
L (L + 1) (2αL + 1) ,

Ei [C] = |yf |2L (2αL + 1) − y2
f − αL

(
1

3
+ 2L

)
.

Merging these three contributions we find the exact value of
MFPTf :

MFPT{xf ,yf }

=
(

1 + m

V

) [
y2

f + x2
f (2αL + 1) |yf |(4αL2 + 2L)

]
+ 1

3 (1 + 2L) (1 + 2αL)

× [16α2L5 + L4(16α + 24α2 + 8α3) − L(1 + α)

+L23(1 + α) + L3(4 + 18α + 14α2 + 4α3)]. (17)

The position of the trap affects only the contribution in the
first square bracket. Therefore, MFPT(xf ,yf ) can be written as
the sum of two terms: the former depends on the final vertex,
and the latter depends only on L and α and is exactly MFPT{0,0}
(i.e., the mean time first to reach the central node),

MFPT{xf ,yf }(L,α) = φ(xf ,yf ) + MFPT{0,0}, (18)
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FIG. 6. (Color online) Numerical check of the theoretical predic-
tions of Eq. (17) for {xf ,yf } = {0,0}. In both panels the results of the
simulations are divided by the theoretical value of MFPT{0,0}.

where

φ(xf ,yf ) =
(

1 + m

V

) [
y2

f + x2
f (2αL + 1)

× |yf |(4αL2 + 2L)
]
. (19)

We have numerically tested this result for three positions of
the trap (xf ,yf ) and for several values of L and α, as shown in
Figs. 6, 7, and 8. In each of these figures the value of (xf ,yf )
is fixed and we change the value of L and α. The values of
(xf ,yf ) are, respectively, (0,0), (L,0), and (L,αL); L takes
values from 8 to 256; and α goes from 1/32 to 128.

The asymptotic behavior of MFPTf is

MFPTf (L,α) ∼ L3

{
4α

[
1

3
+
(xf

L

)2
]

+ 8α

∣∣∣yf

L

∣∣∣}
∼ 4

3
αL3, (20)
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FIG. 7. (Color online) Numerical check of the theoretical predic-
tions of Eq. (17) for {xf ,yf } = {0,αL}. In both panels the results of
the simulations are divided by the theoretical value of MFPT{0,αL}.
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FIG. 8. (Color online) Numerical check of the theoretical predic-
tions of Eq. (17) for {xf ,yf } = {L,αL}. In both panels the results of
the simulations are divided by the theoretical value of MFPT{L,αL}.

where the latter relation holds as long as both xf and yf

are finite. The dependence on L3 is consistent with previous
asymptotic results [26,37].

2. Bidimensional closed combs

Analogous arguments can be applied to calculate the exact
value of the MFPT for closed combs, and we call this
quantity the MFPT�

f . We skip lengthy passages (analogous
to those described above for the open comb) and provide
straightforwardly the final result:

MFPT�
(xf ,yf ) = |yf |(1 + 4L + 8L2α) + 2y2

f + 1

3 + 6αL

×[L (2 − α) + L2(2 + 8α + 3α2)

+L34α(2 + 2α + α2) + L4(8α2)]. (21)

Of course, MFPT�
f does not depend on xf , due to the periodic

condition on the x axis. Moreover, as done in Eq. (18) we can
distinguish two contributions highlighting the dependence of
the trap position (i.e., the height yf ) as

MFPT�
(xf ,yf ) (L,α) = φ�(yf ) + MFPT(0),

where

φ�(yf ) = |yf |(1 + 4L + 8L2α) + 2y2
f . (22)

The asymptotic behavior reads as

MFPT�
f (L,α) ∼ L3

{
4

3
α + 8α

yf

L

}
∼ 4

3
αL3, (23)

where the last relation holds as long as yf is finite.
We have numerically tested this result for two values of yf

and for several values of L and α, as shown in Figs. 9 and 10.
In each of these figures the value of yf is fixed and we change
the value of L and α. The values of yf are, respectively, 0 and
αL; L takes values from 8 to 256; and α goes from 1/32 to
128.
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FIG. 9. (Color online) Numerical check of the theoretical pre-
dictions of Eq. (21) for yf = 0. In both panels the results of the
simulations are divided by the theoretical value of MFPT�

(0).

B. GMFPT

We define the GMFPT as the mean hitting time averaged
on starting and on ending points:

GMFPT = Ei,f [H (i,f )] = 1

V 2

∑
i∈V

∑
f ∈V

H (i,f ) . (24)

The GMFPT depends qualitatively on the topological prop-
erties of the underlying structure and this has been proven
from different perspectives. For instance, it is well known
that the GMFPT is related to the Kirchhoff index [50],
K = Ei,f [Ri,f ] [in fact, from Chandra’s formula, H (i,f ) +
H (f,i) = 2mRi,f [51], it follows that GMFPT = m〈R〉].

FIG. 10. (Color online) Numerical check of the theoretical pre-
dictions of Eq. (21) for yf = αL. In both panels the results of the
simulations are divided by the theoretical value of MFPT�

αL.

Moreover, a very general asymptotic expression was found
in [52], reading as

GMFPT′ ∼

⎧⎪⎨⎪⎩
V, dw < df ,

V ln (V ) , dw = df ,

V dw/df , dw > df ,

(25)

where dw is the walk dimension and df is the fractal dimension.
Their definition of the GMFPT is slightly different from ours:
theirs is averaged over links,

GMFPT′ = 1

m

∑
i,f ∈V

H (i,f ) g (i) g (f )

(m − g (f ))
,

while ours is averaged over vertices,

GMFPT = 1

V 2

∑
i,f ∈V

H (i,f ) .

Despite these different definitions they showed that these lead
to the same asymptotics. Now, for the comb lattice the walk
dimension dw is not unique [53] and Einstein’s relation d̃dw =
2df does not hold directly, hence one should calculate the
GMFPT in a more “pedestrian” way. Now, we report the exact
value of GMFPT for the comb structures outlined above and
compare their asymptotic behaviors with Eq. (25).

1. Bidimensional open combs

To calculate the GMFPT for open combs, we start from
Eq. (17). We recall that the MFPTf can be written as the sum
of two terms—the former depends on the final vertex, and the
latter is MFPT(0,0)—in a such way that in order to obtain the
exact value of GMFPT we have to average only on the former;
namely,

GMFPT = E[f (xf ,yf )] + MFPT(0,0). (26)

After some algebra we find

GMFPT =
L∑

xf =−L

αL∑
yf =−αL

MFPTf (27)

= 1

3 (1 + 2L) (1 + 2Lα)
[8L2(1 + 2α + α2)

+ 8L3(1 + 8α + 8α2 + α3)

+ 8L4(4α + 15α2 + 5α3) + 16L5α2 (2 + 3α)],

whose leading order is

GMFPT (L,α) ∼ L3

(
8

3
α + 4α2

)
. (28)

We have numerically tested this result for many values of
L and α, as shown in Fig. 11. In this figure we tuned L from
8 to 256 and α from 1/32 to 128.

2. Bidimensional closed combs

We now apply analogous arguments to calculate the exact
value of the GMFPT for closed combs, hereafter referred to as
the GMFPT�. Averaging MFPT�

f over f , we find the exact
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FIG. 11. (Color online) Numerical check of the theoretical pre-
dictions of Eq. (27). In both panels the results of the simulations are
divided by the theoretical value of GMFPT.

value of GMFPT� as

GMFPT� (L,α) = 2

3
[L (1 + 2α) + L2(1 + 8α + 2α2)

+L3(2α + 6α2)], (29)

whose leading order is

GMFPT�(L,α) ∼ L3

(
4

3
α + 4α2

)
. (30)

We have numerically tested this result for many values of
L and α, as shown in Fig. 12. In this figure we tuned L from
8 to 256 and α from 1/32 to 128.

Again, we note that the coefficient of α2 is the same in both
combs, but the coefficient of α1 is not. For both GMFPT and
GMFPT� the leading order ∼ L3 is larger than the behavior
expected from a more homogeneous structure with analogous

FIG. 12. (Color online) Numerical check of the theoretical pre-
dictions of Eq. (29). In both panels the results of the simulations are
divided by the theoretical value of GMFPT�.

dimensions (d̃ = 3/2 and df = 2). This highlights once more
the peculiar behavior of combs.

IV. CHEMICAL-KINETICS PERSPECTIVE

In this section we frame the previous results within a
chemical-kinetics perspective. Imagine having two reactants,
say A (static) and B (dynamic). If we are allowed to choose the
position of A, but we have no control of B (namely, we cannot
fix its starting point), which will diffuse freely throughout the
lattice, we can choose for the static reactant the place which
minimizes the reaction time. In fact, this is just the node f that
minimizes MFPTf .

As shown in Secs. IIIA1 and IIIB2, the MFPT for both
open and closed combs can be written as MFPTf = φ (f ) +
const, with φ (f ) � 0 for every final vertex f . In particular, in
open combs the minimum value φ (f ) = 0 is recovered when
f = (0,0), and in closed ones when f = (i,0). On the other
hand, the maximum value of MFPTf arises when the value
of φ (f ) is maximized; this occurs at f = (±L, ± αL) for
open combs and f = (i, ± αL) for closed ones. Of course, for
closed combs there is no dependence on the x coordinate due
to the periodic condition on the x axis.

Now, if we cannot control the position of A, but this is
stochastic, what is the typical time τf = MFPTf it takes for
the reaction to occur? In particular, the reaction is considered
“slow” if τf > GMFPT and “fast” if τf < GMFPT. We
characterize the boundary between the two regimes finding
those vertices f for which GMFPT = MFPTf . We obtain
these results in the limit L → ∞ by imposing asymptotic
equality between Eq. (20) and Eq. (28), and between Eq. (23)
and Eq. (30). Recalling that f = (xf ,yf ), we look for the func-
tional form yf (xf ,L,α) such that GMFPT ∼ MFPT{xf ,yf }.

A. GMFPT vs MFPT f in open combs

Let us consider the leading value of GMFPT and MFPTf ;
from Eqs. (20) and (28),

GMFPT (L,α) ∼ L3
(

8
3α + 4α2

)
,

MFPTf (L,α) ∼ L3
{
4α
[

1
3 + X2

]+ 8α2|Y |} ,

where we have normalized the coordinates as X = xf /L and
Y = yf /αL. Now the vertices f for which MFPTf = GMFPT
are those whose coordinates fulfill the equality(

8

3
α + 4α2

)
=
[

4α

(
1

3
+ X2

)
+ 8α2|Y |

]
.

Solving for Y we find

|Y | =
(

1

2
+ 1

6α

)
− X2

2α
.

One can see that the fraction of vertices for which the reaction
is slow, Fslow, or fast, Ffast, is exactly the same for every value of
α. In fact, Fslow = ∫ 1

0 |Y (X,α) |dX = 1
2 . The phase diagram

is shown in Fig. 13. As we can see, varying the value of α

there are three possible scenarios: when α is sufficiently small
there are some teeth totally composed of fast vertices (like for
α = 1

3 ); when α is large enough there are no teeth that are
completely fast or slow (like for α = 2

3 and α = 1); and in the
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FIG. 13. (Color online) Phase diagram of MFPT{X,Y } − GMFPT:
vertices where MFPT{X,Y } > GMFPT are shown in yellow; those
where MFPT{X,Y } < GMFPT, in teal.

intermediate case there exist some teeth composed entirely of
slow vertices but none composed completely of fast vertices
(like for α = 1

2 ).
(a) The first case happens when |Y | � 1 for X = 0. This

means that |Y | = ( 1
2 + 1

6α
) � 1, and solving for α, we find

α � 1/3.
(b) The second case occurs when |Y | � 0 for X = 1. This

means that |Y | = ( 1
2 + 1

6α
) − 1

2α
� 0, and solving for α, we

find α � 2/3.
(c) The last case happens in the intermediate case, 2/3 >

α > 1/3.

B. GMFPT vs MFPT f in closed combs

Let us consider the leading terms of GMFPT and MFPTf ;
from Eqs. (23) and (30)

GMFPT� (L,α) ∼ L3
(

4
3α + 4α2

)
,

MFPT�
f (L,α) , ∼ L3

{
4
3α + 8α2|Y |} ,

and the set of vertices f for which MFPTf ∼ GMFPT is those
whose coordinates fulfill the equality(

4

3
α + 4α2

)
=
{

4

3
α + 8α2|Y |

}
.

Solving for Y we find

|Y | = 1
2 .

This means that the location of nodes f such that GMFPT =
MFPTf depends neither on X (and this is obvious due to the
periodic boundary condition) nor on α. Therefore, if the target
is placed sufficiently far from the backbone (i.e., at least at
half the height of a tooth), the reaction turns out to be slow.
Once again, the fraction of vertices giving rise to slow and fast
reactions is the same. The phase diagram is shown in Fig. 14.

α = 1/2

X
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1

FIG. 14. (Color online) Phase diagram of MFPT�
(Y ) − GMFPT�.

Vertices where MFPT(Y ) > GMFPT are shown in yellow; those where
MFPT(Y ) < GMFPT, are in teal.

C. Inferring the position of the fixed reactant

Let us now consider a system where we can experimentally
measure the MFPT to a given, fixed reactant A, whose position
is not directly detectable. For instance, we can measure the
absorbing time of a set of diffusing reactants initially placed
randomly and in the presence of a fixed absorbing site. One
can therefore exploit analytical formulas (17) and (21) in order
to infer information about f from the experimental value of
MFPTf .

As for open combs, we recall that the leading behavior of
MFPTf is given by [see also Eq. (19)]

MFPTf = φ + MFPT0,0 ∼ L3(4αX2 + 8α2|Y |) + 4αL3

3
,

(31)

where X = xf /L and Y = yf /αL (as used in Sec. IV A). For
any possible value of MFPTf we can therefore detect a set
of compatible positions of A, as envisaged in Fig. 15. More
precisely, one can see that when α > 1/2 (top), namely, when
the linear size along the direction of side chains is relatively

X

Y

X

Y

4αL3

8α2L3

25αL3

50αL3

14αL3

4α2L3

8α2L3

4αL3

FIG. 15. (Color online) Each curve is associated with a different
value of MFPTf (as reported in the pertinent box) and represents the
set of positions (X,Y ) for A compatible with that value of the MFPT.
Here we show results for α = 10 (top) and for α = 1/10 (bottom).
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large, small values of MFPTf always correspond to a reactant
A placed close to the backbone; on the other hand, when α <

1/2 (bottom), namely, when the linear size along the direction
of the backbone is relatively large, small values of MFPTf

always correspond to a reactant A in the central side chains,
although it can possibly be placed at peripheral sites. Otherwise
stated, when α > 1/2, the set of compatible positions, for a
given (relatively small) value of MFPTf , is flattened around
the backbone; on the other hand, when α < 1/2, the set of
compatible positions, for a given (relatively small) value of
MFPTf , is flattened around the central tooth.

As for closed combs, this “inverse problem” is easier,
as MFPTf does not depend on the A projection along the
backbone; in fact, recalling the leading term of MFPTf [see
also Eq. (22)],

MFPT�
f ∼ L3(8α2|Y |) + 4αL3

3
. (32)

Therefore, for closed combs, the knowledge of MFPTf yields
no hint of the projection of A along the backbone, but its height
can be derived univocally.

Finally, we mention that from experimental estimates for
GMFPT, one we can infer the relation between L and α. This
relation follows directly from (28) for open combs and from
(30) for closed combs, and it reads as

L = 3

√
Kα + 4α2

GMFPT
, (33)

where K = 8/3 for open combs, and K = 4/3 for closed ones.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work we have derived from Tetali’s formula an
alternative formula, (6), to calculate the exact value of the
mean time H (i,f ) for a random walker first to reach a site f

starting from a site i. This formula turns out to be particularly
useful when the graph embedding the diffusion process is a
branched structure. In particular, we have calculated explicitly
the value of H (i,f ) for two-dimensional combs and its leading
value for d-dimensional ones.

We have then used these results to calculate the MFPTf

and the GMFP for two-dimensional combs, highlighting that
the leading value is composed of two terms: one proportional
to αL3 and the other one to α2L3, α being the ratio between
the size of the backbone and the size of the teeth.

As for the GMFPT, we have noted that its asymptotic
behavior does not directly depends on the comb fractal or
spectral dimension (as for homogeneous lattices and fractals)
and we have calculated it exactly.

Finally, we have discussed our results in the context of
reaction kinetics. In fact, the MFPT can be seen as the mean
time taken by a mobile reactant A to reach a static reactant B,
when the starting point of the mobile reactant is not known.
Interestingly, the typical time for the reaction to occur can be
either larger (slow reaction) or smaller (fast reaction) than the
GMFPT, and we have outlined the set of trap locations for
which these regimes are recovered.

The results presented in this work could also be looked at as
the starting point to approaching multiple-particle processes,
where one considers a set of N diffusing particles, each
reacting upon meeting any one of a group of M immobile
fixed particles scattered throughout the comb lattice. Of course,
these problems cannot be solved by simple generalizations of
the solution of the N = M = 1 case, and specific techniques
have to be developed [37,54].
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(1993).
[51] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolenksy, and

P. Tiwari, Comput. Complex. 6, 312 (1996).
[52] V. Tejedor, O. Bénichou, and R. Voituriez, Phys. Rev. E 80,

065104 (2009).
[53] D. Bertacchi and F. Zucca, J. Austral. Math. Soc. 75, 325 (2003).
[54] L. Acedo and S. B. Yuste, Recent Res. Devel. Stat. Phys. 2, 83

(2002).

052132-11

http://dx.doi.org/10.1016/j.jlumin.2004.10.012
http://dx.doi.org/10.1016/j.jlumin.2004.10.012
http://dx.doi.org/10.1016/j.jlumin.2004.10.012
http://dx.doi.org/10.1016/j.jlumin.2004.10.012
http://dx.doi.org/10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1103/PhysRevE.85.026113
http://dx.doi.org/10.1103/PhysRevE.85.026113
http://dx.doi.org/10.1103/PhysRevE.85.026113
http://dx.doi.org/10.1103/PhysRevE.85.026113
http://dx.doi.org/10.1103/PhysRevE.77.011128
http://dx.doi.org/10.1103/PhysRevE.77.011128
http://dx.doi.org/10.1103/PhysRevE.77.011128
http://dx.doi.org/10.1103/PhysRevE.77.011128
http://dx.doi.org/10.1007/s00214-007-0323-5
http://dx.doi.org/10.1007/s00214-007-0323-5
http://dx.doi.org/10.1007/s00214-007-0323-5
http://dx.doi.org/10.1007/s00214-007-0323-5
http://dx.doi.org/10.1016/j.cplett.2010.08.019
http://dx.doi.org/10.1016/j.cplett.2010.08.019
http://dx.doi.org/10.1016/j.cplett.2010.08.019
http://dx.doi.org/10.1016/j.cplett.2010.08.019
http://dx.doi.org/10.1103/PhysRevE.88.052126
http://dx.doi.org/10.1103/PhysRevE.88.052126
http://dx.doi.org/10.1103/PhysRevE.88.052126
http://dx.doi.org/10.1103/PhysRevE.88.052126
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1007/BF01046996
http://dx.doi.org/10.1007/BF01046996
http://dx.doi.org/10.1007/BF01046996
http://dx.doi.org/10.1007/BF01046996
http://arxiv.org/abs/arXiv:0806.0701
http://dx.doi.org/10.1088/0305-4470/37/37/005
http://dx.doi.org/10.1088/0305-4470/37/37/005
http://dx.doi.org/10.1088/0305-4470/37/37/005
http://dx.doi.org/10.1088/0305-4470/37/37/005
http://dx.doi.org/10.1103/PhysRevA.40.6573
http://dx.doi.org/10.1103/PhysRevA.40.6573
http://dx.doi.org/10.1103/PhysRevA.40.6573
http://dx.doi.org/10.1103/PhysRevA.40.6573
http://dx.doi.org/10.1103/PhysRevE.65.021105
http://dx.doi.org/10.1103/PhysRevE.65.021105
http://dx.doi.org/10.1103/PhysRevE.65.021105
http://dx.doi.org/10.1103/PhysRevE.65.021105
http://dx.doi.org/10.1103/PhysRevE.73.026103
http://dx.doi.org/10.1103/PhysRevE.73.026103
http://dx.doi.org/10.1103/PhysRevE.73.026103
http://dx.doi.org/10.1103/PhysRevE.73.026103
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1007/BF01270385
http://dx.doi.org/10.1007/BF01270385
http://dx.doi.org/10.1007/BF01270385
http://dx.doi.org/10.1007/BF01270385
http://dx.doi.org/10.1103/PhysRevE.80.065104
http://dx.doi.org/10.1103/PhysRevE.80.065104
http://dx.doi.org/10.1103/PhysRevE.80.065104
http://dx.doi.org/10.1103/PhysRevE.80.065104
http://dx.doi.org/10.1017/S1446788700008144
http://dx.doi.org/10.1017/S1446788700008144
http://dx.doi.org/10.1017/S1446788700008144
http://dx.doi.org/10.1017/S1446788700008144



