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Abstract. We study the asymptotic convergence to a periodic steady state of the
solution of a nonlinear system of equations with periodic boundary data model-
ing electrical conduction in biological tissues, both in the microscopic and in the
homogenized version. Such model keeps into account the resistive behavior of the
intracellular and extracellular domains and also the capacitive/resistive behavior of
the lipidic cellular membrane.
The rate of convergence is analyzed and the systems of equations satisfied by the
asymptotic limits are exhibited, when the resistive behavior of the membrane is
described by a strictly monotone and coercive nonlinear function.
The special case of homogeneous boundary conditions is also investigated, where
the coercivity assumption can be relaxed.
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1. Introduction

Composite materials have widespread applications in science and technology and, for
this reason, have been extensively studied especially using homogenization techniques
(we quote, among others, [15], [17], [19], [31], [32],[35], [36]). In this framework the
authors, and co-workers, have investigated a problem arising in electric conduction
in biological tissues with the purpose of obtaining some useful results for applications
in electrical tomography (see [4]–[12]).
We deal with the physical problem of electric currents crossing a living tissue when
an electrical potential is applied at the boundary (see [16], [18], [21], [25], [29]). Here
the living tissue is regarded as a composite periodic domain made of extracellular
and intracellular phases both assumed to be conductive, possibly with different con-
ductivities, separated by a lipidic membrane experimentally found to exhibit both
conductive (due to ionic channels in the membrane) and capacitive behavior. In this
regard the large number of cells contained in the biological sample allows us and even
imposes to use a homogenization technique. Such technique yields the system of par-
tial differential equations satisfied by the macroscopic electric potential u, which is
the limit of the electric potential uε as the characteristic length of the cell ε tends to
zero.
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Clearly if we want the capacitive and the conductive behavior of the membranes to be
maintained when ε → 0 we must properly rescale the capacity and the conductivity
of such membranes with respect to ε. In [8] and [12] the authors have shown that,
essentially, only three scalings are physically reasonable. One of these scalings seems
to be the most suitable to describe the behavior of the membranes for currents in the
radiofrequency range (which is the standard frequency used in electrical tomography).
In this model the magnetic field is neglected (as suggested by experimental evidence)
and the potential uε is assumed to satisfy an elliptic equation both in the intracellular
and in the extracellular domain while on the membranes it satisfies the equation

α

ε

∂

∂t
[uε] + f

(
[uε]

ε

)
= σε∇uε · νε ,

where [uε] denotes the jump of the potential across the membranes and σε∇uε · νε
is the current crossing the membranes. The interface condition above was rigorously
obtained in [8] by means of a concentrated capacity technique, whence the onset of
the scaling specific to this model.
From a mathematical point of view the cases of linear or nonlinear f are markedly
different. Homogenization limits have been rigorously found in both cases. The linear
case has been considered in [4], [6] and [11], via asymptotic expansion in ε. It has
been shown that the limit potential u satisfies an elliptic equation with memory for
which an existence and uniqueness theorem has been proved in [5].
In the nonlinear case the approach is much more complicated and relies on the two-
scale convergence technique ([2], [3], [20], [28], [34]). In this case a memory effect is
still present in the limiting problem, which however does not take the form of a single
partial differential equation satisfied by u (see [12]). Indeed, the problem rather con-
tains two unknowns u and u1; the latter accounts for the microscopic properties of the
material and depends both on the macroscopic variable x and on the microscopic vari-
able y. Formally this limiting problem keeps the abstract parabolic structure which
is characteristic of the microscopic scheme described above and already remarked in
[9].
For a physical and biological motivation of the interest in nonlinear models of the
type considered in this paper see for instance [14], [30] and [33], [1].
Going back to the technical applications of bioimpedance tomography it must be
noted that usually the applied boundary potential is time harmonic, allowing for
the empirical assumption that the resulting potential inside the biological material
is time harmonic too. Under this assumption the behavior of the biological tissue is
modeled by means of complex elliptic equations, one for every harmonic frequency.
The correctness of this model has been proved by the authors in the linear case in
[9], [10] and [11], investigating the time limit, as t → +∞, of the solution u of the
homogenized problem. There it was proved that the equations currently used in elec-
trical tomography can be rigorously obtained by means of an asymptotic limit with
respect to t when time periodic boundary data are assigned. Here the asymptotic de-
cay is exponential. As a new input, those papers revealed the relation expressing the
complex admittivity of the limiting equation as an explicit function of the frequency
of the boundary data and of the physical properties of the tissue.
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It is remarkable that an elliptic equation with memory in general does not exhibit
asymptotic stability even if the memory kernel decreases to zero exponentially when
t→ +∞ (see [24]). For this reason, in the papers quoted above the result is obtained
proving an asymptotic exponential convergence in t for the problem of level ε (i.e.,
before homogenization) and observing that such a convergence is stable with respect
to ε, so that it holds true also for the limiting potential. For an alternative approach
to asymptotic stability in problems with memory, relying on some extra-assumptions
on the structure of the kernel see, for instance, [22] and [23]. About asymptotic decay
in diffusive or electromagnetic systems see also [26], [27] and the references therein.
Actually the problem at level ε is not in general asymptotically stable in t. For
instance, if f is identically equal to zero, uε does not tend to zero exponentially in t
even if a homogeneous boundary condition is assigned. Indeed such a decay requires
also that the initial jumps of the potential across the cellular membranes have zero
mean value on each membrane. However in the linear case we can still reduce to this
setting by subtracting from the initial potential a piecewise constant function, while
in the nonlinear case this is not possible and we must proceed in a different way.
We remark that such a pathology does not appear in the homogenized problem (see
Remark 3.4).
Motivated by the previous considerations, in this paper we investigate the behavior
as t → +∞ of the nonlinear problem introduced in [12]. We prove that if homoge-
neous boundary data are assigned, then the homogenized limit tends exponentially
to zero for a rather general class of functions f ; for example for functions f which
are Lipschitz-continuous and satisfy

f(s1)− f(s2) > −L−(s1 − s2), ∀s1, s2 ∈ R; s1 > s2,

with L− sufficiently small (see Remark 3.5). Such a behavior can not be expected for
solutions of the ε-problem, as explained above (see also Remark 3.4).
Moreover, when periodic boundary data are assigned and f is coercive in the sense
of (2.12) below, we obtain the exponential asymptotic convergence of the solution of
the homogenized problem to a periodic solution of a suitable system of equations.
Under the same assumptions an analogous result is obtained also for the solution of
the ε-problem.
Finally, we remark that the non coercive case will be treated in [13], where a weaker
form of asymptotic stability is proved.
The technical feature discriminating the cases of vanishing and general periodic data
is the fact that in the latter case we are unable to rely on the technique of [9]–
[11], which was based on eigenvalue estimates allowing us to keep into account the
dissipative properties both of the intra/extra cellular phases and of the membranes.
Instead, in the general case, we exploit only the coercivity of f .

The paper is organized as follows: in Section 2 we present the geometrical setting and
the nonlinear differential model governing our problem at the microscale ε as well as
our main results. In Section 3 we prove the exponential decay in time of the solution
of the microscopic and the macroscopic problem in the case of homogeneous boundary
data, while the case of time-periodic boundary data is dealt with in Section 4. Finally,
in Section 5 we prove the exponential decay in time of the solution of the homogenized
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problem, identifying also the differential system satisfied by the asymptotic limit,
which is a time-periodic function.

Acknowledgments. The authors are members of the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA) (M.A.) and of the
Gruppo Nazionale per la Fisica Matematica (GNFM) (D.A., R.G.), of the Istituto
Nazionale di Alta Matematica (INdAM).

2. Preliminaries

Let Ω be an open bounded subset of RN . In the sequel γ or γ̃ will denote constants
which may vary from line to line and which depend on the characteristic parameters
of the problem, but which are independent of ε unless explicitly specified.

2.1. The geometrical setting. The typical geometry we have in mind is depicted
in Figure 1. In order to be more specific, assume N ≥ 2 and let us introduce a

Figure 1. On the left: an example of admissible periodic unit cell Y =

E1∪E2∪Γ in R
2. Here E1 is the shaded region and Γ is its boundary. The

remaining part of Y (the white region) is E2. On the right: the corresponding
domain Ω = Ω

ε
1 ∪ Ω

ε
2 ∪ Γ

ε. Here Ω
ε
1 is the shaded region and Γ

ε is its
boundary. The remaining part of Ω (the white region) is Ω

ε
2.

periodic open subset E of RN , so that E+ z = E for all z ∈ Z
N . For all ε > 0 define

Ωε
1 = Ω ∩ εE, Ωε

2 = Ω \ εE. We assume that Ω, E have regular boundary, say of
class C∞ for the sake of simplicity, and dist(Γ ε, ∂Ω) ≥ γε, where Γ ε = ∂Ωε

1. We also
employ the notation Y = (0, 1)N , and E1 = E ∩ Y , E2 = Y \ E, Γ = ∂E ∩ Y . As a
simplifying assumption, we stipulate that E1 is a connected smooth subset of Y such
that dist(Γ, ∂Y ) > 0. We denote by ν the normal unit vector to Γ pointing into E2,
so that νε(x) = ν(ε−1x).
For later use, we introduce also the conductivity

σ(y) =

{
σ1 if y ∈ E1,

σ2 if y ∈ E2,
and σ0 = |E1|σ1 + |E2|σ2 ,
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where σ1, σ2 are positive constants, and we also set σε(x) = σ(ε−1x). Moreover, let
us set

C1
#(Y ) = {u ∈ C1(Y ) | u is Y -periodic} ,

X 1
#(Y ) := {u ∈ L2(Y ) | u|E1

∈ H1(E1) , u|E2
∈ H1(E2) , and u is Y − periodic} ,

and

X 1(Ωε) := {u ∈ L2(Ω) | u|Ωε
1
∈ H1(Ωε

1), u|Ωε
2
∈ H1(Ωε

2)} .
We note that, if u ∈ X 1

#(Y ) then the traces of u|Ei
on Γ , for i = 1, 2, belong to

H1/2(Γ ), as well as u ∈ X 1(Ωε) implies that the traces of u|Ωε
i

on Γ ε, for i = 1, 2,

belong to H1/2(Γ ε).

2.2. Statement of the problem. We consider the model problem

− div(σ1∇uε) = 0 , in Ωε
1 × (0, T ); (2.1)

− div(σ2∇uε) = 0 , in Ωε
2 × (0, T ); (2.2)

[σε∇uε · νε] = 0 , on Γ ε × (0, T ); (2.3)

α

ε

∂

∂t
[uε] + f

(
[uε]

ε

)
= σε∇uε · νε , on Γ ε × (0, T ); (2.4)

[uε](x, 0) = Sε(x) , on Γ ε; (2.5)

uε(x) = Ψ(x, t) , on ∂Ω × (0, T ), (2.6)

where σ1, σ2 are defined in the previous subsection and α > 0 is a constant. We note
that, by its definition, νε is the normal unit vector to Γ ε pointing into Ωε

2. Since uε
is not in general continuous across Γ ε we set

u(1)ε := trace of uε|Ωε
1

on Γ ε × (0, T ); u(2)ε := trace of uε|Ωε
2

on Γ ε × (0, T );

[uε] := u(2)ε − u(1)ε .

Similar conventions are employed for other quantities, for example in (2.3). In this
framework we will assume that

Sε ∈ H1/2(Γ ε) ,

∫

Γ ε

S2
ε (x) dσ ≤ γε , (2.7)

motivated by (3.1) below. The function f : R → R is assumed to satisfy

i) f is a Lipschitz-continuous function with Lipschitz constant L ,

ii) f(0) = 0 .
(2.8)

In particular, denoting by L−, L+ > 0 the Lipschitz constants of f from below and
from above respectively, we can write

−L−(s1 − s2) ≤ f(s1)− f(s2) ≤ L+(s1 − s2) , ∀s1, s2 ∈ R with s1 > s2 .

The first inequality above, together with (2.8), implies also that

f(s)s ≥ −L−s
2 , ∀s ∈ R . (2.9)
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Finally, Ψ : Ω ×R → R is a function satisfying the following assumptions

i) Ψ ∈ L2
loc

(
R;H2(Ω)

)
;

ii) Ψt ∈ L2
loc

(
R;H1(Ω)

)
;

iii) Ψ(x, ·) is 1-periodic for a.e. x ∈ Ω.

(2.10)

The regularity in (2.10) will be used in Lemma 4.1 and 5.2.
The set of equations (2.1)–(2.6) models electrical conduction in a biological tissue.
Recalling the discussion in the Introduction, we notice that the first term in the left
hand side of (2.4) models the behavior of the lipidic cell membrane which acts mainly
as a capacitor, while the second term in the left hand side keeps into account the
resistive behavior of the membrane which is caused by channels allowing charged
molecules to go through. Here the resistive behavior is assumed to be nonlinear and
it is relevant that the small parameter ε, which is of the order of magnitude of the
cell width, appears inside the argument of f . Existence of solutions to problem (2.1)–
(2.6) has been proved in [7] to which we refer for the rigorous definition of (weak)
solution.
Our first result concerns the case of homogeneous boundary data.

Theorem 2.1. For every ε > 0, let uε be the solution of problem (2.1)–(2.6) with
Ψ ≡ 0. Then, if L− is sufficiently small (depending on the constants σ1, σ2, α and
the geometry of Γ ), we have

‖uε(·, t)‖2L2(Ω) ≤ γ( e−βt + ε2 e
2L

−

α
t) ∀t > 1 , (2.11)

where β, γ > 0 are constants independent from ε.

In the following we’ll need a more stringent assumption on f , that is

f ∈ C1(R) , f ′(s) ≥ κ > 0 , ∀s ∈ R , (2.12)

for a suitable κ > 0.
We also introduce a time-periodic version of the problem solved by uε, i.e.,

− div(σε∇u#ε ) = 0 , in (Ωε
1 ∪Ωε

2)×R; (2.13)

[σε∇u#ε · νε] = 0 , on Γ ε ×R; (2.14)

α

ε

∂

∂t
[u#ε ] + f

(
[u#ε ]

ε

)
= (σε∇u#ε · νε) , on Γ ε ×R; (2.15)

u#ε (x, t) = Ψ(x, t) , on ∂Ω ×R; (2.16)

u#ε (x, ·) is 1-periodic, in Ω. (2.17)

Indeed, this problem is derived from (2.1)–(2.6) by replacing equation (2.5) with
(2.17). In Definition 4.13 we introduce the notion of periodic (weak) solution.

Theorem 2.2. Let ε > 0 be fixed and let uε, respectively u#ε , be the solution of
problem (2.1)–(2.6), respectively of problem (2.13)–(2.17). Assume (2.12). Then,
for t → +∞, uε → u#ε in the following sense: there exist β = 2κ/α and γ > 0,
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independent of ε, such that

‖uε(·, t)− u#ε (·, t)‖L2(Ω) ≤ γ e−βt/2 ; ∀t > 1 ; (2.18)

‖∇uε(·, t)−∇u#ε (·, t)‖L2(Ωε
i )
≤ γ e−βt/2 ; ∀t > 1 ; i = 1, 2 ; (2.19)

1√
ε
‖[uε](·, t)− [u#ε ](·, t)‖L2(Γ ε) ≤ γ e−βt/2 ; ∀t > 1 . (2.20)

It has been shown in [12] that as ε → 0 the sequence uε converges in the sense of
two-scales (see also Section 5) to the solution (u, u1), u = u(x, t), u1 = u1(x, y, t), as
defined in Definition 5.1, of the problem

− div


σ0∇u+

∫

Y

σ∇yu
1 dy


 = 0 , in Ω × (0, T ); (2.21)

− divy(σ∇u+ σ∇yu
1) = 0 , in Ω × (E1 ∪ E2)× (0, T ); (2.22)

[σ(∇u+∇yu
1) · ν] = 0 , on Ω × Γ × (0, T ); (2.23)

α
∂

∂t
[u1] + f

(
[u1]

)
= σ(∇u+∇yu

1) · ν , on Ω × Γ × (0, T ); (2.24)

[u1](x, y, 0) = S1(x, y) , on Ω × Γ ; (2.25)

u(x, t) = Ψ(x, t) , on ∂Ω × (0, T ). (2.26)

In order to obtain this homogenization result we have to assume that the initial data
Sε satisfy the additional requirements

Sε/ε two-scale converges in L2
(
Ω;L2(Γ )

)
to S1, (2.27)

where S1 is such that S1(x, ·) = S|Γ (x, ·) for some S ∈ C
(
Ω; C1

#(Y )
)
, and

lim
ε→0

ε

∫

Γ ε

(
Sε

ε

)2

(x) dσ =

∫

Ω

∫

Γ

S2
1(x, y) dx dσ(y) . (2.28)

Remark 2.3. Estimates (2.18)–(2.20) are uniform with respect to ε; but in order to
be able to pass to the limit ε → 0 in them a homogenization result for the periodic
problem should be available. In [12] however the proof was given for the initial value
problem and hinged on the property of the initial data mentioned above, which should
now be circumvented.
Here we prefer to develop a different approach to asymptotics that can be applied
to more general two-scale problems, not necessarily originating as homogenization
limits; see Remark 5.6. �
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We introduce the following periodic version of problem (2.21)–(2.26):

− div


σ0∇u# +

∫

Y

σ∇yu
1,# dy


 = 0 , in Ω ×R; (2.29)

− divy(σ∇u# + σ∇yu
1,#) = 0 , in Ω × (E1 ∪ E2)×R; (2.30)

[σ(∇u# +∇yu
1,#) · ν] = 0 , on Ω × Γ ×R; (2.31)

α
∂

∂t
[u1,#] + f

(
[u1,#]

)
= σ(∇u# +∇yu

1,#) · ν ,on Ω × Γ ×R; (2.32)

[u1,#](x, y, ·) is 1-periodic, on Ω × Γ ; (2.33)

u#(x, t) = Ψ(x, t) , on ∂Ω ×R. (2.34)

For this problem we have

Theorem 2.4. Problem (2.29)–(2.34) has a unique solution in the sense of Defini-
tion 5.7.

Finally we prove the following convergence result.

Theorem 2.5. With the notation above, and assuming (2.12), (2.27) and (2.28), we
have for all t > 1

‖u(·, t)− u#(·, t)‖H1(Ω) ≤ γ e−βt/2 ; (2.35)

‖u1(·, t)− u1,#(·, t)‖L2(Y ) + ‖∇u1(·, t)−∇u1,#(·, t)‖L2(Y ) ≤ γ e−βt/2 , (2.36)

‖[u1](·, t)− [u1,#](·, t)‖L2(Γ ) ≤ γ e−βt/2 , (2.37)

for suitable β, γ > 0.

3. Exponential decay of the solution of the ε-problem

The purpose of this section is to prove the asymptotic decay as t → +∞ of the
solution to (2.1)–(2.6) with homogeneous boundary data Ψ ≡ 0, that is Theorem 2.1.
Let us recall that, under our assumptions, the solution uε of (2.1)–(2.6) satisfies for
0 < t < T the following energy inequality (easily obtained on multiplying (2.1) and
(2.2) by uε and integrating formally by parts; see also [7])

t∫

0

∫

Ω

σε|∇uε|2 dx dτ +
α

2ε

∫

Γ ε

[uε]
2(x, t) dσ +

t∫

0

∫

Γ ε

f

(
[uε]

ε

)
[uε] dσ dτ

=
α

2ε

∫

Γ ε

S2
ε (x) dσ ≤ α

2
γ . (3.1)

If f is monotone increasing (3.1) yields

T∫

0

∫

Ω

σε|∇uε|2 dx dτ + sup
t∈[0,T ]

α

2ε

∫

Γ ε

[uε]
2(x, t) dσ ≤ γ . (3.2)
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In general, using Gronwall lemma, we get

T∫

0

∫

Ω

σε|∇uε|2 dx dτ + sup
t∈[0,T ]

α

2ε

∫

Γ ε

[uε]
2(x, t) dσ ≤ γe

2L
−

α
T . (3.3)

From now on we will set Γ ε
k = εΓ k := ε(Γ + zk) and Ωε

1,k = εEk
1 := ε(E1 + zk)

for k ∈ I, where zk ∈ Z
N and I is a suitable finite set of indexes covering all the

components of Γ ε. Moreover, we introduce the function wε(x, t) given by

wε(x, t) =





0 if (x, t) ∈ Ωε
2 × (0, T );

− 1

|Γ ε
k |

∫

Γ ε
k

[uε] dσ if (x, t) ∈ Ωε
1,k × (0, T ), k ∈ I. (3.4)

Notice that |Γ ε
k | = εN−1 |Γ | and that the piecewise constant function wε solves a

rather trivial analogue of (2.1)–(2.6), whence we single out the interface condition

α

ε

∂

∂t
[wε] = − 1

|Γ ε
k |

∫

Γ ε
k

f

(
[uε]

ε

)
dσ , on Γ ε

k × (0, T ); k ∈ I, (3.5)

following from integrating over Γ ε
k equation (2.4) and recalling that
∫

Γ ε
k

σε∇uε · νε dσ = 0

because of (2.1)–(2.2). Finally, we set qε = uε − wε; it is immediately seen that qε
solves

− div(σ1∇qε) = 0 , in Ωε
1 × (0, T ); (3.6)

− div(σ2∇qε) = 0 , in Ωε
2 × (0, T ); (3.7)

[σε∇qε · νε] = 0 , on Γ ε× (0, T ); (3.8)

α

ε

∂

∂t
[qε]+f

(
[qε]

ε
+

[wε]

ε

)
=

1

|Γ ε
k |

∫

Γ ε
k

f

(
[uε]

ε

)
dσ+ σε∇qε·νε , on Γ ε

k×(0, T ); k ∈ I; (3.9)

[qε](x, 0) = Sε(x)−
1

|Γ ε
k |

∫

Γ ε
k

Sε(x) dσ , on Γ ε
k ; k ∈ I; (3.10)

qε(x) = 0 , on ∂Ω×(0, T ). (3.11)

Moreover, on integrating on Γ ε
k equation (3.9) and taking into account that
∫

Γ ε
k

σε∇qε · νε dσ = 0 ,

it follows that
α

ε

d

dt

∫

Γ ε
k

[qε] dσ = 0 , k ∈ I ,
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so that also using (3.10) we have
∫

Γ ε
k

[qε(x, t)] dσ(x) = 0 ,

∫

Γ ε
k

[qε,t(x, t)] dσ(x) = 0 , t ∈ [0, T ) , k ∈ I . (3.12)

We write equation (3.9) in the more convenient form

α

ε

∂

∂t
[qε]+f

(
[qε]

ε
+

[wε]

ε

)
−f

(
[wε]

ε

)
= Bε

k+σ
ε∇qε ·νε , on Γ ε

k × (0, T ), (3.13)

where

Bε
k(t) =

1

|Γ ε
k |

∫

Γ ε
k

f

(
[uε]

ε

)
dσ − f

(
[wε]

ε

)
.

In the following we exploit the fact that Bk depends on the time variable t but not
on the space variable x on Γ ε

k × (0, T ).

Proposition 3.1. For every ε > 0, let qε be the function defined above. Then under
the assumptions of Theorem 2.1 we have

1

ε

∫

Γ ε

[qε]
2(x, t) dσ ≤ γ e−βt , ∀t > 0 , (3.14)

where β, γ > 0 are constants independent from ε.

Proof. We multiply equation (3.6)–(3.7) by qε and integrate by parts in the space
variable x. Taking into account equations (3.8), (3.13) and (3.11), we obtain
∫

Ω

σε|∇qε|2 dx+
α

ε

∫

Γ ε

[qε,t][qε] dσ

+

∫

Γ ε

(
f

(
[qε]

ε
+

[wε]

ε

)
− f

(
[wε]

ε

))
[qε] dσ = 0 , (3.15)

where we used (3.12) and the fact that Bk is independent of x on each Γ ε
k × (0, T ).

Next we appeal to the bound from below of the first integral on the left hand side of
(3.15) proved in (3.14) of [9], thus obtaining for a λ > 0 depending on the geometry
of Γ and on σ

α

ε
λ̄

∫

Γ ε

[qε]
2 dσ +

α

ε

∫

Γ ε

[qε,t][qε] dσ

+

∫

Γ ε

(
f

(
[qε]

ε
+

[wε]

ε

)
− f

(
[wε]

ε

))
[qε] dσ ≤ 0 . (3.16)

If f is monotone increasing the last integral in (3.16) is nonnegative and can be
dropped; if this is not the case we have to assume λ̄α > L−. Indeed, setting

zε(t) =

∫

Γ ε

[qε]
2(x, t) dσ ,
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and taking into account (2.9), we infer from (3.16)

α

2ε
z′ε(t) +

α

ε
λ̄zε(t) ≤

L−

ε
zε(t) . (3.17)

Inequality (3.17) implies

zε(t) ≤ zε(0) e−2(λ̄−L−/α)t =
∑

k∈I





∫

Γ ε
k

S2
ε (x) dσ − 1

|Γ ε
k |



∫

Γ ε
k

Sε(x) dσ




2


e−βt

≤ e−βt
∑

k∈I

∫

Γ ε
k

S2
ε (x) dσ = e−βt

∫

Γ ε

S2
ε (x) dσ ≤ γε e−βt , (3.18)

where β = 2(λ̄− L−/α) and owing to assumption (2.7) γ is a constant independent
of ε. This proves the statement. �

Remark 3.2. If f is monotone increasing, L− can be taken equal to zero, hence in
(3.14) we have β = 2λ̄. If in addition there exists κ > 0 such that f ′(s) ≥ κ > 0 for
every s ∈ R, then equation (3.17) can be replaced with

α

2ε
z′ε(t) +

(α
ε
λ̄+

κ

ε

)
zε(t) ≤ 0 ,

yielding β = 2(λ̄+ κ/α) in (3.14). �

As a consequence of inequality (3.14) we can prove exponential decay to zero of qε
uniformly with respect to ε > 0.

Proposition 3.3. For every ε > 0, let qε be the function defined above. Then

‖qε(·, t)‖2L2(Ω) ≤ γ e−βt ∀t > 1 , (3.19)

where β, γ > 0 are constants independent from ε.

Proof. By integrating (3.15) with respect to t in the time interval (t,+∞) we get

+∞∫

t

∫

Ω

σε|∇qε|2 dx dt ≤ L−

ε

+∞∫

t

∫

Γ ε

[qε]
2 dσ dt+

α

2ε

∫

Γ ε

[qε]
2(x, t) dσ , ∀t > 0 , (3.20)

where the first integral on the right hand side is finite owing to (3.14).
From (3.20) and (3.14) we get

+∞∫

t

∫

Ω

σε|∇qε|2 dx dt ≤ γ e−βt , ∀t > 0 . (3.21)

Let t > 1 and ψ ∈ C∞([0,+∞)) be any increasing function such that ψ(t) = 0 for
t ≤ t− 1, ψ(t) = 1 for t ≥ t and ψ′(t) ≤ 2.
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We multiply equation (3.6)–(3.7) by ψqε,t and integrate by parts with respect to x.
Using (3.8), (3.11) and (3.13) we obtain

∫

Ω

σε∇qε∇qε,tψ(t) dx+
α

ε

∫

Γ ε

[qε,t]
2ψ(t) dσ

+

∫

Γ ε

(
f

(
[qε]

ε
+

[wε]

ε

)
− f

(
[wε]

ε

))
[qε,t]ψ(t) dσ = 0 . (3.22)

Here we again exploited the fact that Bε
k depends only on t, and (3.12) as well. On

integrating (3.22) over [t − 1, t] and taking into account assumption (2.8), we easily
get

∫

Ω

σε

2
|∇qε(x, t)|2 dx+

α

ε

t∫

t−1

∫

Γ ε

[qε,t]
2ψ dσ dt

≤ L

ε

t∫

t−1

∫

Γ ε

|[qε]| |[qε,t]|ψ dσ dt +

t∫

t−1

∫

Ω

σε

2
|∇qε|2ψ′ dx dt . (3.23)

Then by invoking (3.14) and (3.21) we estimate

∫

Ω

σε

2
|∇qε(x, t)|2 dx+

α

2ε

t∫

t−1

∫

Γ ε

[qε,t]
2ψ dσ dt

≤ L2

2αε

t∫

t−1

∫

Γ ε

[qε]
2 dσ dt+

t∫

t−1

∫

Ω

σε|∇qε|2 dx dt

≤ L2

2αε

+∞∫

t−1

∫

Γ ε

[qε]
2 dσ dt +

+∞∫

t−1

∫

Ω

σε|∇qε|2 dx dt ≤ γ e−β(t−1) .

(3.24)

Collecting (3.14) and (3.24) we get

1

ε

∫

Γ ε

[qε(x, t)]
2 dσ +

∫

Ω

|∇qε(x, t)|2 dx ≤ γ e−βt , ∀t > 1 . (3.25)

The last inequality, together with the Poincaré type inequality proved in [6, Lemma
7.1] immediately yields (3.19). �
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In order to complete the proof of Theorem 2.1, recalling the definition of wε we remark
that

‖wε(·, t)‖2L2(Ω) =
∑

k∈I

∫

Ωε
1,k

(
wε(x, t)

)2
dx =

∑

k∈I

|Ωε
1,k|

|Γ ε
k |2



∫

Γ ε
k

[uε(x, t)] dσ




2

≤ γ
εN

εN−1

∑

k∈I

∫

Γ ε
k

[uε(x, t)]
2 dσ = γε2


1

ε

∫

Γ ε

[uε(x, t)]
2 dσ


 ≤ γε2 e

2L
−

α
t , (3.26)

owing to the energy inequality (3.3). In turn, (3.26) and Proposition 3.3 imply for
uε = qε + wε

‖uε(·, t)‖2L2(Ω) ≤ 2‖qε(·, t)‖2L2(Ω) + 2‖wε(·, t)‖2L2(Ω) ≤ 2γ
(

e−βt + ε2 e
2L

−

α
t
)
. (3.27)

Theorem 2.1 is proved.

Remark 3.4. We point out that, in the case where f is assumed to be monotone
increasing, inequality (3.27) reduces to

‖uε(·, t)‖2L2(Ω) ≤ 2‖qε(·, t)‖2L2(Ω) + 2‖wε(·, t)‖2L2(Ω) ≤ 2γ
(
e−βt + ε2

)
, (3.28)

where we used (3.2) instead of (3.3).
The non-vanishing asymptotic character of the spatial L2-norm of uε is due to the
fact that, in general, the jump [uε] has nonzero mean value over each Γ ε

k . Estimate
(3.28) is important in the homogenization limit ε → 0. More precisely, under the
assumptions of Theorem 2.1 in [12], we have that uε → u when ε → 0, where u
denotes the homogenization limit function, and hence it follows from (3.28)

‖u(·, t)‖2L2(Ω) ≤ γ e−βt , ∀t > 1 ; (3.29)

i.e., the exponential decay of the spatial L2-norm of u. We note also that inequalities
(3.28) and (3.29) correspond exactly to the results obtained in the linear case in [9,
Theorem 2 and Corollary 3]. �

Remark 3.5. In the case where f is not monotone increasing to the best of our
knowledge the existence of a homogenization limit of uε has not been proved yet.
However, if such a limit u indeed exists, it still satisfies (3.29) as a consequence of
(3.27). �

4. Asymptotic convergence to a periodic steady state for the

ε-problem

In this section we will assume that Ψ is not identically zero and that f fulfills also
assumption (2.12). Our purpose here is to prove Theorem 2.2, that is essentially
that for ε > 0 fixed, the solution uε of problem (2.1)–(2.6) converges to the periodic
solution u#ε of (2.13)–(2.17) as t→ +∞.
We begin by proving some regularity results for uε.



14 M. AMAR, D. ANDREUCCI, AND R. GIANNI

Lemma 4.1. Let ε > 0 and uε ∈ L2
(
(0, T );X 1(Ωε)

)
be the solution of (2.1)–(2.6).

Then uε ∈ C0
(
(0, T ];X 1(Ωε)

)
, so that [uε] ∈ C0

(
(0, T ];L2(Γ ε)

)
uniformly with respect

to ε.

Remark 4.2. Indeed, a variant of the following proof jointly with Lemma 5 in [7]
(providing a suitable estimate of ∇uε(0, ·)), permits to prove that actually [uε] ∈
C0
(
[0, T ];L2(Γ ε)

)
, but with a non-uniform bound of the norm with respect to ε. �

Proof. Firstly, we note that the solution of (2.1)–(2.6) satisfies an energy inequality.
In fact, multiplying equation (2.1)–(2.2) by uε − Ψ, integrating by parts and using
assumptions (2.12) and (2.10), we get

T∫

0

∫

Ω

σε|∇uε|2 dx dt+
α

ε
sup

t∈(0,T )

∫

Γ ε

[uε]
2(x, t) dσ ≤ γ(T ) . (4.1)

Now, let τ > 0 and vτ : [0,+∞) → R be a regular function such that 0 ≤ υτ ≤ 1,
υτ(t) = 1, for t ≥ τ , υτ(0) = 0. Multiplying (2.1)–(2.2) by (uε,t − Ψt)υ

τ , integrating
by parts and using (2.8), (2.10) and (4.1), we get

sup
t∈(τ,T )

∫

Ω

σε

2
|∇uε(x, t)|2 dx+

α

2ε

T∫

τ

∫

Γ ε

[uε,t]
2 dσ dt

≤ sup
t∈(0,T )

∫

Ω

σε

2
|∇uε(x, t)|2υτ(t) dx+

α

2ε

T∫

0

∫

Γ ε

[uε,t]
2υτ dσ dt ≤ γ(τ, T ) . (4.2)

Inequalities (4.1) and (4.2) imply that [uε] ∈ C0
(
(0, T ];L2(Γ ε)

)
. Let now υ̂τ :

[0,+∞) → R be a function such that 0 ≤ υ̂τ ≤ 1, υ̂τ (t) = 1, for t ≥ 2τ , υ̂τ(t) = 0,
for 0 ≤ t ≤ τ . Differentiating formally with respect to t (2.1)–(2.6), multiplying the
first two equations thus obtained by (uε,t−Ψt)υ̂

τ (t), and finally integrating by parts,
we obtain

T∫

2τ

∫

Ω

σε|∇uε,t|2 dx dt+
α

ε
sup

t∈(2τ,T )

∫

Γ ε

[uε,t]
2(x, t) dσ

≤
T∫

0

∫

Ω

σε|∇uε,t|2υ̂τ(t) dx dt +
α

ε
sup

t∈(0,T )

∫

Γ ε

[uε,t]
2(x, t)υ̂τ (t) dσ ≤ γ(τ, T ) , (4.3)

where we used also (4.2). Inequalities (4.2) and (4.3) imply ∇uε ∈ C0
(
(0, T ];L2(Ω)

)
.

This fact, jointly with Poincaré’s inequality proved in [6, Lemma 7.1], implies that
uε ∈ C0

(
(0, T ];X 1(Ωε)

)
. The statement is proved. �

Remark 4.3. In fact Lemma 4.1 is still valid under the weaker assumptions f ∈ C1(R),
f ′ ≥ 0. �
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Set vε(x, t) = uε(x, t + 1)− uε(x, t). Clearly vε satisfies

− div(σε∇vε) = 0 , in (Ωε
1 ∪ Ωε

2)× (0,+∞); (4.4)

[σε∇vε · νε] = 0 , on Γ ε × (0,+∞); (4.5)

α

ε

∂

∂t
[vε] + gε(x, t)

[vε]

ε
= σε∇vε · νε , on Γ ε × (0,+∞); (4.6)

[vε](x, 0) = [uε(x, 1)]−Sε(x)=: Ŝε(x), on Γ ε; (4.7)

vε(x) = 0 , on ∂Ω × (0,+∞), (4.8)

where

gε(x, t) :=





f ′

(
[uε]

ε
(x, t)

)
if [uε](x, t) = [uε](x, t + 1),

f
(

[uε]
ε
(x, t + 1)

)
− f

(
[uε]
ε
(x, t)

)

[uε]
ε
(x, t+ 1)− [uε]

ε
(x, t)

if [uε](x, t) 6= [uε](x, t + 1),

so that gε(x, t) ≥ κ > 0 and Ŝε(x) still satisfies assumption (2.7) because of the
energy inequality (4.1) satisfied by uε.

Proposition 4.4. For every ε > 0, let vε be the function defined above and satisfying
problem (4.4)-(4.8). Then

1

ε

∫

Γ ε

[vε]
2(x, t) dσ ≤ γ e−βt , ∀t > 0 , (4.9)

where β = 2κ/α and γ > 0 are constants independent from ε.

Proof. Multiply equation (4.4) by vε and integrate by parts with respect to x, thus
obtaining

∫

Ω

σε|∇vε|2 dx+
α

ε

∫

Γ ε

[vε,t][vε] dσ +

∫

Γ ε

gε(x, t)

ε
[vε]

2 dσ = 0 , (4.10)

and hence
α

ε

∫

Γ ε

[vε,t][vε] dσ +
κ

ε

∫

Γ ε

[vε]
2 dσ ≤ 0 . (4.11)

Even dropping the first integral in (4.10), we may make use here only of the property
(2.12) of f to get a result similar to the one in Proposition 3.1. In fact, setting

zε(t) =

∫

Γ ε

[vε]
2(t) dσ ,

we infer from (4.11)
α

2ε
z′ε(t) +

κ

ε
z(t) ≤ 0 , (4.12)



16 M. AMAR, D. ANDREUCCI, AND R. GIANNI

whence the sought after estimate (4.9) in the form

zε(t) ≤ zε(0) e−
2κ
α
t ≤ 2





∫

Γ ε

S2
ε (x) dσ +

∫

Γ ε

[uε]
2(x, 1)



 e−

2κ
α
t ≤ γε e−βt . (4.13)

Indeed γ is independent of ε because of assumption (2.7) and of (4.1), and β =
2κ/α. �

Remark 4.5. In this case, i.e., when we consider a nonhomogeneous boundary data,
we cannot apply inequality (3.14) of [9] as we did in Section 3. Indeed the assumption
that [vε] has null mean average is not satisfied any longer and we cannot reduce to
this case because of the nonlinearity of the problem, which forces the presence of the
nonconstant term gε in (4.6).
On the contrary, if the problem is linear, i.e. f(s) = κs, we can set, without loss
of generality, the initial mean value of [vε] equal to zero on each component of Γ ε,
and this property is preserved for all positive times. Then we can apply (3.14) of [9]
obtaining a version of (4.11) with κ replaced by κ + λα, where λ is as in the proof
of Proposition 3.1. This implies that the estimates in Propositions 4.4 and 4.6 and
Lemmas 4.8 and 4.10 hold with β = 2

(
κ
α
+ λ

)
, so that in Theorem 2.2 we obtain the

optimal decay which takes into account both the membrane and the bulk dissipation,
as in the case of homogeneous boundary conditions (see Remark 3.2). �

Proposition 4.6. Under the assumptions of Proposition 4.4 we have

‖vε(·, t)‖2L2(Ω) ≤ γ e−βt , ∀t > 1 , (4.14)

where β = 2κ/α and γ > 0 are constants independent from ε.

Proposition 4.6 is proved following the ideas in the proof of Proposition 3.3, but some
modifications are necessary due to the presence of the term gε in (4.6).

Proof. Firstly, let t > 0 and integrate (4.10) with respect to t in the time interval
(t,+∞), thus obtaining

+∞∫

t

∫

Ω

σε|∇vε|2 dx dt ≤ α

2ε

∫

Γ ε

[vε(x, t)]
2 dσ , (4.15)

where we have made use of (4.9) and we have dropped the positive term
∫
Γ ε

gε(x,t)
ε

[vε]
2 dσ dt.

From (4.15), using again (4.9), we get

+∞∫

t

∫

Ω

σε|∇vε|2 dx dt ≤ γ e−βt , ∀t > 0 , (4.16)

where γ does not depend on ε. Let now t > 1 and ψ ∈ C∞
(
[0,+∞)

)
be an increasing

function such that ψ(t) = 0 for t ≤ t− 1, ψ(t) = 1 for t ≥ t and ψ′(t) ≤ 2. Multiply
equation (4.4) by vε,tψ, integrate by parts with respect to x and then integrate with
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respect to time t ∈ [t− 1, t], thus obtaining

t∫

t−1

∫

Ω

σε∇vε∇vε,tψ(t) dx dt+
α

ε

t∫

t−1

∫

Γ ε

[vε,t]
2ψ(t) dσ dt

+

t∫

t−1

∫

Γ ε

gε(x, t)

ε
[vε,t][vε]ψ(t) dσ dt = 0 . (4.17)

Now, taking into account that the function f is assumed to be Lipschitz-continuous
(i.e. |gε| ≤ L) we get

∫

Ω

σε

2
|∇vε(x, t)|2 dx+

α

ε

t∫

t−1

∫

Γ ε

[vε,t]
2ψ(t) dσ dt

≤ L

ε

t∫

t−1

∫

Γ ε

|[vε]| |[vε,t]|ψ(t) dσ dt +

t∫

t−1

∫

Ω

σε

2
|∇vε|2ψ′(t) dx dt , (4.18)

which implies

∫

Ω

σε

2
|∇vε(x, t)|2 dx+

α

2ε

t∫

t−1

∫

Γ ε

[vε,t]
2ψ(t) dσ dt

≤ L2

2αε

+∞∫

t−1

∫

Γ ε

[vε]
2 dσ dt+

+∞∫

t−1

∫

Ω

σε|∇vε|2 dx dt ≤ γ e−β(t−1) = γ̃ e−βt ,

(4.19)

where we used (4.9) and (4.16) and we set γ̃ = γ eβ.
Putting together (4.9) and (4.19) we get

1

ε

∫

Γ ε

[vε(x, t)]
2 dσ +

∫

Ω

|∇vε(x, t)|2 dx dt ≤ γ e−βt , ∀t > 1 , (4.20)

where γ is independent of ε. This last inequality, together with Poincare’s inequality
proved in [6, Lemma 7.1], gives the exponential decay of the spatial L2-norm of vε
and concludes the proof.

�

Next for ε > 0 and n ∈ N , n ≥ 1, we set uε,n(x, t) := uε(x, t + n).

Remark 4.7. We stress the fact that, for every T > 0, uε,n ∈ C0([0, T ], L2(Ω)), [uε,n] ∈
C0([0, T ], L2(Γ ε)), ∇uε,n ∈ C0([0, T ], L2(Ωε

i )), i = 1, 2. This is a straightforward
consequence of Lemma 4.1, since n ≥ 1. �

In our next Lemma, we will prove that uε,n and ∇uε,n are Cauchy sequences in
C0([0, 1], L2(Ωε

i )), while [uε,n]/
√
ε is a Cauchy sequence in C0([0, 1], L2(Γ ε)).
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Lemma 4.8. Let ε > 0 and {uε,n}n∈N be the sequence of functions defined above.
Then under the assumptions of Proposition 4.4, with β = 2κ/α,

‖uε,m − uε,n‖C0([0,1],L2(Ω)) ≤ γ e−βn/2 , for every m > n; (4.21)

‖∇uε,m −∇uε,n‖C0([0,1],L2(Ωε
i ))

≤ γ e−βn/2 , for every m > n; i = 1, 2; (4.22)

1√
ε
‖[uε,m]− [uε,n]‖C0([0,1],L2(Γ ε)) ≤ γ e−βn/2 , for every m > n. (4.23)

Proof. Assume m > n. Because of (4.14), we have

‖uε,m − uε,n‖C0([0,1],L2(Ω)) = sup
t∈[0,1]

‖uε(·, t+m)− uε(·, t+ n)‖L2(Ω)

≤
m−1∑

j=n

sup
t∈[0,1]

‖uε(·, t+ (j + 1))− uε(·, t+ j)‖L2(Ω) ≤ γ

m−1∑

j=n

e−βj/2 ≤ γ e−βn/2 , (4.24)

whence (4.21) follows. Reasoning in the same way and using (4.20) instead of (4.14),
we obtain (4.22) and (4.23). �

Since {uε,n}n∈N is a Cauchy sequence, it converges in the function spaces appearing in
(4.21)–(4.23). Let us denote by uε ∈ C0

(
[0, 1],X 1(Ωε)

)
, with [uε] ∈ C0

(
[0, 1], L2(Γ ε)

)
,

the limit of the sequence {uε,n}n∈N and by u#ε the periodic extension of uε to the
whole time axis (−∞,+∞).

Remark 4.9. Obviously, the regularity of uε implies that u#ε ∈ C0
(
R,X 1(Ωε)

)
and

[u#ε ] ∈ C0
(
R, L2(Γ ε)

)
; indeed, we observe that uε(x, 1 + n) = uε,n(x, 1) → uε(x, 1)

and uε(x, n + 1) = uε,n+1(x, 0) → uε(x, 0); hence, uε(x, 1) = uε(x, 0) and the same
holds for ∇uε(x, 1) = ∇uε(x, 0) and [uε](x, 1) = [uε](x, 0). �

We are now in the position to prove one of the main results of this section.

Lemma 4.10. Under the assumptions of Proposition 4.4, and for uε and u#ε as above,
(2.18)–(2.20) hold true.

Proof. Let t > 0 and set n = [[t]], where for t ∈ R we denote by [[t]] the integer part
of t; then t ∈ [n, n+ 1) and we have

∥∥uε(·, t)− u#ε (·, t)
∥∥2

L2(Ω)
≤ sup

t̂∈[n,n+1]

∥∥uε(·, t̂)− u#ε (·, t̂)
∥∥2

L2(Ω)

= sup
t̃∈[0,1]

∥∥uε(·, t̃+ n)− u#ε (·, t̃+ n)
∥∥2

L2(Ω)
= sup

t̃∈[0,1]

∥∥uε(·, t̃+ n)− u#ε (·, t̃)
∥∥2

L2(Ω)

= sup
t̃∈[0,1]

∥∥uε(·, t̃+ n)− uε(·, t̃)
∥∥2

L2(Ω)
. (4.25)

Therefore from (4.21) we get
∥∥uε(·, t)− u#ε (·, t)

∥∥2

L2(Ω)
≤ γ e−βn = γ e−β[[t]] ≤ γ eβe−βt = γ̃ e−βt , (4.26)

for every t > 0, where γ̃ = γ eβ is independent of ε. This proves (2.18).
Reasoning as before and using (4.22) and (4.23) we obtain (2.19) and (2.20). �
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Remark 4.11. Lemma 4.10 implies the exponential asymptotic convergence to zero of
the solution uε, in the case Ψ ≡ 0. However, we point out that this result does not
include Theorem 2.1 and Remark 3.2. Indeed, on one hand those results hold true
even dispensing with the coercivity assumption (2.12), at the unavoidable expense of
not proving decay to zero even if L− = 0 as in the case considered in this Section:
recall the term ε2 on the right hand side of (2.11). On the other hand, they prove a
rate of convergence 2(λ+ κ/α) rather than 2κ/α as in Lemma 4.10. �

Remark 4.12. Taking into account (4.1) and (4.2), by (2.18)–(2.20) we obtain for all
t ∈ [1, 2]

‖u#ε (·, t)‖2L2(Ω) ≤ γ e−β + ‖uε(·, t)‖2L2(Ω) ≤ γ , (4.27)

‖∇u#ε (·, t)‖2L2(Ωε
i )
≤ γ e−β + ‖∇uε(·, t)‖2L2(Ωε

i )
≤ γ , i = 1, 2 , (4.28)

1

ε
‖[u#ε ](·, t)‖2L2(Γ ε) ≤ γ e−β +

1

ε
‖[uε](·, t)‖2L2(Γ ε) ≤ γ . (4.29)

Here we choose t ∈ [1, 2] because, in principle, (2.18)–(2.20) have not been proved
when t → 0. This restriction is immaterial for the application of these estimates of
the periodic function u#ε in Theorem 4.14 below. �

In order to complete the proof of Theorem 2.2 we only need prove the claim that u#ε
solves the periodic problem (2.13)–(2.17). This is the content of Theorem 4.14 below.
Let us state in detail the following Definition.

Definition 4.13. A weak solution u#ε of the periodic problem (2.13)–(2.17) is a time-
periodic function u#ε ∈ C0

(
R;X 1(Ωε)

)
, [u#ε ] ∈ C0

(
R;L2(Γ ε)

)
, with integer period,

satisfying (2.16) in the trace sense and, for any function φ ∈ C1(Ωε
i ×R), i = 1, 2,

having compact support in Ω ×R,
∫

R

∫

Ω

σε∇u#ε ∇φ dx dt− α

ε

∫

R

∫

Γ ε

[u#ε ][φt] dσ dt+

∫

R

∫

Γ ε

f

(
[u#ε ]

ε

)
[φ] dσ dt = 0 . (4.30)

Theorem 4.14. For every ε > 0, let u#ε be the function defined above. Then u#ε is
the unique weak solution of problem (2.13)–(2.17).

Proof. 1) Existence.
The regularity and periodicity of u#ε have been already proved. The boundary con-
dition (2.16) is obvious from the definition of u#ε . It is only left to prove (4.30).
To this purpose, let φ be a regular function with compact support in Ω ×R

+ as in
Definition 4.13. From the autonomous character of problem (2.1)–(2.6) and from the
standard definition of its weak solution, we get for all large enough k ∈ N

∫

R
+

∫

Ω

σε∇uε(x, t + k)∇φ(x, t) dx dt− α

ε

∫

R
+

∫

Γ ε

[uε(x, t+ k)][φt(x, t)] dσ dt

+

∫

R
+

∫

Γ ε

f

(
[uε(x, t + k)]

ε

)
[φ(x, t)] dσ dt = 0 .
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The convergence results of Lemma 4.10 imply as k → ∞
∫

R
+

∫

Ω

σε∇u#ε (x, t)∇φ(x, t) dx dt− α

ε

∫

R
+

∫

Γ ε

[u#ε (x, t)][φt(x, t)] dσ dt+

+

∫

R
+

∫

Γ ε

f

(
[u#ε (x, t)]

ε

)
[φ(x, t)] dσ dt = 0 ,

which amounts to the sought after (4.30).
2) Uniqueness.
Firstly we note that u#ε satisfies an energy estimate similar to (4.1), because of
(4.27)–(4.29). Moreover, let us assume that another periodic solution u∗ε exists, and
let s ∈ N be its period. Note that simply by the regularity requirements placed on
any weak solution, bounds like those in (4.27)–(4.29) actually hold for u∗ε too, over
its period. The constant γ there might depend on ε, but this is immaterial in the
present argument, where ε is fixed. By the same token, u∗ε too satisfies an energy
estimate like (4.1).
Setting w#

ε := u#ε − u∗ε, we have that w#
ε solves (in a suitable sense)

− div(σε∇w#
ε ) = 0 , in (Ωε

1 ∪ Ωε
2)× (0,+∞); (4.31)

[σε∇w#
ε · νε] = 0 , on Γ ε × (0,+∞); (4.32)

α

ε

∂

∂t
[w#

ε ] + gε(x, t)
[w#

ε ]

ε
= σε∇w#

ε · νε , on Γ ε × (0,+∞); (4.33)

w#
ε (x, t) = 0 , on ∂Ω × (0,+∞);

(4.34)

[w#
ε ](x, 0) = [u#ε ](x, 0)− [u∗ε](x, 0) =: S̃ε(x) , on Γ ε, (4.35)

where

gε(x, t) :=





f ′

(
[u∗ε]

ε
(x, t)

)
if [u∗ε](x, t) = [u#ε ](x, t),

f
(

[u#
ε ]
ε
(x, t)

)
− f

(
[u∗

ε ]
ε
(x, t)

)

[u#
ε ]
ε
(x, t)− [u∗

ε ]
ε
(x, t)

if [u∗ε](x, t) 6= [u#ε ](x, t),

so that gε(x, t) ≥ κ > 0 and S̃ε(x) still satisfies the second assumption in (2.7). Then
we consider w#

ε as a solution of an initial value boundary problem.
We proceed as we did above in order to get inequality (4.14), finally obtaining

‖w#
ε (·, t))‖2L2(Ω) ≤ γ e−βt . (4.36)

However, w#
ε is a periodic function; then (4.36) implies that it must be identically

zero, hence u#ε and u∗ε coincide. �

5. Exponential decay of the solution of the homogenized problem

The aim of this section is to prove a result similar to the one proved in the previous
section, i.e., convergence of the solution to a periodic steady state, but here we
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consider the homogenized problem. To this purpose, let (u, u1) be the two-scale
limit of the solution uε of problem (2.1)–(2.6) when the initial data Sε satisfies the
additional conditions (2.27)–(2.28).
We recall that, by [12, Theorem 2.1], the pair (u, u1) is the solution of problem
(2.21)–(2.26) in the following sense.

Definition 5.1. A pair (u, u1)∈L2
(
(0, T ); H1(Ω)

)
×L2

(
Ω× (0, T );X 1

#(Y )
)

is a weak
solution of (2.21)–(2.26) if

T∫

0

∫

Ω

∫

Y

σ
(
∇u+∇yu

1
)
(∇φ+∇yΦ) dx dy dt+

T∫

0

∫

Ω

∫

Γ

f([u1])[Φ] dx dσ dt

− α

T∫

0

∫

Ω

∫

Γ

[u1]
∂

∂t
[Φ] dx dσ dt− α

∫

Ω

∫

Γ

[Φ]S1 dx dσ = 0 , (5.1)

for any function φ ∈ C0
(
0, T ;H1

0(Ω)
)
, and any function Φ ∈ C0

(
[0, T ];L2(Ω;X 1

#(Y ))
)

with [Φt] ∈ C0
(
[0, T ];L2(Ω × Γ )

)
which vanishes at t = T .

Moreover we assume that u satisfies the boundary condition on ∂Ω × [0, T ] in the
trace sense and that u1 is periodic in Y and has zero mean value in Y for every
(x, t) ∈ Ω × (0, T ).

Lemma 5.2. Let (u, u1) ∈ L2
(
(0, T );H1(Ω)

)
×L2

(
Ω×(0, T ),X 1

#(Y )
)

be the solution

of (2.21)–(2.26). Then (u, u1) ∈ C0((0, T ];H1(Ω)) × C0((0, T ];L2(Ω;X 1
#(Y ))) and

[u1] ∈ C0((0, T ];L2(Ω × Γ )).

Proof. Firstly, we note that the solution of (2.21)–(2.26) satisfies an energy inequality.
In fact, using (u − Ψ, u1) in (5.1) as test functions and integrating by parts (using
assumption (2.8) and (2.10)), we get

T∫

0

∫

Ω

∫

Y

σ|∇u+∇yu
1|2 dx dy dt + α sup

t∈(0,T )

∫

Ω

∫

Γ

[u1(x, y, t)]2 dσ dx ≤ γ . (5.2)

Now, let τ > 0 and vτ : [0,+∞) → R be an increasing function such that 0 ≤ υτ ≤ 1,
υτ(t) = 1, for t ≥ τ , υτ(0) = 0. Using

(
(ut − Ψt)υ

τ , u1tυ
τ
)

as test function in (5.1),
integrating by parts and using again assumption (2.8), (2.10) and (5.2), we get

sup
t∈(τ,T )

∫

Ω

∫

Y

σ

2
|∇u+∇yu

1|2 dx dy +
α

2

T∫

τ

∫

Ω

∫

Γ

[u1t ]
2 dσ dx dt ≤

sup
t∈(0,T )

∫

Ω

∫

Y

σ

2
|∇u+∇yu

1|2υτ (t) dx dy +
α

2

T∫

0

∫

Ω

∫

Γ

[u1t ]
2υτ(t) dσ dx dt ≤ γ(τ, T ) .

(5.3)

Inequalities (5.2) and (5.3) imply that [u1] ∈ C0((0, T ];L2(Ω×Γ )). Moreover, differ-
entiating formally with respect to t problem (2.21)–(2.26), multiplying equation (2.21)
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(differentiated with respect to t) by
(
(ut −Ψt)υ̂

τ , u1t υ̂
τ
)
, where υ̂τ : [0,+∞) → R is

a function such that 0 ≤ υ̂τ ≤ 1, υ̂τ(t) = 1, for t ≥ 2τ , υ̂τ(t) = 0, for 0 ≤ t ≤ τ , and
finally integrating by parts, we obtain

T∫

2τ

∫

Ω

∫

Y

σ|∇ut +∇yu
1
t |2 dx dy dt + α sup

t∈(2τ,T )

∫

Ω

∫

Γ

[u1t ]
2 dx dσ

≤
T∫

0

∫

Ω

∫

Y

σ|∇ut +∇yu
1
t |2υ̂τ (t) dx dy dt

+ α sup
t∈(0,T )

∫

Ω

∫

Γ

[u1t ]
2υ̂τ(t) dx dσ ≤ γ(τ, T ) (5.4)

where we used assumption (2.8), (2.10), (5.2) and (5.3).
Using (5.2)–(5.4), we finally get

sup
t∈(2τ,T )

∫

Ω

|∇u|2 dx+ sup
t∈(2τ,T )

∫

Ω

∫

Y

|∇yu
1|2 dx dy ≤ γ(τ, T ) , (5.5)

and
T∫

2τ

∫

Ω

|∇ut|2 dx dt+

T∫

2τ

∫

Ω

∫

Y

|∇yu
1
t |2 dx dy dt ≤ γ(τ, T ) , (5.6)

by calculations similar ot those in (5.12) below. Inequalities (5.5) and (5.6) im-
ply (∇u,∇yu

1) ∈ C0((0, T ];L2(Ω × Y )). This fact, jointly with Poincaré’s inequality
proved in [6, Lemma 7.1], yields that (u, u1) ∈ C0((0, T ];H1(Ω))×C0((0, T ];L2(Ω;X 1

#(Y ))).
The proof is concluded. �

For later use, let us define

|||
(
h, h1

)
||| := ‖h‖C0([0,1];L2(Ω)) + ‖∇h‖C0([0,1];L2(Ω))

+ ‖h1‖C0([0,1];L2(Ω×Y )) + ‖∇yh
1‖C0([0,1];L2(Ω×Y )) + ‖[h1]‖C0([0,1];L2(Ω×Γ )) , (5.7)

where (h, h1) ∈ C0([0, 1];H1(Ω))× C0([0, 1];L2(Ω;X 1
#(Y )), and

||||(h̃, h̃1)|||| := ‖h̃‖H1(Ω) + ‖h̃1‖L2(Ω×Y ) + ‖∇yh̃
1‖L2(Ω×Y ) + ‖[h̃1]‖L2(Ω×Γ ) , (5.8)

where (h̃, h̃1) ∈ H1(Ω)× L2(Ω;X 1
#(Y )).

As in Section 4, we set v(x, t) = u(x, t + 1) − u(x, t) and v1(x, y, t) = u1(x, y, t +
1)− u1(x, y, t). Next we integrate (4.14) and (4.20) with respect to time in (t, t+ η),
then we take the two-scale limit in the inequality thus obtained, where we use the
two-scale lower semicontinuity of the norm, see [2, 3, 20], and finally we differentiate
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with respect to η the resulting integrals. We get for β = 2κ/α
∫

Ω

v2(x, t) dσ ≤ γ e−βt , (5.9)

∫

Ω

∫

Γ

[v1]2(x, y, t) dσ ≤ γ e−βt , (5.10)

∫

Ω

∫

Y

|∇v(x, t) +∇yv
1(x, y, t)|2 dx dy ≤ γ e−βt , (5.11)

for any t > 0. From the previous inequalities we also get
∫

Ω

∫

Y

|∇yv
1(x, y, t)|2 dy dx+

∫

Ω

|∇v(x, t)|2 dx

≤γ e−βt − 2

∫

Ω

∫

Y

∇yv
1(x, y, t)∇v(x, t) dy dx

=γ e−βt − 2

∫

Ω

∇v(x, t)



∫

Y

∇yv
1(x, y, t) dy


 dx

≤γ e−βt + 2

∫

Ω

|∇v(x, t)|



∫

Γ

|[v1(x, y, t)]| dσ


 dx

≤γ e−βt +
1

2|Γ | |Γ |
∫

Ω

|∇v(x, t)|2 dx+ 2|Γ |
∫

Ω

∫

Γ

[v1(x, y, t)]2 dσ dx

≤γ e−βt +
1

2

∫

Ω

|∇v(x, t)|2 dx+ γ e−βt ,

(5.12)

which implies
∫

Ω

|∇v(x, t)|2 dx ≤ γ e−βt , (5.13)

∫

Ω

∫

Y

|∇yv
1(x, y, t)|2 dy dx ≤ γ e−βt . (5.14)

Finally, using Poincaré’s inequality [7, Proposition 4], see also [32], and the fact that
v1 has zero mean value on Y for every t > 0, we have

∫

Ω

∫

Y

|v1(x, y, t)|2 dy dx ≤ γ e−βt . (5.15)

Now, as in Section 4, for n ∈ N , n ≥ 1, we set un(x, t) := u(x, t+ n) and u1n(x, t) :=
u1(x, t + n). In the next lemma, we will prove that (un, u

1
n) and (∇un,∇u1n) are
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Cauchy sequences in C0([0, 1];L2(Ω))× C0([0, 1];L2(Ω × Y )), and the same holds for
[u1n] in C0([0, 1];L2(Ω × Γ )).

Lemma 5.3. Let {(un, u1n)}n∈N be the sequence of pairs defined above. Then for
β = 2κ/α

‖um − un‖C0([0,1];L2(Ω)) ≤ γ e−βn/2 , for every m > n; (5.16)

‖∇um −∇un‖C0([0,1];L2(Ω)) ≤ γ e−βn/2 , for every m > n; (5.17)

‖u1m − u1n‖C0([0,1];L2(Ω×Y )) ≤ γ e−βn/2 , for every m > n; (5.18)

‖∇yu
1
m −∇yu

1
n‖C0([0,1];L2(Ω×Y )) ≤ γ e−βn/2 , for every m > n; (5.19)

‖[um]− [un]‖C0([0,1];L2(Ω×Γ )) ≤ γ e−βn/2 , for every m > n. (5.20)

Proof. Assume that m > n. Proceeding as done in Lemma 4.8 and using (5.9), (5.10),
(5.13)–(5.15), we get

|||(um, u1m)− (un, u
1
n)||| ≤

m−1∑

k=n

|||(uk+1, u
1
k+1)− (uk, u

1
k)||| ≤ γ e−βn/2 ,

where |||·||| is defined in (5.7). �

The previous lemma implies that there exists a pair of functions (u, u1)∈C0([0, 1];H1(Ω))×
C0([0, 1];L2(Ω;X 1

#(Y )) such that

|||(u, u1)− (un, u
1
n)||| ≤ γ e−βn/2 . (5.21)

We now denote by (u#, u1,#) the periodic extension of (u, u1) to the whole time in-
terval (−∞,+∞) and we prove the exponential asymptotic decay of (u(x, t), u1(x, t))
to (u#(x, t), u1,#(x, t)) as t→ +∞, in the sense specified in Lemma 5.5.
We can prove that (u#, u1,#) ∈ C0

#(R;H1(Ω)) × C0
#(R;L2(Ω;X 1

#(Y )), reasoning as
in Remark 4.9.

Remark 5.4. Actually [u1,#t ] ∈ L2
#

(
R;L2(Ω×Γ )

)
. Indeed, in estimate (5.3) the time

integration domain (τ, T ) on the left-hand side can be replaced with (n, n+1), n ≥ 2,
taking τ = 1, so that the constant γ(τ, T ) on the right-hand side actually is uniform
over n. This implies that

1∫

0

∫

Ω

∫

Γ

[u1nt(x, y, t)]
2 dt dx dσ ≤ γ

with γ independent of n. Passing to the weak limit for n→ +∞ the assert follows. �

Lemma 5.5. Let (u, u1) be the solution of problem (2.22)–(2.26). Then, there exists
γ̃ > 0 such that for β = 2κ/α

||||
(
u(·, t), u1(·, t)

)
−

(
u#(·, t), u1,#(·, t)

)
|||| ≤ γ̃ e−βt/2 , (5.22)

for every t > 1.
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Proof. Let t > 1 and n := |[t]| so that, setting τ = t − n, we have τ ∈ [0, 1) and
t = τ + n. From (5.21) and recalling (5.7) and (5.8), we get

||||
(
u(·, t), u1(·, t)

)
−

(
u#(·, t), u1,#(·, t)

)
||||

= ||||
(
u(·, τ + n), u1(·, τ + n)

)
−

(
u#(·, τ + n), u1,#(·, τ + n)

)
||||

≤ |||
(
u(·, ·+ n), u1(·, ·+ n)

)
−

(
u#(·, ·+ n), u1,#(·, ·+ n)

)
|||

= |||(un, u1n)− (u#, u1,#)||| = |||(un, u1n)− (u, u1)||| ≤ γ e−βn/2 ≤ γ̃ e−βt/2 ,

where we use the definition of (un, u
1
n), the 1-periodicity with respect to time of

(u#, u1,#) and finally the definition of
(
u#, u1,#

)
, which implies that

(
u#(x, τ), u1,#(x, τ)

)
=(

u(x, τ), u1(x, τ)
)
, for a.e. (x, τ) ∈ Ω × (0, 1). This concludes the proof. �

Remark 5.6. It is worthwile observing that the technique developed here does not
rely on the homogenization process and thus can be applied to a more general class of
two-scale systems, provided we know estimates like (5.9)–(5.11). For example think
of a system of type (2.21)–(2.26) where the diffusion matrices may be in principle
unrelated to each other, and depending on the space variables. Also including sources
would be of interest.
We recall that in the linear case f(s) = s the homogenized problem may be formulated
both as an equation with memory and as a two-scale problem of type (2.21)–(2.26).
Since it is known that the asymptotic decay for the former is not trivial (see [22],
[23], [24]) one can see that the same issue for the general two-scale problem is not
trivial either. In this section we reduced the difficulty to the proof of estimates
(5.9)–(5.11). �

Definition 5.7. We say that (v#, v1,#) ∈ C0
#(R;H1(Ω))×C0

#(R;L2(Ω;X 1
#(Y )) with

[v1,#
t ] ∈ L2

#

(
R;L2(Ω × Γ )

)
is a weak solution of (2.29)–(2.34) if

∫

R

∫

Ω

∫

Y

σ
(
∇v#(x, t) +∇yv

1,#(x, y, t)
)
(∇φ(x, t) +∇yΦ(x, y, t)) dx dy dt

+

∫

R

∫

Ω

∫

Γ

f([v1,#(x, y, t)])[Φ(x, y, t)] dx dσ dt

− α

∫

R

∫

Ω

∫

Γ

[v1,#(x, y, t)]
∂

∂t
[Φ(x, y, t)] dx dσ dt = 0 (5.23)

for every (φ,Φ) ∈ C0
0(R;H1

0(Ω))×C0
0(R;L2(Ω;X 1

#(Y )), [Φt] ∈ L2
(
R;L2(Ω×Γ )

)
and

v1,# has zero mean value in Y for every (x, t) ∈ Ω×R. Moreover, v# satisfies (2.34)
in the trace sense and is time-periodic with integer period.

Inequality (5.22) implies, indeed, the desired asymptotic convergence result Theo-
rem 2.5, once we prove that (u#, u1,#) solves the system of equations (2.29)–(2.34)
in the sense of Definition 5.7.
Such a result is a straightforward consequence of inequality (5.22) which allows us to
pass to the limit as t → +∞ in the system of equations (2.21)–(2.26), as stated in
the following Lemma, which actually proves the existence part of Theorem 2.4.
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Lemma 5.8. Assume that (u#, u1,#) is the pair of functions defined above; then it
satisfies (2.29)–(2.34) in the weak sense of Definition 5.7.

Proof. Let us assume in the variational formulation (5.1) that φ and Φ have compact
support in (t1, t2), for an arbitrary choice of t2 > t1 > 0. Hence, taking into account
the fact that the system (2.21)–(2.26) is autonomous, we get

t2∫

t1

∫

Ω

∫

Y

σ
(
∇u(x, t+ t) +∇yu

1(x, y, t+ t)
)
(∇φ(x, t) +∇yΦ(x, y, t)) dx dy dt

+

t2∫

t1

∫

Ω

∫

Γ

f([u1(x, y, t+ t)])[Φ(x, y, t)] dx dσ dt

− α

t2∫

t1

∫

Ω

∫

Γ

[u1(x, y, t+ t)]
∂

∂t
[Φ(x, y, t)] dx dσ dt = 0 , (5.24)

for every t > 1− t1. Moreover, as a consequence of (5.22), we have

sup
τ∈(t1,t2)

||||(u(·, τ + t), u1(·, τ + t))− (u#(·, τ + t), u1,#(·, τ + t))||||

≤ sup
τ∈(t1,t2)

γ̃ e−β(τ+t)/2 ≤ γ̃ e−βt1/2 e−βt/2 = γ e−βt/2 , (5.25)

where γ = γ̃ e−βt1/2. Hence we can pass to the limit as t→ +∞ thus obtaining

t2∫

t1

∫

Ω

∫

Y

σ
(
∇u#(x, t) +∇yu

1,#(x, y, t)
)
(∇φ(x, t) +∇yΦ(x, y, t)) dx dy dt

+

t2∫

t1

∫

Ω

∫

Γ

f([u1,#(x, y, t)])[Φ(x, y, t)] dx dσ dt

− α

t2∫

t1

∫

Ω

∫

Γ

[u1,#(x, y, t)]
∂

∂t
[Φ(x, y, t)] dx dσ dt = 0 (5.26)

Equation (5.26) essentially is the standard variational formulation of (2.29)–(2.34),
i.e. (5.23). Also as a consequence of the convergence in (5.22) we have that u#

satisfies the boundary condition on ∂Ω in the trace sense, and u1,# is periodic in Y
and has zero mean value in Y for every (x, t) ∈ Ω ×R. �

Finally, we prove the uniqueness result.

Completion of the proof of Theorem 2.4. Assume that two solutions, (u#1 , u
1,#
1 ) and

(u#2 , u
1,#
2 ), exist and denote with s ∈ N any common period of both. Setting
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(v#, v1#) := (u#1 , u
1,#
1 ) − (u#2 , u

1,#
2 ), from (5.26) by means of a standard approxi-

mation of periodic testing functions with compactly supported functions we get
s∫

0

∫

Ω

∫

Y

σ
∣∣∇v# +∇yv

1,#
∣∣2 dx dy dt+

s∫

0

∫

Ω

∫

Γ

f([u1,#1 ])− f([u1,#2 ])

[u1,#1 ]− [u1,#2 ]
[v1,#]2 dx dσ dt = 0

(5.27)
where we have set φ = v# and Φ = v1,# in the weak formulation (5.23).
Equation (5.27) implies (since f ′ ≥ κ > 0) that

[v1,#] ≡ 0 , in Ω × Y × [0, s]. (5.28)

Using (5.27) and (5.28) and proceeding as in (5.12), we get that

s∫

0

∫

Ω

σ|∇v#|2 dx dt+

s∫

0

∫

Ω

∫

Y

σ|∇yv
1,#|2 dx dy dt = 0 . (5.29)

The first integral of (5.29), together with the fact that v# satisfies homogeneous
boundary condition on ∂Ω × [0, s], implies

v# = 0 , in Ω × [0, s] . (5.30)

Finally from (5.29), together with (5.28) and the fact that v1,# has zero mean value,
we have that

v1,# = 0 , in Ω × Y × [0, s] . (5.31)

Uniqueness of the periodic solution of the homogenized problem is thus proved. �
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