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1. Introduction

We study, via homogenization techniques, the thermal properties of a composite
material made up of a hosting medium in which a periodic array of conductive fillers
is inserted. The microscopic inclusions are assumed to be perfect heat conductors
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(i.e. they have infinite thermal conductivity). This last assumption is motivated by
the fact that, in applications, the heat conductivity of the inclusions is much larger
than the one of the hosting medium.
These models are drawing increasing attention in last years, due to the appearance
on the market of new composite materials, produced with the purpose of increasing
the overall thermal conductivity. For example, this is the case in the packaging of
electronic devices, in which rubber is used as an encapsulating medium. Then, an
efficient heat dispersion device is needed, justifying the insertion of highly conductive
inclusions into the rubber itself. The purpose of this investigation is to give a theo-
retical justification of some heuristic models used by engineers in applications (see,
for instance, [21, 23, 27, 28, 29, 30]).
From a mathematical point of view, the problem reduces to a heat equation satisfied
by the temperature uε in the hosting medium, while on the boundary of the inclusions
(i.e. on the interface between the two different conductive phases) uε is assumed to be
constant with respect to the space variable and determined only by a heat balance, in
which the total flux entering the inclusions is taken into account. This corresponds
to assuming a perfect thermal contact between the two conductive phases of the
medium. More precisely, on each interface Γε

ξ, the temperature satisfies the non-
standard boundary condition (see (2.5))

λξεuεt =
1

εN

∫

Γ ε
ξ

κε
∂uε
∂νε

dσ ,

where λξε is proportional to the specific heat capacity, κε takes into account the
diffusion properties of the hosting material and ε represents the characteristic length
of the inclusions. As already mentioned, the previous boundary condition is not
classical. Well-posedness of evolutive problems involving such a condition was studied
in [8], for fixed ε = 1. However, it seems that no homogenization results are known for
problems of this type. For a different mathematical modelling of connected physical
problems see, for instance, [9, 10].
It is worthwhile noting that non-local boundary conditions have a wide area of pos-
sible applications ranging from heat diffusion (as in the case treated in this paper)
to electric conduction, to petroleum exploitation, to wave equations or to the elastic
behaviour of perforated materials (we refer to [11, 12, 13, 17, 24, 25, 26] for a more
extensive description of these models).
Parabolic problems in the presence of spatial inhomogeneities, coupled with sharp
time oscillations, have been discussed in [6, 7], in connection with intracellular diffu-
sion, with the aim of investigating local accumulation effects and their interplay with
boundary flux conditions.
In the present paper, we consider the case where the heat capacities of the hosting
medium and of the inclusions are assumed to oscillate in time. More precisely, we
consider a family of possible time scalings of the type s = ε−αt, with α ≥ 1. The
presence of these time-oscillations makes the mathematical approach much harder
technically. We stress again that the problem we are addressing here is, up to our
knowledge, new in the literature, because of its non-standard evolutive character.
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The case of constant coefficients, which is considerably simpler, has been treated in
[5], for more general initial conditions.
Our proofs are quite complex and are based on the time-periodic unfolding technique
(see [3]), recently developed as a generalization of the one introduced in [16]. Indeed,
the homogenization procedure calls for the creation of non-standard test functions
for the weak formulation of our problem, which are inspired from the construction
in [13, 17], for the elliptic case. Nevertheless, our case is more complicated, due to
the presence of the aforementioned time-dependence. In particular, the presence of
oscillations in time implies that there is no variational formulation for the limiting
two-scale problems, contrarily to what happens in [17]. For this reason, it is not
possible to directly get uniqueness for the macroscopic two-scale system (4.13)–(4.14)
and for the two-scale problem (4.59).
In the case of the system (4.13)–(4.14), which corresponds to α = 1, we are forced
to provide a proof based on a highly non-standard factorization procedure which,
however, leads to a standard parabolic problem, whence uniqueness can ultimately
be recovered (see Subsection 4.1 and, in particular, formula (4.44)). On the contrary,
the problem (4.59), which corresponds to the case α > 1, cannot be treated in its full
generality, so that we are led to consider a special factorized case (see Remark 4.16).

The paper is organized as follows. In Section 2, we introduce the problem and its
geometrical setting. In Section 3, we recall the definition and the main properties
of the time-periodic unfolding operator. In Section 4, we state and prove our main
homogenization results.

2. Preliminaries

2.1. Geometrical setting. The typical periodic geometrical setting is displayed in
Figure 1. Here, we give, for the sake of clarity, its detailed formal definition.

Figure 1. Left: the periodic cell Y . Ev is the shaded region and Es

is the white region. Right: the region Ω.
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Let us introduce a periodic open subset E of RN , so that E + z = E for all z ∈ Z
N .

We employ the notation Y = (0, 1)N and Ev = E ∩ Y , Es = Y \ E, Γ = ∂E ∩ Y ,
so that Ev denotes the inclusion (which we assume to be a connected set) in the
unit reference cell, while Es is the solid part in the unit reference cell. Further, we
stipulate that ∂Ev ∩ ∂Y = ∅, so that ∂Ev = Γ .
Let Ω be an open connected bounded subset of RN and T > 0. We set

Σ = (0, 1) , Q = Y×Σ , Qs = Es×Σ , Qv = Ev×Σ , ΩT = Ω×(0, T ) ,

and

Ξε =
{
ξ ∈ Z

N , ε(ξ + Y ) ⊂ Ω
}
,

where ε ∈ (0, 1) is a small positive parameter, related to the characteristic dimension
of the microstructure and which takes values in a sequence of strictly positive numbers
tending to zero. For ξ ∈ Ξε, we define

T ε
ξ := ε(Ev + ξ) , Γ ε

ξ := ∂T ε
ξ , and T ε =

⋃

ξ∈Ξε

T ε
ξ ;

moreover, we set

Γ ε = ∂T ε and Ωε = Ω \ T ε .

We assume that Ω and E have regular boundary. We remark also that Ωε is con-
nected, while T ε is disconnected. Finally, let ν denote the normal unit vector to Γ
pointing into Es, extended by periodicity to the whole R

N , so that νε(x) = ν(x/ε)
denotes the normal unit vector to Γ ε pointing into Ωε.
In the following, by γ we shall denote a strictly positive constant, independent of ε,
which may vary from line to line.

2.2. Position of the problem. For every ξ ∈ Ξε, let λ
ξ ∈ L∞(0, T ;L∞

# (Σ)) and
A ∈ L∞(ΩT ;L

∞
# (Q)) be such that

λξ(t, s) > γ , A(x, t, y, s) ≥ γ , for a.e. (x, t, y, s) ∈ ΩT ×Q , (2.1)

with γ > 0. Let K = [κij] be a symmetric matrix such that κij ∈ L
∞(Ω;L∞

# (Y )) and
there exist γ0, γ̃0 > 0 with

γ0|ζ |
2 ≤ K(x, y)ζ · ζ ≤ γ̃0|ζ |

2, for every ζ ∈ R
N and a.e. (x, y) ∈ Ω × Y . (2.2)

Moreover, for α ≥ 1, set λξε(t) = λξ(t, ε−αt), aε(x, t) = A(x, t, ε−1x, ε−αt) and κε(x) =
K(x, ε−1x) for a.e. (x, t) ∈ ΩT , and assume that all these functions are measurable.
We give here a complete formulation of the problem described in the Introduction
(the operators div and ∇ act only with respect to the space variable x).

Assume that f ∈ L2(ΩT ) and, for every ε > 0, let u0ε ∈ H
1
0 (Ω) be such that u0ε is

constant (with possibly different values) on each inclusion T ε
ξ , ξ ∈ Ξε, and

∫

Ω

|∇u0ε|
2 dx ≤ γ . (2.3)
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Remark 2.1. Initial data of this type can be obtained following the construction in
[13, Proposition 2.1] (see, also, [17, Lemma 4.1]). It is worth pointing out that, in
fact, starting from any given u0 ∈ H

1
0 (Ω), the sequence {u0ε} can be chosen in such

a way that u0ε → u0 strongly in L2(Ω) and also weakly in H1
0 (Ω). �

Let us consider the problem for uε(x, t) given by

aεuεt − div(κε∇uε) = f , in Ωε × (0, T ); (2.4)

λξεuεt =
1

εN

∫

Γ ε
ξ

κε
∂uε
∂νε

dσ , on Γ ε
ξ × (0, T ), ξ ∈ Ξε; (2.5)

uε = 0 , on ∂Ω × (0, T ); (2.6)

uε(x, 0) = u0ε(x) , on Ω. (2.7)

Notice that uε is spatially constant (with possibly different values) a.e. on each Γ ε
ξ ,

ξ ∈ Ξε; hence, we can extend it inside T ε
ξ by means of these constant values and,

for the sake of simplicity, we will denote by uε both the original function and its
extension to the whole of Ω.
Let us denote by Hε the space

Hε := {u ∈ C ([0, T );Lε) ∩ L
2 (0, T ;W ε

0 ) : ut ∈ L
2
(
0, T ; (W ε

0 )
′
)
} , (2.8)

where (as in [17])

Lε = {u ∈ L
2(Ω) : u |T ε

ξ
, with ξ ∈ Ξε, is a constant function

with the constant depending on ξ}

and

W ε
0 = {u ∈ H1

0 (Ω) : u |T ε
ξ
, with ξ ∈ Ξε, is a constant function

with the constant depending on ξ}.

We remark that, if uε ∈ H
ε is solution of problem (2.4)–(2.7), it satisfies in a suitable

sense

T∫

0

∫

Ωε

aεuεtφ dx dt +

T∫

0

∫

Ωε

κε∇uε · ∇φ dx dt+
∑

ξ∈Ξε

T∫

0

∫

Γ ε
ξ

κε
∂uε
∂νε

φ dσ dt =

T∫

0

∫

Ωε

fφ dx dt ,

(2.9)
for every test function φ ∈ C∞(ΩT ) such that φ has compact support in Ω for every
t ∈ (0, T ).
In order to take into account the full strong formulation of problem (2.4)–(2.7), we
need to restrict the class of admissible test functions, introducing the set

X ε := {φε ∈ C
∞(ΩT ) : φε has compact support in Ω for every t ∈ (0, T ),

φε is spatially constant on each T ε
ξ , ξ ∈ Ξε}. (2.10)
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Then, we can write the weak formulation of problem (2.4)–(2.7) in the following way:

T∫

0

∫

Ωε

aεuεtφε dx dt+

T∫

0

∫

Ωε

κε∇uε · ∇φε dx dt+
1

|Ev|

T∫

0

∫

T ε

λε uεtφε dx dt

=

T∫

0

∫

Ωε

fφε dx dt , (2.11)

where λε = λε(t, [ε
−1x], ε−αt) is such that, for a.e. t ∈ (0, T ), λε(t, [ε

−1x]Y , ε
−αt) =

λξε(t, ε
−αt), when [ε−1x]Y = ξ, ξ ∈ Ξε.

Here and below, [r] denotes the integer part of r ∈ R. For x ∈ R
N , we define

[x
ε

]
Y
=

( [x1
ε

]
, . . . ,

[xN
ε

] )
.

Existence for the problem (2.4)–(2.7) for each fixed ε > 0 follows from the approach
of [8] (see also Remark 1.2 there), at least for bounded data f and u0ε, for non-
vanishing λε, even when λε < 0. As a difference with [8], we deal with a finite
number of well-stirred inclusions rather than with just one, but this point can be
easily circumvented by localization. In the case of λε > 0, an alternative proof of
existence for u0ε ∈ H

1
0 (Ω) and f ∈ L2(ΩT ) can be based on the energy inequality and

on approximating the differential equations with a strictly parabolic equation set in
the whole spatial domain, by defining κε = 1/δ and aε = λξε/|Ev| in each inclusion
and then letting δ go to 0.
Taking into account that uε is constant on each T ε

i , up to a standard regularization
procedure, we may test (2.4)–(2.5) directly with uεt obtaining

T∫

0

∫

Ωε

aεu
2
εt dx dt +

T∫

0

∫

Ωε

κε∇uε · ∇uεt dx dt+
1

|Ev|

T∫

0

∫

T ε

λεu
2
εt dσ dt

=

T∫

0

∫

Ωε

fuεt dx dt . (2.12)

Using Gronwall inequality, (2.12) leads to the following energy estimate:

T∫

0

∫

Ωε

u2εt dx dt+ sup
t∈(0,T )

∫

Ωε

|∇uε|
2 dx ≤ γ , (2.13)

where γ depends on γ, γ0, γ̃0, |Ev|, ‖u0ε‖
2
H1

0
(Ω)
, ‖f‖2

L2(ΩT ), but it is independent of ε.

3. Definition and main properties of the time-periodic unfolding

operators

In this section, we define and collect some properties of a time-periodic version (as in
[2, 3]) of the space-unfolding operator introduced and developed in [19, 15, 16, 18].
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We define

Ω̂ε = interior

{
⋃

ξ∈Ξε

ε(ξ + Y )

}
;

T̂ε =

{
t ∈ (0, T )

∣∣ εα
([

t

εα

]
+ 1

)
≤ T

}
, Λε

T = Ω̂ε × T̂ε .

Then, we introduce the space and the space-time cell containing (x, t) as being

Yε(x) = ε
( [x

ε

]
Y
+ Y

)
, Qε(x, t) = ε

( [x
ε

]
Y
+ Y

)
× εα

([
t

εα

]
+ Σ

)
.

We also define
{x
ε

}
Y
:=

x

ε
−

[x
ε

]
Y

and

{
t

εα

}
:=

t

εα
−

[
t

εα

]
,

so that we can write

x = ε
([x
ε

]
Y
+
{x
ε

}
Y

)
and t = εα

([
t

εα

]
+

{
t

εα

})
.

Definition 3.1. For w Lebesgue-measurable on ΩT , the time-periodic unfolding op-

erator Tε is defined as

Tε(w)(x, t, y, s) =




w

(
ε
[x
ε

]
Y
+ εy, εα

[
t

εα

]
+ εαs

)
, (x, t, y, s) ∈ Λε

T ×Q ,

0 , otherwise.

�

Clearly, for w1, w2 as in Definition 3.1,

Tε(w1w2) = Tε(w1)Tε(w2) . (3.1)

Notice that the operator Tε introduced in Definition 3.1 coincides with the usual
unfolding operator defined in [15], when w does not depend on time, and, respectively,
with the pure time unfolding operator, when w does not depend on space. We will
use the same notation for all these operators, when no confusion arises.
We need also an average operator in space-time.

Definition 3.2. Let w be integrable in ΩT . The space-time average operator is
defined by

Mε(w)(x, t) =





1

εNεα

∫

Qε(x,t)

w(y, s) dy ds , if (x, t) ∈ Λε
T ,

0 , otherwise.

(3.2)

�

Remark 3.3. From our definitions, it follows that

Mε(w)(x, t) =

∫

Q

Tε(w)(x, t, y, s) dy ds =MQ(Tε(w))(x, t) , (3.3)
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where in generalMI denotes the integral average on the set I. �

In practice, the average operator will be mostly used in connection with the oscillation
operator which we define presently.

Definition 3.4. Let w be integrable in ΩT . The space-time oscillation operator is
defined as

Zε(w)(x, y, t, s) = Tε(w)(x, y, t, s)−Mε(w)(x, t) . (3.4)

�

We collect some properties of the operators defined above.

Proposition 3.5. The operator Tε : L
2(ΩT )→ L2(ΩT ×Q) is linear and continuous.

In addition, for all w ∈ L2(ΩT ), we have

‖Tε(w)‖L2(ΩT×Q) ≤ ‖w‖L2(ΩT ) (3.5)

and ∣∣∣∣∣∣

∫

ΩT

w dx dt−

∫

ΩT

∫

Q

Tε(w) dy ds dx dt

∣∣∣∣∣∣
≤

∫

ΩT \Λε
T

|w| dx dt . (3.6)

Remark 3.6. Notice that, by (3.6), it follows that, for w ∈ H1(ΩT ), we have

Tε(w)→ w , strongly in L2(ΩT ×Q); (3.7)

Tε(∇w)→∇w , strongly in L2(ΩT ×Q); (3.8)

Tε(wt)→ wt , strongly in L2(ΩT ×Q). (3.9)

�

Lemma 3.7. Let φ ∈ H1(ΩT ×Q) and define

φε(x, t) = φ

(
x, t,

x

ε
,
t

εα

)
, (x, t) ∈ ΩT , (3.10)

where φ has been extended by Q-periodicity to ΩT × R
N+1. Then, in ΩT ×Q,

∂

∂s
Tε(φ

ε) = εαTε

(
∂φ

∂t

)
+ Tε

(
∂φ

∂s

)
(3.11)

and

∇yTε(φ
ε) = εTε (∇xφ) + Tε (∇yφ) . (3.12)

Proposition 3.8. For φ measurable on Q, extended by Q-periodicity to the whole of

R
N × R, define the sequence

φε(x, t) = φ

(
x

ε
,
t

εα

)
, (x, t) ∈ R

N × R .

Then,

Tε(φ
ε)(x, y, t, s) =

{
φ(y, s) , (x, y, t, s) ∈ Λε

T ,

0 , otherwise.
(3.13)
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Moreover, if φ ∈ L2(Q), as ε→ 0,

Tε(φ
ε)→ φ , strongly inL2(ΩT ×Q) . (3.14)

If there exist ∇yφ ,
∂φ

∂s
∈ L2(Q), then

∇y(Tε(φ
ε))→ ∇yφ , strongly inL2(ΩT ×Q) , (3.15)

∂

∂s
(Tε(φ

ε))→
∂φ

∂s
, strongly inL2(ΩT ×Q) . (3.16)

Proposition 3.9. Let {wε} be a sequence of functions in L2(ΩT ).
If wε → w strongly in L2(ΩT ) as ε→ 0, then

Tε(wε)→ w , strongly inL2(ΩT ×Q) . (3.17)

If we only assume that (3.17) holds true and that wε ≥ γ1 > 0, then we have

Tε(w
−1
ε )→ w−1 , strongly in L2(ΩT ×Q). (3.18)

If wε is a bounded sequence of functions in L2(ΩT ), then, up to a subsequence,

Tε(wε)⇀ ŵ , weakly inL2 (ΩT ×Q) (3.19)

and

wε ⇀MQ(ŵ) , weakly inL2(ΩT ) . (3.20)

Remark 3.10. Actually, the only classes for which the strong convergence of the
unfolding Tε(wε) is known to hold, even without strong convergence of wε, are sums
of the following cases: wε(x, t) = f1(x, t)f2(ε

−1x, ε−αt), wε(x, t) = w(x, t, ε−1x, ε−αt)
with w ∈ L2(Y ×Σ;C(ΩT )) or w ∈ L

2(ΩT ;C(Y ×Σ)). In all such cases, Tε(wε)→ w
strongly in L2(ΩT ×Q) (see [1, 15, 16]). �

Theorem 3.11. Let {wε} be a sequence converging strongly to w in L2(0, T ;H1(Ω)),
as ε→ 0. Then,

Tε(∇wε)→∇w , strongly inL2(ΩT ×Q) . (3.21)

Let {wε} be a sequence converging strongly to w in H1(ΩT ), as ε→ 0. Then,

Tε

(
∂wε

∂t

)
→

∂w

∂t
, strongly inL2(ΩT ×Q) . (3.22)

Theorem 3.12. (See [3, Proposition 2.15]) Let α = 1. Let {wε} be a sequence

converging strongly to w in H1(ΩT ), as ε→ 0. Then,

1

ε
Zε(wε)→ yc · ∇w + (s− 1/2)

∂w

∂t
, strongly inL2(ΩT ;H

1(Q)) , (3.23)

where

yc =

(
y1 −

1

2
, y2 −

1

2
, · · · , yN −

1

2

)
. (3.24)
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Theorem 3.13. (See [3, Theorem 2.20]) Let α = 1 and {wε} be a sequence converging

weakly to w in H1(ΩT ). Then, up to a subsequence, there exists ŵ = ŵ(x, y, t, s) ∈
H1(ΩT ×Q), periodic in Q and withMQ(ŵ) = 0, such that, as ε→ 0,

Tε

(
∂wε

∂t

)
⇀

∂w

∂t
+
∂ŵ

∂s
, weakly inL2(ΩT ×Q) , (3.25)

Tε(∇wε)⇀ ∇w +∇yŵ , weakly inL2(ΩT ×Q) , (3.26)

1

ε
Zε(wε)⇀ yc · ∇w + (s− 1/2)

∂w

∂t
+ ŵ , weakly inL2(ΩT ;H

1(Q)) . (3.27)

Theorem 3.14. (See [3, Proposition 2.14]) Let α > 1 and {wε} be a sequence con-

verging strongly to w in L2(0, T ;H1(Ω)), as ε→ 0. Assume also that the condition
∥∥∥∥
∂wε

∂t

∥∥∥∥
L2(ΩT )

≤ γ (3.28)

holds. Then, as ε→ 0, we have

1

ε
Zε(wε)→ yc · ∇w , strongly inL2(ΩT ;H

1(Q)) , (3.29)

where yc is defined in (3.24).

Theorem 3.15. Let α > 1. Assume that wε ⇀ w weakly in H1(ΩT ). Then, up to

a subsequence, there exist w̃ ∈ L2(ΩT ;H
1
per(Q)), with MQ(w̃) = 0 and ∂w̃

∂s
= 0, and

ẘ ∈ L2(ΩT × Y ;H
1(Σ)), withMΣ(ẘ) = 0, such that, as ε→ 0, we have

Tε(∇wε)⇀ ∇w +∇yw̃ , weakly inL2(ΩT ×Q) , (3.30)

1

ε
Zε(wε)⇀ yc · ∇w + w̃ , weakly inL2(ΩT ;H

1(Q)) , (3.31)

Tε

(
∂wε

∂t

)
⇀

∂w

∂t
+
∂ẘ

∂s
, weakly inL2(ΩT ×Q) , (3.32)

1

εα
(Tε(wε)−MΣ(wε))⇀ (s− 1/2)

∂w

∂t
+ ẘ , weakly inL2(ΩT ×Q) . (3.33)

Proof. Properties (3.30) and (3.31) are proven in [3, Theorem 2.16]. In order to prove
(3.32) and (3.33), we first notice that the weak H1(ΩT )-convergence of the sequence
{wε} implies that condition (3.28) is satisfied in this case, as well. Then, we can
appeal to Poincaré-Wirtinger inequality in Σ. Indeed, we have
∥∥∥∥
1

εα
(Tε(wε)−MΣ(wε))− (s− 1/2)

∂w

∂t

∥∥∥∥
L2(ΩT×Q)

≤

γ

∥∥∥∥
1

εα
∂

∂s
Tε(wε)−

∂w

∂t

∥∥∥∥
L2(ΩT×Q)

= γ

∥∥∥∥Tε
(
∂wε

∂t

)
−
∂w

∂t

∥∥∥∥
L2(ΩT×Q)

≤ γ ,

where we used (3.5) and (3.28). Therefore, there exists ẘ ∈ L2(ΩT ×Q) such that

1

εα
(Tε(wε)−MΣ(wε))− (s− 1/2)

∂w

∂t
⇀ ẘ ,
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which implies

Tε

(
∂wε

∂t

)
=

1

εα
∂

∂s
Tε(wε) =

1

εα
∂

∂s
(Tε(wε)−MΣ(wε))⇀

∂w

∂t
+
∂ẘ

∂s
.

Since, by construction, MΣ

(
1
εα
(Tε(wε)−MΣ(wε))− (s− 1/2)∂w

∂t

)
= 0, we immedi-

ately getMΣ(ẘ) = 0. �

4. Homogenization

Our goal in this section is to describe the asymptotic behavior, as ε → 0, of the
solution uε of problem (2.4)–(2.7), for α ≥ 1. To this end, in the following, we will
assume

Tε(κε)→ κ, strongly in L2(Ω × Y );

Tε(aε)→ a, strongly in L2(ΩT ×Q);

Tε(λε)→ λ, strongly in L2(ΩT ×Q).

(4.1)

Since the techniques are different for the case α = 1 and α > 1, we shall split the
analysis of our problem in two different subsections.

4.1. The case α = 1. We state the following compactness result.

Lemma 4.1. Assume that ‖u0ε‖H1

0
(Ω) ≤ γ, with γ independent of ε, and that, for

every ε > 0, uε is the unique solution of problem (2.11). Then, up to a subsequence,

still denoted by ε, there exist u ∈ L2(0, T ;H1
0(Ω)) ∩H1(ΩT ), u1 ∈ L

2(ΩT ;H
1
per(Q)),

MQ(u1) = 0, such that

uε → u strongly in L2(ΩT ), (4.2)

uε ⇀ u weakly in H1(ΩT ), (4.3)

Tε(uεt)⇀ ut + u1s weakly in L2(ΩT ×Q), (4.4)

Tε(∇uε)⇀ ∇u+∇yu1 weakly in L2(ΩT ×Qs), (4.5)

Tε(∇uε)⇀ 0 weakly in L2(ΩT ×Qv), (4.6)

1

ε
Zε(uε)⇀ yc · ∇u+ (s− 1/2)ut + u1 weakly in L2(ΩT ×Q), (4.7)

yc · ∇u+ (s− 1/2)ut + u1 is independent of y on ΩT ×Qv. (4.8)

Remark 4.2. Following [14, Remark 1.11], with a slight abuse of notation, in (4.5) Tε
stands for the restriction to Qs of the unfolding operator defined above and in (4.6)
Tε stands for the restriction to Qv, respectively. The same notation will be used also
in the following. �

Remark 4.3. The assertion in (4.8) is a consequence of the total flux condition given
in (2.5). However, since the second term in (4.8) is, in fact, independent of y, such a
condition is prescribed only for yc · ∇u+ u1. �

Proof. Assertions (4.2) and (4.3) are direct consequences of the energy estimate
(2.13). Assertions (4.4)–(4.7) follow from Theorem 3.13, where we have taken into ac-
count that∇uε = 0 a.e. in T ε×(0, T ), since uε is spatially constant in each T ε

ξ , ξ ∈ Ξε,
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for a.e. t ∈ (0, T ). Finally, for the same reason, we get that yc ·∇u+(s−1/2)ut+u1
is independent of y on ΩT × Qv. Indeed, (4.8) is a direct consequence of (4.6) and
(4.7), recalling that

∇yZε(uε) = ∇y [Tε(uε)−M
ε(uε)] = ∇yTε(uε) = εTε(∇uε) , (4.9)

(see also [17, Proof of Proposition 4.1]). �

For later use, we set

HΓ
#(Y ) := {ψ ∈ H

1
#(Y ) : ψ is constant on Ev} (4.10)

and

HΓ (ΩT ;Q) := L2((0, T )×Q;H1
0 (Ω)) ∩H1(ΩT ;L

2(Q)) ∩ L2(ΩT ;H
Γ
per(Q)) , (4.11)

where HΓ
per(Q) is the space of the H1

per(Q)-functions which are independent of y on
Ev a.e. in ΩT × Σ. Moreover, we introduce the space

W (ΩT ;Q) := {(w,w
1) : w ∈ L2(0, T ;H1

0(Ω)) ∩H1(ΩT ), w
1 ∈ L2(ΩT ;H

1
per(Q)) ,

MQ(w
1) = 0 , yc · ∇w + (s− 1/2)wt + w1 is independent of y on ΩT ×Qv}. (4.12)

Notice that the pair (u, u1) given in Lemma 4.1 belongs to the space W (ΩT ;Q).

Theorem 4.4. Assume that (4.1) holds. Assume also that ‖u0ε‖H1

0
(Ω) ≤ γ, with γ

independent of ε, and that there exists a function u0 ∈ H
1
0 (Ω) such that u0ε → u0,

strongly in L2(Ω). Then, the pair (u, u1) ∈ W (ΩT ;Q), appearing in the statement of

Lemma 4.1, is a weak solution of the following two-scale system:
∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · ∇yΨdy ds dx dt = 0 , (4.13)

∫

ΩT

∫

Es

a(ut + u1s)w dy dx dt

+

∫

ΩT

∫

Es

κ(∇u+∇yu
1) · [∇w −∇y

(
(yc · ∇w + (s− 1/2)wt)ψ

)
] dy dx dt

+
1

|Ev|

∫

ΩT

∫

Ev

λ(ut + u1s)w dy dx dt =

∫

ΩT

∫

Es

fw dy dx dt , for a.e. s ∈ Σ, (4.14)

for every Ψ ∈ HΓ (ΩT ;Q), w ∈ L
2(0, T ;H1

0(Ω))∩H1(ΩT ) and ψ ∈ H
1
0 (Y ), such that

ψ ≡ 1 in Ev, with the initial condition u(x, 0) = u0(x), a.e. in Ω.

Proof. Similarly to [13, 17], we can take as test function in (2.11) φε(x, t) = εφ(x, t, ε−1x, ε−1t),
where

φ(x, t, y, s) = z(s)[Mε(w)(x, t)ψ(y) + w(x, t)ϕ(y)] (4.15)
12



with z ∈ C∞# (Σ), w ∈ C∞([0, T ]; C∞c (Ω)), ψ ∈ C∞c (Y ) ∩HΓ
#(Y ) and ϕ ∈ C

∞
# (Y ), with

ϕ |Ev
= 0. This implies

ε

T∫

0

∫

Ωε

aεuεtz[M
ε(w)ψ + wϕ] dx dt

+

T∫

0

∫

Ωε

κε∇uε · [M
ε(w)∇yψ + ε∇xwϕ+ w∇yϕ]z dx dt

+
ε

|Ev|

T∫

0

∫

T ε

λεuεtz[M
ε(w)ψ + wϕ] dx dt = ε

T∫

0

∫

Ωε

f [Mε(w)ψ + wϕ]z dx dt . (4.16)

Unfolding and then passing to the limit for ε→ 0, we get

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · ∇y(ψ + ϕ)wz dy ds dx dt←−

∫

ΩT

∫

Qs

Tε(κε)Tε(∇uε) · [Tε(M
ε(w)∇yψ) + Tε(w∇yϕ)]Tε(z) dy ds dx dt = O(ε)→ 0 .

(4.17)

Taking into account that a general function in C∞# (Y ) ∩ HΓ
#(Y ) can always be split

in the form ψ+ϕ, with ψ, ϕ as before, and recalling the density of product functions
in HΓ (ΩT ;Q), we obtain exactly (4.13).
Now we take as test function in (2.11) φε(x, t) = φ(x, t, ε−1x, ε−1t), where

φ(x, t, y, s) = z(s)[Mε(w)(x, t)ψ(y) + w(x, t)(1− ψ(y))] (4.18)

with z, w, ψ as in (4.15) and ψ ≡ 1 on Ev. Clearly, Tε(φε)→ zw strongly in L2(ΩT ×
Q). From the weak formulation, it follows

T∫

0

∫

Ωε

aεuεtz[M
ε(w)ψ + w(1− ψ)] dx dt

+

T∫

0

∫

Ωε

κε∇uε ·

[
1

ε
(Mε(w)− w)∇yψ +∇w(1− ψ)

]
z dx dt

+
1

|Ev|

T∫

0

∫

T ε

λεuεtzM
ε(w) dx dt =

T∫

0

∫

Ωε

fz[Mε(w)ψ + w(1− ψ)] dx dt . (4.19)
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Unfolding and then passing to the limit for ε→ 0, we get

∫

ΩT

∫

Qs

a(ut + u1s)wz dy ds dx dt

+

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · [∇w −∇y

(
(yc · ∇w + (s− 1/2)wt)ψ

)
]z dy ds dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + u1s)zw dy ds dx dt =

∫

ΩT

∫

Qs

fzw dy ds dx dt , (4.20)

where we used Lemma 4.1 and we took into account that, by (3.23), 1
ε
(Mε(w) −

Tε(w)) → −y
c · ∇w − (s − 1/2)wt strongly in L2(Ω × Y ). Localizing the previous

equation with respect to s, we get (4.14).
The initial condition can be easily recovered since uε ⇀ u weakly in H1(ΩT ). �

Corollary 4.5. Under the assumptions of Theorem 4.4, the pair (u, u1) ∈ W (ΩT ;Q)
is a weak solution of the two-scale problem

∫

ΩT

∫

Es

a(ut + u1s)w dy dx dt+

∫

ΩT

∫

Es

κ(∇u+∇yu
1) · (∇w +∇yw

1) dy dx dt

+
1

|Ev|

∫

ΩT

∫

Ev

λ(ut + u1s)w dy dx dt = |Es|

∫

ΩT

fw dx dt , (4.21)

for every (w,w1) ∈ W (ΩT ;Q), for a.e. s ∈ Σ, with the initial condition u(x, 0) =
u0(x), a.e. in Ω.

Proof. We take in (4.13) a test function Ψ(x, t, y, s)z(s), where Ψ ∈ HΓ (ΩT ;Q) and
z(s) is the same function appearing in (4.20). Thus, we obtain

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · ∇yΨz dy ds dx dt = 0 .

Summing this last equation with (4.20), it follows

∫

ΩT

∫

Qs

a(ut + u1s)wz dy ds dx dt

+

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · [∇w +∇y

(
Ψ− (yc · ∇w + (s− 1/2)wt)ψ

)
]z dy ds dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + u1s)zw dy ds dx dt =

∫

ΩT

∫

Qs

fzw dy ds dx dt , (4.22)
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which can be written as
∫

ΩT

∫

Qs

a(ut + u1s)wz dy ds dx dt+

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · (∇w +∇yw

1)z dy ds dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + u1s)wz dy ds dx dt =

∫

ΩT

∫

Qs

fwz dy ds dx dt , (4.23)

by setting

w1(x, t, y, s) = Ψ(x, t, y, s)− (yc · ∇w + (s− 1/2)wt)ψ(y)

−

∫

Q

[
Ψ(x, t, y, s)− (yc · ∇w + (s− 1/2)wt)ψ(y)

]
dy ds, (4.24)

which gives (4.21), after localizing with respect s. �

We remark that, even in the form given in Corollary 4.5, due to the presence of u1s,
our homogenized two-scale problem is not variational and, therefore, we are not able
to prove a direct uniqueness result for it. To overcome this difficulty, we are forced
to pass to the single-scale formulation (4.44), which cannot be obtained directly from
equation (4.21), as usual. Then, we are led to provide a non-standard factorization
procedure, which allows us to remove the residual microscopic term u1s appearing in
the macroscopic part of the above mentioned equation.

Lemma 4.6. Assume that κ is as in Theorem 4.4 and that u ∈ L2(0, T ; H1
0 (Ω)) ∩

H1(ΩT ) is the function given by Lemma 4.1. Let v1, v2 ∈ L
2(ΩT ;H

1
per(Q)), with null

mean average over Q, be two solutions of the problem

− divy(κ(∇u+∇yv)) = 0, in ΩT ×Qs;∫

Γ

κ(∇u+∇yv) · ν dσ = 0 in ΩT × Σ;

yc · ∇u+ (s− 1/2)ut + v is independent of y on ΩT ×Qv.

(4.25)

Then, there exists a function χ = χ(x, t, s) ∈ L2(ΩT ;H
1
#(Σ)), withMΣ(χ) = 0, such

that v1(x, t, y, s) = v2(x, t, y, s) + χ(x, t, s) a.e. in ΩT ×Q.

Proof. Set V = v1 − v2. Clearly,MQ(V ) = 0 and V satisfies

− divy(κ∇yV ) = 0, in ΩT ×Qs; (4.26)
∫

Γ

κ∇yV · ν dσ = 0, in ΩT × Σ; (4.27)

moreover, V is independent of y on ΩT × Qv. Then, taking V as test function in
(4.26) and using (4.27), by the coercivity of κ, it follows that ∇yV = 0 in ΩT × Qs,
which implies that ∇yV = 0 in the whole ΩT × Q. Therefore, there exists χ ∈
L2(ΩT ;H

1
#(Σ)) such that V (x, t, y, s) = χ(x, t, s) a.e. in ΩT ×Q andMΣ(χ) = 0. �
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Notice that, given u as in Lemma 4.1, the corresponding corrector u1 is a solution
of problem (4.25); therefore, it is uniquely determined up to a function χ depending
only on (x, t, s).

Lemma 4.7. Let κ be as in Theorem 4.4. For j = 1, . . . , N , let us consider the

problem

∫

Y

κ(x, y)∇y(χ
j(x, y)− yj) · ∇yϕ dy = 0 , ∀ϕ ∈ HΓ

#(Y ) ; (4.28)

χj(x, y)− yj is independent of y on Ev; (4.29)
∫

Y

χj(x, y) dy = 0 , (4.30)

whereHΓ
#(Y ) has been defined in (4.10). Then, problem (4.28)–(4.30) admits a unique

solution χj ∈ L∞(Ω;H1
#(Y )).

Remark 4.8. We point out that the strong formulation of the problem above is given
by

− divy

(
κ(x, y)∇y(χ

j(x, y)− yj)
)
= 0 , in Es; (4.31)

∫

Γ

κ(x, y)∇y(χ
j(x, y)− yj) · ν dσ = 0 ; (4.32)

χj(x, y)− yj is independent of y on Ev; (4.33)

χj(x, ·) is Y -periodic; (4.34)
∫

Y

χj(x, y) dy = 0 . (4.35)

Notice that condition (4.32) is automatically satisfied, as a consequence of the weak
formulation (4.28). �

This cell problem is rather classical and has a long history. It appears, for instance,
in [20] or, more recently, in [22], for the case where Ev has more than one connected
component, with regular boundary. A similar result was proven independently also
in [4]. On the other hand, we refer to the recent proof in [17], for the case of multiple
holes without regularity assumptions. In this paper, we consider a simpler geometry,
where there is only one smooth inclusion inside the elementary cell Y , providing here
an alternative direct proof.
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Proof. Clearly, problem (4.31)–(4.35) has uniqueness. In order to prove existence, we
consider, for j = 1, . . . , N , the following auxiliary problem

− divy

(
κ(x, y)∇y(χ̃

j(x, y)− yj)
)
= 0 , in Es; (4.36)

∫

Γ

κ(x, y)∇y(χ̃
j(x, y)− yj) · ν dσ = 0 ; (4.37)

χ̃j(x, y) = yj on Γ ; (4.38)

χ̃j(x, ·) is Y -periodic. (4.39)

Existence and uniqueness of a solution χ̃j(x, ·) ∈ H1
#(Es) for problem (4.36)–(4.39)

is classical, the proof being based on a suitable version of Lax-Milgram Lemma.
Therefore, let us extend χ̃j as yj in Ev, denoting also this extension by χ̃j, so that
χ̃j(x, ·) ∈ H1

#(Y ), and set

−cj(x) =

∫

Y

χ̃j(x, y) dy . (4.40)

Then, it is easy to see that χj = χ̃j + cj verifies (4.31) and (4.33)–(4.35). More-
over, it satisfies also (4.32), due to (4.31) and the Y -periodicity of the function
κ(x, y)∇y(χ

j(x, y) − yj). Therefore, it is the unique solution of problem (4.28)–
(4.30). Since the dependence of χj on x is only parametric, it is easy to see that
χj ∈ L∞(Ω;HΓ

#(Y )). �

Remark 4.9. From Lemmas 4.6 and 4.7, we can factorize the corrector u1 as

u1(x, t, y, s) = ũ1(x, t, y) + χ(x, t, s) , (4.41)

where

ũ1(x, t, y) = −χj(x, y)∂ju(x, t) . (4.42)

Indeed, by construction, ũ1 is a solution of problem (4.25). Inserting this factorization
in the homogenized two-scale problem (4.21), after gluing the first and the third
integral, it can be written in the simplified form

∫

ΩT



∫

Es

a dy + λ


 (ut + χs)w dx dt+

∫

ΩT

∫

Es

κ(∇u+∇yũ
1) · (∇w +∇yw

1) dy dx dt

= |Es|

∫

ΩT

fw dx dt , for a.e. s ∈ Σ, (4.43)

for every (w,w1) ∈ W (ΩT ;Q). �

Taking into account (4.41)–(4.42), the two-scale system (4.13)–(4.14) can be decou-
pled, leading to the main result of this paper.
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Theorem 4.10. The function u ∈ L2
(
0, T ;H1

0(Ω)
)
∩H1(ΩT ), given in Lemma 4.1,

is the unique solution of the following single-scale problem

1

MΣ(µ)
ut − div(Ahom∇u) = |Es|f , in ΩT ;

u(x, 0) = u0 , in Ω,

(4.44)

where the symmetric homogenized matrix Ahom is given by

Aij
hom(x) =

∫

Es

κ∇y(yi−χ
i) ·∇y(yj −χ

j) dy =

∫

Y

κ∇y(yi−χ
i) ·∇y(yj −χ

j) dy (4.45)

and µ is defined by

µ(x, t, s) =



∫

Es

a(x, t, y, s) dy + λ(x, t, s)




−1

. (4.46)

Proof. We consider the second term in the left-hand side of (4.14), i.e.
∫

ΩT

∫

Es

κ(∇u+∇yu
1) · [∇w −∇y

(
(yc · ∇w + (s− 1/2)wt)ψ

)
] dy dx dt , a.e. in Σ,

where w ∈ L2(0, T ;H1
0(Ω)) ∩H1(ΩT ) and ψ ∈ H

1
0 (Y ), with ψ ≡ 1 in Ev. Then, we

insert in it the factorization given in (4.41)–(4.42), thus obtaining

∫

ΩT

∫

Es

κ∇y(y − χ)∇u · [∇w −∇y

(
(yc · ∇w + (s− 1/2)wt)ψ

)
] dy dx dt

=

∫

ΩT



∫

Es

κ∇y(y − χ)∇y(y − y
cψ) dy


∇u · ∇w dx dt

−

∫

ΩT

(s− 1/2)wt



∫

Es

κ∇y(y − χ)∇yψ dy


 · ∇u dx dt

=

∫

ΩT



∫

Es

κ∇y(y − χ)∇y(y − y
cψ) dy


∇u · ∇w dx dt ,

where, in the last equality, we took into account that ψ can be taken as a test function
in (4.28) of Lemma 4.7.
We notice that χj − (ej · y

c)ψ ∈ L∞(Ω;HΓ
#(Y )) (recall that ψ ∈ C

∞
c (Y ) and ψ ≡ 1

in Ev), and so it is an admissible test function in (4.28) of Lemma 4.7. Thus, we get
∫

Y

κ∇y(χ
j − yj) · ∇yχ

j dy =

∫

Y

κ∇y(χ
j − yj) · ∇y

(
(ej · y

c)ψ
)
dy ,
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and, hence, we obtain

∫

ΩT

∫

Es

κ(∇u+∇yũ
1) · [∇w −∇y

(
(yc · ∇w + (s− 1/2)wt)ψ

)
] dy dx dt

=

∫

ΩT



∫

Es

κ∇y(y − χ)∇y(y − χ) dy


∇u · ∇w dx dt . (4.47)

Using (4.41) and (4.47), taking into account (4.45) and gluing the first and the third
term in the left-hand side of (4.14), we are led to

∫

ΩT



∫

Es

a dy + λ


 (ut + χs)w dx dt+

∫

ΩT

Ahom∇u · ∇w dx dt

= |Es|

∫

ΩT

fw dx dt , for a.e. s ∈ Σ.

Localizing with respect to (x, t) and dividing by



∫

Es

a dy + λ


, we arrive at

(ut + χs(x, t, s))− µ(x, t, s) div(Ahom(x)∇u) = µ(x, t, s)|Es|f , (4.48)

where µ is defined in (4.46). Finally, integrating over Σ and taking into account
the Σ-periodicity of χ(x, t, ·), it follows (4.44), after dividing again by MΣ(µ). We
note that the homogenized matrix Ahom is symmetric. Moreover, thanks to Lemma
4.11 below, which gives the positive definiteness of the matrix Ahom, it follows that
problem (4.44) has a unique solution u ∈ L2

(
0, T ;H1

0(Ω)
)
∩H1(ΩT ). Therefore, the

whole sequence {uε}, and not only a subsequence, converges to the homogenized limit
function u. �

Lemma 4.11. The matrix Ahom in (4.45) is positive definite.
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Proof. The proof is quite standard. Using Jensen’s inequality, we obtain

N∑

i,j=1

Aij
homξiξj =

∫

Es

N∑

i,j=1

κ∇y(yiξi − χ
iξi) · ∇y(yjξj − χ

jξj) dy

≥ γ0

∫

Es

∣∣∣
N∑

j=1

∇y(yjξj − χ
jξj)

∣∣∣
2

dy = γ0

∫

Y

∣∣∣
N∑

j=1

∇y(yjξj − χ
jξj)

∣∣∣
2

dy

≥ γ0

∣∣∣∣∣∣

∫

Y

N∑

j=1

∇y(yjξj − χ
jξj) dy

∣∣∣∣∣∣

2

= γ0

N∑

h=1




N∑

j=1

∫

Y

δhjξj −
N∑

j=1

ξj

∫

Y

∂χj

∂yh
dy




2

≥ γ0

N∑

h=1


ξh −

N∑

j=1

ξj

∫

∂Y

χj nh dσ




2

= γ0|ξ|
2

where we have denoted by n = (n1, . . . , nN) the outward unit normal to ∂Y and we
have taken into account that, because of the Y -periodicity of χj(x, ·), the last integral
in the previous formula is equal to zero. �

Remark 4.12. Notice that it is not necessary to further characterize χ, since in the
homogenization process it disappears from (4.44). However, from (4.48), we get that
χ(x, t, s) satisfies

χs =
|Es|f + div (Ahom∇u)∫

Es

a dy + λ
− ut , (4.49)

and, hence, it is uniquely determined. We point out that, since χ is Σ-periodic, the
mean value of χs over Σ is equal to 0, so that we recover (4.44). �

4.2. The case α > 1. We state the following compactness result.

Lemma 4.13. Assume that ‖u0ε‖H1

0
(Ω) ≤ γ, with γ independent of ε, and that, for

every ε > 0, uε is the unique solution of problem (2.11). Then, up to a subsequence,

still denoted by ε, there exist u ∈ L2(0, T ;H1
0(Ω)) ∩H1(ΩT ), u1 ∈ L

2(ΩT ;H
1
per(Q)),

with MQ(u1) = 0 and ∂u1

∂s
= 0 a.e. in ΩT × Q, and ů ∈ L

2(ΩT × Y ;H
1(Σ)), with

MΣ(̊u) = 0, such that

uε → u strongly in L2 (ΩT ) , (4.50)

uε ⇀ u weakly in H1(ΩT ), (4.51)

Tε(uεt)⇀ ut + ůs weakly in L2(ΩT ×Q), (4.52)

Tε(∇uε)⇀ ∇u+∇yu1 weakly in L2(ΩT ×Qs), (4.53)

Tε(∇uε)⇀ 0 weakly in L2(ΩT ×Qv), (4.54)

1

ε
Zε(uε)⇀ yc · ∇u+ u1 weakly in L2(ΩT ×Q), (4.55)

yc · ∇u+ u1 , is independent of y on ΩT ×Qv. (4.56)
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Remark 4.14. Notice that, due to the special time scaling εα (α > 1), u1 belongs in
fact to L2(ΩT ;H

1
#(Y )) andMY (u1) = 0. �

Proof. The proof follows the same lines as the one of Lemma 4.1, the only difference
being the fact that we use here Theorem 3.15 instead of Theorem 3.13. �

For later use, we set

HΓ (ΩT ; Y ) := L2((0, T )× Y ;H1
0(Ω)) ∩H1(ΩT ;L

2(Y )) ∩ L2(ΩT ;H
Γ
#(Y )) . (4.57)

Moreover, we introduce the space

W (ΩT ; Y ) := {(w,w
1) : w ∈ L2(0, T ;H1

0(Ω)) ∩H1(ΩT ), w
1 ∈ L2(ΩT ;H

1
#(Y )) ,

MY (w
1) = 0 , yc · ∇w + w1 is independent of y on ΩT ×Ev.} (4.58)

Notice that, by Remark 4.14, the pair (u, u1) given in Lemma 4.13 belongs to the
space W (ΩT ; Y ).

Theorem 4.15. Assume that (4.1) holds. Assume also that ‖u0ε‖H1

0
(Ω) ≤ γ, with γ

independent of ε, and that there exists a function u0 ∈ H1
0(Ω) such that u0ε → u0

strongly in L2(Ω). Then, (u, u1) ∈ W (ΩT ; Y ) and ů ∈ L
2(ΩT ×Y ;H1(Σ)), appearing

in the statement of Lemma 4.13, form a weak solution of the two-scale problem

∫

ΩT

∫

Qs

a(ut + ůs)w dy ds dx dt+

∫

ΩT

∫

Es

κ(∇u+∇yu
1) · (∇w +∇yw

1) dy dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + ůs)w dy ds dx dt = |Es|

∫

ΩT

fw dx dt , (4.59)

for every (w,w1) ∈ W (ΩT ; Y ), with the initial condition u(x, 0) = u0(x), a.e. in Ω.

Proof. Similarly to [13, 17] and taking into account that u1 does not depend on s, we
can take as test function in (2.11) φε(x, t) = εφ(x, t, ε−1x), where

φ(x, t, y) =Mε(w)(x, t)ψ(y) + w(x, t)ϕ(y), (4.60)

with w ∈ C∞([0, T ]; C∞c (Ω)), ψ ∈ C∞c (Y ) ∩HΓ
#(Y ) and ϕ ∈ C

∞
# (Y ), satisfying ϕ |Ev

=
0. Reasoning as in the proof of Theorem 4.4, we get

∫

ΩT

∫

Es

κ(∇u+∇yu
1) · ∇yΨdy dx dt = 0 , for every Ψ ∈ HΓ (ΩT ; Y ). (4.61)

Now, let φ be as in (4.18); we take φε(x, t) = φ(x, t, ε−1x, ε−αt) as test function in
(2.11). Unfolding and then passing to the limit for ε→ 0, as in the proof of Theorem
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4.4, we are led to

∫

ΩT

∫

Qs

a(ut + ůs)wz dy ds dx dt

+

∫

ΩT

∫

Qs

κ(∇u+∇yu
1) · [∇w −∇y

(
(yc · ∇w)ψ

)
]z dy dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + ůs)zw dy ds dx dt =

∫

ΩT

∫

Qs

fzw dy ds dx dt , (4.62)

where we have used Lemma 4.13 and we have taken into account (3.29). Notice that,
taking z ≡ 1 and summing (4.61) and (4.62), it follows

∫

ΩT

∫

Qs

a(ut + ůs)w dy ds dx dt

+

∫

ΩT

∫

Es

κ(∇u+∇yu
1) · [∇w +∇y

(
Ψ− (yc · ∇w)ψ

)
] dy dx dt

+
1

|Ev|

∫

ΩT

∫

Qv

λ(ut + ůs)w dy ds dx dt = |Es|

T∫

0

∫

Ω

fw dy dx dt , (4.63)

which is equivalent to (4.59), by setting

w1(x, y, t) = Ψ(x, y, t)− (yc · ∇w(x, t))ψ(y)−

∫

Y

(
Ψ(x, y, t)− (yc · ∇w(x, t))ψ(y)

)
dy.

The initial condition can be easily recovered since uε ⇀ u weakly in H1(ΩT ). �

Remark 4.16. Unfortunately, due to the presence of the function ů in equation (4.59),
we cannot go further into our analysis. Indeed, we notice that this is not a classical
two-scale problem, because it contains two different correctors u1 and ů. Moreover,
it is not a variational problem and it does not lead to a strong formulation neither
to a factorization, as usual. Therefore, we are forced to restrict ourselves to a special
factorized case described below. More precisely, we assume that the capacity A can
be split in the form

A(x, t, y, s) = A1(x, t, y)A2(t, s) ,

with A1 ∈ L2(Ω × Y ;W 1,∞(0, T )) and A2 ∈ L2((0, T )× Σ). Moreover, we stipulate
that the coefficient λξ takes the same value on each inclusion, i.e. λξ(t, s) = Λ(t; s),
and that

A2(t, s) = Λ(t; s) .

�

22



Thus, setting a1ε(x) = A1(x, t, ε−1x) and λε(t) = Λ(t, ε−αt), the problem (2.4)–(2.7)
can be rewritten as

a1ελεuεt − div(κε∇uε) = f , in Ωε × (0, T ); (4.64)

λεuεt =
1

εN

∫

Γ ε
ξ

κε
∂uε
∂νε

dσ , on Γ ε
ξ × (0, T ), ξ ∈ Ξε; (4.65)

uε = 0 , on ∂Ω × (0, T ); (4.66)

uε(x, 0) = u0ε(x) , on Ω, (4.67)

whose weak formulation is given by

T∫

0

∫

Ωε

a1ελεuεtφε dx dt+

T∫

0

∫

Ωε

κε∇uε · ∇φε dx dt +
1

|Ev|

T∫

0

∫

T ε

λε uεtφε dx dt

=

T∫

0

∫

Ωε

fφε dx dt , (4.68)

for every φ ∈ X ε, with φ(x, T ) = 0 in Ω.

Theorem 4.17. Assume that

Tε(κε)→ κ, strongly in L2(Ω × Y );

Tε(a
1
ε)→ a1, strongly in L2(ΩT × Y );

Tε(a
1
εt)→ a1t , strongly in L2(ΩT × Y );

Tε(λε)→ λ, strongly in L2((0, T )×Q).

Assume also that ‖u0ε‖H1

0
(Ω) ≤ γ, with γ independent of ε, and that there exists a

function u0 ∈ H
1
0 (Ω) such that u0ε → u0 strongly in L2(Ω). Then, the pair (u, u1) ∈

W (ΩT ; Y ), appearing in the statement of Lemma 4.13, is the unique weak solution of

the two-scale problem

T∫

0

∫

Ω

|Es|MEs
(a)utw dx dt+

T∫

0

MΣ(λ
−1)



∫

Ω

∫

Y

κ(∇u+∇yu
1) · (∇w +∇yw

1) dy dx


 dt

+

T∫

0

∫

Ω

utw dx dt = |Es|

T∫

0

MΣ(λ
−1)



∫

Ω

fw dx


 dt , (4.69)

with the initial condition u(x, 0) = u0(x), a.e. in Ω, for every (w,w1) ∈ W (ΩT ; Y ),
such that w(x, T ) = 0 a.e. in Ω.

Proof. Let us take as test function in (4.68) φε(x, t) = εφ(x, t, ε−1x)λε(t), where

φ(x, t, y) =Mε(w)(x, t)ψ(y) + w(x, t)ϕ(y) , (4.70)
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with w ∈ C∞([0, T ]; C∞c (Ω)), w(x, T ) = 0 in Ω, ψ ∈ C∞c (Y )∩HΓ
#(Y ) and ϕ ∈ C

∞
# (Y ),

with ϕ |Ev
= 0. This implies, after integrating by parts with respect to t,

− ε

T∫

0

∫

Ωε

a1εuε[M
ε(wt)ψ + wtϕ] dx dt− ε

T∫

0

∫

Ωε

a1εtuε[M
ε(w)ψ + wϕ] dx dt

+

T∫

0

∫

Ωε

λ−1
ε κε∇uε · [M

ε(w)∇yψ + ε∇xwϕ+ w∇yϕ] dx dt

−
ε

|Ev|

T∫

0

∫

T ε

uε[M
ε(wt)ψ + wtϕ] dx dt

= ε

∫

Ωε

a1ε(x, 0, ε
−1x)u0ε[M

ε(w)(x, 0)ψ + w(x, 0)ϕ] dx

+
ε

|Ev|

∫

T ε

u0ε[M
ε(w)(x, 0)ψ + w(x, 0)ϕ] dx+ ε

T∫

0

∫

Ωε

λ−1
ε f [Mε(w)ψ + w(x)ϕ] dx dt .

(4.71)

Taking into account Lemma 4.13, unfolding and then passing to the limit for ε→ 0,
we get

∫

ΩT

∫

Es

λ−1κ(∇u+∇yu
1) · ∇y(ψ + ϕ)w dy dx dt←−

∫

ΩT

∫

Es

Tε(λ
−1
ε )Tε(κε)Tε(∇uε) · [Tε(M

ε(w)∇yψ) + Tε(w∇yϕ)] dy dx dt = O(ε)→ 0 ,

(4.72)

where we used (3.18). Taking into account that a general function in C∞# (Y )∩HΓ
#(Y )

can always be split in the form ψ + ϕ, with ψ, ϕ as before, and recalling the density
of product functions in HΓ (ΩT ; Y ), we obtain

T∫

0

MΣ(λ
−1)



∫

Ω

∫

Es

κ(∇u+∇yu
1) · ∇yΨdy dx


 dt = 0 , (4.73)

for every Ψ ∈ HΓ (ΩT ; Y ). Here, we also use the fact that ∂u1

∂s
= 0.

Now, we take as test function in (2.11) φε(x, t) = φ(x, t, ε−1x)λ−1
ε (t), where

φ(x, t, y) =Mε(w)(x, t)ψ(y) + w(x, t)(1− ψ(y)) , (4.74)
24



with w, ψ as in (4.70) and ψ ≡ 1 on Ev. Clearly, φε → wλ−1 strongly in L2(ΩT ×Q).
Inserting it in the weak formulation (4.68) and integrating by parts in time, it follows

−

T∫

0

∫

Ωε

a1εuε[M
ε(wt)ψ + wt(1− ψ)] dx dt−

T∫

0

∫

Ωε

a1εtuε[M
ε(w)ψ + w(1− ψ)] dx dt

+

T∫

0

∫

Ωε

λ−1
ε κε∇uε ·

[
1

ε
(Mε(w)− w)∇yψ +∇xw(1− ψ)

]
dx dt

−
1

|Ev|

T∫

0

∫

T ε

uεM
ε(wt)ψ dx dt =

∫

Ωε

a1ε(x, 0, ε
−1x)u0ε[M

ε(w)(x, 0)ψ + w(x, 0)(1− ψ)] dx

+
1

|Ev|

∫

T ε

u0εM
ε(w)(x, 0) dx+

T∫

0

∫

Ωε

λ−1
ε f [Mε(w)ψ + w(1− ψ)] dx dt . (4.75)

Unfolding and then passing to the limit for ε→ 0, we get

−

∫

ΩT

∫

Es

a1uwt dy dx dt−

∫

ΩT

∫

Es

a1tuw dy dx dt

+

T∫

0

MΣ(λ
−1)



∫

Ω

∫

Es

κ(∇u+∇yu
1) · [∇w −∇y

(
(yc · ∇w)ψ

)
] dy dx


 dt

−

∫

ΩT

uwt dx dt =

∫

Ω

∫

Es

a1(x, 0, y)u0w(x, 0) dy dx

+

∫

Ω

u0w(x, 0) dx+ |Es|

∫

ΩT

MΣ(λ
−1)fw dx dt , (4.76)

where we have taken into account (3.29). Since, as before, the initial condition can
be easily recovered, as a consequence of the convergence uε ⇀ u weakly in H1(ΩT ),
we integrate again by parts with respect to t and sum the resulting equation with
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(4.73), thus obtaining
∫

ΩT

∫

Es

autw dy dx dt

+

T∫

0

MΣ(λ
−1)



∫

Es

κ(∇u+∇yu
1) · [∇w +∇y

(
Ψ− (yc · ∇w)ψ

)
] dy dx


 dt

+

∫

ΩT

utw dx dt = |Es|

T∫

0

MΣ(λ
−1)



∫

Ω

fw dx


 dt , (4.77)

which is equivalent to (4.69), by setting

w1(x, y, t) = Ψ(x, y, t)− (yc · ∇w(x, t))ψ(y)−

∫

Y

(
Ψ(x, y, t)− (yc · ∇w(x, t))ψ(y)

)
dy

and recalling (4.56).
Finally, the variational character of equation (4.69) together with Poincaré or Gron-
wall inequality gives immediately the uniqueness of the solution. �

Despite the fact that the connection between the macroscopic and the microscopic
test functions w and w1 prevents the possibility to state a strong formulation for
(4.69), we still can factorize in a standard way the corrector u1, thus obtaining the
single-scale homogenized equation satisfied by u.

Theorem 4.18. Let (u, u1) ∈ W (ΩT ; Y ) be the unique solution of equation (4.69),
satisfying the initial condition u(x, 0) = u0(x) a.e. in Ω. Then, the two-scale problem

(4.69) can be decoupled by setting

u1(x, t, y) = −χj(x, y)∂ju(x, t) , (4.78)

where χj, for j = 1, . . . , N , satisfies problem (4.28)–(4.30) and u ∈ L2(0, T ;H1
0(Ω))∩

H1(ΩT ) is the unique solution of the single-scale equation

T∫

0

∫

Ω

|Es|MEs
(a1)utw dx dt +

T∫

0

∫

Ω

MΣ(λ
−1)Ahom∇u · ∇w dx dt

+

T∫

0

∫

Ω

utw dx dt = |Es|

T∫

0

∫

Ω

fMΣ(λ
−1)w dx dt , (4.79)

for every test functions w ∈ L2(0, T ;H1
0(Ω)) ∩ H1(ΩT ), with w(x, T ) = 0 a.e. in

Ω, where the symmetric and positive definite homogenized matrix Ahom is given by

(4.45).

Proof. Equation (4.79) follows from (4.69), after rearranging the second term in the
left-hand side as done in the first part of the proof of Theorem 4.10. As a consequence
of the positive definiteness of the homogenized matrix, the solution u of equation
(4.79) is uniquely determined. �
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Remark 4.19. One can see that the strong formulation of (4.79) reads like
(
|Es|MEs

(a1) + 1

MΣ(λ−1)

)
ut − div(Ahom∇u) = |Es|f , in ΩT ;

u = 0 , on ∂Ω × (0, T );

u(x, 0) = u0 , in Ω.

(4.80)

�

4.3. Final remarks. After concluding our analysis, we are in a position to make
some final considerations.
First, we emphasize that we treat in this paper only the case α ≥ 1, corresponding
to the so-called fast oscillations (see [3]), while the case α ∈ (0, 1), corresponding to
the slow oscillations, deserves a completely different approach and is left to further
investigations. Moreover, we collect some common features of the two classes of
scalings treated above.

Remark 4.20. Assume that in problem (2.4)–(2.7) we take aε(x, t) ≡ 1, λξε(t) a strictly
positive constant λ and κε(x) independent of x (or, equivalently, in (4.64)–(4.67) we
take Λ(t, s) equal to the strictly positive constant λ, A1(x, t, y) = λ−1 and again κε(x)
independent of x). Then, one can obtain that the limit function u ∈ L2(0, T ;H1

0(Ω))∩
H1(ΩT ) is the unique solution of the homogenized problem

(|Es|+ λ) ut − div(Ahom∇u) = |Es|f , in ΩT ;

u(x, 0) = u0 , in Ω,
(4.81)

where the matrix Ahom is obtained as in (4.45), but it is now constant.
We point out that this result can also be derived independently, by means of simpler
techniques (see [5], where a more general initial condition can be considered). �

Remark 4.21. Our results can be generalized to the case in which the microscopic dif-
fusion matrix depends also on the macro-time t, the only difference being that, in this
situation, the corresponding homogenized matrix Ahom depends also, parametrically,
on t. �

Remark 4.22. We notice that for the whole family α ≥ 1, the limit problems obtained
above present the same elliptic part. Indeed, the homogenized matrix Ahom depends
only on the solution χj, j = 1, . . . , N , of the cell problem appearing in Lemma 4.7,
which is independent of the micro-time s, since the microscopic diffusion matrix is
not oscillating in time. �

Remark 4.23. Finally, we remark that, if we assume that the capacity A is chosen
as in Remark 4.16 also for the case α = 1, then the corresponding effective capacity
appearing in front of the time-derivative in (4.44) coincides with the one arising in
(4.80). Thus, the single-scale formulation is the same for all the scalings. �
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