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Abstract. Existence results for radially symmetric oscillating solutions for a class of nonlinear autonomous Helmholtz equa-
tions are given and their exact asymptotic behaviour at infinity is established. Some generalizations to nonautonomous
radial equations as well as existence results for nonradial solutions are found. Our theorems prove the existence of standing
waves solutions of nonlinear Klein–Gordon or Schrödinger equations with large frequencies.
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1. Introduction

The main aim of this paper is to give existence results for the following class of nonlinear equations

− Δu = g(u) in R
N (1.1)

with N ≥ 1 and assuming that the nonlinearity g is such that

g ∈ C1,σ
loc (R) for some σ ∈ (0, 1), (1.2)

g is odd, (1.3)

g′(0) > 0, (1.4)

∃α0 ∈ (0,+∞] : g is positive on (0, α0) and negative on (α0,∞). (1.5)

There is a huge literature concerning (1.1) and nonautonomous variants of it under the assumption
g′(0) < 0. Two seminal papers in this context are the contributions by Berestycki–Lions and Strauss
[6,21] who proved the existence of smooth radially symmetric and exponentially decaying solutions for a
large class of nonlinearities with this property. We refer to the monographs [2,3,27] for more results in
this context. One of the main interests in finding solutions of (1.1) is motivated by the relation with the
existence of solutions to nonlinear time-dependent Klein–Gordon equations. Indeed, assuming g to have
the special form g(z) = (λ2 − V0)z + h(|z|)z and extending it to C in the natural way, then any solution
u of (1.1) gives rise to a standing wave, i.e. a solution of the form ψ(x, t) = eiλtu(x) to

∂2ψ

∂t2
− Δψ + V0ψ = h(|ψ|)ψ (t, x) ∈ R × R

N .

Therefore, assuming g′(0) < 0 amounts to look for standing waves having low frequencies λ2 < V0 and
numerous existence results for H1(RN )-solutions under this assumption can be found in the references
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mentioned above. In this paper, we deal with nonlinearities satisfying g′(0) > 0, which gives rise to
standing waves with large frequencies λ2 > V0. Looking at the form of the linearized operator −Δ−g′(0),
one realizes that u0 = 0 lies in its essential spectrum and we are actually dealing with a class of nonlinear
Helmholtz equations. Furthermore, as explained in subsection 2.2 in [6], the hypothesis (1.4) has the
striking consequence that radially symmetric H1(RN ) solutions of (1.1) cannot exist, and usual variational
methods fail. On the other hand, (1.4) is naturally linked to (1.5); in particular, if g(z)/z decreases in
(0,+∞), then (1.4) turns out to be necessary in order to have H1(RN ) solutions. Actually, the relevant
solutions naturally lie outside this functional space. This fact can also be illustrated by an examination
of the behaviour of the minimal energy solutions on a sequence of large bounded domains. Namely, in
Theorem 4.4 we will show that if one takes a sequence of bounded domains Ωn invading R

N , then (1.4)
guarantees the existence of a sequence (un) of global minimizers of the associated action functional over
H1

0 (Ωn) for sufficiently large n. But, it results that (un) converges in C2
loc(R

N ) to the constant solution
u ≡ α0.

Therefore, under the assumption (1.4), one has to look for solutions in a broader class of functions.
Our focus will be on oscillating and localized ones which we define as follows.

Definition 1.1. A distributional solution u ∈ C1,α(RN ) of (1.1) is called oscillating if it has an unbounded
sequence of zeros. It is called localized when it converges to zero at infinity.

Let us notice that the strong maximum principle implies that oscillating solutions of (1.1) change sign
at each of their zeros, so that we are going to find solutions that change sign infinitely many times. In
our study, we will pay particular attention to the following model cases

g1(z) = −λz +
z

s + z2
where s > 0, λ <

1
s
. (1.6)

g2(z) = k2z − |z|p−2z, g3(z) = k2z + |z|p−2z for k �= 0, p > 2. (1.7)

Our interest in these examples has various motivations. The nonlinearity g1 is related to the study of the
propagation of lights beams in a photorefractive crystals (see [9,28]) when a saturation effect is taken
into account. Differently from the more frequently studied model

g̃(z) := −λz +
z3

1 + sz2
,

see e.g. [8], g1 describes a transition from the linear propagation and the saturated one. This difference
has important consequences, for instance, for g = g̃ there are H1(RN ) solutions of (1.1) for 0 < λ < 1/s
(e.g. see Theorem 3.6 in [25]), whereas this is not the case if g = g̃, λ < 0 or g = g1 because of g′(0) > 0.
Notice that, as λ < 1/s, Eq. (1.1) for g = g1 can be rewritten in the following form

−Δu − k2u = − u3

s(s + u2)
in R

N with k2 =
1
s

− λ

which allows to settle the problem in H1(RN ) in every dimension N and that shows that also this
saturable model is included in the class of the nonlinear Helmholtz equations. The principal difference
between (1.7) and (1.6) is that the formers are superlinear and homogeneous nonlinearities, while the latter
is not homogeneous and it is asymptotically linear. However, all of them satisfy our general assumptions,
with α0 ∈ (0,+∞) for g1 and g2 and α0 = +∞ for g3.

Up to now, nonlinear Helmholtz equations (1.1) have been mainly investigated for the model nonlin-
earity g3 or more general superlinear nonlinearities, even not autonomous. In a series of papers, [10–13]
Evéquoz and Weth proved the existence of radial and nonradial real, localized solutions of this equation
under various different assumptions on the nonlinearity. Let us mention that some of the tools used in
[13] had already appeared in a paper by Gutiérrez [17] where the existence of complex-valued solutions
was proved for space dimensions N = 3, 4. Let us first focus our attention on radially symmetric solutions
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and state our first result, which provides a complete description of the radially symmetric solutions of
(1.1). In the statement, G will denote the primitive of g satisfying G(0) = 0.

Theorem 1.2. Assume (1.2),(1.3),(1.4),(1.5). Then there is a maximal continuum C = {uα ∈ C2(RN ) :
|α| < α0} in C2

loc(R
N ) consisting of radially symmetric oscillating solutions of (1.1) having the following

properties for all |α| < α0:

(i) uα(0) = α,
(ii) ‖uα‖L∞(RN ) = |α|, ‖u′

α‖L∞(RN ) ≤ √
2G(α).

Moreover, for N = 1 all these solutions are periodic, whereas for N ≥ 2 they are localized and satisfy the
following asymptotic behaviour:

(iii) There are positive numbers cα, Cα > 0 such that

cαr(1−N)/2 ≤ |uα(r)| + |u′
α(r)| + |u′′

α(r)| ≤ Cαr(1−N)/2 for all r ≥ 1.

Here, a continuum in C2
loc(R

N ) is a connected subset of C2
loc(R

N ) with respect to the uniform con-
vergence of the zeroth, first and second derivatives on compact subsets of R

N . The maximality of the
continuum refers to the fact that there are no further radially symmetric solutions and in particular no
larger continuum in C2

loc(R
N ) as we will see in Sect. 2. Moreover, conclusion (iii) states that the property

uα ∈ Ls(RN ) is equivalent to uα ∈ W 2,s(RN ), and this happens if and only if s > 2N
N−1 . Notice that this

implies that uα /∈ L2(RN ), showing again that the solutions, as expected, live outside the commonly used
energy space.

Furthermore, let us stress that the behaviour of the nonlinearity beyond α0 is completely irrelevant;
in particular, the negativity of g on (α0,∞) is actually not needed, because all solutions satisfy |uα(x)| ≤
|α| < α0 by item (ii) of the theorem. This is the reason why we do not need to assume any sub-
critical growth condition on the exponent p in the model nonlinearities g2, g3. Moreover, this shows that
g′(0) > 0 is the crucial hypothesis to show the existence of a continuum of solutions. Let us recall that
in the autonomous setting Theorem 4 in [12] yields nontrivial radially symmetric solutions of (1.1) for
superlinear nonlinearities such as g3, but not for g1, g2.

Theorem 1.2 admits generalizations to some nonautonomous radially symmetric nonlinearities. In
particular, we can prove a nonautonomous version of this result that applies to the nonlinearities

g1(r, z) = −λ(r)z +
z

s(r) + z2
, (1.8)

g2(r, z) = k(r)2z ± Q(r)|z|p−2z, (1.9)

under suitable assumptions on the coefficients λ(r), s(r), k(r), Q(r), see Theorem 2.10 and Corollaries
2.12 and 2.14. Our results in this context extend Theorem 4 in [12] in several directions (see Remark
2.13).

The existence of nonradially symmetric solutions is clearly a more difficult topic, and here, we can
give a partial positive answer in this direction, by exploiting the argument developed in [10–13], where
the authors study nonlinear Helmholtz equations with general superlinear nonlinearities such as

− Δu − k2u = Q(x)|u|p−2u in R
N , (1.10)

for Q(x) > 0, which represents a nonautonomous version of our model nonlinearity g3. Among other
results, in [13] (Theorem 1.1 and Theorem 1.2) it is shown that if Q is Z

N -periodic or vanishing at
infinity then there exist nontrivial solutions of (1.10) for p satisfying 2(N+1)

N−1 < p < 2N
N−2 when N ≥ 3.

Our contribution to this issue is that the positivity assumption on Q may be replaced by a negativity
assumption in order to make the dual variational approach work, so that, using Fourier transform, we
show that the main ideas from [13] may be modified in such a way that their main results remain true
for negative Q. Our results read as follows.
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Theorem 1.3. Let N ≥ 3, 2(N+1)
N−1 < p < 2N

N−2 and let Q ∈ L∞(RN ) be periodic and negative almost
everywhere. Then the Eq. (1.10) has a nontrivial localized oscillating strong solution in W 2,q(RN ) ∩
C1,α(RN ) for all q ∈ [p,∞), α ∈ (0, 1).

Theorem 1.4. Let N ≥ 3, 2(N+1)
N−1 ≤ p < 2N

N−2 and let Q ∈ L∞(RN ) be negative almost everywhere with
Q(x) → 0 as |x| → ∞. Then Eq. (1.10) has a sequence of pairs ±um of nontrivial localized oscillating
strong solutions in W 2,q(RN ) ∩ C1,α(RN ) for all q ∈ [p,∞), α ∈ (0, 1) such that

‖um‖Lp(RN ) → ∞ as m → ∞.

Since the above results together with those from [13] provide some existence results for the nonlinear
Helmholtz equation associated with the nonlinearity g2 from (1.9), one leads to wonder whether similar
results hold true for asymptotically linear nonlinearities like g1 in (1.8). Here, the dual variational frame-
work does not seem to be convenient since even the choice of the appropriate function spaces is not clear.
A thorough discussion of such nonlinear Helmholtz equations leading to existence results for nonradial
solutions still remains to be done.

Let us observe that there is a gap in the admissible range for p between Theorems 1.2, 1.3, and 1.4.
Reading Theorem 1.2 one naturally leads to the conjecture that nontrivial nonradial solutions in Lp(RN )
may be found regardless of any sign condition on Q and for all exponents p > 2N

N−1 . On the contrary,

Theorem 1.3 only holds for exponents p > 2(N+1)
N−1 , so that it is still an open question whether or not

nonradial Lp-solutions exist for p ∈
(

2N
N−1 , 2(N+1)

N−1

]
.

The paper is organized as follows: In Sect. 2, we present the proof of Theorem 1.2 as well as a
generalization to the radial nonautonomous case (see Theorem 2.10 and Corollaries 2.12, 2.14). In Sect. 3,
we present the proofs of Theorems 1.3 and 1.4. In Sect. 4, we will discuss in detail the attempt to obtain
a solution by approximating R

N by bounded domains.

2. Radial solutions

2.1. The autonomous case

Throughout this section, we will suppose that (1.2), (1.3), (1.4), (1.5) hold true. We will prove Theorem 1.2
by providing a complete understanding of the initial value problem

− u′′ − N − 1
r

u′ = g(u) in (0,∞), u(0) = α, u′(0) = 0 (2.1)

for α ∈ R and N ∈ N. Notice that assumptions (1.3) and (1.4) imply that there exists a δ > 0 such that

g(z)z > 0 ∀ z ∈ (−δ, δ).

Such a positivity region is in fact almost necessary as the following result shows.

Proposition 2.1. Assume that g ∈ C(R) satisfies g(z)z < 0 for all z ∈ R. Then there is no nontrivial
localized solution and there is no nontrivial oscillating solution u ∈ C2(RN ) of (1.1).

Proof. Assume that u ∈ C2(RN ) is a nontrivial localized or oscillating solution. Then it attains a positive
local maximum or a negative local minimum in some point x0 ∈ R

N . Hence, we obtain

−Δu(x0)u(x0) = u(x0)g(u(x0)) < 0,

a contradiction. �



ZAMP Oscillating solutions for nonlinear Helmholtz equations Page 5 of 19 121

Remark 2.2. In view of elliptic regularity theory, the above result is also true for weak solutions u ∈
H1(RN ) since these solutions coincide almost everywhere with classical solutions and decay to zero at
infinity by Theorem C.3.1 in [19]. Notice that in case N ≥ 3 we can deduce the nonexistence of H1(RN )
solutions from the fact that g(z)z < 0 in R violates the necessary condition (1.3) in [6], see section 2.2 in
that paper. In the case N = 2, the same follows from Remarque 1 in [5].

First, we briefly address the one-dimensional initial value problem

− u′′ = g(u) in (0,∞), u(0) = α, u′(0) = 0. (2.2)

In view of the oddness of g, it suffices to discuss the initial value problem for α ≥ 0. The uniquely
determined solution of the initial value problem will be denoted by uα with maximal existence interval
(−Tα, Tα) for Tα ∈ (0,∞].

Proposition 2.3. Let N = 1. Then the following holds:
(i) If α = α0 ∈ R then uα ≡ α0 and if α = 0 then uα ≡ 0.
(ii) If α > α0 then uα strictly increases to +∞ on (0, Tα).
(iii) If 0 < α < α0 then uα is periodic and oscillating with ‖uα‖∞ = α.

Proof. Conclusion (i) immediately follows from (1.5). Then we only have to prove (ii) and (iii). For
notational convenience, we write u, T instead of uα, Tα. In the situation of (ii), we set ξ := sup{s ∈
[0, T ) : u′′(s) > 0}. From u(0) = α > α0 and (2.2), we get u′′(0) = −g(u(0)) = −g(α) > 0 and thus
ξ ∈ (0, T ]. We even have ξ = T , because otherwise

u(ξ) = α +

ξ∫

0

t∫

0

u′′(s) ds dt > α > α0

and thus u′′(ξ) > 0 in view of assumption (1.5) and (2.2). This, however, would contradict that ξ is the
supremum, hence ξ = T . As a consequence, u is strictly convex on (0, T ) which implies (ii).

In order to show (iii), we notice that (1.3) implies that solutions are symmetric about critical points
and antisymmetric about zeros. Therefore, it suffices to show that u decreases until it attains a zero. By
the choice of α ∈ (0, α0), we have u′′(0) < 0 so that u decreases on a right neighbourhood of 0. Exploiting
(1.5) and (2.2), we deduce that u′′(s) is negative whenever 0 < u(s) < u(0) < α0. As a consequence, we
obtain that u decreases as long as it remains positive. Moreover, it cannot be positive on [0,∞) since this
would imply, thanks 0 ≤ u(r) ≤ α < α0 and the assumptions (1.4),(1.5),

u′′(r) + c(r)u(r) = 0, with c(r) :=
g(u(r))
u(r)

≥ c0 > 0.

Hence, Sturm’s comparison theorem (see p.2 in [23]) ensures that u vanishes somewhere, so that it cannot
be positive in [0,+∞), a contradiction. Hence, u attains a zero and the proof is finished. �

Remark 2.4. There are many contributions concerning (1.1) in dimension N = 1, mainly related to some
resonance phenomena. In this context, some “Landesman–Lazer” type conditions, joint with suitable hy-
potheses on the nonlinearity g, are assumed in oder to obtain existence of bounded, periodic or oscillating
solution, eventually with arbitrarily large L∞ norm, by taking advantage of the presence on a forcing
term in the equation (see [20,26] and the references therein). Here the situation is different, as we do
not need any monotonicity assumption on g, nor the knowledge of the asymptotic behaviour at infinity
of g is important, as it is in [20,26]. Moreover, our solutions satisfy a uniform L∞ bound, so that the
phenomenon we are dealing with is actually different from the resonant one.

Next, we consider the initial value problem (2.1) in the higher-dimensional case N ≥ 2. Again, we may
restrict our attention to the case α ≥ 0. As before we will denote by G the primitive of g with G(0) = 0.
The following result furnishes the study of the solution set which are needed in the proof of Theorem 1.2.
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Again, the uniquely determined solution of the initial value problem (2.1) will be denoted by uα with
maximal existence interval (−Tα, Tα).

Lemma 2.5. Let N ≥ 2. Then the following holds:

(i) If α = α0 ∈ R then uα ≡ α0 and if α = 0 then uα ≡ 0.
(ii) If α > α0 then uα strictly increases to +∞ on [0, Tα).
(iii) If 0 < α < α0 then uα is oscillating, localized and satisfies

‖uα‖L∞(R) = |α| and ‖u′
α‖L∞(R) ≤

√
2G(α) (2.3)

as well as

cαr(1−N)/2 ≤ |uα(r)| + |u′
α(r)| + |u′′

α(r)| ≤ Cαr(1−N)/2 for r ≥ 1 (2.4)

for some cα, Cα > 0 depending on the solution but not on r.

Proof. The existence and uniqueness of a twice continuously differentiable solution uα : (−Tα, Tα) → R

can be deduced from Theorem 1 and Theorem 2 in [18]. We write again u, T in place of uα, Tα. The proof
of (i) is direct and assertion (ii) follows similar to the one-dimensional case. Indeed, note that u′′(0) > 0
because of

Nu′′(0) = lim
r→0+

u′′(r) + N−1
r u′(r) = −g(u(0)) = −g(α) > 0.

Then, letting ξ := sup{s ∈ (0, T ) : u′(s) > 0}, it results ξ ∈ (0, T ]. Assuming by contradiction that ξ < T
and using that α > α0, from (1.5) we obtain

ξN−1u′(ξ) = −
ξ∫

0

tN−1g(u(t)) dt > 0

which is impossible, i.e. ξ = T . Then, (2.1),(1.5) and the maximality of T yield (ii). The proof of (iii) is
lengthy so that it will be subdivided into four steps.

Step 1 : u decreases to a first zero For all r > 0 such that 0 < u < α0 on [0, r] we have

rN−1u′(r) = −
r∫

0

tN−1g(u(t)) dt < 0,

showing that u decreases as long as it remains positive, as in the one-dimensional case. Moreover, the
function u cannot remain positive on [0,∞) because otherwise v(r) := r(N−1)/2u(r) would be a positive
solution of

v′′ + c(r)v = 0 where c(r) =
g(u(r))
u(r)

− (N − 1)(N − 3)
4r2

. (2.5)

As in the proof of Proposition 2.3, we observe c(r) ≥ c0 > 0 for sufficiently large r so that Sturm’s
comparison theorem tells us that v vanishes somewhere. This is a contradiction to the positivity of u and
thus u attains a first zero.

Step 2 : u oscillates and satisfies (2.3) Let us first show that there are 0 = r0 < r1 < r2 < r3 < · · ·
such that all r4j are local maximizers, all r4j+2 are local minimizers and all r2j+1 are zeros of u. Moreover,
we will find that all zeros or critical points of u are elements of this sequence and

2G(u(r0)) > u′(r1)2 > 2G(u(r2)) > u′(r3)2 > 2G(u(r4)) > · · · (2.6)

In order to prove this, we consider the function

Z(r) := u′(r)2 + 2G(u(r)), (2.7)
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and we observe that Z decreases as

Z ′(r) = 2u′(r)(u′′(r) + g(u(r))) = −2(N − 1)
r

u′(r)2 < 0. (2.8)

The existence of a first zero r1 > 0 = r0 of u has been shown in Step 1, and the strict monotonicity of Z
implies Z(r1) < Z(r0). Concerning the behaviour of u on [r1,∞), there are now three alternatives:

(a) u decreases until it attains −u(r0)
(b) u decreases on [r1,∞) to some value u∞ ∈ [−u(r0), 0)
(c) u decreases until it attains a critical point at some r2 > r1 with −u(r0) < u(r2) < 0.

Let us show that the cases (a) and (b) do not occur. Indeed, if there exists r > r0 such that u(r) = −u(r0),
then, by (2.7) we deduce that

Z(r) ≥ 2G(u(r)) = 2G(u(r0)) = Z(r0)

which is forbidden by (2.8). Hence, the case (a) is impossible. Let us now suppose that (b) holds. Then
u∞ has to be a stationary solution of (2.1) and thus u∞ = −α0 = −u(r0). But then

Z(r) ≥ 2G(u(r)) → 2G(u∞) = 2G(−u(r0)) = Z(r0) as r → ∞

which again contradicts (2.8). So the case (c) occurs and there must be a critical point r2 with

2G(u(r2)) = Z(r2) < Z(r1) = u′(r1)2 < Z(r0) = 2G(u(r0)),

so that (2.1), (1.5) and (1.3) yield

0 > u(r2) > −u(r0) and u′(r2) = 0, u′′(r2) > 0.

Hence, r2 is a local minimizer. Using that Z is decreasing we can now repeat the argument to get a zero
r3 > r2, a local maximizer r4 > r3, a zero r5 > r4 and so on. By the strict monotonicity of Z, one obtains
(2.6) and thus (2.3). Notice that this reasoning also shows that there are no further zeros or critical
points.

Step 3 : u is localized First we show u(r) → 0 as r → ∞. Our proof is similar to the one of
Lemma 4.1 in [16] and it will be presented for the convenience of the reader. Take the sequence of
maximizers {r4j} and assume by contradiction that u(r4j) → z ∈ (0, α0). Then (2.1) and the Ascoli–
Arzelà theorem imply that u(· + r4j) converges locally uniformly to the unique solution w of (2.2) with
w(0) = z, w′(0) = 0. Proposition 2.3, (iii) implies that this solution w is T -periodic with two zeroes at
T/4, 3T/4. As a consequence, there exists δ > 0 such that |w′|2 ≥ 2δ on [T/4 − 2δ, T/4 + 2δ]. Hence, for
sufficiently large j0 ∈ N we have for j ≥ j0

u′(r4j + r)2 ≥ δ for r ∈ [T/4 − δ, T/4 + δ] and r4(j+1) − r4j ≤ T + δ.

From this, we deduce for j ≥ j0

u′(r)2 ≥ δ, for r ∈ [r4j + T/4 − δ, r4j + T/4 + δ], (2.9)

r4j ≤ r4j0 + (j − j0)(T + δ) for j ≥ j0. (2.10)
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Then, for k ≥ j0 and r > r4k + T/4 + δ we may exploit (2.8) and (2.9) to obtain

Z(r) = Z(0) − 2(N − 1)

r∫

0

u′(t)2

t
dt

≤ Z(0) − 2(N − 1)
k∑

j=j0

r4j+T/4+δ∫

r4j+T/4−δ

u′(t)2

t
dt

≤ Z(0) − 2(N − 1)δ
k∑

j=j0

r4j+T/4+δ∫

r4j+T/4−δ

1
t

dt

= Z(0) − 2(N − 1)δ
k∑

j=j0

ln

(
r4j + T

4 + δ

r4j + T
4 − δ

)

.

Let us fix c(δ) > 0 such that ln(1 + x) ≥ c(δ)x for 0 ≤ x ≤ 2δ/(r4j0 + T
4 − δ). Then (2.10) implies

Z(r) ≤ Z(0) − 2(N − 1)δc(δ)
k∑

j=j0

2δ

r4j + T
4 − δ

≤ Z(0) − 2(N − 1)δc(δ)
k∑

j=j0

2δ

r4j0 + (j − j0)(T + δ) + T
4 − δ

.

Choosing now k, r sufficiently large, we obtain that Z(r) → −∞ because the harmonic series diverges,
but (2.3) implies that Z(r) ≥ 2G(u(r)) ≥ 0, yielding a contradiction. As a consequence, u(r4j) converges
to zero as j → ∞ and analogously we deduce that also u(r4j+2) → 0. In the end, we obtain u(r) → 0 as
r → +∞.

Since Z is decreasing and nonnegative, it follows that Z(r) → Z∞ ∈ [0, Z(0)) as r → ∞. Hence, by
(2.7), also |u′| has a limit at infinity which must be zero because u converges to 0. Finally, from the
differential equation we deduce that u′′(r) → 0 as r → ∞, i.e.

u(r), u′(r), u′′(r) → 0 (r → ∞). (2.11)

As in Lemma 4.2 in [16], we get that for any ε > 0 there exists Cε > 0 such that

|u(r)|, |u′(r)|, |u′′(r)| ≤ Cεr
1−N

2 +ε (r ≥ 1). (2.12)

Step 4 : Proof of (2.4) Slightly generalizing the approach from the proof of Theorem 4 in [12], we
study the function

ψ(r) := v′(r)2 + 2rN−1G(u(r)), where v(r) = r(N−1)/2u. (2.13)

Using the function c from (2.5) and taking into account (2.1), we obtain that ψ satisfies the following
differential equation

ψ′(r) = 2v′(r) [−c(r)v(r)] + 2r(N−1)/2g(u(r))
[
v′(r) − N − 1

2
r(N−3)/2u(r)

]

+ 2(N − 1)rN−2G(u(r))

= (N − 1)rN−2 (2G(u(r)) − u(r)g(u(r))) +
(N − 1)(N − 3)

2r2
v(r)v′(r).
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Using (2.11) as well as (1.4), (1.5), we obtain that there exist C, r0 > 0 such that

u(r)2

G(u(r))
≤ C ∀ r ≥ r0. (2.14)

Then, exploiting (1.2) and (2.12), we find C ′, C ′′, r∗ > 0 such that, for all r ≥ r∗, it results
∣∣(N − 1)rN−2 (2G(u(r)) − u(r)g(u(r)))

∣∣

≤ (N − 1)C
2r

|2G(u(r)) − u(r)g(u(r))|
u(r)2

· 2rN−1G(u(r))

≤ C ′

r
|u(r)|σψ(r)

≤ C ′′r−1+( 1−N
2 +ε)σψ(r).

Moreover, using (2.13) and (2.14), we get
∣∣∣
(N − 1)(N − 3)

2r2
v(r)v′(r)

∣∣∣ ≤ |(N − 1)(N − 3)|
r2

· (v(r)2 + v′(r)2)

≤ |(N − 1)(N − 3)|
r2

· (CrN−1G(u(r)) + v′(r)2)

≤ |(N − 1)(N − 3)|(C + 1)
r2

· ψ(r).

This yields |ψ′(r)| ≤ a(r)ψ(r) for r ≥ r∗ and some positive integrable function a. Dividing this inequality
by the positive function ψ(r) and integrating the resulting inequality over [r∗,∞) shows that ψ is bounded
from below and from above by a positive number. From this, we obtain the lower and upper bounds (2.4)
and the proof is finished. �

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us define the set

C = {uα(| · |) ∈ C2(RN ) : |α| < α0}
where uα denotes the unique solution of the initial value problem (2.1). The set C is a subset of C2(RN ),
and it is a continuum in C2

loc(R
N ) thanks to the Ascoli–Arzelà theorem. The claims for the one-dimensional

situation N = 1 follow from Proposition 2.3. In the case N ≥ 2, we get from Lemma 2.5 that all elements
of C are oscillating localized solutions satisfying (2.3) and (2.4). �

Remark 2.6. Let us mention that an analogous result to Theorem 1.2 is Theorem 1 [15], which applies
to a more restrictive class of nonlinearities. Moreover, the above theorem is related to Theorem 4 in [12]
but we do not need their assumption (g2). Actually, this hypothesis is not satisfied in our model cases
g = g1 or g = g2.

Remark 2.7. The arguments from the proof of Theorem 1.2 also show the existence of oscillating localized
solutions to initial value problems which are not of nonlinear Helmholtz type. For instance, one can treat
concave–convex problems such as

− Δu = λ|u|q−2u + μ|u|p−2u in R
N , (2.15)

for 1 < q < 2 < p < ∞ with λ > 0, μ ∈ R, see, for instance, [1] or [4] for corresponding results on a
bounded domain with homogeneous Dirichlet boundary conditions. The existence of solutions is provided
by Theorem 1 in [18] so that the steps 1,2,3 are proven in the same way as above and we obtain infinitely
many radially symmetric, oscillating, localized, solutions of (2.15).
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Remark 2.8. Using nonlinear oscillation theorems instead of Sturm’s comparison theorem, we can even
extend the above observation towards superlinear nonlinearities g satisfying λ|z|q ≤ g(z)z ≤ Λ|z|q for

2 < q ≤ 2(N + 1)
N − 1

, N ∈ {1, 2, 3} or 2 < q ≤ 2(N − 1)
N − 2

, N ≥ 4.

Indeed, in the first case the function c from (2.5) satisfies the estimate c(r) ≥ λr(1−N)(q−2)/2|v(r)|q−2 so
that Atkinson’s oscillation criterion applies, see the first line and third column of the table on p.153 in
[24]. In the second case, Noussair’s oscillation criterion result can be used in order finish step 1, see the
third line and third column of the table on p.153 in [24].

Remark 2.9. If z 
→ g(z)/z is decreasing, then one can show that the first zero of uα is greater than the
first zero of uα̃ whenever 0 < α̃ < α < α0. Indeed, we set u := uα, v := uα̃. Then the interval

I := {t > 0 : u(s) > v(s) > 0 for all s ∈ (0, t)}
is open, connected and nonempty and thus I = (0, r∗) for some r∗ > 0. On its right boundary, we have
either u(r∗) = v(r∗) ≥ 0 or u(r∗) > v(r∗) = 0; so it remains to exclude the first possibility. Using
u > v > 0 on I and (2.1), we have

(
rN−1(u′v − v′u)

)′ = rN−1uv
(g(v)

v
− g(u)

u

)
> 0 on I. (2.16)

Integrating (2.16) from 0 to r∗, the assumption u(r∗) = v(r∗) leads to

0 < (u′v − v′u)(r∗) = u(r∗)(u − v)′(r∗),

then u(r∗) = v(r∗) > 0 and (u−v)′(r∗) > 0. On the other hand, u−v > 0 on I = (0, r∗) and (u−v)(r∗) = 0
implies (u − v)′(r∗) ≤ 0, a contradiction. Thus u(r∗) > v(r∗) = 0 so that the first zero of v comes before
the first zero of u.

2.2. The nonautonomous case

In this section, we generalize Theorem 1.2 to a nonautonomous setting. Our aim is to identify mild
assumptions on a nonautonomous nonlinearity g that ensure the existence of a continuum of oscillating
localized solutions of the initial value problems

− u′′ − N − 1
r

u′ = g(r, u), u(0) = α, u′(0) = 0 (2.17)

that behave like r(1−N)/2 at infinity in the sense of (2.4). Before formulating such assumptions and
stating the corresponding existence result, let us mention that our result applies to the nonlinearities
(1.8), (1.9) under suitable conditions on the coefficient functions. This will be seen in Corollary 2.12 and
Corollary 2.14 at the end of this section. Our existence results for (2.17) will be proven assuming that

g ∈ C([0,+∞) × R,R) is continuously differentiable w.r.t. r. (2.18)

Moreover, we suppose that there exist positive numbers α∗, α∗, λ,Λ and a locally Lipschitz continuous
function g∞ : R → R such that

lim
r→∞ g(r, ·) = g∞(·) uniformly on [−α∗, α∗] (2.19)

gr(r, z)z ≤ 0 on [0,+∞) × [−α∗, α∗], (2.20)

λz2 ≤ g∞(z)z ≤ g(r, z)z ≤ Λz2 on [0,+∞) × [−α∗, α∗]. (2.21)

These assumptions will allow us to prove the mere existence of an oscillating localized solution. In order
to show the desired asymptotic behaviour, we need some extra condition “at infinity” where r is large



ZAMP Oscillating solutions for nonlinear Helmholtz equations Page 11 of 19 121

and the solution itself is small: We will assume that there exist ε, σ, C > 0 and some integrable function
k such that

|2G(r, z) − zg(r, z)| ≤ Cz2| ln(z)|−1−σ, |z| ≤ ε, r ≥ ε−1 (2.22)

gr(r, z)z ≥ −k(r)z2, |z| ≤ ε, r ≥ ε−1. (2.23)

These assumptions are rather technical but can be verified easily in concrete situations as we show in the
proof of Corollary 2.12. Let us remark that our assumptions (1.2),(1.3),(1.4) and (1.5) in the autonomous
case (for any choice α∗ = α∗ ∈ (0, α0)) are more restrictive than the assumptions used above. For instance,
oddness of g is no longer required and (2.22) replaces the C1,σ

loc -assumption. In particular, the following
theorem generalizes our result for the autonomous case.

Theorem 2.10. Let N ≥ 2 and assume (2.19),(2.20),(2.21) as well as

G(0, α) ≤ min{G∞(−α∗), G∞(α∗)} for α ∈ [−α∗, α∗]. (2.24)

Then there is an oscillating, localized solution u of (2.17) that satisfies u(0) = α as well as

‖u‖L∞(R) ≤ max{α∗, α∗} and ‖u′‖L∞(R) ≤
√

2G(0, α). (2.25)

Moreover, if (2.22) and (2.23) hold, then we can find c, C > 0 such that

cr(1−N)/2 ≤ |u(r)| + |u′(r)| + |u′′(r)| ≤ Cr(1−N)/2 for r ≥ 1. (2.26)

Proof. The proof of our result follows the same argument of the proof of Theorem 1.2, so we only mention
the main differences. For simplicity, we only treat the case α > 0. The existence of a maximally extended
solution of (2.17) follows from a Peano type existence theorem for singular initial value problems, see
Theorem 1 in [18].

Step 1 is proven as in the autonomous case where the function c from (2.5) has to be replaced by
c(r) = g(r, u(r))/u(r)− (N − 1)(N − 3)/4r2. Assumption (2.21) ensures that c is bounded from below by
a positive constant as long as 0 ≤ u(r) < α so that u has to attain a first zero. In step 2, one shows that
Z(r) := u′(r)2 + 2G(r, u(r)) is nondecreasing due to Gr(r, u(r)) ≤ 0 for −α∗ ≤ u(r) ≤ α∗, see (2.20).
Arguing as in the autonomous case we find that u decreases until it attains a local minimum at some
r2 > r1 with −α∗ < u(r2) < 0. More precisely, one finds a sequence (rj) such that all r2j are critical
points and all r2j+1 are zeros of u with the additional property (the counterpart to (2.6))

2G(r0, u(r0)) > u′(r1)2 > 2G(r2, u(r2)) > u′(r3)2 > 2G(r4, u(r4)) > . . . .

This and G(r0, u(r0)) = G(0, α) yield the L∞-bounds for u′, whereas the L∞-bounds follow from −α∗ <
u(r2j) < α∗ for all j ∈ N. Hence, (2.25) is proved so that step 2 is finished. Step 3 is the same as in the
proof of Theorem 1.2. Since the reasoning of Lemma 4.2 in [16] may be adapted to our nonautonomous
(but asymptotically autonomous) problem, we also find (2.12), i.e.

|u(r)|, |u′(r)|, |u′′(r)| ≤ Cεr
1−N

2 +ε (r ≥ 1). (2.27)

In step 4, we use (2.22),(2.23) in order to study the asymptotics of the function

ψ(r) := v′(r)2 + 2rN−1G(r, u(r))

where v(r) := r(N−1)/2u(r). One shows

ψ′(r) = 2rN−1G(r, u(r))
(

N − 1
r

2G(r, u(r)) − u(r)g(r, u(r))
2G(r, u(r))

+
Gr(r, u(r))
G(r, u(r))

)

+
(N − 1)(N − 3)

2r2
v(r)v′(r).
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From (2.23), we get for sufficiently large r ≥ r∗ the estimate |Gr(r, u(r))| ≤ k(r)
λ G(r, u(r)). Moreover,

with an analogous inequality as in (2.14) as well as (2.22),(2.27) we obtain
∣∣∣
∣
2G(r, u(r)) − u(r)g(r, u(r))

2G(r, u(r))

∣∣∣
∣ ≤

∣∣∣
∣
2G(r, u(r)) − u(r)g(r, u(r))

λu(r)2

∣∣∣
∣

≤ C| ln(u(r))|−1−σ

≤ C ′ ln(r)−1−σ

so that we may find as in the autonomous case a positive integrable function a such that |ψ′(r)| ≤ a(r)ψ(r).
This shows that ψ is bounded from below and from above by a positive number. From this and

λz2 ≤ 2G∞(z) ≤ 2G(r, z) ≤ Λz2 on [0,+∞) × [−α∗, α∗],

which is a consequence of (2.21), we obtain the lower and upper bounds (2.26) and the proof is finished. �

Remark 2.11. Let us stress that Theorem 2.10 is stated for N ≥ 2 since we are focused on localized
solution, but we could also prove the nonautonomous counterpart of Theorem 1.2 for N = 1.

Finally, let us apply Theorem 2.10 to the special nonlinearities g1, g2 given in (1.8), (1.9). We obtain
the following results.

Corollary 2.12. Let N ≥ 2, p > 2 and suppose that k,Q ∈ C1([0,+∞),R) are nonincreasing functions
with limits k∞ > 0 and Q∞ ∈ R, respectively. Then there is a nonempty open interval I containing 0
and a continuum C = {uα ∈ C2(RN ) : α ∈ I} in C2

loc(R
N ) consisting of radially symmetric oscillating

classical solutions of the equation

−Δu − k(|x|)2u = Q(|x|)|u|p−2u in R
N

having the properties (2.25), (2.26) stated in Theorem 2.10. In case Q∞ ≥ 0, we have I = R.

Proof. We set

g(r, z) = k(r)2z + Q(r)|z|p−2z, g∞(z) = k2
∞z + Q∞|z|p−2z

and

G(r, z) =
k(r)2

2
z2 +

Q(r)
p

|z|p, G∞(z) =
k2

∞
2

z2 +
Q∞
p

|z|p.

By the regularity assumptions on k,Q we have (2.18). Moreover, k′, Q′ ≤ 0 implies gr(r, z)z ≤ 0 for all
z ∈ R and thus (2.20). We set

I :=
{

α ∈ R : G(0, α) < sup
R

G∞

}

=
{

α ∈ R : G(0, α) <
(1
2

− 1
p

)
k2

∞
( k2

∞
(Q∞)−

) 2
p−2

}
.

(2.28)

Here, (Q∞)− = max{−Q∞, 0}. For any given α ∈ I, we can choose

0 < α∗ = α∗ <
( k2

∞
(Q∞)−

) 1
p−2

s.t. G∞(−α∗) = G∞(α∗) = G(0, α).

For this choice of α∗, α∗ assumption (2.21) holds. Finally, (2.22) follows from 2G(r, z)−zg(r, z) = O(|z|p)
as z → 0 uniformly with respect to r and (2.23) holds because gr(r, z)z ≥ (2k(r)k′(r) + Q′(r))z2 for
|z| ≤ 1. Hence, all assumptions of Theorem 2.10 are satisfied and the existence of solutions of (2.17)
follows. Due to the unique solvability of these initial value problems and the theorem of Ascoli–Arzelà,
they form a continuum in C2

loc(R). Finally we remark that (2.28) implies I = R whenever Q∞ ≥ 0. �
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Remark 2.13. Theorem 2.10 extends Theorem 4 in [12] in various directions. First of all, it provides
more qualitative information of the solutions such as the W 1,∞-bounds, the oscillating behaviour of the
solutions and the lower bounds for their decay at infinity. Additionally, we do not assume any global
positivity assumption on f . Furthermore, our assumption (2.22) is not covered by the hypotheses in [12].

The following result can be proved similarly and we state it for completeness.

Corollary 2.14. Let N ≥ 2 and suppose that λ, s ∈ C1([0,+∞),R) are nondecreasing functions with limits
λ∞, s∞, respectively, such that s is positive and λ∞ < 1/s∞. Then there is a nonempty open interval I
containing 0 and a continuum C = {uα ∈ C2(RN ) : α ∈ I} in C2

loc(R
N ) consisting of radially symmetric

oscillating classical solutions of the equation

−Δu + λ(|x|)u =
u

s(|x|) + u2
in R

N

having the properties (2.25), (2.26) from Theorem 2.10. In the case λ∞ ≤ 0, we have I = R.

3. Nonradial solutions

In this section, we study equation (1.10) proving Theorems 1.3 and 1.4. We will follow the argument
introduced in [13] adapting their methods to our context. First note that, up to rescaling, we may assume
k = 1 in the following. Let us introduce some notations in order to facilitate the reading. Let Ψ be the
real part of the fundamental solution of the Helmholtz equation −Δ − 1 on R

N (see e.g. (11) in [13] ).
Performing the transformation v = |Q|1/p′ |u|p−2u for 1

p + 1
p′ = 1, our problem amounts to solving

|v|p′−2v = −|Q|1/p[Ψ ∗ (|Q|1/pv)] in R
N . (3.1)

Notice that the right-hand side comes with a negative sign in contrast to [13]. This is because we assume
Q to be negative so that Q = −|Q|. Let us introduce the linear operators R, Kp : Lp′

(RN ) → Lp(RN )
defined by

R(v) = Ψ ∗ v, Kp(v) = |Q|1/pR(|Q|1/pv).

Both R and Kp are continuous and we have for all f, g ∈ Lp′
(RN )

∫

RN

fR(g) =
∫

RN

f(Ψ ∗ g) = lim
ε→0

∫

RN

(|ξ|2 − 1)f̂(ξ)ĝ(ξ)
(|ξ|2 − 1)2 + ε2

dξ, (3.2)

where f̂ , ĝ are the Fourier transforms of f and g, respectively. In view of the variational structure of (3.1),
we define the functionals J, J̄ : Lp′

(RN ) → R via the formulas

J(v) :=
1
p′

∫

RN

|v|p′ − 1
2

∫

RN

vKp(v),

J̄(v) :=
1
p′

∫

RN

|v|p′
+

1
2

∫

RN

vKp(v),

so that the solutions of (3.1) are precisely the critical points of J̄ , see (49) in [13]. Notice that the functional
J is used when Q is positive. Our main observation is that not only J but also J̄ has the mountain
pass geometry. This follows from the following Lemmas which are the counterparts of Lemma 4.2 and
Lemma 5.1 in [13]. In the following, we will denote with ‖ · ‖q the standard norm in the Lebesgue space
Lq(RN ).

Lemma 3.1. Under the assumptions of Theorem 1.3, there is a function v0 ∈ Lp′
(RN ) such that ‖v0‖p′ >

1, J̄(v0) < 0.
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Proof. As in Lemma 4.2 (ii) [13], it suffices to prove
∫

RN

zKpz < 0

for some z ∈ Lp′
(RN ) because then one may take v0 := tz for sufficiently large |t|. To this end, let

y ∈ S(RN ) be a nontrivial Schwartz function satisfying supp(ŷ) ⊂ B1(0). For δ > 0 we set

zδ := y|Q|−1/p1{|Q|>δ}, μ :=
∫

supp(ŷ)

|ŷ(ξ)|2
|ξ|2 − 1

dξ < 0,

where 1{|Q|>δ} is the indicator function of the set {x ∈ R
N : |Q(x)| > δ}. Then we have zδ ∈ Lp′

(RN )
and thus Kpzδ ∈ Lp(RN ). Hence, by definition of Kp, the function yδ := |Q|1/pzδ = y · 1{|Q|>δ} satisfies

∫

RN

zδ(Kpzδ) =
∫

RN

|Q|1/pzδR(|Q|1/pzδ) =
∫

RN

yδR(yδ).

Since we have |Q| > 0 almost everywhere, we get yδ → y in Lp′
(RN ) as δ → 0+. Thus the continuity of

R implies that we can choose δ > 0 so small that the following holds:
∫

RN

zδ(Kpzδ) <

∫

RN

yR(y) +
|μ|
2

.

From this and (3.2), we infer
∫

RN

zδ(Kpzδ) < lim
ε→0

∫

RN

(|ξ|2 − 1)|ŷ(ξ)|2
(|ξ|2 − 1)2 + ε2

dξ +
|μ|
2

= μ +
|μ|
2

< 0

which is all we had to show. �

Lemma 3.2. Let the assumptions of Theorem 1.4 hold. Then for every m ∈ N there is an m-dimensional
subspace W ⊂ Lp′

(RN ) with the following properties:

(i)
∫

RN

vKpv < 0 for all v ∈ W \ {0}.

(ii) There exists R = R(W) > 0 such that J̄(v) ≤ 0 for every v ∈ W with ‖v‖p′ ≥ R.

Proof. Let y1, . . . , ym ∈ S(RN ) be nontrivial Schwartz functions such that
m⋃

j=1

supp(ŷj) ⊂ B1(0), supp(ŷj) ∩ supp(ŷi) = ∅ (i �= j). (3.3)

For sufficiently small δ > 0, we then define

W := span{z1
δ , . . . , zm

δ } where zj
δ := yj |Q|−1/p1{|Q|>δ}.

Then (3.3) implies that W is m-dimensional and similar calculations as above show (i) and (ii). �

With the aid of the above lemmas, the proofs of our theorems are essentially the same as in [13]. We
indicate the main steps for the convenience of the reader.
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Proof of Theorem 1.3: Under the given assumptions, J̄ has the mountain pass geometry. Indeed, as in
the parts (i), (iii) of Lemma 4.2 in [13] one proves that 0 is a strict local minimum and the boundedness
of Palais–Smale sequences of J̄ . In Lemma 3.1, we proved that there is a v0 ∈ Lp′

(RN ) such that
‖v0‖p′ > 1, J̄(v0) < 0. Hence, as in Lemma 6.1 [13] the Deformation Lemma implies the existence of
a bounded Palais–Smale sequence (vm) for J̄ at its mountain pass level c̄ > 0. Similar to the proof of
Theorem 6.2 in [13], one has

lim
m→∞

∫

RN

|Q|1/pvmR(|Q|1/pvm) =
2p′

2 − p′ lim
m→∞

[
− J̄(vm) +

1
p′ J̄

′(vm)[vm]
]

= − 2p′

2 − p′ c̄ < 0.

Then, Theorem 3.1 in [13] implies that there are R, ζ > 0 and points xm ∈ R
N and a subsequence, still

denoted with (vm), such that
∫

BR(xm)

|vm|p′ ≥ ζ > 0.

From this point on the reasoning is the same as in [13] and we obtain that (vm) converges weakly to
a nontrivial solution v of (1.10) and the solution u of the original equation may be found via u =
R(|Q|1/pv) ∈ Lp(RN ). In particular, u satisfies (1.10) and

lim
|x|→∞

∫

|x−y|≤1

|u(y)|p dy = 0

so that replacing 2 by p in the proof of Theorem C.3.1 in [19] one proves u(x) → 0 as |x| → ∞, namely
that u is localized. This implies

Δu + (k2 + o(1))u = 0, as |x| → ∞
so that the PDE version of Sturm’s comparison principle (see, for instance, Theorem 5.1 in [23]) and the
strong maximum principle shows that u is oscillating. �

Proof of Theorem 1.4: Lemma 3.2 yields all the required geometrical features of the symmetric mountain
pass theorem (see Theorem 6.5 in [22]). Moreover, Lemma 5.2 in [13] implies that the Palais–Smale
condition holds for J̄ , giving the existence of pairs of nontrivial localized solutions. The oscillation property
follows again from Theorem 5.1 in [23]. �

4. On the approximation by bounded domains

In this section, we briefly address the question whether localized solutions of (1.1) can be approximated
by solutions of the corresponding homogeneous Dirichlet problem on a large bounded domain. We are
going to show that this method does not work in general. More precisely, we will prove that the positive
minimizers of the Euler functionals associated with the problem on bounded domains diverge in H1(RN )
as the domains approach R

N. Even though the divergence will only be proved for the sequence of mini-
mizers, we believe that the analogous phenomenon occurs for broader classes of finite energy solutions,
e.g. constrained minimizers, or solutions with a given upper bound on their nodal domains or on their
Morse index. Throughout this section, we will assume that the nonlinearity g satisfies the hypotheses
(1.2),(1.3),(1.4) as well as (1.5) with α0 ∈ (0,+∞), in order to avoid some sub-critical growth conditions
(see Remark 4.3).
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Let Ω ⊂ R
N be a bounded domain, and consider the variational problem

cΩ := inf
H1

0 (Ω)
IΩ where IΩ(u) =

1
2

∫

Ω

|∇u|2 −
∫

Ω

G(u)

where G(z) denotes the primitive of g such that G(0) = 0. Notice that (1.2),(1.4),(1.5) imply G(z) ≤ C|z|2
for some C > 0 and for all z ∈ R, so that IΩ : H1

0 (Ω) 
→ R ∪ {+∞} is well defined. Bounded critical
points of IΩ are classical solutions of the boundary value problem

{
−Δw = g(w) in Ω,

w ∈ H1
0 (Ω).

(4.1)

In the following proposition, we show that IΩ admits a positive minimizer provided g′(0) > λ1(Ω) holds.
More precisely, we have the following result.

Proposition 4.1. Let Ω ⊂ R
N be a bounded domain and in addition to (1.2),(1.3),(1.4),(1.5) assume

g′(0) > λ1(Ω). Then, there exists a global minimizer uΩ of IΩ in H1
0 (Ω) which is a solution of (4.1)

satisfying 0 < uΩ < α0 in Ω.

Proof. Hypotheses (1.3) and (1.5) imply that G(z) ≤ G(α0) holds for every z ∈ R. Hence, for all u ∈
H1

0 (Ω) we have

IΩ(u) ≥ 1
2

∫

Ω

|∇u|2 −
∫

Ω

G(α0) =
1
2

∫

Ω

|∇u|2 − |Ω|G(α0),

which shows that IΩ is coercive and bounded from below. Moreover, if φ1 denotes the eigenfunction
associated to λ1(Ω), then

lim
t→0

IΩ(tφ1)
t2

=
1
2

∫

Ω

|∇φ1|2 − G′′(0)φ2
1 =

1
2

(
λ1(Ω) − g′(0)

) ∫

Ω

φ2
1 < 0,

so that cΩ < 0 = IΩ(0). Additionally, IΩ is weakly sequentially lower semicontinuous so that there exists
a minimizer uΩ, which must be nontrivial because of cΩ < 0. We may assume 0 ≤ uΩ ≤ α0 because
min{|uΩ|, α0} ∈ H1

0 (Ω) is another minimizer of IΩ. From the strong maximum principle, we deduce that
uΩ satisfies 0 < uΩ < α0 in Ω as it is nontrivial. �

Remarks 4.2. (a) If z 
→ g(z)/z is decreasing, then the condition g′(0) > λ1(Ω) is even necessary for
the existence of a positive solution u ∈ H1

0 (Ω). Indeed, testing (4.1) with u gives

λ1(Ω)
∫

Ω

u2 ≤
∫

Ω

|∇u|2 =
∫

Ω

g(u)u < g′(0)
∫

Ω

u2.

In particular, note that our model nonlinearities g1, g2 given in (1.6) and (1.7) satisfy this mono-
tonicity property.

(b) If Ω is smooth then Theorem 1 in [7] shows that the positive solution of (4.1) is unique provided
z 
→ g(z)/z is decreasing.

Remark 4.3. In this section, we do not consider the case α0 = +∞ in (1.5) because, without imposing
additional growth conditions, the functional IΩ may not be well defined in this case and, even if it were,
it need not be bounded from below.

Next we study the convergence of the minimizers obtained in Proposition 4.1. To this end, we consider a
sequence (Ωn) of bounded domains satisfying Ωn ⊂ Ωn+1 ⊂ R

N and
⋃

n∈N
Ωn = R

N . Since every compact
subset of RN is covered by finitely many of those bounded domains, we observe that λ1(Ωn) → 0 as n → ∞
so that, by the above proposition, the existence of positive minimizers is guaranteed for large n provided
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that (1.4) holds. We show that the minimizers converge to the constant solution α0 and therefore do not
give any new finite energy solution.

Theorem 4.4. Assume (1.2),(1.3),(1.4),(1.5) and let (Ωn) be a sequence of bounded domains such that
Ωn ⊆ Ωn+1 and ∪nΩn = R

N . Then, for all sufficiently large n, there exists a nontrivial minimizer un of
IΩn

on H1
0 (Ωn) having the following properties:

(a) 0 < un < α0 in Ωn,
(b) IΩn

(un) → −∞,
(c) un → α0 in C∞

loc(R
N ) and ‖un‖Lq(Ωn) → ∞ for all q ∈ [1,∞).

Proof. Since λ1(Ωn) → 0, taking into account (1.4) we find n0 such that, for every n ≥ n0, λ1(Ωn) < g′(0).
As a consequence, we can apply Proposition 4.1 to deduce that there exists a sequence (un)n≥n0 of positive
minimizers of IΩn

satisfying conclusion (a). In order to prove conclusion (b), let φ ∈ C∞
0 (Rn) be given

with ‖φ‖2 = ‖φ‖∞ = 1. For every k ∈ N we set

φk(x) =
1

kN/2
φ(x

k + ke1),

so that ‖φk‖2 = 1, ‖φk‖∞ ≤ 1, ‖∇φk‖2 → 0. Without loss of generality, we may assume σ ∈ (0, 1) from
hypothesis (1.2) to be so small that 2 + σ ∈ [2, 2N

N−2 ] holds provided N > 2. Exploiting (1.2) and (1.5),
we obtain positive constants A, C such that

g′(0)z2 − 2G(z) ≤ A|z|2+σ for |z| ≤ 1, ‖φk‖2+σ ≤ C.

Then, for a fixed positive t ≤ min{(g′(0)/(4AC))1/σ, 1} and sufficiently large k ≥ k0 we have ‖tφk‖∞ ≤ 1
so that the following estimate holds

2I(tφk) = t2
∫

RN

|∇φk|2 − g′(0)φ2
k +

∫

RN

(
g′(0)(tφk)2 − 2G(tφk)

)

≤ − g′(0)
2

t2 + A

∫

RN

|tφk|2+σ ≤ t2

2
(−g′(0) + 2tσAC) =: −E,

where E > 0 by the choice of t. Since the supports of (φk) go off to infinity we find some k1 ∈ N such
that for all k ≥ k1 it results

2I(tφk0 + tφk) ≤ E

2
+ 2I(tφk0) + 2I(tφk) ≤ −3

2
E.

Inductively, we find k2 < k3 < · · · such that for all k ≥ km we have

2I(tφk0 + tφk1 + · · · + tφk) ≤ E

2
+ 2I(tφk0 + tφk1 + · · · + tφkm−1) + 2I(tφk)

≤ −(1 + m/2)E.

Since for any given m ∈ N supp(tφk0 + tφk1 + · · · + tφk) ⊂ Ωn for sufficiently large n, the same estimate
holds true for IΩn

, yielding conclusion (b).
In order to show (c), note that the sequence (un) is made of minimizers of IΩn

so that
∫

Ωn

g′(un)φ2 ≤
∫

Ωn

|∇φ|2 for all φ ∈ C1
c (Ωn). (4.2)

By the Ascoli–Arzelà theorem and interior Schauder estimates, we find that (un) converges in C2
loc(R

N ) to
some limit function u ∈ C2(RN ) satisfying 0 ≤ u(x) ≤ α0 for all x ∈ R

N as well as (1.1). The Dominated
Convergence theorem allows to pass to the limit in (4.2) and we obtain

∫

RN

g′(u)φ2 ≤
∫

RN

|∇φ|2 for all φ ∈ C1
c (RN ),
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There are now three possibilities: either u ≡ 0 or u is nonconstant or u ≡ α0. As a consequence, it is left
to show that the first two possibilities do not occur.

First, assume by contraction that u ≡ 0, so that for any given compact K we have un → u uniformly
on K. Thanks to (1.4) we can find a sufficiently large n such that g(un)/un ≥ δ2 := g′(0)/2. We may
choose K so large such that the fundamental solution ψ of

Δψ + δ2ψ = 0

changes sign within K. Then the PDE version of Sturm’s comparison theorem (Theorem 5.1 in [23])
shows that un has a zero within K contradicting the positivity of un.

Assume now that u is nonconstant. Arguing as in the proof of Theorem 1.3 in [14] and applying
Proposition 1.4 in [14], one shows that u > 0 and ‖u‖∞ < α0. As a consequence, the constant

c0 := min
0≤s≤‖u‖∞

g(s)
s

turns out to be positive and, for any compact set K we can find n such that g(un)/un ≥ c0/2. Choosing
again K sufficiently large, we get a contradiction as above.

Hence, it turns out that u ≡ α0, and in particular, we get ‖un‖Lq(Ωn) → ∞ for all q ∈ [1,∞). �
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