
HAL Id: hal-02419447
https://hal.inria.fr/hal-02419447

Submitted on 4 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BGK Polyatomic Model for Rarefied Flows
Florian Bernard, Angelo Iollo, Gabriella Puppo

To cite this version:
Florian Bernard, Angelo Iollo, Gabriella Puppo. BGK Polyatomic Model for Rarefied Flows. Journal
of Scientific Computing, Springer Verlag, 2019, 78 (3), pp.1893-1916. �10.1007/s10915-018-0864-x�.
�hal-02419447�



BGK Polyatomic Model for Rarefied Flows

Florian BERNARD1, Angelo IOLLO1, and Gabriella PUPPO2

1Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France., INRIA, Team MEMPHIS, F-33400

Talence, France.
2Università dell’Insubria, Como

Abstract

In this work we present a new model of BGK type for polyatomic gases. The model incor-
porates the different relaxation rates of translational, rotational and/or vibrational modes
characterizing polyatomic molecules using a BGK-type equation, and additional relaxation
equations for the temperatures associated to each internal energy mode. We construct an
efficient numerical scheme which is implicit in the relaxation terms, and test the model and
the scheme on several problems, confirming the Asymptotic Preserving properties of the
scheme, and comparing the results provided by the model with experimental and DSMC
simulations, carried out on the full Boltzmann polyatomic equation.
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1 Introduction

We propose a simple model based on the BGK equation, extended to include polyatomic gases.
The energy of a monoatomic gas, in the absence of an external field, is stored entirely in the
kinetic energy of its molecules. In a polyatomic gas, energy is stored not only in the molecules
speed, but also in their internal rotational and vibrational modes. The state of a monoatomic
molecule can be completely described by the trajectory of a point in a phase space composed of
the different space directions available, and the corresponding directions of motion. The passage
from monoatomic to polyatomic gases implies that additional degrees of freedom should be
considered, because now the state of each molecule is given not only by its position and speed,
but also by its rotational and vibrational modes. Thus, the number of dimensions for the state
space of a polyatomic molecule increases with the complexity of the molecule.

The evolution of a polyatomic gas in non equilibrium conditions is clearly extremely im-
portant in applications. In many cases, for instance, air can be modelled as a gas composed
of biatomic molecules. However, most kinetic models deal with the case of a monoatomic gas.
The extension to the polyatomic case has been studied especially in the context of the full
Boltzmann equation, see for example the classic text by Cercignani, [13].

The structure of the Boltzmann equation is extremely complex, and its complexity naturally
increases for polyatomic gases. Thus, there is a strong interest to develop simplified models
for non equilibrium flows of polyatomic molecules, especially with the purpose of developing
effective and fast numerical methods, to accurately compute solutions of interest for engineering
applications.

A simplified kinetic model which is particularly effective in scientific computing is the BGK
model, [9]. BGK is derived from Boltzmann equation, assuming that the relaxation to equi-
librium is very fast, or that the flow is close to equilibrium. However, it is known that BGK
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provides good approximations to rarefied flows even in non equilibrium conditions, see the re-
cent [17], or [26, 2]. The more refined ES-BGK model moreover provides correct estimates for
the Prandtl number, and, as standard BGK, can be proven to satisfy entropy decay, [4]. The
popularity of BGK-like models is due to the fact that they provide the correct asymptotic limits,
but can also model effectively moderately non-equilibrium regimes.

The standard BGK model applies to a monoatomic gas. In the polyatomic case, it is neces-
sary to take into account the internal degrees of freedom of polyatomic molecules. The collisions
between molecules cannot be considered as elastic, because they result not only in kinetic en-
ergy exchanges between the molecules, but they also involve exchanges between rotational and
vibrational energies. Polyatomic corrections to kinetic models can be found in [10] or [14]. Here
we are more interested in the extension of BGK models to include polyatomic effects, see [27],
or [11] for an extension to the polyatomic case of the ES-BGK model. A possible alternative
is [23], which is used in [26] and [17], which, however, does not guarantee the positivity of the
distribution function.

Unlike previous models, we consider a BGK operator which relaxes on a local Maxwellian,
depending on different temperatures. This is coupled with a scalar relaxation equation that
drives the temperatures associated to the different degrees of freedom towards a global tem-
perature. The scalar equation is obtained imposing total energy conservation. We prove an
H-theorem for this model, which guarantees that the model satisfies the second principle of
thermodynamics, and that all temperatures remain positive thouroughout the evolution of the
gas (§2). We simplify the model considering an aggregate description of the dependence on the
internal energy degrees of freedom, based on reduced distribution functions in the spirit of [15].
Next, in §3, we derive an Asymptotic Preserving scheme, in the sense of [16]. In this fashion,
the numerical solution will capture the correct asymptotic. The scheme is based on [21], and is
implicit in the relaxation terms. The properties of the scheme and of the model are studied in
§3, where we study the solution of typical shock tube problems, for different γ-law gases, close
to the hydrodynamics regime. Then, we consider the shock structure, showing the effect of the
different collision frequencies characterizing the internal and the translational modes. We close
with two-dimensional problems, derived from aerospace applications.

The collision operator of the BGK model describes a relaxation towards a local Maxwellian,
determined by the density, the macroscopic local speed and temperature. To take into account
polyatomic effects, we include a multiple step relaxation, assuming that the different energy
degrees of freedom relax with different speeds. This means that we assume that the expected
kinetic energies of the different degrees of freedom are represented by different temperatures,
each relaxing with its own characteristic rate towards a final equilibrium temperature T . This
approach has already been used by [27], but the model described here has a simpler structure.
We note that the evolution of different temperatures appears also in experimental data, [24],
and DSMC simulations [26].

2 Kinetic models for polyatomic gases

The model we study is based on the BGK approach. The standard BGK model for a monoatomic
gas can be written as

∂f

∂t
+ ξ · ∇xf =

1

τ

(
Mf − f

)
, (1)

where Mf is the equilibrium distribution function in dimensionless form computed from macro-
scopic quantities. In the monoatomic case, it is expressed as

Mf (x, ξ, t) =
ρ(x, t)

(2πT (x, t))3/2
exp
(
− |ξ −U(x, t)|2

2T (x, t)

)
.
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The macroscopic quantity τ is the relaxation time that depends on local and global variables,
namely the local density and temperature, but also the reference viscosity µ0 at the reference
temperature T0, the reference density ρ0, the specific gas constant R and the characteristic
length of the problem L:

1

τ
=

√
RT0ρ0L

µ0
ρT 1−δ =

1

Kn∞
ρT 1−δ, (2)

where δ is the exponent of the viscosity law of the gas, and Kn∞ is the Knudsen number in
reference conditions.

The macroscopic quantities (the density ρ , the velocity U and the total energy E) charac-
terizing the flow can be recovered from the moments of f :

ρ =

∫
R3

fdξ

ρU =

∫
R3

ξfdξ

E =

∫
R3

|ξ|2

2
fdξ

(3)

In the following section, we describe the extension we propose to the polyatomic case.

2.1 A BGK based model

The idea is to add additional energy degrees of freedom in the expression of the Maxwellian
distribution function. This is done increasing the dimensions d of the space of microscopic
speeds. We treat these additional variables as microscopic velocities, so that their expected
value at the macroscopic scale is zero, implying that they do not contribute to the macroscopic
velocity of the gas. However, we can associate an internal energy to the effect of these variables
on the distribution function, computing their second moment. Moreover, we consider a general
case where the energy is not equally distributed between the energy degrees of freedom.

First, we state the notation that will be used throughout. Let n be the number of transla-
tional degrees of freedom (which usually coincides with the number of space dimensions) and
r be the number of the rotational and vibrational degrees of freedom, mimicking the internal
structure of the molecule, with d = n + r. Denote by η ∈ Rd the vector of all energy degrees
of freedom, and of these ξ ∈ Rn will be used to single out the translational degrees of freedom
(then η = ξ for the BGK model of a monoatomic gas). Further, η ∈ Rd will be the macroscopic
value on which the equilibrium function is centred (the macroscopic velocity U in the case of the
monoatomic BGK model), λ ∈ Rd is the vector of the coefficients giving the distribution of the
energy between the degrees of freedom (this coincides with 1/2T in the case of the monoatomic
BGK model for each of the three translational degrees of freedom).

In this model, hence, we propose to explicitly model the dynamics of the additional rota-
tional, vibrational and other degrees of freedom. In other approaches, like in [3], these degrees
of freedom are all lumped in the internal energy. In particular, compared to [3], the main differ-
ence here is in the mechanism of relaxation of the internal and translational temperature to the
equilibrium temperature. In our approach, the relaxation is explicitly ensured at macroscopic
level in the source term of the transport equation for the rotational temperature. In [3], thanks
to the consistency of the stress tensor with the third order moment of the Gaussian equilibrium
function, the relaxation of the internal temperature to the equilibrium temperature is implicitly
enforced. This would not be feasible in the present BGK model. However, the main advantage

3



of our model with respect to [3] is that it is much cheaper since BGK type models are less costly
than ES-BGK type models.

The polyatomic BGK model we propose reads:

∂f

∂t
+ ξ · ∇xf =

1

τ

(
Mf − f

)
(4)

Mf (x,η, t) = ρ(x, t)
∏
k=1,d

(λk
π

)1/2
exp
(
− (λk(ηk − ηk)2

)
.

For simplicity, we state the model for the particular case of bi-atomic molecules, which can be
easily extended to more complex polyatomic gases. Here we will have three translational and
two rotational degrees of freedom. Considering the same temperature for similar degrees of
freedom in the case of a diatomic gas, we have:

λ = (
1

2Λ
,

1

2Λ
,

1

2Λ
,

1

2Θ
,

1

2Θ
)T . (5)

The evolution of λ is governed by the equation of energy conservation. This closure equation
is obtained by the relaxation of the local Maxwellian Mf to the equilibrium Maxwellian,

∂Mf

∂t
+ ξ · ∇xMf =

1

Zrτ

(
Meq −Mf

)
(6)

Meq(x,η, t) =
ρ(x, t)

(2πTeq(x, t))d/2
exp
(
− |η − η|

2

2Teq(x, t)

)
Here, Zr is a parameter that accounts for the fact that the rotational collision frequency is a
priori different from the translational collision frequency, thus the relaxation time towards a
common temperature Teq is governed by a different characteristic time Zrτ with respect to the
relaxation time τ appearing in the evolution of f . We choose for Zr, the model given in [18] :

Zr =
Z∗r

1 + (π3/2/2)
√
T̃ /T t+ (π + π2/4)(T̃ /T t)

(7)

where the constants Z∗r and T̃ depends on the gas. For N2 over a temperature range from 30K
to 3000K, Z∗r = 23 and T̃ = 91.5K.

Multiplying the kinetic equation (6) by
∏
k=n+1,d ηk and integrating in phase space, we

obtain the evolution equation for the rotational energy,

∂

∂t
(ρΘ) +

∂

∂x
(ρUΘ) =

ρ

Zrτ
(Teq −Θ),

which can be simplified using mass conservation to give:

∂tΘ + U · ∇Θ =
1

Zrτ
(Teq −Θ). (8)

The system is then closed imposing that total energy is conserved in (4) and (6). From this,
the internal energy is obtained:

ρeint =

∫
Rr

1

2

d∑
k=1

(ηk − ηk)2f (9)

=
1

2
ρ

d∑
k=1

1

2λk
(10)

=
1

2
ρ(nΛ +mΘ) =

d

2
ρTeq, (11)
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where we recall that n and m are respectively the number of translational and rotational degrees
of freedom and n+m = d.

The full model in the case of a diatomic gas reads then:
∂f

∂t
+ ξ · ∇xf =

1

τ

(
Mf − f

)
∂tΘ + U · ∇Θ =

1

Zrτ
(Teq −Θ)

(12)

where Mf (x, ξ,η, t) =
ρ

(2πΛ)n/2(2πΘ)m/2
exp
(
− |ξ −U|2

2Λ
− |η̂|

2

2Θ

)
where η̂ contains only the

rotational energy degrees of freedom which have mean value zero.

Compared to [18], the proposed model has a lower computational cost since we introduce
only one equilibrium distribution function which represents a very costly part in a numerical
code.

3 Properties of the polyatomic model

In the following, we derive several important properties for the polyatomic BGK model intro-
duced in the previous section.

3.1 Moments

In this model, density, momentum and total energy are conserved

ρ =

∫
Rd

fdη =

∫
Rd

Mfdη (13)

ρη =

∫
Rd

ηfdη =

∫
Rd

ηMfdη (14)

E =

∫
Rd

|η|2

2
fdη =

∫
Rd

|η|2

2
Mfdη. (15)

However, the partial moments are not conserved. Considering the same ordering for the micro-
scopic velocities we used above, we find

n

2
ρTt =

∫
Rd

1

2

n∑
k=1

(ηk − ηk)2fdη and
n

2
ρΛ =

∫
Rd

1

2

n∑
k=1

(ηk − ηk)2Mfdη (16)

m

2
ρTr =

∫
Rd

1

2

d∑
k=n+1

(ηk − ηk)2fdη and
m

2
ρΘ =

∫
Rd

1

2

d∑
k=n+1

(ηk − ηk)2Mfdη. (17)

Thus the model must provide the time evolution not only of the distribution function, but also
of all partial temperatures. This is the task of the evolution equation for Θ in (12), which,
together with the conservation of total energy, is enough to provide the time evolution of all
temperatures involved in the model.
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3.2 Positivity

In this section, we show that the model preserves the positivity of the distribution function and
of all partial temperatures in the space homogeneous case. In this case, the model reduces to

∂tf =
1

τ
(Mf − f) (18)

∂tΘ =
1

Zrτ
(Teq −Θ) (19)

with f0 and Θ0 as positive initial conditions for f and Θ respectively. Since in the space
homogeneneous case, the total energy is a constant, we also have ∂tTeq = 0. Moreover, mass
is conserved. Thus, if at the initial time, the density is positive, the Maxwellians Mf and Meq

remain positive.
Multiplying the first equation of the homogeneous model (18) by et/τ , we get

∂t

(
et/τf

)
=

1

τ
Mf e

t/τ

which, integrating between 0 and t, yields

f(ξ,η, t) = f0(ξ,η) e−t/τ +
1

τ

∫ t

0
es/τMf (ξ,η, s) ds.

Provided the initial condition satisfies f0 ≥ 0, Mf remains positive, and the previous equation
implies f ≥ 0.

We use the same technique to prove the preservation of positivity for all partial temperatures.
We multiply the equation for the rotational temperature (19) by et/(Zrτ). Since the equilibrium
temperature Teq is constant,

Θ(t) = Θ0 e
−t/(Zrτ) + Teq(1− e−t/(Zrτ)), (20)

which proves that the rotational equilibrium temperature remains positive, provided Θ0 ≥ 0.
A similar argument shows the positivity of Λ, again if Λ ≥ 0 at the initial time.

3.3 The H theorem

One of the most important properties of the Boltzmann equation is that it respects the H
theorem, which governs the evolution towards equilibrium of the solution. It means that the
second principle of the thermodynamics is satisfied. To be valid, our model should also respect
this theorem.

Let us define the H-function as:

H(f) =

∫
Rd

f log fdη + Zr

∫
Rd

Mf logMfdη (21)

H-theorem. Let f be the solution of the polyatomic model (1). Consider an isolated gas
enclosed in a domain Ωx such that:∫

∂Ωx

∫
Rd

(ξ − ub) · e f log fdηdS = 0,

where ub is the velocity of the boundaries of Ω and e is the outward pointing normal to ∂Ωx.
Assume that Zr > 0, and that the initial temperatures are well prepared, in the sense that
Tr(0) = Θ(0). Suppose further that, at the initial time, f(., ., t = 0) ≥ 0, then

dH

dt
6 0
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for all time, where H[f ] =
∫

Ωx
Hdx. Moreover

dH

dt
= 0, if and only if f = Meq.

Proof. We prove the theorem for the space homogeneous case. The general case then follows
from the proof of the H-theorem for the standard BGK model, [3]. Since density, momentum
and total energy are conserved, the equation for the rotational energy can be rewritten as

∂tMf =
1

Zrτ
(Meq −Mf ). (22)

Let us multiply equation (18) by (1 + log f) and integrate over the space of all microscopic
velocities Ωη. Then multiply (22) by Zr(1 + logMf ), integrate in velocity space and add the
two results. We obtain:

dH
dt

=
1

τ

∫
Rd

(Mf − f)(1 + log f)dη +
1

τ

∫
Rd

(Meq −Mf )(1 + logMf )dη.

Since the first moment of Mf , f and Meq coincide, the right hand side can be rewritten as

dH
dt

=
1

τ

∫
Rd

− (f −Mf ) (log f − logMf ) dη︸ ︷︷ ︸
A

+
1

τ

∫
Rd

(Meq − f) logMfdη︸ ︷︷ ︸
B

(23)

The term A is clearly negative, due to the convexity of the log function. We continue evaluating
the sign of B. To this end, we subtract the quantity

∫
(Meq − f) logMeq, which is zero, due to

conservation of mass, momentum and total energy. The integrals can be explicitly calculated,
and we find

B =

∫
Rd

(Meq−f) log
Mf

Meq
dη =

1

4
ρ log

Tn+m
eq

ΛnΘm

[
n

(
1

Teq
− 1

Λ

)
(Teq − Tt) +m

(
1

Teq
− 1

Θ

)
(Teq − Tr)

]
.

Conservation of total energy implies that (n+m)Teq = nTt +mTr, thus B can be rewritten as

B = −1

4
ρ log

Tn+m
eq

ΛnΘm

[
n

1

Λ
(Teq − Tt) +m

1

Θ
(Teq − Tr)

]
.

Conservation of total energy implies also that Teq can be written as a convex combination of
Λ and Θ, as Teq = n

n+mΛ + m
n+mΘ. Using the convexity of the log, we have (n + m) log Teq ≥

n log Λ +m log Θ. Further, we substitute n(Teq − Tt) = −m(Teq − Tr), obtaining

sign(B) = −sign

[
(Teq − Tr)

(
1

Θ
− 1

Λ

)]
.

Now, multiply (18) by η2 and integrate over velocity space, to obtain the evolution equation
for Tr:

∂tρmTr =
1

τ
(mρΘ−mρTr) .

Eliminate the density through mass conservation, substitute the exact expression for the ro-
tational temperature Θ from (20), and integrate the resulting linear non homogeneous ODE,
finding

Tr(t) = Tr(0)e−t/τ +
Zr

1− Zr

[
e−t/(Zrτ) − e−t/τ

]
(Teq −Θ0) + Teq(1− e−t/τ ).
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Let us choose a well-prepared initial condition for the relaxation rotational temperature Θ0,
namely Θ0 = Tr(0). Rearranging terms, we find

Teq − Tr(t) =
1

1− Zr
e−t/τ

(
1− Zre−

t
τ

1−Zr
Zr

)
(Teq −Θ0).

If we suppose that Zr 6= 1, one easily finds

sign(Teq − Tr(t)) = sign(Teq −Θ0), (24)

and the same holds if Zr → 1. In fact, in this case the model reduces to the standard BGK
model with d degrees of freedom. Using again (20), we have

Λ(t)−Θ(t) =
n+m

n
e−t/(Zrτ)(Teq −Θ0).

Finally, since the temperatures are positive, substituting (24) and the previous result in the
expression for B, we have

sign(B) = −sign2(Teq −Θ0),

which proves that the entropy production is negative.

Clearly, if f = Mf = Meq, then
dH
dt

= 0. On the other hand, we have proved that
dH
dt

is

composed of two terms which are the integrals of two non positive functions. The first integral,
A in (23) is zero if and only if f = Mf , while the second term is zero if and only if f = Meq, in

both cases due to the convexity of the log. Thus, if
dH
dt

= 0, then f = Mf = Meq. This proves

that at the final equilibrium f is a Maxwellian, with all temperatures equal to Teq.

Remark 1. Well prepared temperatures. If the initial temperatures are not well prepared,
the expression for T − Tr(t) becomes slightly more complicated:

Teq − Tr(t) =

[
Teq − Tr(0) +

1

1− Zr

(
1− e−

t
τ

1−Zr
Zr

)
(Teq −Θ0)

]
e−t/τ .

To prove the entropy decay we need to assume that sign(Teq − Tr(0)) = sign(Teq − Θ0). Thus,
the theorem can be generalized to include this condition.

3.4 The reduced model

Let D be the number of space dimensions, while d is, as before, the total number of energy
degrees of freedom, that is the distribution function f depends on D+ d independent variables,
plus time. This makes the problem extremely complex from a computational point of view, due
to its high dimensionality. However, it is possible to reduce the number of dimensions of the
distribution function with Chu’s reduction, [15].

In the standard BGK model, Chu’s reduction can be applied whenever the distribution
function f depends only on r < D degrees of freedom in space. Then it is possible to rewrite
the kinetic equation using only r degrees of freedom, also in the microscopic velocity space. For
example, in a two dimensional problem in space, the number of independent variables can be
reduced to four plus time (two in space and two in microscopic velocity).

We review Chu’s reduction, outlining how it is applied to the present case. In the case
of a bi-atomic molecule, we will apply the reduction to aggregate the internal energy degrees
of freedom. Let us consider the case in which we want to reduce the m rotational degrees of
freedom, while the system has n translational degrees of freedom, with n + m = d. Let us
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label the indices pertaining to the translational and the rotational degrees of freedom as 1 to
n = d −m and d −m + 1 to d, respectively. Correspondingly, the microsocopic velocities will
be labelled as (ξ1, . . . , ξn, η1, . . . , ηm) = (ξ,η). We introduce two reduced distribution functions
such that:

f1(x, ξ, t) =

∫
Rm

f(x, ξ,η, t) dη (25)

f2(x, ξ, t) =

∫
Rm

1

2

m∑
l=1

η2
l f(x, ξ,η, t) dη (26)

The model reduces to a system of two equations:

∂f1

∂t
+ ξ · ∇xf1 =

1

τ

(
Mf1 − f1

)
(27)

∂f2

∂t
+ ξ · ∇xf2 =

1

τ

(
Mf2 − f2

)
where the reduced Maxwellians are expressed as:

Mf1(x, ξ, t) =

∫
Rm

Mf (x, ξ,η, t) dη (28)

Mf2(x, ξ, t) =

∫
Rm

1

2

m∑
l=1

η2
l Mf (x, ξ,η, t) dη.

Their analytical expressions can be calculated by recalling that the value ηk on the reduced
dimensions is zero:

Mf1 = ρ
n∏
k=1

(λk
π

)1/2
exp
(
− λk(ηk − ηk)2

)
=

ρ

(2πΛ)n/2
exp
(
− (ξ −U)2

2Λ

)
(29)

Mf2 =

d∑
k=d−m+1

1

4λk
Mf1 =

mΘ

2
Mf1 . (30)

Equation (8) is also needed to close the system. The total temperature Teq needed in (8) is
obtained from the total internal energy of the system, which is given by

d

2
ρTeq =

∫
Rn

1

2
(ξ −U)2f1 dξ +

∫
Rn

f2 dξ. (31)

The coupled system (27), together with (8) and the coupling condition (31) is equivalent to
(12), but the unknowns f1 and f2 depend only on x, ξ and t.

In 1D and 2D problems in space, we cannot reduce the residual translational degrees of
freedom together with the rotational degrees of freedom, because otherwise, the model would
not allow to recover the translational and rotational temperatures from the reduced distribution
functions. Only the equilibrium temperature could be computed in that case, since the first
distribution function f1 would have a portion of the translational energy while the second
reduced distribution function f2 would contain the remaining part of the translational energy,
along the reduced spatial dimensions, together with the rotational energy. It would then be
impossible to extract the contribution of the different temperatures, from the variance of f2.

For 1D and 2D problems, we can still reduce the dimensions of the translational degrees
of freedom, to 1 and 2 dimensions respectively, provided we apply Chu’s reduction in two
steps. We introduce one more distribution function, giving the translational energy along the

9



reduced dimensions. Thus, the first reduced distribution function f1 will contain all information
about density, momentum, and the translational energy corresponding to the degrees of freedom
remained in the reduced model, the second distribution function f2 will be used to account for
the rest of the translational energy, while the third one f3 will give the rotational energy. In 3D,
there is no need of the second distribution function, and then we will use only the two reduced
distributions f1 and f2, as described previously. If f1, f2, f3 are the reduced distribution
functions in 1D or 2D (with M1, M2, M3 their corresponding equilibrium functions). Let r be
the number of the degrees of freedom retained in the model, and D be the number of space
dimensions, then

f1 =

∫
Rd−r

f
d∏

k=r+1

dηk and M1 = ρ
r∏

k=1

(λk
π

)1/2
exp
(
− λk(ηk − ηk)2

)
(32)

f2 =

∫
Rd−r

1

2

D∑
l=r+1

η2
l f

d∏
k=r+1

dηk and M2 =

D∑
k=r+1

1

4λk
M1

f3 =

∫
Rd−r

1

2

d∑
l=D+1

η2
l f

d∏
k=r+1

dηk and M3 =
d∑

k=D+1

1

4λk
M1

Again, equation (8) is also needed to close the system. The total temperature Teq appearing in
(8) is obtained from the total internal energy of the system, which now is given by

d

2
ρTeq =

∫
Rr

1

2

r∑
k=1

(ηk − ηk)2f1

r∏
k=1

dηk +

∫
Rr

f2

r∏
k=1

dηk +

∫
Rr

f3

r∏
k=1

dηk. (33)

For more complex molecules, this procedure can be extended quite easily. The reduced model
would then consist of one more kinetic equation for each set of degrees of freedom resulting in
the same partial temperature, together with one more macroscopic evolution equation for each
partial temperature.

4 Numerical methods

We present the space and time discretization in the 1D case, so that we can also illustrate how
the reduced system (32) is discretized in velocity space, enforcing exact conservation also at the
discrete level. The extension to multidimensional cases is straightforward, since Cartesian grids
are chosen to take advantage of easy parallelization.

4.1 Velocity space discretization

We consider a bi-atomic gas, in 1D in space. Thus d = 5 (total number of degrees of freedom),
m = 2 (number of rotational degrees of freedom), and r = 1, i.e. only one degree of freedom in
space is retained, out of D = 3. By construction, the reduced distribution function f1 and the
reduced Maxwellian M1 satisfy:∫

Rr

M1

(
1
ξ

)
dξ =

(
ρ(x, t)
ρ(x, t)U(x, t)

)
=

∫
Rr

f

(
1
ξ

)
dξ.

This is an essential property to ensure conservation of mass and momentum. Conservation of
energy is more complicated. We recover the equilibrium temperature Teq from (33)

d

2
ρTeq =

∫
Rr

1

2
(ξ −U)2f1 dξ +

∫
Rr

f2 dξ +

∫
Rr

f3 dξ.

10



With this information, we find the rotational temperature Θ from (8) and the translational tem-
perature as Λ = Teq −Θ, with which we construct the Maxwellian M1 = ρ/(2πΛ)r/2exp(−(ξ −
U)2/(2Λ).

In the discrete case, a grid must be introduced in velocity space and integrals are evaluated
by quadrature. Thus, conservation of mass, momentum and energy must be enforced at the
discrete level. Let 〈., .〉 denote the quadrature rule on Rr. Based on the work of Cabannes et
al. [12] on entropic Maxwellian states, Mieussens proved in [19] that a discrete Maxwellian can

be expressed as M̃f = exp(α ·m(ξ)), such that:

〈M̃f (ξ),m(ξ)〉 =

 ρ
ρU
E

 = 〈f(ξ),m(ξ)〉, with m(ξ) =

 1
ξ

1
2(ξ)2


at the discrete level, where we have used the same symbol for the discrete moments of f ,
with a slight abuse of notation. The discrete Maxwellian distribution function M̃f can then
be computed as the solution of the non-linear algebraic system above solved with a Newton-
Raphson algorithm. The details of this algorithm can be found in [8] or [6] in the case of the
standard BGK model. A local grid technique to reduce the cost associated to the discretization
in velocity as in [7] can also be applied.

To adapt it to our polyatomic model under its reduced form, it is enough to compute the
total discrete energy as

E = 〈1
2

(ξ)2f1〉+ 〈f2〉+ 〈f3〉.

Then the total discrete internal energy is given by

d
2ρTeq = E − 1

2ρU.

Next, substitute the discrete Teq into the temperature equation (8), to find the corresponding
translational temperature Λ. Finally, we solve the non linear algebraic system

〈exp(α ·m(ξ))〉 =

 ρ
ρU
mΛ

 , with m(ξ) =

 1
ξ

1
2(ξ −U)2

 ,

where ρ = 〈f1〉 and ρU = 〈ξf1〉, and m is the number of rotational degrees of freedom.
We use a uniform velocity grid symmetric with respect to 0 and such that f is negligible

outside the grid. Hence, the trapezoidal quadrature rule is used, because it has spectral accuracy
for smooth and periodic functions on a uniform grid. In 1D:

Gv = (ξj)j=−n..n with ξj = j∆ξ

For multidimensional cases, the same discretization is independently performed in all directions.

4.2 Space discretization

The physical space x is discretized with N cells of size ∆x such that N∆x = xout−xin, xin and
xout being the boundaries of the domain. Let Ωi be the i-th space cell. The kinetic equation is
solved with a finite volume scheme, while the equation on the rotational temperature is solved
with a finite difference method.

∂fi,j
∂t

(t) + ξj ·
∫
∂Ωi

f(x, ξj , t)n∂Ωi
dσ =

1

τi
((Mf )i,j − fi,j), (34)

11



where fi,j =
1

|Ωi|
∫

Ωi
f(x, ξj , t) dx and (Mf )i,j =

1

|Ωi|
∫

Ωi
Mf (x, ξj , t) dx, while taui is the

relaxation time evaluated at the center of the cell Ωi: note that this is enough up to second
order accuracy. Here, σ is the integration variable representing a surface element.

Since a uniform Cartesian grid is considered, the equation in 1D can be simply rewritten in
terms of fluxes at each numerical interface (between two cells):

∂fi,j
∂t

(t) +
1

∆x
(Fi+ 1

2
,j − Fi− 1

2
,j) =

1

τi
((Mf )i,j − fi,j), (35)

where Fi+ 1
2
,j is the numerical flux between the cell Ωi and the cell Ωi+1, at the velocity grid

node ξj and can be defined with an upwind discretization as

Fi+ 1
2
,j = max(0, ξj)f

l
i+1/2,j + min(0, ξj)f

r
i+1/2,j , (36)

with f r and f l the values of f on the two sides of the interface and ξj the first component of the
microscopic velocity. The numerical expression of the distribution functions f l, f r depends on
the reconstruction used at the numerical interface. For a first order reconstruction, f li+1/2 = fi
and f ri+1/2 = fi+1. For second order accuracy, a MUSCL reconstruction with slope limiters

(MinMod for example) is employed. Dropping the velocity index j, we have
f li+1/2 = fi +

1

2
MinMod(fi+1 − fi, fi − fi−1)

f ri+1/2 = fi+1 −
1

2
MinMod(fi+1 − fi, fi+2 − fi+1)

(37)

The second equation for the transport and the relaxation of the rotational temperature is
solved with a finite different scheme with upwind fluxes:

∂tΘi =
Teqi −Θi

Zrτ
− 1

∆x

(Ui + |Ui|
2

(Θi −Θi−1) +
Ui − |Ui|

2
(Θi+1 −Θi)

)
. (38)

Again, this formula can be easily extended to second order accuracy.

4.3 Time discretization

The time discretization is performed with an IMEX scheme [5] for the kinetic model and the
macroscopic equation. The convective part of the equation is integrated explicitly and the
relaxation part implicitly. In this way, the constraint on the time step only comes from the
convective part of the equation.

In the following, we drop the indices i, j denoting the space and velocity location of the
variables. For simplicity, we focus on the D dimensional reduced model defined in (27), with
the Maxwellians defined in (28). The time integration for a ν-stages IMEX Runge-Kutta scheme
applied to each kinetic equation composing this model is

fn+1
L = fnL −∆t

ν∑
k=1

ω̃kξ∇xf
(k)
L +

∆t

τ

ν∑
k=1

ωk(M
(k)
fL
− f (k)

L )

f
(k)
L = fnL −∆t

k−1∑
l=1

Ãk,lξ∇xf
(l)
L +

∆t

τ

k∑
l=1

Ak,l(M
(l)
fL
− f (l)

L ),
(39)

where L = 1, 2 denotes one of the two distribution functions, A and Ã are ν × ν matrices, with
Ãi,s = 0 if s ≥ i and Ai,s = 0 if s > i. These coefficients are derived from the double Butcher’s

12



tableaux:

Ã
ω̃T

A
ωT

in which all coefficients composing the IMEX scheme satisfy the correct coupling conditions,
guaranteeing the correct accuracy, see [20, 5] All the quantities until stage k − 1 are known so
the equation for stage k becomes:

f
(k)
L =

τ

Ak,k∆t+ τ

(
fnL −∆t

k−1∑
l=1

Ãk,lξ∇xf
(l)
L +

∆t

τ

k−1∑
l=1

Ak,l(M
(l)
fL
− f (l)

L )
)

+

Ak,k∆t

τ +Ak,k∆t
M

(k)
fL

(40)

where f
(k)
L , L = 1, 2 can be computed immediately, provided one knows the Maxwellian M

(k)
fL

at
the stage k. In fact, all other quantities involved, which have been gathered in the first paren-
thesis, are known from previous stages. In the case of a classical BGK model the Maxwellian

at the stage k, M
(k)
f can be computed using the macroscopic variables at the previous stages,

see [21]. Here, the evaluation of the Maxwellian is again slightly more complicated, because the
different temperatures are not completely defined from the kinetic model.

Computing discrete moments of the second equation in (39), one finds ρ(k)

ρ(k)U(k)

E(k)

 =

 ρn

ρnUn

En

−∆t
k−1∑
l=1

Ãk,l〈

 ξ
ξ ⊗ ξ
1
2ξξ

2

∇xf
(l)
1 +

 0
0
ξ

∇xf
(l)
2 〉 (41)

because the conservation of mass, momentum and total energy, enforced at the discrete level,
implies that the moments of the relaxation term is exactly zero. Thus, mass, momentum and
the equilibrium temperature Teq can be computed at the time level (k) from quantities known
from the previous stages. Note, in particular, that for a first order scheme, with a single time
level, we would have that macroscopic quantities remain constant during the relaxation step.

The IMEX step is applied also to (8):

Θ(k) = Θn −∆t
k−1∑
l=1

Ãk,lU∇xΘ(l) +
∆t

Zrτ

k∑
l=1

Ak,l(Teq
(l) −Θ(l)). (42)

Since T
(k)
eq is already known, one can easily compute Θ(k),Λ(k) and complete the construction

of M
(k)
f1

and M
(k)
f2

. Substituting this information in (40), one obtains f
(k)
L , L = 1, 2 solving a

linear algebraic equation. Note that it is crucial that conservation holds exactly at the discrete
level, to ensure that the macroscopic variables do not depend on relaxation. Once all the stages
have been computed, the value of fn+1

L , L = 1, 2 can be found from the first equation in (39),
while Θn+1 is given by

Θn+1 = Θn −∆t
ν∑
k=1

ω̃kU∇xΘ(k) +
∆t

τ

ν∑
k=1

ωk(Teq
(k) −Θ(k)) (43)
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Asymptotic Preserving-theorem. The IMEX scheme defined in (39), (42), (43) is Asymp-
totic Preserving in the sense of [16], namely, as τ → 0, it becomes an explicit discretization of
the limiting Euler equations.

Proof. We extend the proof appearing in [22]. As τ → 0, the system is projected on equilibrium,

namely from eq. (39)f
(k)
L →M

(k)
fL

, and from eq. (42) Θ(k) → T
(k)
eq . Thus both Maxwellians MfL

depend on the same temperature Teq. Then the equation for the moments (41) is closed by the
Maxwellians, namely, ρ(k)

ρ(k)U(k)

E(k)

 =

 ρn

ρnUn

En

−∆t

k−1∑
l=1

Ãk,l∇x〈

 ξ
ξ ⊗ ξ
1
2ξξ

2

M
(l)
f1

+

 0
0
ξ

M
(l)
f2
〉 (44)

The quadratures in the right hand side can be calculated explicitly. In particular, since all
temperatures coincide in the limit τ → 0, the energy equation becomes

〈12ξξ
2M

(l)
f1

+ ξM
(l)
f2
〉 = 1

2ρ
(l)(U(l))2 + p(l)U(l) + 1

2(n+m)ρ(l)U(l)T (l)
eq ,

where we recall that n and m are the number of translational and rotational degrees of freedom,
respectively. Since n + m = d, we see that we obtain a discretization of the energy flux in the
Euler equation, for which the flux is 1

2ρU
2 + (p + ρe)U, with e internal energy per unit mass.

Moreover, we also recover the correct γ-law equation of state. In fact, since at equilibrium all
degrees of freedom are endowed with the same energy, because the Maxwellian is isotropic, for
each component i, i = 1, n,

p =< [(ξ −U)i]
2Mf1 >= ρTeq

but also ρe = d
2ρTeq, thus p = ρe(γ − 1), with γ = 1 + 2/d. The first two equations in (41) give

respectively the conservation of mass and momentum. Thus, the equation for the stages of the
macroscopic moments become ρ

ρU
E

(k)

=

 ρn

ρnUn

En

−∆t
k−1∑
l=1

Ãk,l∇x

 ρ
ρU⊗U + p

1
2ρU

2 + U(p+ d
2ρTeq)

(l)

. (45)

Analogously, computing moments of the first equation in (39) for L = 1, adding the first moment
of the equation for f2, in the limit τ → 0, we obtain ρ

ρU
E

n+1

=

 ρ
ρU
E

n

−∆t
ν∑
k=1

ω̃k∇x

 ρ
ρU⊗U + p

1
2ρU

2 + U(p+ d
2ρTeq)

(k)

. (46)

The last two equations are an explicit Runge Kutta discretization of the Euler equations, with
a ν stages explicit RK scheme, defined by the Butcher tableau given by the coefficients ω̃k and
Ãk,l.

5 Numerical results

Most numerical test cases are simulations of the flow of nitrogen (N2), which is a bi-atomic gas
with a viscosity coefficient ω = 0.72. In this section, P-BGK will denote the polyatomic BGK
model proposed in this work. First and second order numerical schemes in space are used with
a first order in time (for computational time reasons).
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5.1 Sod shock tube

We start illustrating the effect of the Asymptotic Preserving property of the scheme. We consider
a shock tube problem, for a polyatomic gas. Here we will consider the reduced 1D model, with
a total of d degrees of freedom, with m = d−3. Since τ is very small, the temperatures are very
close, irrespective of Zr. Here, the space [0,1] is discretized with 100 grid points. In velocity,
the space goes to -10 to 10 and discretized with 50 grid points. Zr is taken from the model 7
and τ = 10−5. 

ρl = 1
ul = 0
pl = 1

and


ρr = 0.125
ur = 0
pr = 0.1

(47)
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Figure 1: Comparison between exact and P-BGK solutions for γ = 5/3. Density (left) and
Temperature (right) profiles. First and second order scheme.
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Figure 2: Comparison between exact and P-BGK solutions for γ = 7/5. Density (left) and
Temperature (right) profiles. First and second order scheme.

We show the results for several values of m, comparing with the exact hydrodynamic solution
of the Riemann problem, with the corresponding value of γ = 1 + 2

d . The results appear in Fig.
1 (monoatomic case), Fig. 2 (bi-atomic molecule), but also in Fig. 3 (a polyatomic molecule
with 2 rotational degrees of freedom and one vibrational) and Fig. 4 for a polyatomic molecule
with four internal degrees of freedom.
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Figure 3: Comparison between exact and P-BGK solutions for γ = 4/3. Density (left) and
Temperature (right) profiles. First and second order scheme.
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Figure 4: Comparison between exact and P-BGK solutions for γ = 9/7. Density (left) and
Temperature (right) profiles. First and second order scheme.

It is clear from the figures that the kinetic scheme provides indeed a discretized solution of
the Euler equations, with the correct value of γ. Note also the sharpening of the discontinuities
in the solution from the first to the second order scheme. This effect is particularly noticeable
on the contact discontinuity.

5.2 A stationary shock

The set up of this test consists of initial conditions resulting in a Mach 2.2 stationary shock
located in x = 0. The initial conditions are the following:

ρl = 1
ul = C

√
γ

pl = (ρlu
2
l − ρru2

r)
γ + 1− ρr

ρl
(γ − 1)

2γ(ρrρl − 1)

and


ρr = C
ur =

√
γ

pr = pl

ρr
ρl

(γ + 1)− (γ − 1)

γ + 1− ρr
ρl

(γ − 1)

(48)

with C a coefficient depending on the Mach number in the left state expressed as

C =
2 +M2(γ − 1)

(γ + 1)M2
. (49)

16



Here, M = 2.2 and it corresponds to the Mach number on the left side of the shock.
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(a) Equilibrium temperature for different val-
ues of Zr (1, 50, 100) and Kn = 10−3
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Figure 5: Temperature profiles for different values of Zr

The relaxation time τ is chosen as τ = Kn = 10−3, which means that the flow will be in
equilibrium away from the shock, but within the shock, non equilibrium effects will still be
noticeable.

Figure 5a shows the equilibrium temperature for Kn = 10−3 and different values of Zr. One
can see that the shock structure is modified as Zr increases, slowing down the convergence to
equilibrium. In particular, the shock becomes more diffused and is not symmetric with respect
to x = 0. Figure 5b shows the different temperature profiles for Zr = 50, 100. Around the shock,
the energy is more concentrated in the translational degrees of freedom, which decay fater. As
Zr increases, the translational temperature increases and it is greater than the equilibrium
temperature, as also observed in [18]. After the shock the translational and the rotational
temperature both relaxe towards the equilibrium temperature, because the flow is close to
equilibrium.

This test case emphasizes that non-equilibrium phenomena, can lead to a wrong estimation
of the heat fluxes after a shock, when only the equilibrium temperature is taken into account.
In the case of a bi-atomic gas, the rotational temperature can be 2.5 times larger than the
equilibrium temperature (if the translational temperature is 0 then Teq = 2/5 ∗ Tr) and the
translational temperature 1.6 times larger (if the rotational temperature is 0 then Teq = 5/3∗Tt),
modifying drastically the heat flux.

5.3 Comparison with experimental results

We consider again a shock tube problem, resulting in a stationary shock. We consider M = 2
and M = 10 in eq. (48) and (49), in order to compare our results with [1] where experimental
and DSMC results are shown for stationary shocks with these Mach numbers. Ttl, Ttr, Trl, Trr
are the initial translational and rotational temperature on the left and on the right of the shock.
In practice, Ttl = Trl and Ttr = Trr. Here, to fit with the experimental set up of Alsmeyer
and simulate the same conditions, we take Kn = 0.662. It is not clear how the parameter Zr
is chosen so we just took it from the empirical expression 7.

The results obtained with the P-BGK model are in good accordance with the experimental
and the DSMC results for the density profile. Both profiles fit well with the DSMC results.
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Figure 6: Density profiles obtained with DSMC, experiments and the P-BGK model.
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Figure 7: Translational and rotational normalized temperatures. Tt∗ = (Tt− Ttl)/(Ttr − Ttl)
and Tr∗ = (Tr − Trl)/(Trr − Trl)

Discrepancies can be observed in the temperature profiles, Fig. 7. It is apparent that the
translational temperature anticipates the shock for our model. It also affects the equilibrium
temperature since the energy is conserved and the rotational temperature does not compensate
the early increasing. However, the general behaviour and the peak are well captured. The
difference can be due to the uncertainty on the relaxation time for the rotational temperature,
and also to the need for a more refined approach, such as an ES-BGK extension of the present
model. The temperature profiles for M=2 are not shown here since there are no data in [1] for
this Mach number.

5.4 Ringleb flow

Now, we consider a 2D test for a bi-atomic gas close to the continuum regime, where we can
compare our results with 2D Euler solutions. We take τ close to zero (10−5), so that the kinetic
gas is close to equilibrium with Zr form 7.

In this test, we consider Ringleb flow, which is a 2D steady solution, where the analytical
solution can be calculated for Euler equations and will be used as a reference solution for the
kinetic model close to the hydrodynamic regime.
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The Euler flow is potential, and the exact solution is obtained with the hodograph method,
[25]. Setting (θ,V) such that u = V cosθ and v = V sinθ, the stream function is given by

Ψ =
sin θ

V
. The streamline equations are:

x =
1

2ρ

(
1

V 2
− 2Ψ2

)
+
L

2
and y =

sin θ cos θ

ρV 2

with (for γ = 7/5, diatomic gas):

L = ln
( 3V

6 + 2
√

9− 3V 2

)
−
√

9− 3V 2(V 2 − 4)

V 2 − 3
, c2 = 1− γ − 1

2
V 2, ρ = c

2

γ − 1 .

The computational domain is [-0.5,-0.1]×[-0.6,0] and the flow is solved between the two stream-
lines Ψ1=0.8 and Ψ2=0.9. Since U·n = 0 on a streamline (with n the normal to the streamline),
any streamline can be considered as a solid boundary where the Euler impermeability condition
is enforced. The boundary conditions in inlet (y=-0.6) and outlet (y=0) are supersonic and
exactly imposed. The Knudsen number is set to 10−5, and we take τ = Kn. The physical space
is discretized with 256x384 points. The velocity space goes from -14 to 14 and discretized with
21 grid points in each direction. First order schemes are used.

Fig. 8 shows the temperature field in the steady state Ringleb solution for the kinetic
solution. We also show the two streamlines delimiting the computational domain. Note that
there are no spurious effects at the boundary. The boundary conditions in fact are imposed
with the AP boundary condition from [8].

The convergence study towards the exact equilibrium solution is found in Fig. 9a and 9b for
the L1 and the L∞ norm of the error respectively. Convergence is studied under grid refinement
for the first order scheme, on a few macroscopic variables, namely, the two components of the
velocity, pressure and the sound speed.
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Figure 9: Convergence towards the analytical Euler solution in L1 and L∞ norm.

5.5 Blunt body at M=5

We consider a Blunt body in a flow at M = 5 in 2D. The Blunt body has a radius of 0.01
units, and the domain is [−0.05, 0] × [0, 0.05] discretized with 100 cells in each direction. The
reduced velocity field is [−14, 14]× [−14, 14] discretized with 33 cells in each direction. On the
Blunt body a diffuse boundary condition is imposed with T = 1 and U = 0 considering the gas
close to the wall at equilibrium (Θw = Λw = 1). The Knudsen number in reference condition
is Kn = 10−3, while τ is given in (2) and the exponent of the viscosity law is set to δ = 0.72 as
for nitrogen. The coefficient Zr is calculated from the formula given in [18].

Figure 10 shows the solution for the equilibrium temperature.
The temperature profiles obtained with the polyatomic BGK model are plotted along the

stagnation line and compared with results from the literature. In particular, we superpose
our data with the DSMC and UGKS (Unified Gas Kinetic Scheme) from [18] for a bi-atomic
molecule. Finally, the equilibrium temperature can be found in Fig. 12. Again, note that the
results are indeed very close.

6 Conclusion

In this work, we have proposed a simple kinetic model for polyatomic molecules, based on the
BGK approach, in which it is possible to account for different relaxation rates along the internal
energy degrees of freedom of a single molecule.

The model can be reduced, grouping together similar degrees of freedom, extending the
technique of [15]. It introduces additional distribution functions to treat internal degrees of
freedom. However, the size of the phase space remains constant with respect to the monoatomic
BGK model. Moreover, we also extend the numerical scheme of [21], constructing a scheme that
has a stability restriction of CFL type, given only by the convective terms of the equation, but
not by the relaxation time. This permits to obtain an efficient numerical method, which still is
able to account for the different energy relaxation times.

We prove an H-theorem for this model, thus guaranteeing the convergence towards a unique
equilibrium state, determined by the initial conditions, for an isolated gas. We also prove that
the IMEX scheme proposed is Asymptotic Preserving, and thus converges to a discretization of
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Figure 10: Equilibrium temperature
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Figure 11: Temperature profiles for the Blunt body problem. Comparison between DSMC,
UGKS, and the P-BGK results.

the correct hydrodynamic equations, as the relaxation time goes to zero.
The study is documented with several one and two-dimensional tests, which illustrate the

properties of the model and of the numerical scheme. We reproduce Riemann problems for
several values of the polytropic constant γ, we study the shock structure of a stationary shock,
and also more classical two dimensional problems from gas dynamics.

Future extensions of this work will concentrate on a ES-BGK extension of the present P-
BGK polyatomic model. The purpose is to represent more effectively, at moderate Knudsen
numbers, the viscous and thermal exchanges within the gas.
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