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1. Introduction

We consider the Cauchy problem for the porous medium equation
with convection in the form

∂u

∂t
= ∆ um − (um)xN

, (x, t) ∈ R
N × (0, +∞) , (1)

u(x, 0) = u0(x) , x ∈ R
N . (2)

Here we assume m > 1, N ≥ 2, u0 ∈ L1(RN), u0 ≥ 0.

Theorem 1.1. There exists a non-negative weak solution u of (1)–(2)
such that for all t > 0

‖u(t)‖L∞(RN ) ≤ γ‖u0‖
2
H

L1(RN )
t− N+1

H . (3)

Here H = (N − 1)(m − 1) + 2m.

We confine ourselves to prove the a-priori sup bound for the (weak)
solution, whose definition is standard. Then the existence follows via
a routine regularization procedure (see [5], [11] and also [1], [3]).
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Note that the known estimate (see for example [5], [11] and comments
in [2])

‖u(t)‖L∞(RN ) ≤ γ‖u0‖
2

N(m−1)+2

L1(RN )
t
− N

N(m−1)+2 , (4)

certainly holds for all positive times. However, it is easy to check that
for t → +∞ (3) gives a faster decay in time than (4).

Remark 1.2. In the case N = 1 (3) follows from [10]. Estimates like
(3) were obtained also in [2] for a class of doubly degenerate parabolic
equations. Though the cases studied in [2] do not include the case of
(1), the sup estimate obtained there formally coincides with the one
found here, and is proven to be sharp in [2, Subsection 1.3]. �

The proof of Theorem 1.1 is based on the approach of [2] and [5],
relying on suitable iterative estimates of integral norms. Classically,
this approach makes use of Sobolev embedding theorems. In the case
of equation (1) the presence of the convective term causes a marked
anisotropy in the behavior of solutions. Though this does not appear
explicitly in our main estimate, we must deal with this feature and in
some sense take advantage of it. This is the purpose of the entropy
type inequality stated below in Lemma 2.2, where we obtain integral
estimates on (N − 1)-dimensional hyperplanes orthogonal to the con-
vection direction.

Estimates for large times of the anisotropic behavior of solutions to
diffusion-convection equations were obtained in [6], [7], [8], [9] (where
diffusion is linear). The use of entropy type inequalities goes back to
those papers, but we use a weaker form of entropy type inequality than
the one used there.

2. Auxiliary results

In the following, u denotes a non-negative solution to (1).

Lemma 2.1. For any t > 0 we have

ut ≥ −
u

(m − 1)t
. (5)

in the integral sense.

For the proof of this well known result we refer to [4] or to [11,
Lemma 8.1]. Estimate (5) is used in the proof of our next Lemma.

Denote for a > 0, k > 0,

Gk(u) =

u∫

k

sm−1(s − k)a
+ ds ,
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and for a = 0, k > 0

Gk(u) =
(u − k)m

+

m
.

Lemma 2.2. For any a > 0, k > 0, for any hyperplane R
N−1
x′ = {xN =

y}, where we denote by x′ the variable in R
N−1, for any t > 0,

∫

R
N−1
x′

Gk(u(x′, y, t)) dx′ ≤ (m(m − 1)t)−1
∫

R
N

u(u − k)a
+ dx . (6)

When a = 0 we have, denoting by χA the characteristic function of the

set A,
∫

R
N−1
x′

Gk(u(x′, y, t)) dx′ ≤ (m(m − 1)t)−1
∫

R
N

uχ{u>k} dx . (7)

Proof. Assume first that a > 0. Multiply both sides of (1) by (u − k)a
+

and integrate over R
N−1 × (−∞, y). We get on using the bound for ut

proved in Lemma 2.1 and integrating by parts

m

y∫

−∞

dxN

∫

R
N−1
x′




u∫

k

sm−1(s − k)a
+ ds




xN

dx′ ≤

m
d

dy

∫

R
N−1
x′

Gk(u(x′, y, t)) dx′ +
1

(m − 1)t

∫

R
N

u(u − k)a
+ dx ,

whence integrating the left hand side

m
∫

R
N−1
x′

Gk(u(x′, y, t)) dx′ ≤

m
d

dy

∫

R
N−1

x′

Gk(u(x′, y, t)) dx′ +
1

(m − 1)t

∫

R
N

u(u − k)a
+ dx .

Multiplying both sides of this inequality by exp {−y} and integrating
the result between y1 and y2 we obtain

Ek(y1) :=
∫

R
N−1
x′

Gk(u(x′, y1, t)) dx′ ≤ exp {−(y2 − y1)} Ek(y2)+

(m(m − 1)t)−1
∫

R
N

u(u − k)a
+ dx .

Letting y2 → ∞, we arrive at (6), for y = y1.
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Finally the case a = 0 follows on letting a → 0 above, which is
possible since the quantities involved do not critically depend on a. �

3. Proof of Theorem 1.1

We denote by γ > 0, b > 1 constants depending only on N , m, which
may vary from line to line.

Let us state first the following energy inequality which can be proved
by means of routine calculations.

Lemma 3.1. For all h1 > h2 > 0, t > t1 > t2 > 0 and ω > 0 we have

sup
t1<τ<t

∫

R
N

(u − h1)1+ω
+ dx +

t∫

t1

∫

R
N

∣∣∣∣∇(u − h1)
m+ω

2
+

∣∣∣∣
2

dx dτ

≤
γ

t1 − t2

t∫

t2

∫

R
N

(u − h2)1+ω
+ dx dτ . (8)

Fix t > 0. Introduce then the decreasing sequences

ϑn = τ2 + (τ1 − τ2)2
−n , kn = a2 + (a1 − a2)2−n , n ≥ 0 ,

for arbitrarily fixed t > τ1 > τ2 > t/4 and a1 > a2 > 0. Next we apply
Lemma 3.1 with t1 = ϑn, t2 = ϑn+1, h1 = kn, h2 = kn+1. We obtain

sup
ϑn<τ<t

∫

R
N

(u − kn)1+ω
+ dx +

∫∫

En

∣∣∣∣∇(u − kn)
m+ω

2
+

∣∣∣∣
2

dx dτ

≤
γbn

τ1 − τ2

∫∫

En+1

(u − kn+1)
1+ω
+ dx dτ ,

where En = R
N × (ϑn, t). Here ω > 0 is any fixed constant, whose

value is in practice not relevant. Set vn = (u − kn)
m+ω

2
+ . Then the last

inequality leads to

sup
ϑn<τ<t

∫

R
N

vβ
n dx +

∫∫

En

|∇vn|2 dx dτ ≤
γbn

τ1 − τ2

∫∫

En+1

vβ
n+1 dx dτ ; (9)

we employ here the notation

β = 2
1 + ω

m + ω
, δ =

2

m + ω
.
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On applying next Lemma 2.2 with k = kn, a = 0 we can easily get at
every time level τ > t/4

∫

R
N−1
x′

vmδ
n dx′ ≤ γbn a1

a1 − a2
t−1

∫

R
N

vδ
n+1 dx . (10)

Next we use the N −1 dimensional Nirenberg-Gagliardo type inequality

∫

R
N−1
x′

vβ
n+1 dx′ ≤ γ



∫

R
N−1
x′

|∇vn+1|
2 dx′




αβ

2


∫

R
N−1
x′

vµ′

n+1 dx′




(1−α)β

µ′

.

(11)
where µ′ = (1 + µ)δ, 0 < µ < min(m − 1, ω) will be chosen and α by
dimensional analysis is calculated as

N − 1

β
= α

N − 3

2
+ (1 − α)

N − 1

µ′
. (12)

By the Hölder inequality with µ < m − 1 and by (10) we infer

∫

R
N−1
x′

vµ′

n+1 dx′ ≤



∫

R
N−1
x′

vmδ
n+1 dx′




µ

m−1


∫

R
N−1
x′

vδ
n+1 dx′




1− µ

m−1

≤


γbn a1

a1 − a2
t−1

∫

R
N

vδ
n+2 dx




µ
m−1



∫

R
N−1
x′

vδ
n+1 dx′




1− µ
m−1

.

Therefore by (11) we get

∫

R
N−1
x′

vβ
n+1 dx′ ≤ γ



∫

R
N−1
x′

|∇vn+1|
2 dx′




αβ

2

×


bn a1

a1 − a2
t−1

∫

R
N

vδ
n+2 dx




µ
m−1

(1−α)β

µ′



∫

R
N−1
x′

vδ
n+1 dx′




(1− µ
m−1 ) (1−α)β

µ′

.

(13)
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Integrate (13) in xN between −∞ and ∞ and apply the Hölder in-
equality to get

∫

R
N

vβ
n+1 dx ≤ γbn



∫

R
N

|∇vn+1|
2 dx




αβ
2

×




a1

a1 − a2

t−1
∫

R
N

vδ
n+2 dx




A(1− αβ
2

)



∞∫

−∞



∫

R
N−1
x′

vδ
n+1 dx′




B

dxN




1− αβ
2

.

(14)

We have used the fact αβ < 2 which can be computed to actually hold
true according to the value of µ selected below. Here we denote

A =
µ

m − 1

(1 − α)β

µ′

(
1 −

αβ

2

)−1

, B =
(

1 −
µ

m − 1

)
A(m − 1)

µ
.

(15)
Choose now the free parameter µ by imposing the relation B = 1.
Then from (15) and (12) one gets for K = (N − 1)(m − 1) + 2

µ =
2ω(m − 1)

K + 2(ω + m − 1)
< min(m − 1, ω) , A =

2ω

K + 2(m − 1)
.

Integrating now (14) in time over (ϑn+1, t) and applying the Young
inequality we obtain

bn

τ1 − τ2

∫∫

En+1

vβ
n+1 dx dτ ≤ ǫ

∫∫

En+1

|∇vn+1|2 dx dτ

+ γ(ǫ)bn(τ1 − τ2)− 2
2−αβ

(
a1t−1

a1 − a2

)A

× (t − ϑn+1)


 sup

ϑn+1<τ<t

∫

R
N

vδ
n+2 dx




1+A

.

(16)
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Finally, from (9) and (16) we infer

Ln := sup
ϑn<τ<t

∫

R
N

vβ
n dx +

∫∫

En

|∇vn|2 dx dτ ≤ ǫ
∫∫

En+1

|∇vn+1|
2 dx dτ

+ γ1b
n(τ1 − τ2)− 2

2−αβ t−A

(
a1

a1 − a2

)A

× (t − ϑn+1)


 sup

ϑn+1<τ<t

∫

R
N

vδ
n+2 dx




1+A

.

Here we denote by γ1 a constant depending on suitable powers of ǫ > 0.
Iterating this inequality with respect to n, we obtain

L0 ≤ ǫnLn +

(
n−1∑

i=0

(ǫb)i

)
γ1(τ1 − τ2)

− 2
2−αβ t−A

(
a1

a1 − a2

)A

× (t − τ2)


 sup

τ2<τ<t

∫

R
N

(u − a2)+ dx




1+A

.

Therefore on selecting ǫ < b−1 we have as n → ∞

sup
τ1<τ<t

∫

R
N

(u − a1)1+ω
+ dx ≤ γ1(τ1 − τ2)− 2

2−αβ t−A

(
a1

a1 − a2

)A

× (t − τ2)


 sup

τ2<τ<t

∫

R
N

(u − a2)+ dx




1+A

. (17)

For k > 0 to be chosen define for n ≥ 0

hn = k − 2−n−1k , tn = 2−1t − 2−n−2t , h̃n = 2−1(hn + hn+1) ,

and note that

(u − hn+1)+ ≤ 2ω(n+3)k−ω(u − h̃n)1+ω
+ .

Therefore, on applying (17) with

a1 = h̃n , a2 = hn , τ1 = tn+1 , τ2 = tn ,

so that
a1

a1 − a2
≤ 2n+3 ,

we obtain

Yn+1 := sup
tn+1<τ<t

∫

R
N

(u − hn+1)+ dx ≤ γ1b
nk−ωt− αβ

2−αβ
−AY 1+A

n .
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Finally, by means of a standard iterative lemma (see e.g., [5] p.12) we
conclude that Yn → 0 as n → ∞ provided

k−ωt− αβ
2−αβ

−AY A
0 ≤ σ , (18)

for a small enough σ = σ(m, N). After a lenghty but elementary
calculation (see the Appendix below) the last inequality leads to

k−Ht−N−1Y 2
0 ≤ σ

K+2(m−1)
ω . (19)

Finally, noting that
Y0 ≤ ‖u0‖L1(RN ) ,

and choosing

k = σ−
K+2(m−1)

ω t− N+1
H ‖u0‖

2
H

L1(RN )
,

we conclude the proof of Theorem 1.1.
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4. Appendix: Calculation of the exponent in the main

estimate

We show here how (18) yields (19); this follows from (24), (25) which
we prove below.
Recall our definitions

δ =
2

m + ω
, β =

2(1 + ω)

m + ω
, µ′ = (1 + µ)δ =

2(1 + µ)

m + ω
.

From the definition of α in (12) we obtain

α =
N−1

µ′
− N−1

β

N−1
µ′

− N−3
2

=
2

β

(N − 1)(β − µ′)

(N − 1)(2 − µ′) + 2µ′
.

Hence

αβ

2
=

(N − 1)(ω − µ)

(N − 1)(m − 1) + (N − 1)(ω − µ) + 2(1 + µ)

=
(N − 1)(ω − µ)

K + (N − 1)(ω − µ) + 2µ
. (20)

Next we compute from (20)

1 −
αβ

2
=

K + 2µ

K + (N − 1)(ω − µ) + 2µ
. (21)
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We have from the definition of α

1 − α =
N−1

β
− N−3

2
N−1

µ′
− N−3

2

=
µ′

β

(N − 1)(2 − β) + 2β

(N − 1)(2 − µ′) + 2µ′

=
µ′

β

K + 2ω

K + (N − 1)(ω − µ) + 2µ
,

that is

(1 − α)
β

µ′
=

K + 2ω

K + (N − 1)(ω − µ) + 2µ
. (22)

Therefore from the definition of A in (15), from (21) and (22) we get

A
m − 1

µ
= (1 − α)

β

µ′

(
1 −

αβ

2

)−1

=
K + 2ω

K + 2µ
.

From this equality we infer imposing that B = 1

1 = B :=
(

1 −
µ

m − 1

)
A

m − 1

µ
=

m − 1 − µ

m − 1

K + 2ω

K + 2µ
.

Thus with the choice B = 1 we solve the last equality for µ as

µ =
2ω(m − 1)

K + 2(ω + m − 1)
=

2ω(m − 1)

H + 2ω
, (23)

and therefore (using B = 1 again and (23))

A =
µ

m−1

1 − µ
m−1

=
2ω

K + 2(m − 1)
=

2ω

H
. (24)

Next we have from (20), (21) and (23)

αβ

2 − αβ
=

αβ

2(1 − αβ/2)
=

(N − 1)(ω − µ)

K + 2µ
=

(N − 1)(ω − 2ω(m−1)
H+2ω

)

K + 22ω(m−1)
H+2ω

=
(N − 1)(K + 2ω)ω

H(K + 2ω)
=

(N − 1)ω

H
.

Finally from the last equality and (24) we conclude that

αβ

2 − αβ
+ A =

(N + 1)ω

H
, (25)

so that by substituting (24), (25) in inequality (18) we get the desired
result.
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