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ABSTRACT. We show that a natural notion of irreducibility implies connectedness in the Compact
Quantum Group setting. We also investigate the converse implication and show it is related to
Kaplansky’s conjectures on group algebras.

1. INTRODUCTION

Among locally compact quantum groups, whose general theory is admittedly far from com-
plete, compact quantum groups provide a felicitous class of examples for which a satisfactory
theory does exist. This is particularly so when their representations are looked at. Indeed, the
category of finite-dimensional representations of a given compact quantum group, already at the
classical level, displays so rich a structure as to embody virtually any information on the group
itself. To name but few important topological aspects, connectedness [9], local disconnectedness
[2], and topological dimension [3] are all properties that the representation category keeps track
of very precisely. Algebraic properties of the group may also be recast in terms of the corre-
sponding category. Notably, the notion of subgroup and its normality, as well as homomorphic
images are a case in point.

Analogies between classical and quantum compact groups, however, are far too many to be
mentioned at all. Even so, cocommutative quantum groups lend themselves to a more immediate
grasp. For instance, as (classical) Abelian compact groups only feature irreducible representa-
tions of dimension one, so the irreducible representations of a cocommutative compact quantum
group are all still one-dimensional. Furthermore, the tensor structure of the category corresponds
to the group structure of the dual group, and the conjugate of an irreducible representation is but
its inverse. Many of the above topological properties may then be translated into the algebraic
language of discrete groups, thought of as dual objects, thus leading back to important yet diffi-
cult long-standing conjectures that have risen from group theory over the years, as we shall see
in the subsequent sections. Gromov’s characterization of groups of polynomial growth, coun-
terexamples to the Burnside problem, Kaplansky’s conjectures on group algebras, and the search
for a description of groups having Noetherian group algebras may all be interpreted as special
cases of geometric and topological issues in compact quantum group theory.

In this respect, this paper aims to shed some light on the relation between irreducibility, un-
derstood in its algebraic geometrical sense, and connectedness for compact quantum groups. We
show that irreducibility always implies connectedness, whereas the inverse implication is at least
as hard as tackling Kaplansky’s conjecture on the absence of zero divisors in group algebras of
torsionless groups. Needless to say, in the classical case connectedness and irreducibility are
equivalent notions, due to the one-to-one correspondence between compact Lie groups and their
complexification into reductive groups. Notice that Hopf algebras which are domains [4], or
more generally prime rings [1], are commonly considered for classification purposes.
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2. COMPACT QUANTUM GROUPS

The notion of compact quantum group (CQG) in theC∗-algebra formalism has been developed
by Woronowicz [10], see also [5, 6] for a thorough account of the subject. A compact quantum
group is a pair G = (Q,∆) where Q is a unital C∗-algebra, whose unit is denoted by 1, and ∆ is
a coassociative unital ∗-homomorphism

∆ : Q→ Q⊗Q

such that the products (1⊗Q)∆(Q) and (Q⊗ 1)∆(Q) are dense in the minimal tensor product
Q⊗Q, where 1⊗Q := {1⊗ x : x ∈ Q} and Q⊗ 1 := {x⊗ 1 : x ∈ Q}.

The basic and motivating example is given by the algebra C(G) of continuous functions on a
compact topological group G. In this case the tensor product C(G) ⊗ C(G) is isomorphic with
C(G×G) and the natural coproduct is induced by the group operation itself, i.e., ∆(f)(g, h)

.
=

f(gh), for every f ∈ C(G) and (g, h) ∈ G×G. More importantly, every commutative example
is of this form. Notice that the structure of Q is thought of as dual to that of G = (Q,∆), which
is the main object of investigation. One will typically describe properties of Q in terms of a
language which is better suited to the structure of G. For instance, when Q is commutative, we
will say that G is classical.

A finite-dimensional (unitary) representation ofG is defined as a unitary element u ∈ B(H)⊗
Q, where H is a finite dimensional Hilbert space, satisfying ∆(uξ,η) =

∑
r uξ,er ⊗ uer,η. Here

uξ,η = (ξ∗ ⊗ 1)u(η ⊗ 1), where ξ, η ∈ H and (er) is an orthonormal basis of H , are the matrix
coefficients of u.

As far as representation theory is concerned, an analogue of the Peter-Weyl theorem holds for
compact quantum groups as well. More precisely, the Woronowicz density theorem states that
the subalgebraQG, which is by definition the subalgebra linearly generated by matrix coefficients
of representations of G, is dense in Q with respect to its C∗-norm. Unlike the classical case,
though, the subalgebra QG may well fail to bear a (necessarily not complete) unique C∗-norm;
however, any such norm on QG can be shown to be bounded between the so-called reduced and
maximal norms. The quantum group G is coamenable when the reduced and maximal norm
coincide. Phrased differently, the quantum group G = (Q,∆) is coamenable when Q is the only
C∗-completion of QG. All classical compact quantum groups are coamenable.

2.1. Cosemisimplicity. Representations of a compact quantum group G can be made into a
C∗-tensor category with conjugates in the sense of, e.g., [6]. Subrepresentations, quotients, con-
jugates, direct sums, tensor products of representations as well as irreducible representations and
intertwiners are defined in the obvious way. Every representations can be decomposed as a direct
sum of irreducible representations, in a unique way up to equivalence. Every irreducible repre-
sentation is finite dimensional. We denote by RepG the corresponding Grothendieck (fusion)
ring: this is a Z-algebra endowed with an involution ∗ induced by taking dual of representations.

We have seen above that the linear span QG of matrix coefficients of representations is a
canonical dense ∗-subalgebra of Q. Furthermore, it has the structure of an honest Hopf ∗-algebra
[10, 11], which is cosemisimple by the abovementioned complete reducibility; representations
of G are the same as QG-comodules.

Due to cosemisimplicity, QG has a unique Haar state h, which means that h is a state sat-
isfying the invariance condition (h ⊗ id)(∆(a)) = h(a)1 = (id ⊗ h)(∆(a)) for all a ∈ Q. It
is uniquely determined by demanding that h(1) = 1 and that it annihilates all coefficients of
non-trivial irreducible representations. The Haar state is always positive in the compact quantum
group setting, which means that h(a∗a) > 0 for all 0 6= a ∈ QG. Quite remarkably, the Haar
state is uniquely determined at the C∗-algebraic level of Q too [10], by only requiring that it
satisfies the invariance condition.

2.2. Character theory. In the classical theory, with any finite-dimensional representation π
of a compact group G one may associate its character χπ, which is the continuous function
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χπ(g)
.
= Tr(π(g)), g ∈ G. If now {πi, i ∈ I} is a complete family of inequivalent irreducible

representations of G, the set of corresponding characters {χi, i ∈ I} is an orthonormal system in
the Hilbert space L2(G,m), where m is the Haar measure of G. Unless G is Abelian, however,
the functions thus obtained will fail to be an orthonormal basis of L2(G,m). In fact, they are
a basis for the Hilbert subspace ZL2(G,m) ⊂ L2(G,m), which is the closure in L2(G,m) of
the Banach space ZC(G) := {f ∈ C(G) : f(gh) = f(hg), for every g, h ∈ G} of central
functions.

One of the features of compact quantum groups is that most of the usual character theory out-
lined above extends to the quantum setting. If a finite-dimensional representation is described
by the unitary element u ∈ B(H) ⊗ Q, the corresponding character can be still defined as
χ(u) = (Tr ⊗ id)(u) ∈ QG. Associating with each finite-dimensional representation of G its
character sets up a ring homomorphism χ : RepG → QG which commutes with the corre-
sponding ∗-involutions. Characters {χi, i ∈ I} corresponding to a complete family of pairwise
non-isomorphic irreducible representations of G continue to satisfy the usual orthonormality re-
lations h(χi(χj)∗) = δij , showing that χ : RepG → QG is indeed injective, thus providing an
embedding of RepG inside QG.

To the best of our knowledge, in a general quantum framework the subspace SpanC〈χi, i ∈ I〉
is no longer known to be dense in ZQ := {x ∈ Q |∆(x) = θ(∆(x))}, where θ is the ∗-
isomorphism of Q⊗Q given by θ(x⊗ y) = y ⊗ x, x, y ∈ Q, although this is certainly the case
for Abelian compact quantum groups.

2.3. Finite quantum groups and connectedness. Wang extended in [9] the notion of connect-
edness to the compact quantum setting: a compact quantum group G = (Q,∆) is connected
if the only finite-dimensional unital Hopf ∗-subalgebra of Q is the base field C; using the dual
group language, the only quotient quantum groups of G are finite. One may reformulate this
notion in terms of representation theory, and one of the results from [2] shows that G is con-
nected precisely when each nontrivial irreducible representation u of G requires infinitely many
pairwise non-isomorphic irreducible summands to decompose all tensor powers of u ⊕ u∗; in
other words, the only torsion irreducible representation is the trivial one.

In the classical setting, if a compact topological group G is not connected, then the corre-
sponding group of connected components G/G◦ is totally disconnected and thus has nontrivial
finite quotients; then each nontrivial irreducible representation of such quotients lifts to a torsion
representation of G; the viceversa clearly holds by standard Lie representation theory.

2.4. Finite quantum groups and semisimplicity. When QG is finite dimensional, i.e., when
G is finite, then QG coincides with its completion Q, which is a finite-dimensional C∗-algebra.
It is well known [8] that finite-dimensional C∗-algebras are semisimple. A complex semisimple
algebra is always a direct sum of complex matrix algebras; as the counit ε : QG → C is a
surjective ring homomorphism, one of this direct summand is isomorphic to C.

Summing up, if G is a finite quantum group, thenQG, viewed as a ∗-algebra, is isomorphic to
a finite sum of complex matrix algebras, at least one of the summands being isomorphic to C.

2.5. Connectedness and irreducibility of complex algebraic groups. If P0 6= P1 are points
in a compact Hausdorff space X , choose disjoint open neighbourhoods Ui 3 Pi. By Urysohn’s
Lemma, one finds continuous functions fi : X → R whose value is 1 on Pi and vanish on the
complement of Ui. Then f0 ·f1 = 0, yet neither factor is the constant zero function, thus showing
that the C∗-algebra C(X) is never a domain.

As a consequence, if G 6= {1} is a compact Lie group, then Q = C(G) has zero divisors.
However, as soon as G is connected, then QG is an integral domain. Indeed, QG can be under-
stood as the coordinate ring of the affine complex algebraic group GC = Spec(QG) admitting
G as a maximal compact subgroup. It is well known that an algebraic group is connected if and
only if it is irreducible. Indeed, the intersection of irreducible components is singular, and the
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singular part of an algebraic group, which is a Zariski closed set, must be empty as it is invari-
ant under all left multiplications. Irreducibility of GC then translates into QG being an integral
domain.

The main goal of the present note is to show that a suitably generalized notion of irreducibility
implies connectedness for all (even non-classical) compact quantum groups. More explicitly, we
will show in Proposition 4.6 below that a compact quantum group G is connected as soon as the
corresponding canonical Hopf ∗-algebra QG is a (possibly noncommutative) domain.

3. DISCRETE GROUPS

3.1. Abelian compact quantum groups. An important class of non-classical examples is pro-
vided by Abelian compact quantum groups, which correspond to cocommutative instances of
C(G). If Γ is a discrete (ordinary) group then the group C∗–algebra C∗(Γ), which is the com-
pletion of the group algebra CΓ in the maximal C∗–norm, becomes a compact quantum group
with coproduct ∆(γ) = γ⊗γ, γ ∈ Γ. We may also consider the reduced C∗–completion C∗

red(Γ)
and still obtain a compact quantum group. These are cocommutative examples and every cocom-
mutative compact quantum group can be obtained as the completion of CΓ with respect to some
C∗–norm, which is bounded between the reduced and the maximal norm. An Abelian compact
quantum group C∗(Γ) is coamenable if and only if Γ is amenable as a group.

The correspondence between Abelian CQG and discrete groups provides a bridge associating
topological properties of compact quantum groups with structural aspects of discrete groups.

3.2. Topology of CQGs and structure of discrete groups. The notion of topological (Lebesgue)
dimension of a compact topological group G is related to the Gelfand-Kirillov dimension ofQG,
which has been rephrased in representation theoretic terms in [3]. This can be used to extend the
concept of topological dimension to all (possibly non-classical) compact quantum groups. In the
special case of an Abelian compact quantum group G = C∗Γ, the topological dimension of G is
only finite when Γ is a group of polynomial growth, in which case it equals the growth degree.
A celebrated result by Gromov characterizes all finitely generated groups of polynomial growth.

Theorem 3.1 (Gromov). A finitely generated group has polynomial growth if and only if it is
virtually nilpotent.

When G = C∗Γ is a connected Abelian CQG, irreducible representations of G are in one-
to-one correspondence with elements of Γ; then tensor product of irreducible representations is
given by the group multiplication, and the dual by taking the inverse element. We have seen
above that connectedness of a CQG can be rephrased in terms of the absence of torsion represen-
tations; indeed, G = C∗Γ is connected if and only if Γ is torsionless. A long-standing conjecture
for group algebras of discrete groups is the following:

Conjecture 3.2 (Kaplansky). Let k be a field. A discrete group Γ is torsionless if and only if its
group algebra kΓ has no zero-divisors.

Kaplansky’s conjecture is known to hold for polycyclic-by-finite groups. As virtually nilpotent
groups are of this type, Kaplansky’s conjecture holds for finitely generated groups of polynomial
growth. Notice that polycyclic-by-finite groups are the only groups known to yield a Noetherian
group algebra.

In a similar—albeit more analytical—fashion, the so-called Kadison-Kaplansky conjecture
states that the reduced C∗-algebra C∗

r (Γ) has no non-trivial projections if Γ is a torsion-free
discrete group. The conjecture has been proved true for word-hyperbolic groups [7].

4. IRREDUCIBILITY IMPLIES CONNECTEDNESS

Definition 4.1. Let G be a compact quantum group. Then
• G is irreducible iff QG is a domain;
• G is weakly irreducible iff RepG is a domain;
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• G is connected iff it has no nontrivial torsion irreducible representation.

Example 4.2. Let G be a semisimple compact Lie group. We have seen above that G can
be viewed as maximal compact subgroup of the semisimple complex algebraic group GC =
SpecQG. Representations of GC restrict to representations of G, and irreducibility, tensor prod-
uct, direct sums are preserved.

If we denote by r the rank ofGC and by u1, . . . , ur its irreducible fundamental representations,
then mapping xi to ui provides an isomorphism Z[x1, . . . , xr] ' RepGC = RepG, thus showing
that RepG is a commutative domain, hence G is a weakly irreducible CQG.

Connectedness, irreducibility and weak irreducibility are all preserved under taking inverse
limits:

Lemma 4.3. Connectedness, irreducibility and weak irreducibility are preserved by inverse lim-
its of CQGs.

Proof. If G is the inverse limit of its quotients Gi, then QG is by definition the direct limit of
QGi

. If now each Gi is connected then no finite-dimensional Hopf subalgebra can be contained
in any of the Hopf algebras QGi

, hence no finite-dimensional Hopf subalgebra can be contained
in QG either. The conclusion is now easily reached, for any finite-dimensional Hopf subalgebra
of the C∗-algebra Q is actually contained in QG.

As for irreducibility, if allQGi
are domains, then alsoQG is a domain, as every pair of nonzero

elements x, y ∈ QG satisying xy = 0 must be contained in QGi
for some i ∈ I . The same

argument holds for RepG. �

Proposition 4.4. Let G be a compact quantum group. If QG is a domain, then RepG is a
domain.

Proof. The character function χ : RepG→ QG is an injective ring homomorphism. Then ifQG
is a domain, RepG ' χ(RepG) ⊂ QG must be a domain too. �

Proposition 4.5. LetG be a compact quantum group. If RepG is a domain, thenG is connected.

Proof. If G is not connected, then it has a finite (i.e., finite dimensional as a C-vector space)
quotient H . Then the fusion ring A := RepH , which sits inside R := RepG, has finitely
many irreducibles and is closed under direct sum, tensor product and subobjects. The ring A is
a finitely generated free Z-module, as the finitely many irreducible representations of H linearly
span it over Z, so that each of its elements admits a unique (monic) minimal polynomial in Z[x].

Assume R, hence A, to be a domain. If u is a nontrivial irreducible representation of H , its
minimal polynomial p(x) ∈ Z[x] is irreducible of degree > 1, hence it certainly has no roots in
Z. However, the dimension function dim : R → Z is a ring homomorphism, so that dimu ∈ Z
is a root of p, thus yielding a contradiction. �

Proposition 4.6. Let G be a compact quantum group. If QG is a domain, then G is connected.

Proof. This follows from Propositions 4.4 and 4.5, but we also provide a direct proof of a some-
what different flavour. If G is not connected, then it has a nontrivial finite quotient quantum
group H . ThenQH ⊂ QG is a semisimple C∗-algebra, which is a direct sum of matrix algebras.
However, a nontrivial direct sum of matrix algebras is never a domain. �

Notice that when G is a compact topological group which is not connected, then above proofs
locates a finite-dimensional ∗-algebra of the commutative algebra C(G), thus yielding a decom-
position of 1 ∈ C(G) into a sum of orthogonal central idempotents. This also forces C(G) to
decompose into a direct sum of finitely many ideals. This fact is likely not to hold in general,
and seems to require G to be either classical or finite. We may summarize Propositions 4.4-4.6
in the following

Theorem 4.7. Let G be a compact quantum group. Then

G irreducible =⇒ G weakly irreducible =⇒ G connected.
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5. DOES CONNECTEDNESS IMPLY IRREDUCIBILITY?

It is well known that connectedness is equivalent to irreducibility as soon as G is a compact
Lie group, hence for all classical (i.e., commutative) CQGs by Lemma 4.3. In the compact Lie
case, QG is the complex algebra of regular functions of the affine group corresponding to G,
which is irreducible as soon as G is connected.

In the non-classical case, proving that connectedness implies irreducibility certainly consti-
tutes a difficult problem, already when G is Abelian. Indeed, we have seen that when G = C∗Γ,
then CΓ being a domain only forces connectedness of G if Conjecture 3.2 holds. The general
statement is thus at least as difficult as proving Kaplansky’s conjecture.

However, connectedness and irreducibility are equivalent also when G is a cocommutative
compact matrix quantum group C∗Γ of finite topological dimension [3], as the polynomial
growth requirement forces Γ to be virtually nilpotent, whence polycyclic-by-finite, and we have
seen above that Kaplansky’s conjecture is known to hold for such groups. As having finite
topological dimension commutes with inverse limits, Lemma 4.3 shows that equivalence of con-
nectedness and irreducibility holds for every Abelian (i.e., cocommutative) compact quantum
group of finite topological dimension.
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