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Summary
The occurrence of undetected outliers severely disrupts the model building procedures and
produces unreliable results. This topic has been widely addressed in the statistical literature.
However, little attention has been paid to determine how large an outlier has to be for correct
detection of both time and magnitude to safely take place. This issue has been the object of
research mainly in geodesy. In this paper the minimal detectable bias (MDB) concept is extended
to vector time series data, and the risk of accepting an outlier as a clean observation is evaluated
according to both the size andpower of the statistical tests. This approach seems able to dealwith
the difficult issues knownasmasking and swamping. The proposedmeasure of outlier identifiabil-
ity helps to determine if any configurations of multiple outliers, also occurring in patches is easily
detectable.
KEYWORDS:
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1 INTRODUCTION
An additive outlier is a perturbation affecting just one observation of the time series, and may arise from a recording error or from the influence of
unexpected events, in any case it is important to determine the exact time of that occurrence, and its relevance. The literature haswidely addressed
inference on additive outliers, considering both the detection of the occurrence of an outlier, and the estimation of its size. There are essentially
two different approaches, one based on interpolators and the other on ARIMAmodels.
In the first case each observation is compared to its best (in mean square sense) reconstruction based on all the other observations (this is called

the linear interpolator), and if the difference is large an outlier is suspected. Thuswhat is important is the significance of the interpolation error, see
Ljung (1993); Peña (1987); Peña and Maravall (1991), among others, for details of this approach in the univariate case, and Baragona, Battaglia,
and Poli (2011); Cucina, di Salvatore, and Protopapas (2014) for themultivariate case.
In the second approach we assume an ARIMAmodel and denote the outlier size by a parameter ω, then all the parameters are jointly estimated

and if the estimated ω is significantly different from zero an outlier is suspected. The first proposal by Fox (1972) was later developed by several
authors, e. g. Chang, Tiao, and Chen (1988); Chen and Liu (1993); Tsay (1986 1988), extension to multivariate ARIMA models was proposed by
Tsay, Peña, and Pankratz (2000). The model may be alternatively written in state space form and estimated using the Kalman filter (e. g. Atkinson,
Koopman, & Shepard 1997; De Jong & Penzer 1998). Bayesian estimation is also employed (e. g. Abraham&Box 1979; Box & Tiao 1968).
The twoapproaches arenot independent (seee. g. Peña1990) because if the linear interpolator is expressed in functionof theARMAparameters,

and their estimates are plugged in, the statistics onwhich they are based coincide. In case of Gaussian data bothmethods are essentially equivalent
to a likelihood ratio test of the null hypothesis of absence of outlier.
More recently a new approach was proposed for multivariate series (Baragona & Battaglia 2007; Galeano, Peña, & Tsay 2006), based on

univariate contemporaneous linear combinations onwhich the univariate detectionmethods are applied.
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Herewe adopt a different point of view.Wedo not propose a newdetectionmethod, but try to determine how large an outliermust be to ensure
a safe detection by current statistical methods. This topic has not attracted great attention in time series, while it was widely addressed in geodesy
and in particular in the study ofGPS networks (e. g. Prószynski 2015)which led to the important concept ofMinimalDetectable Bias (Baarda 1968).
The problem of determining the size of a detectable outlier is important both in the design of analysis and in the interpretation of the results.

The minimal detectable bias concept has been used for evaluating the reliability of GPS networks (Knight, Wang, & Rizos 2010; Teunissen 1998)
and in quality control of integrated navigation systems (Salzmann 1991; Teunissen 1990; Teunissen & Montenbruck 2017), applications were
proposed also in computer vision (e. g. Förstner 1987). Determining the minimal size of a perturbation that may be safely detected from the data
helps to understand the level of ineradicable uncertainty in the results of analysis. On the other side, if the series is associated to a dynamical
system, knowing to what extent a given perturbation in the input may be recovered from the output is useful in the design of the system and the
measurement tools.
We define a measure of outlier identifiability that relates the size and position of an additive outlier to the probability of detecting it. It will be

seen that suchmeasure depends not only on the variability of the time series, but also on its autocorrelation structure.
The plan of the paper is as follows. Section 2 considers the problem of outlier identifiability in univariate time series and Section 3 in multivari-

ate time series. Section 4 is concerned with a formal definition of masking and swamping. Section 5 addresses the problem of outlier detection
whenmany different outliers are found in the same series, and Section 6 considers the detectionmethods based on linear univariate combinations.
Section 7 contains an application, and conclusions are drawn in the last Section. The proofs of Theorems and a simulation studymay be found in the
Supporting Information.

2 OUTLIER IDENTIFIABILITY INUNIVARIATE TIME SERIES
First of all we introduce the idea ofMinimal Detectable Bias due to Baarda, and formalize it for a general stationary time series.
Let {yt} denote a second-order stationary stochastic process with mean zero, autocovariances γ(h) = E{ytyt+h} and spectral density f(λ)

positive everywhere. The inverse autocovariances γi(h) are defined by γi(h) = (2π)−2
∫ π
−π f(λ)−1 exp{iλh}dλ and the inverse autocorrelations

by ri(h) = γi(h)/γi(0). We shall use the notation δ(x) = 1 if x = 0 and zero otherwise.
We suppose that the observed time series {zt, t = 1, . . . , n} is affected by p additive outliers at times t1, t2, . . . , tp with size ω1, ω2, . . . , ωp.

On denoting y = (y1, . . . , yn)′, z = (z1, . . . , zn)′, ω = (ω1, ω2, . . . , ωp)′ we may write z = y + Xω where the n × p design matrix has entries
Xij = δ(i − tj), i = 1, . . . , n; j = 1, . . . , p. If the process {yt} is Gaussian, then y ∼ N(0, Γ)where Γi,j = γ(j − i) and z ∼ N(Xω, Γ). A standard test
ofH0 : ω = 0 againstH1 : ω 6= 0may be based on the likelihood ratio L(z|0)/maxω L(z|ω), where

L(z|ω) = (2π)−n/2|Γ|−1/2 exp{−
1

2
(z −Xω)′Γ−1(z −Xω)}.

The inverse of the variance-covariancematrix Γ−1may be approximated by the inverse autocovariancematrix Γiwith element γi(j− i) at row i and
column j. Such an approximation is motivated by the orthogonality property:

∞∑
u=−∞

γ(u)γi(u− v) = δ(v)

and was studied by Shaman (1975 1976). Its properties are analyzed belowwhen dealing with the multivariate case. On substituting Γi to Γ−1, the
maximum likelihood estimator ω̂ is: ω̂ = (X′ΓiX)−1X′Γiz and themaximum likelihood is:

L(z|ω̂) = (2π)−n/2|Γi|1/2 exp{−
1

2
(z −Xω̂)′Γi(z −Xω̂)} = (2π)−n/2|Γi|1/2 exp{−

1

2
z′Γiz +

1

2
z′ΓiX(X′ΓiX)−1X′Γiz}.

The test statistic becomes:
−2 log

L(z|0)

L(z|ω̂)
= z′ΓiX(X′ΓiX)−1X′Γiz = u′u

where u = (X′ΓiX)−1/2X′Γiz. Under H0, u is unit normal, therefore the statistic u′u follows a central chi square distribution with p degrees of
freedom, thus the rejection region is u′u > χ2

p,1−α. Under the alternative hypothesis of presence of outliers z ∼ N(Xω, Γ), then u has mean
(X′ΓiX)−1/2X′ΓiXω = (X′ΓiX)1/2ω and variance I, thereforeu′u is a non central chi squarewith noncentrality parameterE(u)′E(u) = ω′(X′ΓiX)ω.
The test statistic has distributionχ2

p[ω′(X′ΓiX)ω] and the power underH1 is
Pr{χ2

p[ω′(X′ΓiX)ω] > χ2
p,1−α}.

If the power is denoted by β, then χ2
p,1−β [ω′(X′ΓiX)ω] = χ2

p,1−α. In other words, the value of the noncentrality parameter∆ that ensures a test
with sizeα and power β is the solution of

χ2
p,1−β [∆] = χ2

p,1−α.

This is the equivalent for time series of theMinimal Detectable Bias of Baarda (1968).
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FIGURE 1Minimal detectable bias in function of the power for test sizeα = 0.05 (continuous line) andα = 0.01 (dotted line). The bias is expressed
in units of themean square interpolation error γi(0)−1/2.

Consider the case that only one outlier (p = 1) at time q affects the time series: the noncentrality parameter is∆ = ω2γi(0). The maximum
likelihood estimator ω̂ equals the interpolation error zq − Iq where It = −

∑
j 6=0 ri(j)zt−j is the linear interpolator (see e. g. Battaglia & Bhansali

1987; Pourahmadi 2001). The interpolationerror hasmeanω andvariance1/γi(0), thusu′u = ω̂2/var{ω̂}and thenoncentrality parameter∆ is the
square of themean of the standardized interpolation error. To illustrate the concept of minimal detectable bias, we reported in Figure 1, separately
for size 0.05 and 0.01, the power of the test for a single outlier when the outlier size is k times the mean square interpolation error γi(0)−1/2, and
k ranges from zero to five. From the figure it may be argued, for example, that a test with size 0.05 will reject the null hypothesis of clean data with
probability 0.9 if the outlier size is at least 3.3 times themean square interpolation error.
When p outliers occur at times t1, t2, . . . , tp andω = (ω1, . . . , ωp)′ it follows

[X′ΓiX]ij =
∑
a

∑
b

[X′]iaΓi(a, b)[X]bj =
∑
a

∑
b

XaiΓi(a, b)Xbj =

n∑
a=1

n∑
b=1

δ(a− ti)γi(b− a)δ(b− tj) = γi(tj − ti)

and the noncentrality parameter becomes
∆ =

p∑
j=1

p∑
k=1

ωjωkγi(tk − tj) =

p∑
j=1

ω2
j γi(0) +

p∑
j=1

∑
k 6=j

ωjωkγi(tk − tj) = |ω|2γi(0)
∑
j

∑
k

ωjωk

|ω|2
ri(tk − tj) (1)

therefore it depends on |ω|2, on γi(0) and on the quadratic form ξ′Ri(X)ξwhere ξ = ω/|ω| and thematrixRi(X) has entry equal to ri(tj − ti) in row
i and column j.
The noncentrality parameter may be alternatively expressed in function of eigenvalues and eigenvectors of the autocovariance matrix Γ: let λj

denote the eigenvalues and vj the associated eigenvectors, then Γi = Γ−1 has eigenvalues λ−1
j and the same eigenvectors; thus

∆ = (Xω)′ΓiXω =
∑
j

λ−1
j [ω′X′vj ]

2 =
∑
j

λ−1
j {

∑
k

ωkvj(tk)}2

and depends on the angles between the outlier size and the eigenvectors.

3 OUTLIER IDENTIFIABILITY INMULTIVARIATE TIME SERIES
Let {yt}with yt = (y1,t, y2,t, . . . , ys,t)′ denote a s-variate stochastic process.
Assumption A The process {yt} is second-order stationary with means zero, autocovariances Γ(h) = E{yty′t+h}, spectral density matrix F(λ) =

(2π)−1
∑

h Γ(h) exp{−iλh} positive definite for all λ, and inverse covariancematrices defined by Γi(h) = (2π)−2
∫ π
−π F(λ)−1 exp(iλh)dλ.

Assumption B The observed series is denoted by {zt = (z1,t, z2,t, . . . , zs,t)′, t = 1, . . . , n} and is contaminated by p additive outliers at times
t1, t2, . . . , tp with sizesω1, ω2, . . . , ωp. In vector notation z = (z′1, z

′
2, . . . , z

′
n)′ and analogue for yt, wemaywrite again z = y + Xω.

When there is only one outlier at time τ and sizeω = (ω1, ω2, . . . , ωs)′, the designmatrixX has ns rows and s columns defined by
Xij = 0 for i < (τ − 1)s, i > τs ; Xij = 1 for i = (τ − 1)s+ j
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and may be written X = [0s,(τ−1)s, Is,s, 0s,(n−τ)s]
′. Under Gaussian assumption z ∼ N(Xω,Γ) where Γ denotes a block matrix, with each block a

(s× s) autocovariancematrix, and a similar convention forΓi:

Γ =


Γ(0) Γ(1) . . . Γ(n− 1)

Γ(1)′ Γ(0) . . . Γ(n− 2)

. . . . . . . . . . . .

Γ(n− 1)′ Γ(n− 2)′ . . . Γ(0)

 . Γi =


Γi(0) Γi(1) . . . Γi(n− 1)

Γi(1)′ Γi(0) . . . Γi(n− 2)

. . . . . . . . . . . .

Γi(n− 1)′ Γi(n− 2)′ . . . Γi(0)

 .

Weuse the approximationΓ−1 = Γi, it was analyzed by Shaman (1975 1976) in the univariate case and by Bhansali (1990) formultivariate time
series, and is motivated by the orthogonality property:

∞∑
u=−∞

Γ(u)Γi(u− v)′ = δ(v)I.

The approximation is exact if the doubly infinite vector z = [. . . , z′−2, z
′
−1, z′0, z

′
1, z
′
2, . . .]

′ is considered, while in the finite case ΓΓi − I is positive
semi-definite. A more precise result may be obtained for vector autoregressive processes, where inverse covariances vanish at a finite lag. In that
case the error is confined in the submatrices in the upper left corner and lower right corner.

Theorem 1. Let {yt} be a stationary vector autoregressive process of order q and Assumption A hold. The only non zero blocks of Γ−1 − Γi are
those for 1 ≤ i ≤ q, 1 ≤ j ≤ q and n− q ≤ i ≤ n, n− q ≤ j ≤ n.
If there is just one outlier X′ΓiX = Γi(0) and the noncentrality parameter becomes:∆ = ω′Γi(0)ω where Γi(0) is the inverse variance matrix

of the process. The test statistic is (X′Γiz)′(X′ΓiX)−1X′Γiz and under absence of outliers has a distribution χ2
s . Note that under the hypothesis of

the Theorem, if the outlier position τ is larger than q and smaller than n− q thenX′Γ−1X = X′ΓiX.
If there are p outliers at times t1, t2, . . . , tp the size of each of them is denoted ω1 = (ω1,1, ω2,1, . . . , ωs,1)′ . . . , ωp = (ω1,p, ω2,p, . . . , ωs,p)′ and

the vectorω is defined byω = [ω′1, ω
′
2, . . . , ω

′
p]′. The designmatrixX is a s× s blocksmatrix (with n rowblocks and p columnblocks): the first column

block has a s×s identitymatrix at the t1-th rowblock, the second columnblock has an identitymatrix at the t2-th rowblock, and so on. So thematrix
(X′ΓiX) is also a (s× s)-blocksmatrix, and its block (i, j) equals the inverse covariancematrix Γi(tj − ti). Again we note that under the assumptions
of Theorem 1., if q < t1 < . . . < tp < n− q thenX′ΓiX = X′Γ−1X.
The test statistic is also in this case equal to (X′Γiz)′(X′ΓiX)−1X′Γiz and in absence of outliers is a chi squarewith sp degrees of freedom, while

otherwise the noncentrality parameter is
∆ = ω′X′ΓiXω =

p∑
i=1

p∑
j=1

ω′iΓi(tj − ti)ωj . (2)
It follows that for multivariate series the value of the noncentrality parameter∆ that ensures a test with sizeα and power β is the solution of

χ2
sp,1−β [∆] = χ2

sp,1−α.

In a similar way like the univariate case, the noncentrality parameter may be expressed in function of the eigenvalues λj and eigenvectors vj of
thematrixΓ:

∆ = ω′X′ΓiXω =
∑
j

λ−1
j (ω′X′vj)

2.

The analysis of the presence of p outliers at times t1, t2, . . . , tp simplifies when the inverse covariance matrices die out and the outliers are far
from each other in the sense that Γi(tj− ti) = 0, i 6= j. In such a casewe say that the outliers are separate. Let us denote byXi the design containing
only the outlier at ti: the matrix Xi has n row blocks (s × s) and just one column block, with the identity matrix at the ti-th row block and zero
elsewhere. Then

X = (X1, X2, . . . , Xp) =



. . . . . . . . . . . .

I 0 . . . 0

. . . . . . . . . . . .

0 I . . . 0

. . . . . . . . . . . .

0 0 . . . I

. . . . . . . . . . . .


; X′ΓiX =


Γi(0) Γi(t2 − t1) ... Γi(tp − t1)

Γi(t1 − t2) Γi(0) ... Γi(tp − t2)

... ... ... ...

Γi(t1 − tp) Γi(t2 − tp) ... Γi(0)



and since Γi(tj − ti) = 0 (i 6= j):
X′ΓiX = diag{Γi(0),Γi(0), . . . ,Γi(0)}.
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The test statistic for the design Xj is u′j uj = (X′jΓiz)′(X′jΓiXj)
−1X′jΓiz where X′jΓiXj = Γi(0). It follows that the test statistic for the complete

designX is:

u′u = (X′Γiz)′(X′ΓiX)−1X′Γiz = z′Γi


X′1

X′2

. . .

X′p


′

Γi(0) 0 . . . 0

0 Γi(0) . . . 0

. . . . . . . . . . . .

0 0 . . . Γi(0)


−1

X′1

X′2

. . .

X′p

Γiz =

p∑
j=1

(X′jΓiz)
′Γi(0)−1X′jΓiz =

p∑
j=1

u′juj

equal to the sum of the statistics for theXj tests.
This happens also for the noncentrality parameters: from (2) when Γi(tj − ti) = 0 (i 6= j)we obtain

∆ =

p∑
j=1

ω′jΓi(0)ωj

equal to the sumof thenoncentrality parameters of the single designsXj. Thus the test statisticu′j uj for thedesignXj has aχ2
s [ω′j Γi(0)ωj]distribution,

while the test statistic for the complete designX is the sum of u′j uj and its distribution isχ2
ps[
∑

j ω
′
j Γi(0)ωj].

4 MASKINGAND SWAMPING
When the outliers are not separate, there may be interactions among them, that lead to the concepts of masking and swamping. Masking happens
whenanexistingoutlier is notdetectedowing to theexistenceof otheroutliers in surroundingobservations. Swampinghappenswhenacleanobser-
vation is recognized as an outlier due to the effect of other outliers in surrounding observations. Through the analysis of noncentrality parameters
the concepts of masking and swampingmay bemademore precise and formal.
We start with a general result concerning the case that a wrong outlier configuration is tested.

Theorem 2. Let Assumptions A and B hold. Suppose that we test the design C stating the presence of q outliers at times τ1, τ2, . . . , τq. The
noncentrality parameter is∆C = ω′X′ΓiC(C′ΓiC)−1C′ΓiXω. and if τ1, τ2, . . . , τq are separated, i.e. Γi(τj − τi) = 0, i 6= j, then

∆ =

p∑
i=1

p∑
j=1

q∑
k=1

ω′iΓi(ti − τk)Γi(0)−1Γi(τk − tj)ωj .

Let us consider in particular the univariate case. The matrix C′ΓiC of dimension q × q has element (i, j) equal to γi(τi − τj), while C′ΓiXω is a
q-vector with k-th entry equal to∑j γi(τk − tj)ωj; if the τj are separated we obtain

∆C =
1

γi(0)
|C′ΓiXω|2 =

1

γi(0)

∑
k

{
∑
j

ωjγi(τk − tj)}2 (3)

and in this case if there is only one τ equal to an outlying time tj, and all the other true outliers are separated, the noncentrality parameter of the
single outlier at tj is obtained. In conclusion, if the true outliers all are separated and in the designC there are only some of them, the noncentrality
parameter∆C equals the sum of the terms γi(0)ω2

j for the outliers contained in design C. The other times τ contained in C, provided that they are
separated both from the tj’s and from the other τj’s, do not contribute to the noncentrality parameter.
If on the contrary there is not complete separation, the easiest case is that C contains just one time τ , a clean observation. Then C is a column of

zeros except an one in position τ and
C′ΓiC = γi(0) , C′ΓiX = [γi(τ − t1), γi(τ − t2), . . . , γi(τ − tp)]

fromwhichC′ΓiXω =
∑

j ωjγi(τ − tj) and the noncentrality parameter becomes

∆{τ} =
1

γi(0)
{
∑
j

ωjγi(τ − tj)}2 = γi(0){
p∑
j=1

ωjri(τ − tj)}2 (4)

that may be large and induce to identify observation at time τ as contaminated also if it is not. For example if X contains just an outlier at time t1

then∆{τ} = γi(0)ω2
1ri(τ − t1)2.

For multivariate series the analogue of (4) is
∆{τ} =

p∑
i=1

p∑
j=1

ω′iΓi(ti − τ)Γi(0)−1Γi(τ − tj)ωj .

The above analysis suggests the following definition.
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Definition 1. The outlier configuration (X, ω)α-swamps the unperturbed time τ if∆{τ} > χ̄2
s,1−α.

To analyze masking, suppose that Assumption B holds, but we test the presence only of the outlier at time tk. In this case the design C contains
only tk and the noncentrality parameter is

∆{tk} =

p∑
i=1

p∑
j=1

ω′iΓi(ti − tk)Γi(0)−1Γi(tk − tj)ωj .

For a univariate time series,C is a columnwith only 1 at position tk and zero elsewhere, and the noncentrality parameter is
∆{tk} = γi(0){

p∑
j=1

ωjri(tk − tj)}2.

If the true designX includes only the outlier at t = tk (i.e., p = 1) then∆ correctly equals γi(0)ω2
k , while for p > 1:

∆{tk} = γi(0){ωk +
∑
j 6=k

ωjri(tk − tj)}2

thatmaybe larger or smaller than γi(0)ω2
k , and if it is smaller amasking occurs. For example in the simple case of a univariate serieswith twooutliers

at times t1 and t2 if we test only the presence of an outlier at t1, we get∆{t1} = γi(0){ω1 + ω2ri(t1 − t2)}2 and the true noncentrality parameter is
altered by the termω2ri(t1 − t2); in the extreme case thatω2 = −ω1/ri(t1 − t2) the noncentrality parameter would vanish.
This suggests the following definition.

Definition 2. The outlier configuration (X, ω)α-masks the outlier at time tk ifω′kΓi(0)ωk > χ̄2
s,1−α and∆{tk} < χ̄2

s,1−α.

Example1. For a univariateAR(1) processγi(0) = (1+φ2)/σ2, γi(1) = −φ/σ2, ri(1) = −φ/(1+φ2), γi(h) = 0, |h| > 1. If there is only anoutlier at
timeqwith sizeω, swampingmayoccur at timesq−1 andq+1. Thenoncentrality parameter for testing onlyq is (ω2

q/σ
2)(1+φ2), whilewhen testing

an outlier at only q− 1 or only q + 1 the noncentrality parameters are equal and given by (ω2
q/σ

2)(1 + φ2)[−φ/(1 + φ2)]2 = (ω2
q/σ

2)φ2/(1 + φ2),
i. e. equal to the previous one multiplied by ri(1)2 = φ2/(1 + φ2)2 that ranges from zero to 1/4. As far as masking is concerned, here the outlier at
time q could bemasked by those at q− 1 or q + 1: if both of them are present the noncentrality parameter for the outlier at q alone is

∆ = γi(0){ωq −
φ

1 + φ2
(ωq−1 + ωq+1)}2.

In this case also∆may be small, and even vanish if for example there are outliers only at times q and q + 1, andωq+1 = ωq(1 + φ2)/φ.
An other interesting particular case for univariate series is that all the outliers but one are detected. Here Assumption B holds but we test the
configuration C containing only the first p − 1 outliers. Thus X = [C, ap] where ap is a vector with all zero entries except a 1 at position tp.The
noncentrality parameter of the true design is ∆X = ω′X′ΓiXω while that for the design C is ∆C = ω′X′ΓiC(C′ΓiC)−1C′ΓiXω, we consider the
difference∆X −∆C.
Theorem3. Under Assumptions A and B letC be the design specifying only the first p− 1 outliers at times t1, t2, . . . , tp−1. The difference between
the non centrality parameter of the true designX and that of the designC is

∆X −∆C = ω2
p{γi(0)− [ΓiC(C′ΓiC)−1C′Γi]p,p}.

If the first p− 1 outliers are separated (non necessarily that at tp), then (C′ΓiC)−1 = I/γi(0) and [ΓiC]j,k = γi(tj − tk); moreover

[ΓiC(C′ΓiC)−1C′Γi]p,p =

p−1∑
k=1

γi(tp − tk)2/γi(0)

and it follows
∆X −∆C = ω2

pγi(0){1−
p−1∑
k=1

ri(tp − tk)2}. (5)
The following conclusionmay be drawn: if all the outliers but one have been detected, and they are separated, the identifiability of the last outlier

is determined by the increase in noncentrality given by ω2
pγi(0){1 −

∑p−1
k=1 ri(tp − tk)2}. If tp is separate from the others, the increase is correctly

ω2
pγi(0), but if tp is not separate the increase is smaller due to inverse correlations ri(tp − tj)

2 that induce amasking effect.
For multivariate series the difference reads:

∆X −∆C = ω′p{Γi(0)−
p−1∑
k=1

Γi(tp − tk)Γi(0)−1Γi(tk − tp)}ωp.
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5 MULTIPLEOUTLIERSDETECTION
The concept of noncentrality parameter is also useful for clarifying the problem of multiple outliers detection. When there are several outliers,
and not completely separated, the search for the correct configuration is known to be a difficult task. The correct identification is especially hard
when sequences of consecutive outliers (often called outlier patches) occur, and several ad hoc methods for discovering patches may be found in
the literature (for example Bruce&Martin 1989; Justel, Peña, & Tsay 2001; McCulloch&Tsay 1994; Penzer 2007; Proietti 2003). From a decision
theoretic point of view, the choice of the outlier configuration presents several possible decisions that must all be evaluated in principle to find
the best one, therefore it is important to define exactly the form of the loss function. The noncentrality parameter is an obvious choice for the loss
function, because it is maximized in correspondence of the true outlier configuration, as detailed in the next theorem.
Theorem 4. Under Assumptions A and B, for any outlier configurationCwe have∆X ≥ ∆C .
The proof suggests that the noncentrality parameter for the design C is the squared norm of the projection of the vectorXω on the linear space

spanned by the columns ofC, equippedwith the inner product (x, y) = x′Γiy. It follows easily that for any designC containingX, we have∆C = ∆X.
Moreover, ifC specifies some but not all the existing outliers, i. e.,X = [C,A]withC′A = 0, then∆X > ∆C.
However, this is not enough to ensure that a sequential detection procedure based on the noncentrality parameter leads to a correct identifica-

tion.More precisely, consider any proper subset ofX, sayX1 and the addition to the designX1 of a single newobservation indicated by the columnC.
A correct procedure should ensure that the noncentrality parameter for the design [X1,C] is largerwhenC is a columnofX, i. e. we are adding a true
outlier to those already detected. Such property does not hold if the outliers are not all separated.WithX1 equal to the empty set the implication is
that the test statistic for a single outlier does not necessarily reach its maximum at a contaminated observation. An example will clarify the point.

Example 2. Assume that there are two outliers with equal sizeω at times a− 1 and a + 1 in a second-ordermoving average univariate process yt =

εt+θ1εt−1+θ2εt−2 . Thenoncentrality parameter for testing theexistenceof a singleoutlier at timeq is∆{q} = γi(0){ωri(q−a+1)+ωri(q−a−1)}2

and in particular
∆{a} = γi(0)ω2{2ri(1)}2 ; ∆{a−1} = ∆{a+1} = γi(0)ω2{ri(2) + 1}2.

Choosing θ1 = −1.125, θ2 = 0.875 we obtain ri(1) = −θ1/(1 + θ2) = 0.6, ri(2) = −θ1ri(1) − θ2 = −0.2; it follows ∆{a−1} = ∆{a+1} =

0.64 γi(0)ω2 and∆{a} = 1.44 γi(0)ω2, and time a is largely more significant than the perturbed times a− 1 and a + 1.
We conclude that for difficult non-separate outlier configurations a sequential search does not guarantee the correct solution, but every possible
design should be evaluated in principle, as is done bymethods based on evolutionary computation like the genetic algorithmproposed byBaragona,
Battaglia, and Calzini (2001); Cucina et al. (2014).

6 OUTLIER IDENTIFIABILITY THROUGHUNIVARIATE LINEARCOMBINATIONS
An alternative method for outlier detection (Baragona & Battaglia 2007; Galeano et al. 2006) is based on univariate (contemporaneous) linear
combinations of themultivariate series:

wt =

s∑
j=1

djzj,t.

The outliers are searched on the series wt by univariate techniques. Under Assumption B, this series has p outliers at times t1, . . . , tp and sizes
d′ω1, d′ω2, . . . , d′ωp, the corresponding designwill be denoted by thematrixX∗ of dimension n×p and sizesα = (α1, α2, . . . , αp)′ withαk = d′ωk.
Let us consider the vector w = (w1, . . . ,wn)′ that has mean zero under absence of outliers, and mean X∗α under assumption B, its dispersion
matrix will be denoted byΣw , withΣw(i, j) = d′Γ(j − i)d. On applying the results for univariate series in the previous Sections, the test statistic is
w′Σ−1

w X∗(X′∗Σ
−1
w X∗)−1X′∗Σ

−1
w w and its distribution is chi square with p degrees of freedom and non centrality parameter∆ = α′(X′∗Σ

−1
w X∗)α.

If we let as beforeω = (ω′1, ω
′
2, . . . , ω

′
p)′, and d = (d1, . . . , ds)′ and define the (n× ns)matrixD by

D =


d′ 0 . . . 0

0 d′ . . . 0

. . . . . . . . . . . .

0 0 . . . d′


we havew = Dz and E(w) = DXω,Σw = DΓD′. Thus, on substitutingDXω toX∗α andDΓD′ toΣw the noncentrality parameter may be rewritten

∆ = ω′X′D′(DΓD′)−1DXω =

p∑
i=1

p∑
j=1

(d′ωi)(d
′ωj)(DΓD′)−1

i,j .

Note that thematrix (DΓD′)−1 has themeaning of inverse autocovariancematrix ofwt.
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When the designX specifies just one outlier at time q, the noncentrality parameter becomes:
∆ = (d′ω)2(DΓD′)−1

q,q ' (d′ω)2γiw(0).

The linear combination weights dmay be chosen in order to maximize the above noncentrality parameter, but the maximization of∆with respect
to d is not simple involving the inverse ofDΓD′.
When the process is white noise Γ(h) = 0, h 6= 0, andDΓD′ is diagonal with elements d′Γ(0)d, therefore (DΓD′)−1 = I/d′Γ(0)d and

∆ =
(d′ω)2

d′Γ(0)d
.

The above quantity is maximized (Rao 1973, p. 60) when d ∝ Γ(0)−1ω, and if the components are also contemporaneously uncorrelated (Γ(0)

diagonal) theoptimumvectordhasentriesdj = ωj/Γ(0)j,j, and if further the zj haveequal variance then thebestd is proportional toω. Baragonaand
Battaglia (2007) use the Independent Component Analysis (Hyvarinen, Karhunen, &Oja 2001) and obtain that the first component has coefficients
d = Γ(0)−1ω/

√
ω′Γ(0)−1ω, therefore it maximizes the noncentrality parameter. Galeano et al. (2006) search for the vector that maximizes the

kurtosis, and working on standardized data (Γ(0) = I) obtain d parallel to ω. But since the kurtosis is affine equivariant, this amounts to d ∝
Γ(0)−1ω. Note that with such a choice we have∆ = (ω′Γ(0)−1ω)2/ω′Γ(0)−1ω = ω′Γ(0)−1ω, coinciding with the noncentrality parameter for
the multivariate process, but relating to a χ2 with one degree of freedom rather than s, therefore the test is more powerful ( as already noted by
Galeano et al. 2006) and the outlier is more identifiable.
When the process is not white noise, wt is also autocorrelated, therefore d′Γ(0)d = var(wt) > 1/γiw(0), it follows that the noncentrality

parameter is larger than in the white noise case:
(d′ω)2γiw(0) >

(d′ω)2

d′Γ(0)d
.

The choice d ∝ Γ(0)−1ω does not maximize here the noncentrality parameter, the vector d that maximizes (d′ω)2γiw(0)may only be obtained by
numerical optimization, but a simple lower bound is derived in the next Theorem.
Theorem 5. Let Assumptions A and B hold with p = 1 (only one outlier present). Then

(d′ω)2γiw(0) ≥
(d′ω)2

d′Γi(0)−1d

and the right hand side is maximized by d ∝ Γi(0)ω.
As an example we consider the case of a bivariate moving average process.

Example 3. Let {zt} be a bivariate MA(1) process zt = εt + Θεt−1 with E{εtε′t} = I. Then Γ(0) = I + ΘΘ′, Γ(1) = Θ′, Γ(h) = 0, |h| > 1 and
Γi(0) = (I − ΘΘ′)−1. The linear combination wt = d′zt has variance d′Γ(0)d and autocovariance γw(1) = d′Θ′d, γw(h) = 0, |h| > 1. Let us
consider normalized vectors such that d′Γ(0)d = 1, it follows that γw(0) = 1 and

|γw(1)| = |d′Θ′d | ≤ |d| |Θ′d| ≤
1

2
{|d|2 + |Θ′d|2} =

1

2
d′Γ(0)d =

1

2

therefore wt follows a univariate invertible MA(1) process wt = et + θet−1 with E(e2
t ) = 1/(1 + θ2) and γw(1) = d′Θ′d = θ/(1 + θ2). For this

process the inverse covariances are given by γiw(h) = (−θ)h(1 + θ2)/(1− θ2) and the inverse variance by γiw(0) = (1 + θ2)/(1− θ2). The value
of the univariate parameter θ may be expressed in function of γw(1) = d′Θ′d as θ = [1 −

√
1− 4γw(1)2]/{2γw(1)}. Since the inverse variance

is increasing with θ2 its minimum value is one and its maximum is attained when d′Θ′d is maximized, i. e., if d is proportional to the eigenvector
associated to the maximum eigenvalue of (Θ + Θ′)/2. On the other hand, obviously (d′ω)2, under the constraint d′Γ(0)d = 1, ranges from zero
to (ω′ω)2/ω′Γ(0)ω. Since the noncentrality parameter is the product of those two functions, its maximum value will be attained at an intermediate
vector (unlessω is exactly themaximal eigenvector ofΘ, in which case themaxima are attained at the same point).
Assume for exampleΘ =

(
0.7 0.3

0.3 0.4

)
andω = (5,−2)′. The largest eigenvalue is 0.885 and the associated eigenvector is (1, 0.618)′, therefore

the best d equals
d = (1, 0.618)′{(1, 0.618)Γ(0)(1, 0.618)′}−1/2 = (0.637, 0.393)′

that corresponds to γw(1) = d′Θd = 0.496 and θ = 0.885, thus γiw(0) = 8.257 while (d′ω)2 = 5.74 and the noncentrality parameter is 47.44.
On the other side, the normalized ω is (0.812,−0.325)′, therefore putting d ∝ Γ(0)−1ω the first factor equals (ω′ω)2/ω′Γ(0)ω = 22.19 and the
inverse variance of the related linear combination is 1.384, then the noncentrality parameter is 30.71. The lower bound derived in Theorem5, since
Γi(0) = (I − ΘΘ′)−1, is maximized by d proportional to Γi(0)ω, or d = (0.737, 0.193)′ and equals 40.04. However, it may be easily seen that the
maximum of (d′ω)2γiw(0) is 51.26 and is obtainedwith d = (0.660, 0.354)′.
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TABLE 1 Significant outlier statistics for the gas furnace series

t= 42 43 54 55 113 198 199 235 264
ω̂1 -.41 0.43 0.40 -.36 -.26 -.04 -.04 -.01 0.18
ω̂2 -.05 -.06 .01 0.1 .,08 -.51 0.61 0.45 -.53
u′u 32.8 37.2 31.8 26.3 13.2 18.1 25.8 13.8 25.9

55

198

199

54
43113

264

42

235

FIGURE 2 Plot of the estimated outlier sizes for gas furnace data.

7 ANAPPLICATION
The noncentrality measure depends on parameters (the inverse covariances and the autoregressive coefficients) that need to be estimated from
the time series and are subject to bias due to sample error. The results of a simulation study (appearing in the Supplementary Information) suggest
that the distortion induced by estimation is generally negligible.
We consider the well-known gas furnace series analyzed, among others, by Tiao and Box (1981), who propose a bivariate sixth-order autore-

gressivemodel.With their estimates of the autoregressive parameters, the estimated inverse covariance estimates are as follows:
Γi(0) Γi(1) Γi(2) Γi(3) Γi(4) Γi(5) Γi(6)

191 -0.7 -134 7.8 53 -9 -29 5.9 32.9 -4.1 -23 2.7 6.1 -0.8
-0.7 67 -.05 -42 -10 4.3 13 6 -8.7 -.22 8.4 -2.1 -4.1 0.7

This serieswas considered by Tsay et al. (2000)who identified anomalous observations at times 43, 55, 113, 199, 236, 265, 287, 288. AlsoCucina
et al. (2014) analyzed the gas furnace data with the method based on genetic algorithm, and found outliers at times 43, 54, 113, 199, 235, 264.We
have computed the test statistics and their squares, and found that only the times listed in Table 1 were significant at 1%. These values are plotted
in Figure 2 where the two ellipses denote the rejection regions with size 0.1 and 0.001. The results are rather similar for the three methods, but
there are inconsistencies on some pairs of consecutive observations that could be subject to swamping or masking (due also to the large values of
the entries of Γi(1)). Such pairs: (42,43), (54,55), (198, 199), (235, 236), (264, 265), (287, 288) are well separated from each other (Γi(h) vanishes
for h > 6) and are considered in Table 2. For any pair of observations at times (t, t + 1)we report the significance of the test statistics for a single
outlier at t or t + 1 and for the joint configuration (t, t + 1) (∗ at 5 %, ∗∗ at 1 %, - not significant) and if the following definitions apply: t swamps the
clean observation at t + 1; t + 1 swamps the clean observation at t ; the configuration (t, t + 1)masks the outlier at t; the configuration (t, t + 1)

masks the outlier at t + 1. The results suggest that the outlier at t = 199 swamps time 198 and the outlier at t = 264 swamps time 265, while the
perturbation at time 288 does not appear strongly significant, and the observation at t = 236 appear as an isolated outlier. For the last two pairs
(42, 43) and (54,55) we see that the swamping definition applies in both directions and the test statistics are both significant for the first and the
second observation, and for the pair. Thus, to have an indication we look at the values of u′u(42) = 32.8 and u′u(43) = 37.2 from Table 1: since the
observation at t = 43 is more significant we propend to conclude that the outlier at t = 43 swamps time 42. A similar reasoning suggests that the
outlier at t = 54 swamps time 55.
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TABLE 2Analysis of the apparently aberrant pairs of observations for gas furnace series.

(t, t + 1) ut ut+1 u(t,t+1) t swamps t + 1 t + 1 swamps t tmasked t + 1masked
(42,43) ∗∗ ∗∗ ∗∗ yes yes no no
(54,55) ∗∗ ∗∗ ∗∗ yes yes no no
(198,199) ∗∗ ∗∗ ∗∗ no yes no no
(235,236) ∗∗ - - no nos no no
(264,265) ∗∗ - ∗∗ yes no no no
(287,288) - ∗ - no no no no

8 CONCLUSIONS
Starting from an analogywith the concept ofminimal detectable biaswidely employed in geodesy, we have defined ameasure of outlier identifiabil-
ity that allows to determine, for a second-order stationary stochastic process, what size an anomaly should reach for ensuring a safe detection by
means of standard outlier detectionmethods. This quantifies the precision and uncertainty level associatedwith the conclusions thatmay be drawn
from a statistical analysis of a time series generated by that process.
The proposed measure, a noncentrality parameter, is useful for clarifying what configurations of multiple outliers, also occurring in patches, are

easily detectable andwhat are not. Moreover it allows to definemore precisely, and evaluate, the concepts of masking and swamping.
We have assumed a general linear contaminationmodel z = y + Xω and have considered only additive outliers, where each column of the design

matrix X contains only one entry equal to one, and all other entries are equal to zero. But the same model allows for several other outlier types
addressed in literature (for example level changes, temporary changes, innovation outliers, see e. g. Tsay et al. 2000), thatmay be analyzed by simply
changing the appropriate columns of the designmatrixX.
Finally, we observe that the proposed quantities may be considered also in the univariate non-stationary case, when dealing with integrated

series (i.e. generated by a process {yt} such that there exists a positive integer d for which (1 − B)dyt is second-order stationary). For such series
the inverse covariances and the linear interpolator may be defined and estimated (Baragona & Battaglia 1995) and the noncentrality parameter in
the form (1) may be computed.
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