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Abstract. Despite impressive progress in object detection over the last
years, it is still an open challenge to reliably detect objects across visual
domains. Although the topic has attracted attention recently, current
approaches all rely on the ability to access a sizable amount of target
data for use at training time. This is a heavy assumption, as often it
is not possible to anticipate the domain where a detector will be used,
nor to access it in advance for data acquisition. Consider for instance
the task of monitoring image feeds from social media: as every image is
created and uploaded by a different user it belongs to a different target
domain that is impossible to foresee during training. This paper addresses
this setting, presenting an object detection algorithm able to perform
unsupervised adaption across domains by using only one target sample,
seen at test time. We achieve this by introducing a multi-task architecture
that one-shot adapts to any incoming sample by iteratively solving a
self-supervised task on it. We further enhance this auxiliary adaptation
with cross-task pseudo-labeling. A thorough benchmark analysis against
the most recent cross-domain detection methods and a detailed ablation
study show the advantage of our method, which sets the state-of-the-art
in the defined one-shot scenario.
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1 Introduction

Social media feed us every day with an unprecedented amount of visual data.
Conservative estimates indicate that roughly 101 − 102M unique images are
shared everyday on Twitter, Facebook and Instagram. Images are uploaded by
various actors, from corporations to political parties, institutions, entrepreneurs
and private citizens. For the sake of freedom of expression, control over their
content is limited, and their vast majority is uploaded without any textual de-
scription of their content. Their sheer magnitude makes it imperative to use
algorithms to monitor, catalog and in general make sense of them, finding the
right balance between protecting the privacy of citizens and their right of expres-
sion, and monitoring the spreading of fake news (often associated with malicious
intentions) while fighting illegal and hate content. This in most cases boils down
to the ability to automatically associate as many tags as possible to images,
which in turns means determining which objects are present in a scene.
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Object detection has been largely investigated since the infancy of computer
vision [48,11]. With the shift from shallow to deep learning, several successful
algorithms have been proposed [19,10,53,30]. They mostly assume that training
and test data come from the same visual domain [19,18,40]. While this is a rea-
sonable assumption in several applications [31,40], some authors have started
to investigate the more challenging yet realistic scenario where the detector is
trained on data from a visual source domain, and deployed at test time in a differ-
ent target domain [32,33,45,47]. This setting, usually referred to as cross-domain
detection, heavily relies on concepts and results from the domain adaptation lit-
erature [32,14,20]. In particular, most works in cross-domain detection cast the
problem in the unsupervised domain adaptation framework [25,7]: the detector
has access at training time to annotated source data and unsupervised target
data, from which it learns how to adapt across the two domains.

This approach is not suitable, neither effective, for monitoring social media
feeds. Consider for instance the scenario depicted in Fig 1, where there is an
incoming stream of images from various social media and the detector is asked
to look for instances of the class bicycle. The images come continuously, but they
are produced by different users that share them on different social platforms.
Hence, even though they might contain the same object, each of them has been
acquired by a different person, in a different context, under different viewpoints
and illuminations –in other words, each image comes from a different visual
domain, different from the visual domain where the detector has been trained.
This poses two key challenges to current cross-domain detectors: (1) to adapt to
the target data, these algorithms need first to collect feeds, and only after enough
target data has been collected they can learn to adapt and start performing on
the incoming images; (2) even if the algorithms have learned to adapt on target
images collected from the feed up to time t, there is no guarantee that the images
that will arrive from time t+ 1 will come from the same target domain.

This is the scenario we address. We focus on cross-domain detection when
only one target sample is available for adaptation, without any form of supervi-
sion. We propose an object detection framework able to adapt from one target
image, hence suitable for the social media scenario described above. Specifically,
we build a multi task deep architecture that adapts across domains by leveraging
over a pretext task. This auxiliary knowledge is further guided by a cross-task
pseudo-labeling that injects the locality specific of object detection into self-
supervised learning. The result is an architecture able to perform unsupervised
adaptive object detection from a single image. We call our method OSHOT -
one shot adaptive cross-domain detection. Experiments on three different pub-
licly available benchmarks plus a new concept database of images collected from
social media clearly show the power of our method compared to previous state-
of-the-art approaches.

Contributions To summarize, the contributions of our paper are as follows:

1. we introduce the One-Shot Unsupervised Cross-Domain Detection setting,
a cross-domain detection scenario where the target domain changes from
sample to sample, hence adaptation can be learned only from one image.
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Fig. 1. Each social media image comes from a different domain. Existing Cross-Domain
Detection algorithms (e.g . [28] in the left gray box) struggle to adapt in this setting.
OSHOT (right) is able to adapt across domains from one single target image, thanks
to the combined use of self-supervision and pseudo-labeling

This scenario is especially relevant for monitoring social media image feeds.
We are not aware of previous works addressing it.

2. We propose OSHOT, the first cross-domain object detector able to per-
form one-shot unsupervised adaptation. Our approach leverages over self-
supervised one-shot learning guided by a cross-task pseudo-labeling proce-
dure, embedded into a multi-task architecture. A thorough ablation study
showcases the importance of each component.

3. We present a new experimental setup for studying one-shot unsupervised
cross-domain adaptation, designed on three existing databases plus a new
test set collected from social media feed. We compare against recent algo-
rithms in cross-domain adaptive detection [42,28] and one-shot unsupervised
learning [8], achieving the state-of-the-art.

2 Related Work

Object Detection Many successful object detection approaches have been
developed during the past several years, starting from the original sliding win-
dow methods based on handcrafted features, till the most recent deep-learning
empowered solutions. Modern detectors can be divided into one-stage and two-
stage techniques. In the former, classification and bounding box prediction is
performed on the convolution feature map either solving a regression problem
on grid cells [39] or exploiting anchor boxes at different scales and aspect ratios
[31]. In the latter, an initial stage deals with the region proposal process and is
followed by a refinement stage that adjusts the coarse region localization and
classify the box content. Existing variants of this strategy differ mainly in the
region proposal algorithm [19,18,40]. Regardless of the specific implementation,
the detector robustness across visual domain remains a major issue.

Cross-Domain Detection When training and test data are drawn from two
different distributions a model learned on the first is doomed to fail on the sec-
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ond. Unsupervised domain adaptation methods attempt to close the domain gap
between the annotated source on which learning is performed, and the target
samples on which the model is deployed. Most of the literature has focused on
object classification with solutions based on feature alignment [32,33,45,2] or ad-
versarial approaches [15,47]. GAN-based methods allow to directly update the
visual style of the annotated source data and reduce the domain shift directly
at pixel level [41,23]. The task of cross-domain object detection has received
relatively less attention. Only in the last two years adaptive detection methods
have been developed considering three main components: (i) including multiple
and increasingly more accurate feature alignment modules at different internal
stages, (ii) adding a preliminary pixel-level adaptation and (iii) pseudo-labeling.
The last one is also known as self-training and consists in using the output of
the source model detector as coarse annotation on the target. The importance
of considering both global and local domain adaptation, together with a consis-
tency regularizer to bridge the two, was first highlighted in [7]. The Strong-Weak
(SW) method of [42] improves over the previous one pointing out the need of
a better balanced alignment with strong global and weak local adaptation and
is further extended by [50] where the adaptive steps are multiplied at different
depth in the network. By generating new source images that look like those
of the target, the Domain-Transfer (DT, [25]) method was the first to adopt
pixel adaptation for object detection and combine it with pseudo-labeling. More
recently the Div-Match approach [28] re-elaborated the idea of domain ran-
domization [46]: multiple CycleGAN [54] applications with different constraints
produce three extra source variants with which the target can be aligned at
different extent through an adversarial multi-domain discriminator. A weak self-
training procedure (WST) to reduce false negatives is combined with adversarial
background score regularization (BSR) in [27]. Finally, [26] followed the pseudo-
labeling strategy including an approach to deal with noisy annotations.

Adaptive Learning on a Budget There is a wide literature on learning from
a limited amount of data, both for classification and detection. However, in case
of domain shift, learning on a target budget becomes extremely challenging.
Indeed, the standard assumption for adaptive learning is that a large amount
of unsupervised target samples are available at training time so that a model
can capture the domain style from them and close the gap with respect to the
source. Only few attempts have been done to reduce the target cardinality. In
[36] the considered setting is that of few-shot supervised domain adaptation: only
a few target samples are available but they are fully labeled. In [3,8] the focus is
on one-shot unsupervised style transfer with a large source dataset and a single
unsupervised target image. These works propose time-costly autoencoder-based
methods to generate a version of the target image that maintains its content but
visually resembles the source in its global appearance. Thus the goal is image
generation with no discriminative purpose. A related setting is that of online
domain adaptation where unsupervised target samples are initially scarce but
accumulate in time [22,49,34]. In this case target samples belong to a continuous
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data stream with smooth domain changing, so the coherence among subsequent
samples can be exploited for adaptation.

Self-Supervised Learning Despite not-being manually annotated, unsuper-
vised data is rich of structural information that can be learned by self-supervision,
hiding a subpart of the data information and then trying to recover it. This pro-
cedure is generally indicated as pretext task and possible examples are image
completion [38], colorization [52,29], relative position of patches [12,37], rotation
recognition [17] and many more. Self-supervised learning has been extensively
used as an initialization step for scarcely annotated supervised learning settings
and very recently [1] has shown with a thorough analysis the potential of self-
supervised learning from a single image. Several methods have also shown how
self-supervision supports adaptation and generalization when combined with su-
pervised learning in a multi-task framework [6,4,51].

Our approach for cross-domain detection relates to the described scenario of
learning on a budget and exploits self-supervised learning to perform one-shot
unsupervised adaptation. Specifically with OSHOT we show how to recognize
objects and their location on a single target image starting from a pre-trained
source model, thus without the need of accessing the source data during testing.

3 Method

Problem Setting We introduce the one-shot unsupervised cross-domain detec-
tion scenario where our goal is to predict on a single target image xt, with t
being any target domain not available at training time, starting from N anno-
tated samples of the source domain S = {xsi , ysi }Ni=1. Here the structured labels
ys = (c, b) describe class identity c and bounding box location b in each image xs,
and we aim to obtain yt that precisely detects objects in xt despite the domain
shift.

OSHOT strategy To pursue the described goal, our strategy is to train the
parameters of a detection learning model such that it can be ready to get the
maximal performance on a single unsupervised sample from a new domain after
few gradient update steps on it. Since we have no ground truth on the target
sample, we implement this strategy by learning a representation that exploits
inherent data information as that captured by a self-supervised task, and then
finetune it on the target sample. Thus, we design our OSHOT to include (1)
an initial pretraining phase where we extend a standard deep detection model
adding an image rotation classifier, and (2) a following adaptation stage where
the network features are updated on the single target sample by further opti-
mization of the rotation objective. Moreover, we exploit pseudo-labeling to focus
the auxiliary task on the local object context. A clear advantage of this solution
is that we decouple source training from target testing, with no need to access
the source data while adapting on the target sample.

Preliminaries We leverage on Faster R-CNN [40] as our base detection model.
It is a two-stage detector with three main components: an initial block of convo-
lutional layers, a region proposal network (RPN) and a region-of-interest (ROI)
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Fig. 2. Visualization of the adaptive phase of OSHOT with cross-task pseudo-labeling.
The target image passes through the network and produces detections. While the class
information is not used, the identified boxes are exploited to select object regions from
the feature maps of the rotated image. The obtained region-specific feature vectors
are finally sent to the rotation classifier. A number of subsequent finetuning iterations
allow to adapt the convolutional backbone to the domain represented by the test image

based classifier. The bottom layers transform any input image x into its con-
volutional feature map Gf (x|θf ) where θf is used to parametrize the feature
extraction model. The feature map is then used by RPN to generate candidate
object proposals. Finally the ROI-wise classifier predicts the category label from
the feature vector obtained using ROI-pooling. The training objective combines
the loss of both RPN and ROI, each of them composed by two terms:

Ld(Gd(Gf (x|θf )|θd), y) =
(
Lclass(c∗) + Lregr(b)

)
RPN

+(
Lclass(c) + Lregr(b)

)
ROI

.
(1)

Here Lclass is a classification loss to evaluate the object recognition accuracy,
while Lregr is a regression loss on the box coordinates for better localization. To
maintain a simple notation we summarize the role of ROI and RPN with the
function Gd(Gf (x|θf )|θd) parametrized by θd. Moreover, we use c∗ to highlight
that RPN deals with a binary classification task to separate foreground and
background objects, while ROI deals with the multi-class objective needed to
discriminate among c foreground object categories. As mentioned above, ROI
and RPN are applied in sequence: they both elaborate on the feature maps
produced by the convolutional block, and then influence each other in the final
optimization of the multi-task (classification, regression) objective function.

OSHOT pretraining As a first step, we extend Faster R-CNN to include im-
age rotation recognition. Formally, to each source training image xs we apply
four geometric transformations R(x, α) where α = q × 90◦ indicates rotations
with q ∈ {1, . . . , 4}. In this way we obtain a new set of samples {R(x)j , qj}Mj=1

where we dropped the α without loss of generality. We indicate the auxiliary
rotation classifier and its parameters respectively with Gr and θr and we train
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our network to optimize the following multi-task objective

argmin
θf ,θd,θr

N∑
i=1

Ld(Gd(Gf (xsi |θf )|θd), ysi ) + λ

M∑
j=1

Lr(Gr(Gf (R(xs)j |θf )|θr), qsj ) ,

(2)
where Lr is the cross-entropy loss. When solving this problem, we can design
Gr in two different ways. Indeed it can either be a Fully Connected layer that
näıvely takes as input the feature map produced by the whole (rotated) image
Gr(·|θr) = FCθr (·), or it can exploit the ground truth location of each object
with a subselection of the features only from its bounding box in the original
map Gr(·|θr) = FCθr (boxcrop(·)). The boxcrop operation includes pooling to
rescale the feature dimension before entering the final FC layer. In this last
case the network is encouraged to focus only on the object orientation without
introducing noisy information from the background and provides better results
with respect to the whole image option as we discuss in section 4.4. In practical
terms, both in the case of image and box rotations, we randomly pick one rotation
angle per instance, rather than considering all four of them: this avoids any
troublesome unbalance between rotated and non-rotated data when solving the
multi-task optimization problem.

OSHOT adaptation Given the single target image xt, we fine-tune the back-
bone’s parameters θf by iteratively solving a self-supervised task on it. This
allows to adapt the original feature representation both to the content and to
the style of the new sample. Specifically, we start from the rotated versions R(xt)
of the provided sample and optimize the rotation classifier through

argmin
θf ,θr

Lr(Gr(Gf (R(xt)|θf )|θr), qt) . (3)

This process involves only Gf and Gr, while the RPN and ROI detection compo-
nents described by Gd remain unchanged. In the following we use γ to indicate
the number of gradient steps (i.e. iterations), with γ = 0 corresponding to the
OSHOT pretraining phase. At the end of the finetuning process, the inner fea-
ture model is described by θ∗f and the detection prediction on xt is obtained by

yt∗ = Gd(Gf (xt|θ∗f )|θd).
Cross-task pseudo-labeling As in the pretraining phase, also at this stage
we have two possible choices to design Gr: either considering the whole fea-
ture map Gr(·|θr) = FCθr (·), or focusing on the object locations Gr(·|θr) =
FCθr (pseudoboxcrop(·)). For both variants we include dropout to prevent over-
fitting on the single target sample. With pseudoboxcrop we mean a localized fea-
ture extraction operation analogous to that discussed in the previous paragraph,
but obtained through a particular form of cross-task self-training. Specifically we
follow the self-training strategy used in [27,25] with a cross-task variant: instead
of reusing the pseudo-labels produced by the source model on the target to up-
date the detector, we exploit them for the self-supervised rotation classifier. In
this way we keep the advantage of the self-training initialization, largely reducing
the risks of error propagation due to wrong pseudo-labels.
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Fig. 3. The Social Bikes concept-dataset. We can see how a random data acquisition
from multiple users/feeds leads to a target distribution with several, uneven domain
shifts

More practically, we start from the (θf , θd) model parameters of the pre-
training stage and we get the feature maps from all the rotated version of the
target sample [Gf ({R(xt), q}|θf ), q = 1, . . . , 4]. Only the feature map produced
by the original image (i.e. q = 4) is provided as input to the RPN and ROI net-
work components to get the predicted detection yt = (c, b) = Gd(Gf (xt|θf )|θd).
This pseudo-label is composed by the class label c and the bounding box loca-
tion b. We discard the first and consider only the second to localize the region
containing an object in all the four feature maps, also recalibrating the posi-
tion to compensate for the orientation of each map. Once passed through this
pseudoboxcrop operation the obtained features are used to finetune the rotation
classifier, updating the bottom convolutional network block.

4 Experiments

4.1 Datasets

Real-World (VOC) Pascal-VOC [13] is the standard real-world image dataset
for object detection benchmarks. VOC2007 and VOC2012 both contain bound-
ing boxes annotations of 20 common categories. VOC2007 has 5011 images in
the train-val split and 4952 images in the test split, while VOC2012 contains
11540 images in the train-val split.

Artistic Media Datasets (AMD) Clipart1k, Comic2k and Watercolor2k [25]
are three object detection datasets designed for benchmarking Domain Adap-
tation methods when the source domain is Pascal-VOC. Clipart1k shares its 20
categories with Pascal-VOC, and has 500 images in the training set and 500 im-
ages in the test set. Comic2k and Watercolor2k both have the same 6 classes (a
subset of the 20 classes of Pascal-VOC), and 1000-1000 images in the training-
test splits each.

Cityscapes Cityscapes [9] is an urban street scene dataset with pixel level
annotations of 8 categories. It has 2975 images in the training split and 500
images in the validation split. Since this dataset doesn’t have bounding boxes
annotations, we use the instance level pixel annotations to generate bounding
boxes of objects, as in [7].
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Foggy Cityscapes [43] is an urban street dataset obtained by adding differ-
ent levels of synthetic fog to Cityscapes images. We only consider images with
the highest amount of artificial fog, thus training-validation split have 2975-500
images respectively.

KITTI [16] is a dataset designed for use in mobile robotics and autonomous
driving research. Following [7], we use the full 7481 images for both training
(when used as source) and evaluation (when used as target).

Social Bikes is our new concept-dataset containing 30 images of scenes with
persons/bicycles collected from Twitter, Instagram and Facebook by searching
for #bike tags. Square crops of the full dataset are shown in figure 3: it is clear
how images acquired randomly from social feeds possess diverse style properties
and cannot be grouped under a single shared domain.

4.2 Performance analysis

Experimental Setup We evaluate OSHOT on several testbeds. We start from
the VOC→Social Bikes transfer as a proof of concept experiment. Moreover,
we consider the standard cross-domain benchmarks VOC → Clipart1k, VOC
→ Comic2k, VOC → Watercolor2k, Cityscapes → FoggyCityscapes, KITTI →
Cityscapes and Cityscapes→KITTI with the added constraint of never using the
target data during training. Our base detector is Faster-RCNN4 with a ResNet-
50 [21] backbone pre-trained on ImageNet, region proposal network with 300 top
proposals after non-maximum-supression, and anchors at three scales (128, 256,
512) and three aspect ratios (1:1, 1:2, 2:1).

OSHOT pretraining We always resize the image’s shorter size to 600 pixels and
apply random horizontal flipping. Unless differently specified, we train the base
network for 70k iterations using SGD with momentum set at 0.9, the initial
learning rate is set at 0.001 and decayed after 50k iterations. We use a batch size
of 1, keep batch normalization layers fixed for both pretraining and adaptation
phases and freeze the first 2 blocks of ResNet50. The weight of the auxiliary task
is set to λ = 0.05.

OSHOT adaptation We increase the weight of the auxiliary task to λ = 0.2 to
speed up adaptation and keep all other training hyperparameters fixed. For each
test instance, we finetune the initial model on the auxiliary task for 30 iterations
before testing.

Benchmark methods We compare OSHOT with the following algorithms. FR-
CNN : baseline Faster-RCNN with ResNet50 backbone, trained on the source
domain and deployed on the target without further adaptation. DivMatch [28]:
cross-domain detection algorithm that, by exploiting target data, creates mul-
tiple randomized domains via CycleGAN and aligns their representations using
an adversarial loss. SW [42]: adaptive detection algorithm that aligns source
and target features based on global context similarity. For both DivMatch and

4 PyTorch-based implementation [35].
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Table 1. VOC → Social Bikes results and visualization of DivMatch (left) and OS-
HOT (right) detections. Numbers associated with bounding boxes indicate the model’s
confidence in localization. Examples show how OSHOT detection is accurate, while
most DivMatch boxes are false positives

One-Shot Target

Method person bicycle mAP

FRCNN 67.7 56.6 62.1

OSHOT (γ = 0) 72.1 52.8 62.4
OSHOT (γ = 30) 69.4 59.4 64.4

Full Target

DivMatch [28] 63.7 51.7 57.7
SW [42] 63.2 44.3 53.7

Bicycle:
Person:

DivMatch OSHOT

SW, we use a ResNet-50 backbone pretrained on ImageNet for fair comparison.
Since all cross-domain algorithms need target data in advance and are not de-
signed to work in our one-shot unsupervised setting, we provide them with the
advantage of 10 target images accessible during training and collect average pre-
cision statistics during inference under the favorable assumption that the target
domain will not shift after deployment.

Adapting to social feeds When data is collected from multiple sources, the
assumption that all target images originate from the same underlying distribu-
tion does not hold and standard cross-domain detection methods are penalized
regardless of the number of seen target samples. We pretrain the source detector
on Pascal VOC, and deploy it on Social Bikes. We consider only the bicycle and
person annotations for this target, since all other instances of VOC classes are
scarce.
Results We report results in table 1. OSHOT outperforms all proposed counter-
parts, with a mAP score of 64.4. Despite granting them the full target, adaptive
algorithms incur in negative transfer due to data scarcity and large variety of
target styles.

Large distribution shifts Artistic images are difficult benchmarks for cross-
domain methods. Unpredictable perturbations in shapes and colors are challeng-
ing to detectors trained only on realistic images, for which labeled data is more
readily available. Here, we investigate the effectiveness of our one-shot transfer
to artistic domains by training the source detector on Pascal VOC an deploying
it on Clipart, Comic and Watercolor datasets.

Results Table 2 summarizes results on the three adaptation splits. We can see
how OSHOT with 30 finetuning iterations outperforms all competitors, gaining
mAP increases ranging from 7.5 points on Clipart to 9.2 points on Watercolor.
Cross-detection methods perform poorly in this setting, despite using 9 more
samples in the adaptation phase compared to OSHOT that only uses the test
sample. These results confirm that they are not designed to tackle data scarcity
conditions and exhibit negligible improvements compared to the baseline.

Adverse weather Low level domain shifts occur when weather changes from
training to testing. Some peculiar environmental conditions, such as fog, may
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Table 2. VOC → AMD

(a) VOC → Clipart

One-Shot Target

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

FRCNN 18.5 43.3 20.4 13.3 21.0 47.8 29.0 16.9 28.8 12.5 19.5 17.1 23.8 40.6 34.9 34.7 9.1 18.3 40.2 38.0 26.4

OSHOT (γ = 0) 23.1 55.3 22.7 21.4 26.8 53.3 28.9 4.6 31.4 9.2 27.8 9.6 30.9 47.0 38.2 35.2 11.1 20.4 36.0 33.6 28.3
OSHOT (γ = 10) 25.4 61.6 23.8 21.1 31.3 55.1 31.6 5.3 34.0 10.1 28.8 7.3 33.1 59.9 44.2 38.8 15.9 19.1 39.5 33.9 31.0
OSHOT (γ = 30) 25.4 56.0 24.7 25.3 36.7 58.0 34.4 5.9 34.9 10.3 29.2 11.8 46.9 70.9 52.9 41.5 21.1 21.0 38.5 31.8 33.9

Ten-Shot Target

DivMatch [28] 19.5 57.2 17.0 23.8 14.4 25.4 29.4 2.7 35.0 8.4 22.9 14.2 30.0 55.6 50.8 30.2 1.9 12.3 37.8 37.2 26.3
SW [42] 21.5 39.9 21.7 20.5 32.7 34.1 25.1 8.5 33.2 10.9 15.2 3.4 32.2 56.9 46.5 35.4 14.7 15.2 29.2 32.0 26.4

(b) VOC → Comic

One-Shot Target

Method bike bird car cat dog person mAP

FRCNN 25.2 10.0 21.1 14.1 11.0 27.1 18.1

OSHOT (γ = 0) 26.9 11.6 22.7 9.1 14.2 28.3 18.8
OSHOT (γ = 10) 35.5 11.7 25.1 9.1 15.8 34.5 22.0
OSHOT (γ = 30) 35.2 14.4 30.0 14.8 20.0 46.7 26.9

Ten-Shot Target

DivMatch [28] 27.1 12.3 26.2 11.5 13.8 34.0 20.8
SW [42] 21.2 14.8 18.7 12.4 14.9 43.9 21.0

(c) VOC → Watercolor

One-Shot Target

Method bike bird car cat dog person mAP

FRCNN 62.5 39.7 43.4 31.9 26.7 52.4 42.8

OSHOT (γ = 0) 70.2 46.7 45.5 31.2 27.2 55.7 46.1
OSHOT (γ = 10) 70.2 46.7 48.1 30.9 32.3 59.9 48.0
OSHOT (γ = 30) 77.1 44.7 52.4 37.3 37.0 63.3 52.0

Ten-Shot Target

DivMatch [28] 64.6 44.1 44.6 34.1 24.9 60.0 45.4
SW [42] 66.3 41.1 41.1 30.5 20.5 52.3 42.0

be disregarded in source data acquisition, yet adaptation to these circumstances
is crucial for real world applications. We assess the performance of OSHOT on
Cityscapes → FoggyCityscapes. We train our base detector on Cityscapes for
30k iterations without stepdown, as in [5]. We select the best performing model
on the Cityscapes validation split and deploy it to FoggyCityscapes.

Results Experimental evaluation in table 3 shows that OSHOT outperforms
all compared approaches. Without finetuning iterations, performance using the
auxiliary rotation task increases compared to the baseline. Subsequent finetuning
iterations on the target sample improve these results, and 30 iterations yield
models able to outperform the second-best method by 5 mAP. Cross-domain
algorithms used in this setting struggle to surpass the baseline (DivMatch) or
suffer negative transfer (SW).

Table 3. Cityscapes → FoggyCityscapes

One-Shot Target

Method person rider car truck bus train mcycle bicycle mAP

FRCNN 30.4 36.3 41.4 18.5 32.8 9.1 20.3 25.9 26.8

OSHOT (γ = 0) 31.8 42.0 42.6 20.1 31.6 10.6 24.8 30.7 29.3
OSHOT (γ = 10) 31.9 41.9 43.0 19.7 38.0 10.4 25.5 30.2 30.1
OSHOT (γ = 30) 32.1 46.1 43.1 20.4 39.8 15.9 27.1 32.4 31.9

Ten-Shot Target

DivMatch [28] 27.6 38.1 42.9 17.1 27.6 14.3 14.6 32.8 26.9
SW [42] 25.5 30.8 40.4 21.1 26.1 34.5 6.1 13.4 24.7

Cross-camera transfer Dataset bias between training and testing are un-
avoidable in practical applications. Subtle changes in illumination conditions
and camera resolution might preclude a model trained on one realistic domain to
optimally perform in another realistic but different domain. We test adaptation
between KITTI and Cityscapes in both directions. For cross-domain evaluation
we consider only the label car as standard practice.
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Table 4. mAP of ’car’ class in KITTI/Cityscapes detection transfers

One-Shot Target

Method KITTI → Cityscapes Cityscapes → KITTI

FRCNN 26.5 75.1

OSHOT γ = 0 26.2 75.4
OSHOT γ = 10 33.2 75.3
OSHOT γ = 30 33.5 75.0

Ten-Shot Target

DivMatch [28] 37.9 74.1
SW [42] 39.2 74.6

Table 5. Comparison between baseline, one-shot syle transfer and OSHOT in the
one-shot unsupervised cross-domain detection setting

FRCNN BiOST [8] OSHOT (γ = 30)

mAP on Clipart100 27.9 29.8 30.7

mAP on Social Bikes 62.1 51.1 64.4

Adaptation time (seconds per sample) - ∼ 2.4 ∗ 104 7.8

Results In table 4, OSHOT improves by 7 mAP points on KITTI → Cityscapes
compared to the FRCNN baseline. DivMatch and SW both show a gain in this
split, with SW obtaining the highest mAP of 39.2 in the ten-shot setting. This
is not surprising however, Cityscapes has low inter-domain variance, as shown in
the visualization of table 4, therefore cross-domain methods perform well even
with few target samples if the distribution doesn’t change after adaptation. In
Cityscapes → KITTI, adaptation performance for all methods is similar, with
OSHOT with γ = 0 obtaining the highest mAP of 75.4. The Faster-RCNN
baseline on KITTI scores an high starting mAP of 75.1 and, in this favorable
condition, detection doesn’t benefit from adaptation.

4.3 Comparison with One-Shot Style Transfer

Although not specifically designed for cross-domain detection, in principle it is
possible to apply one-shot style transfer methods as an alternative solution for
our setting. We use BiOST [8], the current state-of-the-art method for one-shot
transfer, to modify the style of the target sample towards that of the source
domain before performing inference. Due to the time-heavy requirements to per-
form BiOST on each test sample 5, we test it on Social Bikes and on a random
subset of 100 Clipart images that we name Clipart100. We compare performance
and time requirements of OSHOT and BiOST on these two targets. Speed has
been computed on an RTX2080Ti with full precision settings.

Results Table 5 shows summary mAP results using BiOST and OSHOT. On
Clipart100, the baseline Faster-RCNN detector obtains 27.9 mAP. We can see
how BiOST is effective in the adaptation from one-sample, gaining 1.9 points
over the baseline, however it is outperformed by OSHOT, which obtains 30.7
mAP. On Social Bikes, while OSHOT still outperforms the baseline, BiOST

5 The one-shot translation of [8] requires the training of a double-variational autoen-
coder using the entire source training set plus the target sample. Through personal
communication with the author, we fix the length of this training to 5 epochs.
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incurs in negative transfer, indicating that it was not able to effectively modify
the source’s style on the images we collected. Furthermore, BiOST is affected by
two strong issues: (1) it has an extremely high one-shot translation time, that
requires more than 6 hours to modify the style of a single source instance, and
(2) it works under the strict assumption of having the entire source training set
available at any time to perform the OST step. Due to these weaknesses, and
the fact that OSHOT still outperforms BiOST, we argue that existing one-shot
translation methods are not suitable for one shot unsupervised cross-domain
adaptation.

4.4 Ablation Study

Detection error analysis Following [24], we provide detection error analy-
sis for VOC → Clipart setting in figure 4. We select the 1000 most confident
detections, and assign error classes based on IoU with ground truth (IoUgt).
Errors are categorized in three types: correct (IoUgt > 0.5), mislocalized (0.3 6
IoUgt < 0.5) and background (IoUgt < 0.3). Results show that, compared to
the baseline FRCNN model, the regularization effect of adding a self-supervised
task at training time (γ = 0) marginally increases the quality of detections,
while subsequent finetuning iterations on the test sample substantially improve
the number of correct detections while also decreasing both false positives and
mislocalization errors.

FRCNN OSHOT (γ = 0) OSHOT (γ = 30)

46.3%

12.1%

41.6% 48.2%

11.6%

40.2%
58.9%

9.8%

31.3%

Correct

Mislocalized

Background

Fig. 4. Detection error analysis on the most confident detections on Clipart

Cross-task pseudo-labeling ablation As explained in section 3 we have two
options in the OSHOT adaptation phase: either considering the whole image
or focusing on pseudo-labeled bounding boxes obtained from the detector after
the first OSHOT pretraining stage. For all our experiments we focused on the
second case, indeed by solving the auxiliary task only on objects, we limit the
use of background features which may mislead the network towards solutions
of the rotation task not based on relevant semantic information (e.g .: finding
fixed patterns in images, exploiting watermarks). We validate our choice by
comparing it against using the rotation task on the entire image in both training
and adaptation phases. Table 6 shows results for VOC → AMD and Cityscapes
→ Foggy Cityscapes using OSHOT. We observe that the choice of rotated regions
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is critical for the effectiveness of the algorithm. Solving the rotation task on
objects using pseudo-annotations results in mAP improvements that range from
2.9 to 5.9 points, indicating that we learn better features for the main task.

Table 6. Rotating image vs rotating objects via pseudo-labeling on OSHOT

Gr(image) Gr(pseudoboxcrop)

VOC → Clipart 31.0 33.9
VOC → Comic 21.0 26.9

VOC → Watercolor 48.2 52.0
Cityscapes → Foggy Cityscapes 27.7 31.9

Self-supervised iterations We study the effects of adaptating with up to
γ = 70 iterations on VOC→ Clipart, Cityscapes→ FoggyCityscapes and KITTI
→ Cityscapes. Results are shown in figure 5. We observe a positive correlation
between number of finetuning iterations and final mAP of the model in the ear-
liest steps. This correlation is strong for the first 10 iterations, for which mAP
increases spike on all observed targets. After about 30 iterations, performance
tends to stabilize, indicating that increasing γ beyond this point doesn’t signifi-
cantly alter final results.

10 30 50 70
25

30

35

40

Percentage of target data

m
A
P

VOC → Clipart

OSHOT
FRCNN

10 30 50 70
25

30

35

Number of iterations

Cityscapes → Foggy

0 10 30 50 70
25

30

35

Finetuning iterations

KITTI → Cityscapes

Fig. 5. Performance of OSHOT at different self-supervised iterations

5 Conclusions

This paper introduced for the first time one shot unsupervised cross-domain de-
tection, a scenario extremely relevant for the monitoring of image feeds on social
media, where algorithms are called to adapt to a new visual domain from one
single image. We showed that existing cross-domain detection methods suffer in
this setting, as they are all explicitly designed to adapt from far larger quan-
tities of target data. We presented the first deep architecture able to reduce
the domain gap between source and target distribution by leveraging over one
single target image. Our approach is based on a multi task structure that ex-
ploits self-supervision thanks to cross-task self-labeling. Extensive quantitative
experiments and a qualitative analysis clearly demonstrate its effectiveness.
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Appendix

A Full Ablation Results

Detection error analysis We complete here the detection error analysis that
was only partially included in the main paper for space reasons. Specifically
we consider all the three domain shift cases of VOC → AMD together with
Cityscapes→ Foggy Cityscapes, KITTI→ Cityscapes and KITTI→ Cityscapes.
As reported in the main paper, for the first benchmark VOC → Clipart we
follow [24,28] considering the top 1k most confident detections and identifying
three error types: correct (IoUgt > 0.5), mislocalized (0.3 6 IoUgt < 0.5) and
background (IoUgt < 0.3). For VOC → Comic and VOC → Watercolor we
consider 2k most confident predictions, maintaining the same ratio of the first
case given that the number of target samples are twice that of Clipart. A similar
reasoning, that also takes care of the class cardinality, was applied to choose 6k
most confident predictions for Foggy Cityscapes → Cityscapes, 1.5k for KITTI
→ Cityscapes and 20k for Cityscapes → KITTI. From Figure 6 we can state
that for both Clipart and Watercolor the advantage of adding the self-supervised
task at training time is limited (γ = 0), while the gain becomes evident when the
number of adaptive iterations grows (γ = 30). For Comic the improvement in
performance appears already in the pretraining phase and further increases with
adaptation. Overall the false positive errors decrease, while the ratio between the
mislocalization error and correct localizations either decreases (Clipar, Comic) or
remains stable (Watercolor). A similar behaviour can be observed on the urban
scenes, both when testing on Foggy Cityscapes and Cityscapes, as shown in the
first two rows of Figure 7. For the last case of testing on KITTI, the results
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VOC → Clipart
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VOC → Watercolor
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Fig. 6. Detection error analysis on the three cases of VOC → AMD

Citys. → Foggy Citys.
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KITTI → Citys.
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Citys. → KITTI
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Fig. 7. Detection error analysis on the three cases of urban scenes

remain almost stable, confirming the same trend observed on the overall mAP
performance discussed in the main paper. A neglegible drop of 0.7% correct
predictions appear when applying the adaptation phase for γ = 30.

Self-supervised iterations We report results of OSHOT at different number
of self-supervised iterations in Figure 8. We observe positive correlations between
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Fig. 8. OSHOT at different number of iterations for all testbeds

number of self-supervised iterations and final mAP on all targets except KITTI,
for which final results are minimally affected by our adaptation procedure (as
well as by any other adaptive method used as reference - see Table 5 of the main
paper). The first 10 iterations show the most significant mAP change, while it
gets to a stable plateau for further iterations.

B Qualitative Analysis

Image vs Box rotation To validate our choice of considering box rotation
over image rotation we set up a dedicated experiment. We ran the pretraining
stage of OSHOT on VOC by using either Gr(image) or Gr(boxcrop). Then
we tested the rotation classifier on whole images from the Clipart domain. In
Figure 9 we show the results obtained with Grad-CAM [44] for the two cases,
with heatmap indicating the most relevant regions responsible for recognizing the
correct orientation. The Grad-CAM maps refer to the last output of the backbone
feature extractor. We can see that, when the rotation classifier is trained on whole
images it learns to focus on the background (e.g . the sky and the ground) in order
to solve the task. On the contrary, when the boxcrop operation is implemented
to train the rotation classifier only on the relevant objects, it learns to look at
objects’ features even when it faces an entire image.

Detection results of OSHOT: baselines and self-supervised iterations
Figure 10 shows some examples of detections of OSHOT on images extracted
from all the datasets considered in our work. We present as reference also the
ground truth results as well as the predictions produced by DivMatch [28] and
SW [42] that appear less precise than OSHOT.
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image boxcrop

Fig. 9. Visualization of the most relevant image regions produced by Grad-CAM when
classifying the correct rotation with Gr(image) and Gr(boxcrop)

C OSHOT pseudocode

The pseudocode for the adaptive phase of OSHOT is presented in Algorithm 1.
Here, Gf and Gd indicate the backbone feature extractor and detector, respec-
tively parametrized by θf and θd. FC is the fully connected layer of the rotation
classifier, parametrized by θr, and R is the rotator operator R(x, α) where α,
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Ground Truth DivMatch SW OSHOT γ = 0 OSHOT γ = 30

Fig. 10. Qualitative visualization of detections with DivMatch, SW and OSHOT on
Comic (first row), Foggy Cityscapes (second row), Watercolor (third row), Social Bikes
(fourth and fifth rows) and KITTI (sixth row). Numbers associated with bounding
boxes indicate the detector’s confidence

Algorithm 1: Adaptive phase of OSHOT

Data: Gf , Gd, FC, parameters θf , θr, θd, rotator R, target image xt

θ∗f ← θf
θ∗r ← θr
while still γ iterations do

bt, ct ← Gd(Gf (xt|θ∗f )|θd)
xtr ← R(xt)
btr ← R(bt)
minimize self-supervised loss Lr(FCθ∗r (pseudoboxcrop(Gf (xtr|θ∗f )|btr))
update θ∗f , θ

∗
r

end
predict label of test sample using Gf (·|θ∗f ),Gd

which indicates one random rotation to apply on x, is dropped for simplicity. The
pseudoboxcrop(·|b) is an operator that applies cropping and ROI pooling on the
input feature map based on the corresponding relative location of pseudo-boxes
b.
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