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Introduction

These are lecture notes of a course held at IMPA, Rio de Janiero, in septem-
ber 2010: the purpose was to present recent results on Kobayashi hyperbol-
icity in complex geometry.

This area of research is very active, in particular because of the fasci-
nating relations between analytic and arithmetic geometry. After Lang and
Vojta, we have precise conjectures between analytic and arithmetic hyper-
bolicity, e. g. existence of Zariski dense entire curves should correspond to
the density of rational points. Our ultimate goal is to describe the results
obtained in [DMR10] on questions related to the geometry of entire curves
traced in generic complex projective hypersurfaces of high degree.

For the convenience of the reader, this survey tries to be as self contained
as possible. Thus, we start by recalling the basic definitions and concepts
of complex hyperbolic geometry. Our presentation will focus later on the
concepts of jet bundles and jet differentials which turn out to be the crucial
tools that have been applied successfully in the last decades. These ideas
date back to the work of Bloch [Blo26a] and have been developed later by
many other people (let use cite for example, Green and Griffiths [GG80],
Siu and Yeung [SY97], Demailly [Dem97]...).

The presentation of the main techniques is certainly inspired by the
notes [Dem97] but many progress have been achieved since these notes were
written and it seemed to us quite useful to update them.

Let us now describe the contents of this survey. In chapter one we intro-
duce the classical Poincaré distance on the complex unit disc and, following
Kobayashi, we use it to construct an invariant pseudodistance on any com-
plex space X by means of chains of holomorphic discs. The complex space
X will be said (Kobayashi) hyperbolic if this pseudodistance is actually a
true distance. We then present an infinitesimal form of this pseudodistance
which reveals to be very useful in order to characterize the hyperbolicity of
compact complex manifold in terms of the existence or not of entire curves
(non-constant holomorphic maps from the entire complex plane) in it: this
is the content of the famous Brody’s criterion for hyperbolicity. We then
end the chapter with a couple of applications of Brody’s criterion to de-
formations of compact complex manifolds and to hyperbolicity of complex
tori and with a general discussion about uniformization and hyperbolicity
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in complex dimension one in order to put in perspective the new difficulties
which come up in higher dimension.

Chapter 2 deals with the notion of algebraic hyperbolicity. In the case of
projective varieties, people have looked for a characterization of hyperbolic-
ity depending only on algebraic subvarieties. Here, we focus on the so called
algebraic hyperbolicity as in Demailly [Dem97], which is by definition a uni-
form lower bound on the genus of algebraic curves in terms of their degree
once a polarization is fixed. We first discuss a nowadays classical result of
Bogomolov about the finiteness of rational and elliptic curves on algebraic
surfaces of general type with positive Segre class. Then, motivated by the
Kobayashi conjecture which predicts the hyperbolicity of generic projective
hypersurfaces of high degree, we explain an algebraic analogue of this con-
jecture which has been proved in the works of Clemens [Cle86], Ein [Ein88],
Voisin [Voi96] and Pacienza [Pac04]. We focus here on the approach coming
from ideas of Voisin which makes an essential use of the universal family
X ⊂ Pn+1 × P(H0(Pn+1,OPn+1(d))) of projective hypersurfaces in Pn+1 of
a given degree d > 0. This object turns out to be very useful because of
the positivity properties of its tangent bundle. The existence of sufficiently
many vector fields with controlled pole order is used to prove that generic
projective hypersurfaces satisfy the conjecture of Lang claiming that a pro-
jective manifold is hyperbolic if and only if all its subvarieties are of general
type.

Starting from Chapter 3, we enter in the core of this survey, turning to
the study of transcendental objects. We describe in detail the constructions
of jet bundles (introduced in this formalism by [GG80]) following closely
the presentation of projectivized jet bundles of Demailly [Dem97] as an in-
ductive procedure in the category of directed manifolds (X,V ) where V is
a holomorphic subbundle of the tangent bundle TX . This tower of projec-
tivized bundles is naturally endowed with tautological line bundles at each
stage. Considering the sheaf of sections of the direct images of these line
bundles leads to the concepts of (invariant) jet differentials which are more
concretely interpreted as algebraic differential operators Q(f ′, f ′′, . . . , f (k))
acting on jets of germs of holomorphic curves. The algebraic structure of
these vector bundles Ek,mT

∗
X of invariant jet differentials leads to interesting

(and difficult) questions in invariant theory which were intensively investi-
gated recently [Rou06b], [Mer08], [BK10].

In Chapter 4, we begin by recalling classical notions of hermitian geom-
etry, such as curvature and positivity of hermitian line bundles on complex
manifolds. A basic idea is that Kobayashi hyperbolicity is somehow re-
lated with suitable properties of negativity of the curvature of the manifold
even in dimension greater than one. We formalize this heuristic concept
by means of the Ahlfors-Schwarz lemma in connection with invariant jet
differentials: we illustrate the general philosophy whose key point is that
global jet differentials vanishing along an ample divisor provide algebraic
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differential equations which every entire curve must satisfy.
It is then possible to state a general strategy which leads to sufficient

conditions in order to have algebraic degeneracy of entire curves in a given
compact complex manifold. The first step consists in finding a global sec-
tion of the bundle of jet differentials vanishing on an ample divisor. The
second step should produce much more differential equations, enough to im-
pose sufficiently many conditions on the entire curves to force their algebraic
degeneracy. One way to do this is to generalize the ideas described in Chap-
ter 2 about vector fields. Following the strategy of Siu [Siu04], one should
now consider vector fields tangent to the jet space. As a jet differential
is after all a function on the jet space, one can differentiate it with vector
fields and obtain new jet differentials. Of course, one has to guarantee that
these new differential operators still vanish on an ample divisor. So, one is
forced to have a precise control of the pole order of the vector fields con-
structed (which, for example in the case of projective hypersurface, should
not depend on the degree of the hypersurface itself).

The general strategy presented in Chapter 4 is not directly applica-
ble to deal with projective hypersurfaces. To illustrate the modification
needed in order to be able to run it, we present in Chapter 5 the solu-
tion of the Kobayashi conjecture for generic surfaces in projective 3-space,
after [McQ99], [DEG00] and [Pău08]. In particular, we show how to find
global invariant jet differentials vanishing along an ample divisor on a projec-
tive surface of general type by means of Riemann-Roch-type computations
together with a vanishing theorem for the higher cohomolgy groups by Bo-
gomolov. Then we explain in great details how to produce meromorphic
vector fields of controlled pole order on the universal family of degree d
surfaces in P3. Finally, with these two ingredients available, we adapt the
aforesaid general strategy to obtain the conclusion that very generic projec-
tive surfaces of degree greater than or equal to 90 in projective 3-space are
Kobayashi hyperbolic. This is far from being an optimal bound and it is
even far from the bound obtained independently by Mc Quillan, Demailly-El
Goul and Păun, but the strategy presented here is the only one which we
were able to generalize in higher dimension.

The last chapter is devoted to the recent result on algebraic degeneracy
of entire curves in generic projective hypersurfaces of high degree obtained
in [DMR10]. In the higher dimensional case, the non-vanishing of the higher
cohomology groups creates new conceptual difficulties. On the other hand,
the extension to all dimensions of the existence of lots of meromorphic vector
fields with controlled pole order presents “only” new technical difficulties
while the conceptual nature of the construction remains the same of the one
described in Chapter 5. Therefore, we have decided to concentrate ourself
more on the general proof of the existence of global invariant jet differentials
— first in dimension three, then in the general case.

One way to control the cohomology is to use the holomorphic Morse
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inequalities of Demailly. If one can compute the Euler characteristic of the
bundle of jet differentials Ek,mT

∗
X and then find upper bounds for the higher

even cohomology groups H2i(X,Ek,mT
∗
X) using the weak Morse inequalities,

the first step is achieved as in dimension 3 [Rou06b]. Unfortunately, in
general the control of the cohomology is quite involved, thus one try to apply
directly the strong Morse inequalities to twisted tautological bundles on the
projectivized jet bundles. This permits to obtain global jet differentials on
hypersurfaces of sufficiently high degree [Div09] in every dimension.

Then Siu’s strategy of exhibiting vector fields is realized on the jet spaces
of the universal hypersurfaces [Rou07], [Mer09]. Finally, the full strategy is
used to obtain the algebraic degeneracy of entire curves in generic projective
hypersurfaces of degree larger than 2n

5
[DMR10].

Last but not least, we would like to warmly thank Alcides Lins Neto,
Jorge Vitório Pereira, Paulo Sad and all the people of the IMPA for having
organized this course and our stay in Rio. These have been very stimulating,
interesting and, why not, funny days.
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Chapter 1

Kobayashi hyperbolicity:
basic theory

Abstract. In this first chapter we state and describe the basic definitions of

complex hyperbolic geometry, basically following [Kob98] and [Dem97]. Then, we

state and prove the classical Brody’s lemma and Picard’s theorem. We conclude by

giving a brief account of elementary examples and describing the case of Riemann

surfaces.

1.1 The Kobayashi distance

Let ∆ ⊂ C be the unit disc in the complex plane, with complex coordinate ζ.
On ∆, there exists a particular (non-euclidean) metric, whose infinitesimal
form is given by

ds2 =
dζ ⊗ dζ

(1− |ζ|2)2
,

which enjoys several interesting properties: its name is Poincaré metric.
This is the starting point of the theory of complex hyperbolicity: the idea is
to give to each complex space an intrinsic metric built by means of holomor-
phic mapping from the unit complex disc together with the Poincaré metric
to the given space.

More precisely, call ρ the integrated form of the Poincaré metric; we
write here its explicit form even if we shall rarely use it:

ρ(a, b) = tanh−1

∣∣∣∣ a− b1− ab

∣∣∣∣ , a, b ∈ ∆.

The distance ρ is complete on ∆. Next, let X be a complex space. We call a
holomorphic disc in X a holomorphic map from ∆ to X. Given two points
p, q ∈ X, consider a chain of holomorphic discs from p to q, that is a chain
of points p = p0, p1, . . . , pk = q of X, pairs of point a1, b1, . . . , ak, bk of ∆
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and holomorphic maps f1, . . . , fk : ∆→ X such that

fi(ai) = pi−1, fi(bi) = pi, i = 1, . . . , k.

Denoting this chain by α, define its length `(α) by

`(α) = ρ(a1, b1) + · · ·+ ρ(ak, bk)

and a pseudodistance dX on X by

dX(p, q) = inf
α
`(α).

This is the Kobayashi pseudodistance of X.

Definition 1.1.1. The complex space X is said to be Kobayashi hyperbolic
if the pseudodistance dX is actually a distance.

For ∆ the complex unit disc, it is easy to see using the usual Schwarz-Pick
lemma1 in one direction and the identity transformation in the other that
dX = ρ. Then ∆ is hyperbolic. The entire complex plane is not hyperbolic:
indeed the Kobayashi pseudodistance is identically zero. To see this from
the very definition, take any two point z1, z2 ∈ C and consider a sequence
of holomorphic discs

fj : ∆→ C
ζ → z1 + jζ(z2 − z1).

It is important to remark here that the non hyperbolicity of the complex
plane is connected to the possibility of taking larger and larger discs in C.

It is immediate to check that the Kobayashi pseudodistance has the
fundamental property of being contracted by holomorphic maps: given two
complex spaces X and Y and a holomorphic map f : X → Y one has for
every pair of point x, y in X

dY (f(x), f(y)) ≤ dX(x, y).

In particular, biholomorphisms are isometry for the Kobayashi metric.

1We recall here that the usual Schwarz-Pick lemma says that for f : ∆ → ∆ a holo-
morphic map, one has the following inequality:

|f ′(ζ)|
1− |f(ζ)|2 ≤

1

1− |ζ|2 .

This means exactly that holomorphic maps contract the Poincaré metric.
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1.1.1 Infinitesimal form

Let us now come at the infinitesimal analogue of the Koboyashi pseudodis-
tance introduced above. For simplicity, we shall suppose that X is a smooth
complex manifold but most of the things would work on an arbitrary singular
complex space.

So, fix an arbitrary holomorphic tangent vector v ∈ TX,x0 , x0 ∈ X: we
want to give it an intrinsic length. Thus, define

kX(v) = inf{λ > 0 | ∃f : ∆→ X, f(0) = x0, λf
′(0) = v},

where f : ∆ → X is holomorphic. Even with this infinitesimal form, it is
straightforward to check that holomorphic maps between complex manifolds
contract it and that in the case of the complex unit disc, it agrees with the
Poincaré metric.

One can give a similar definition in the setting of complex directed man-
ifolds, that is pairs (X,V ) where X is a complex manifold and V ⊂ TX a
holomorphic subbundle of the tangent bundle: in this case one only considers
vectors and maps which are tangent to V .

Definition 1.1.2. Let (X,V ) be a complex directed manifold and ω an arbi-
trary hermitian metric on V . We say that (X,V ) is infinitesimally Kobayashi
hyperbolic if k(X,V ) is positive definite on each fiber and satisfies a uniform
lower bound

k(X,V )(v) ≥ ε||v||ω

when v ∈ Vx and x ∈ X describes a compact subset of X.

The Kobayashi pseudodistance is the integrated form of the Kobayashi
infinitesimal pseudometric (this is due to Royden).

Theorem 1.1.1. Let X be a complex manifold. Then

dX(p, q) = inf
γ

∫
γ

kX(γ′(t)) dt,

where the infimum is taken over all piecewise smooth curves joining p to q.

In particular, if X is infinitesimally hyperbolic, then it is hyperbolic.

1.2 Brody’s criterion for hyperbolicity

The distance decreasing property together with the fact that the Kobayashi
pseudodistance is identically zero on C, implies immediately

Proposition 1.2.1. If X is a hyperbolic complex space, then every holo-
morphic map f : C→ X is constant.
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Proof. For a, b ∈ C one has

dX(f(a), f(b)) ≤ dC(a, b) = 0.

Hence f(a) = f(b).

Next theorem, which is due to Brody, is the simplest and most useful
criterion for hyperbolicity. It is a converse of the preceding proposition in
the case where the target X is compact. Fix any hermitian metric ω on the
compact complex manifold X; we say that a holomorphic map f : C→ X is
an entire curve if it is non constant and that it is a Brody curve if it is an
entire curve with bounded derivative with respect to ω (or, of course, any
other hermitian metric).

Theorem 1.2.2 (Brody). Let X be a compact complex manifold. If X is
not (infinitesimally) hyperbolic then there exists a Brody curve in X.

A first direct consequence of this theorem is that in the compact case,
hyperbolicity and infinitesimal hyperbolicity are equivalent, since if X is not
infinitesimally hyperbolic then there exists an entire curve in X and then
two distinct points on this curve will have zero distance with respect to dX .
For more information on the localization of such a curve, we refer the reader
to the very recent and remarkable results of [Duv08].

We shall start with the so called Brody reparametrization lemma.

Lemma 1.2.3 (Reparametrization lemma). Let X be a hermitian manifold
with hermitian metric ω and f : ∆ → X a holomorphic map. Then, for
every ε > 0 there exists a radius R ≥ (1 − ε)||f ′(0)||ω and a homographic
transformation ψ of the disc ∆R of radius R onto (1− ε)∆ such that

||(f ◦ ψ)′(0)||ω = 1 and ||(f ◦ ψ)′(t)||ω ≤
1

1− |t|2/R2
,

for every t ∈ ∆R.

Proof. Consider the norm of the differential

f ′((1− ε)ζ) : T∆ → TX

with respect to the Poincaré metric |dζ|2/(1−|ζ|2)2 on the unit disc, which is
conformally invariant under Aut(∆): it is given by (1−|ζ|2)||f ′((1−ε)ζ)||ω.
Pick a ζ0 ∈ ∆ such that this norm is maximum. We let for the moment R to
be determined and we chose an automorphism φ of the unit disc such that
φ(0) = ζ0; finally, set ψ = (1 − ε)φ(t/R). Thus, ψ′(0) = (1 − ε)φ′(0)/R =
(1− ε)(1− |ζ0|2)/R, since φ is an isometry of the unit disc for the Poincaré
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metric. On the other hand, we want ||(f ◦ ψ)′(0)||ω = 1, which imposes
ψ′(0) = 1/||f ′(ψ(0))||ω. This gives

R = (1− ε)(1− |ζ0|2)||f ′(ψ(0))||ω
= (1− ε)(1− |ζ0|2)||f ′((1− ε)ζ0)||ω
≥ (1− ε)||f ′(0)||ω,

since ζ0 is the maximum for (1− |ζ|2)||f ′((1− ε)ζ)||ω. Finally, we have

||(f ◦ ψ)′(t)||ω = |ψ′(t)| ||f ′(ψ(t))||ω
= |ψ′(t)| ||f ′((1− ε)φ(t/R))||ω

≤ |ψ′(t)|(1− |ζ0|2)||f ′((1− ε)ζ0)||ω
1− |φ(t/R)|2

=
1− ε
R
|φ′(t/R)|(1− |ζ0|2)||f ′((1− ε)ζ0)||ω

1− |φ(t/R)|2

=
|φ′(t/R)|

1− |φ(t/R)|2
≤ 1

1− |t|2/|R|2
,

by the choice of R and the (rescaled) Schwarz-Pick lemma.

We can now prove Brody’s theorem.

Proof of Theorem 2.2.2. By hypothesis, there exists a sequence of holomor-
phic discs fj : ∆ → X such that fj(0) = x0 ∈ X and ||f ′j(0)||ω tends to
infinity. We shall now apply the reparametrization lemma to this sequence
in order to construct an entire curve. Fix for instance ε = 1/2 and for
each j, select a ψj with the corresponding Rj ≥ ||f ′j(0)||ω/2 and call the
composition gj = fj ◦ ψj : ∆Rj → X. So, we have that

||g′j(0)||ω = 1, ||g′j(t)||ω ≤
1

1− |t|2/R2
j

and Rj →∞.

The conclusion will follow from the Ascoli-Arzelà theorem: the family {gj}
is with values in a compact space (hence pointwise bounded) and the esti-
mate on its derivatives shows that it is equiLipschitz on any given compact
subset of a fixed ∆Rj , hence equicontinuous in there. Thus, by a diagonal
process, we have a subsequence which converges to an entire map g : C→ X;
moreover, ||g′(0)||ω = lim ||g′j(0)||ω = 1, so that g is non constant and also
||g′(t)||ω = lim ||g′j(t)||ω ≤ 1.

The absence of entire holomorphic curves in a given complex manifold
is often referred as Brody hyperbolicity. Thus, in the compact case, Brody
hyperbolicity and Kobayashi hyperbolicity coincide.

The following example shows that in the non compact case one may have
Brody hyperbolic domains which are not Kobayashi hyperbolic.
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Example 1.2.1. Consider the domain in C2 defined by

D = {(z, w) ∈ C2 | |z| < 1, |zw| < 1} \ {(0, w) | |w| ≥ 1}.

The mapping h : D → C2 which sends (z, w) 7→ (z, zw) has as image the
unit bidisc and is one-to-one except on the set {z = 0}. If f : C → D is
holomorphic, then h ◦ f is constant by Liouville’s theorem. Thus, either f
is constant or f maps C into the set {(0, w) ∈ D}. But this set is equivalent
to the unit disc, hence f is constant in any case.

Since h, being holomorphic, is distance decreasing for the Kobayashi
pseudodistances, we have that dD(p, q) > 0 for p 6= q unless both p and q lie
in the subset {(0, w) ∈ D}. Suppose then that we are in this case and let
p = (0, b), q = (0, 0) and pn = (1/n, b). Since, as it is straightforward to see,
the Kobayashi pseudodistance is always continuous as a map from a complex
space times itself to the real numbers, we have dD(p, q) = lim dD(pn, q). Call
an = min{n,

√
n/|b|}. Then the mapping ∆ 3 ζ 7→ (an/n ζ, anb ζ) ∈ D

maps 1/an to pn. Hence

lim dD(pn, q) ≤ lim ρ(1/an, 0) = 0.

1.2.1 Applications

Let us show two immediate consequences of Brody’s criterion for hyperbol-
icity: the openness property of hyperbolicity and the study of entire curves
in complex tori.

A holomorphic family of compact complex manifolds is a holomorphic
proper submersion X → S between two complex manifolds.

Proposition 1.2.4. Let π : X → S a holomorphic family of compact com-
plex manifolds. Then the set of s ∈ S such that the fiber Xs = π−1(s) is
hyperbolic is open in the Euclidean topology.

Proof. Let ω be an arbitrary hermitian metric on X and {Xsn}sn∈S a se-
quence of non hyperbolic fibers, and let s = lim sn. By Brody’s criterion
one obtains a sequence of entire maps fn : C→ Xsn such that ||f ′n(0)||ω = 1
and ||f ′n||ω ≤ 1. Ascoli’s theorem shows that there is a subsequence of fn
converging uniformly to a limit f : C→ Xs, with ||f ′(0)||ω = 1. Hence Xs is
not hyperbolic and the collection of non hyperbolic fibers is closed in S.

Consider now an n-dimensional complex torus T , that is the additive
quotient of Cn modulo a real lattice Λ of rank 2n. In particular, Cn is the
universal Riemannian cover of T with the flat metric and by the projection
we obtain plenty of entire curves in T .

Theorem 1.2.5. Let X ⊂ T be a compact complex submanifold of a complex
torus. Then X is hyperbolic if and only if it does not contain any translated
of a subtorus.
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Proof. If X contains some translated of a subtorus, then it contains lots of
entire curves and it is not hyperbolic.

Conversely, suppose X is not hyperbolic. Then by Brody’s criterion
there exists an entire map f : C → X such that ||f ′||ω ≤ ||f ′(0)||ω = 1,
where ω is the flat metric on T inherited from Cn. This means that any
lifting f̃ = (f̃ , . . . , f̃n) : C→ Cn is such that

n∑
j=1

|f ′j |2 ≤ 1.

Then, by Liouville’s theorem, f̃ ′ is constant and therefore f̃ is affine. But
then, up to translation f̃ is linear and so the image of f and its Zariski
closure are subgroup of T .

Another interesting application of Brody’s criterion in connection with
the algebraic properties of complex manifolds is the hyperbolicity of varieties
with ample cotangent bundle: this will be treated in the next chapters.

1.3 Riemann surfaces and uniformization

If a rational function f(z) is not a constant, then for any α ∈ C the equation
f(z) = α has a solution z ∈ C and if f has a pole, then f takes the value
∞ there. However, this is not the case in general, if f is a holomorphic
or meromorphic function on C. For instance, the entire function f(z) = ez

does not take the value 0 nor∞. Thus, the number of points which f misses
is two. In general, if a meromorphic function f , regarded as a holomorphic
mapping into P1 misses a point of P1, this point is called an exceptional
value. The next very classical theorem shows that the above “two” is the
maximum.

Theorem 1.3.1 (Little Picard’s theorem). The number of exceptional val-
ues of a non constant meromorphic function on C is at most two.

One possible proof relies on the fact that the universal covering of, say
C \ {0, 1}, is the unit disc and on the Liouville theorem; for the former
property, the theory of modular curves, easily deduced from basic Riemann
surface theory, tells us that the quotient of the upper half plane by the
group Γ(2) (i.e., the kernel of the map SL2(Z) → SL2(Z/2Z)) under the
induced action of the modular group SL2(Z) is analytically isomorphic to
the complex plane minus two points. In particular, the universal cover of
the plane minus two points is the upper plane. As the upper half plane is
conformally equivalent to the unit disc, we could just as well have taken the
disc.

In other words, the theorem says that P1 minus three points or, equiv-
alently, C minus two points is Brody hyperbolic. In the following example,
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we describe a nice consequence of the Little Picard’s theorem in dimension
two.

P2

!1 !2

!3

!4

!5

[1 : 1 : 1]

Figure 1.1: A configuration of 5 lines in P2 whose complement is hyperbolic

Example 1.3.1. In the projective plane P2 with homogeneous coordinates
[Z0 : Z1 : Z2], consider the following five lines as in Figure 2.1:

`1 : Z1 = 0,

`2 : Z1 − Z0 = 0,

`3 : Z1 − Z2 = 0,

`4 : Z1 + Z2 − 2Z0 = 0,

`5 : Z2 = 0

and call X = P2 \
⋃5
j=1 `j . We claim that X is Brody hyperbolic. To see

this, let P be the pencil of lines [α : β] 7→ αZ1 + β Z2 − (α + β)Z0 = 0
through the point [1 : 1 : 1], restrict it to X and consider the associated
projection π : X → P1. Then π(X) = P1 \ {[1 : 0], [1 : −1], [1 : 1]}, so that
by the Little Picard’s theorem π(X) is Brody hyperbolic. Thus, if f : C→ X
is holomorphic the composition π ◦ f must be constant and hence f(C) is
contained in a fiber of π. Now, if a line in the pencil P is not contained
in one of the three lines of the configuration passing through [1 : 1 : 1], its
intersection with X is P1 minus three points (the point [1 : 1 : 1] and the
other two intersections with `1 and `5) so that each fiber of π is again Brody
hyperbolic by the Little Picard’s theorem. The constancy of f follows.

This example is not so special, since any configuration of five lines in P2

in generic position leads to the same result, see next chapter.

From a hyperbolic point of view, the case of one dimensional complex
manifold is, in principle, completely settled by the following
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Theorem 1.3.2 (Uniformization). Let X be a connected and simply con-
nected one dimensional complex manifold. Then X is biholomorphic either
to the Riemann sphere, the complex plane or the complex unit disc.

Consider a one dimensional complex manifold X and its universal cover
X̃. Being X̃ simply connected, the uniformization theorem gives us just
three possibility. According to that, X is said to be

• of elliptic type, if X̃ is P1,

• of parabolic type, if X̃ is C,

• of hyperbolic type, if X̃ is ∆.

If f : C→ X is an entire curve then, being C simply connected, there exists
a well defined holomorphic lifting f̃ : C → X̃. Thus, if X is of hyperbolic
type, then f̃ : C → ∆ must be constant by Liouville’s theorem. So, X is
Brody hyperbolic and, if it is compact, it is Kobayashi hyperbolic: this is
the case if and only if the geometric genus of X is grater than or equal to
two (the other possibility being the genus zero case P1 and the genus one
case C/Λ, the quotient of the complex plane by a lattice of rank two, that
is elliptic curves).

In higher dimensions, the situation is much more involved: there is no
longer any general uniformization property available.

Anyway, from an algebraic point of view the aforesaid trichotomy is
governed by the asymptotic behavior of the (pluri)canonical system of the
curve: it is a classical result that the growth rate of the space of global
sections of the pluricanonical line bundle h0(X,K⊗mX ) is linear with m if
and only if X has genus greater than or equal to two.

In general, a manifold X is said to be of general type if its canonical line
bundle KX is big. We recall

Definition 1.3.1. A line bundle L on a projective manifold X of dimension
n is said to be

• big if h0(X,L⊗m) ∼ mn for m� 0,

• very ample if there is an embedding ι : X ↪→ PN such that L '
ι∗OPN (1),

• ample if for some m > 0, L⊗m is very ample,

• nef if it has nonnegative degree
∫
C c1(L) ≥ 0 on any algebraic curve

C ⊂ X.

In particular, by Hirzebruch-Riemann-Roch formula and the Kodaira
vanishing, manifolds with ample canonical bundle are of general type. These
will be the main objects of study in the understanding of the links between
hyperbolicity and algebraic properties of projective manifold.





Chapter 2

Algebraic hyperbolicity

Abstract. This chapter deals with an algebraic analogue of the Kobayashi hyper-

bolicity, introduced in [Dem97]. We shall explain how the Kobayashi hyperbolicity

implies restrictions on the ratio between the genus and the degree of algebraic

curves contained in a hyperbolic projective algebraic manifold, and shall take this

property as a definition. Then, we will discuss some general conjecture and related

results, in particular Bogomolov’s proof of the finiteness of rational and elliptic

curves on surfaces whose Chern classes satisfy a certain inequality. In the second

part, an account of known results about algebraic hyperbolicity of generic projective

hypersurfaces of high degree will be done.

2.1 Hyperbolicity and genus of curves

We shall make things here in the absolute case, but everything still works
in the more general framework of directed manifolds.

Let X be a compact Kobayashi hyperbolic manifold. Then X is Brody
hyperbolic and thus it cannot contain any holomorphic image of C. In
particular, from the algebraic point of view, X cannot contain any rational
nor elliptic curve (and, more generally, any complex torus). Hence, curves of
genus 0 and 1 are prohibited by hyperbolicity. In fact, one can say something
stronger.

Proposition 2.1.1 ( [Dem97]). Let X be a compact hermitian manifold,
with hermitian metric ω. If X is (infinitesimally) hyperbolic then there
exists a ε0 > 0 such that for every curve C ⊂ X one has

−χ(Ĉ) = 2 g(Ĉ)− 2 ≥ ε0 degω C,

where Ĉ is the normalization of C and degω C =
∫
C ω.

Proof. Let C ⊂ X be a curve in X and ν : Ĉ → C ⊂ X its normalization.
Since X is (infinitesimally) hyperbolic and compact, there is an absolute
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constant ε > 0 such that the infinitesimal Kobayashi pseudometric satisfies
a uniform lower bound

kX(v) ≥ ε||v||ω
for every v ∈ TX . Now, the universal Riemannian cover of Ĉ is necessarily
the complex unit disc, by the hyperbolicity of X: let it be π : ∆ → Ĉ. We
shall endow Ĉ by the induced metric of constant negative Gaussian curvature
−4 such that

π∗k
Ĉ

= k∆ =
|dζ|

1− |ζ|2
.

Call σ∆ = i
2 dζ ∧ dζ/(1 − |ζ|

2)2 and σ
Ĉ

the corresponding area measures.
Then the classical Gauss-Bonnet formula yields

−4

∫
Ĉ
σ
Ĉ

=

∫
Ĉ

Θ(T
Ĉ
,k

Ĉ
) = 2π χ(Ĉ),

where Θ(T
Ĉ
,k

Ĉ
) is the curvature of T

Ĉ
with respect to the metric k

Ĉ
.

Next, if ι : C → X is the inclusion, the distance decreasing property of
the Kobayashi pseudometric applied to the holomorphic map ι ◦ ν : Ĉ → X
gives

k
Ĉ

(ξ) ≥ kX((ι ◦ ν)∗ ξ) ≥ ε ||(ι ◦ ν)∗ ξ||ω,

for all ξ ∈ T
Ĉ

. From this, we infer that σ
Ĉ
≥ ε2(ι ◦ ν)∗ω, hence

−π
2
χ(Ĉ) =

∫
Ĉ
σ
Ĉ
≥
∫
ε2(ι ◦ ν)∗ω = ε2

∫
C
ω.

The assertion follows by putting ε0 = 2 ε2/π.

In other words, for X a hyperbolic manifold, the ratio between the genus
of curves and their degrees with respect to any hermitian metric (or any
ample divisor) is bounded away from zero: this, following [Dem97], can be
taken as a definition of “algebraic” hyperbolicity.

Definition 2.1.1. Let X be a projective algebraic manifold endowed with
any hermitian metric ω (for instance ω can be taken to be the curvature of
any ample line bundle on X). We say that it is algebraically hyperbolic if
there exists a constant ε0 > 0 such that for every algebraic curve C ⊂ X
one has

2 g(Ĉ)− 2 ≥ ε0 degω C.

When ω = iΘ(A), where A is any hermitian ample line bundle and
iΘ(A) its Chern curvature, the right hand side of the inequality is just the
usual degree of a curve in terms of its intersection product C · A: in this
case the inequality is purely algebraic.

By Riemann-Hurwitz formula, one can take, in the previous inequality
of the definition of algebraic hyperbolicity, any finite morphism f : C → X
from a smooth projective curve.
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This algebraic counterpart of hyperbolicity satisfies an analogue of the
openness property of the Kobayashi hyperbolicity, this time with respect to
the Zariski topology.

Proposition 2.1.2. Let X → S an algebraic family of projective algebraic
manifolds, given by a projective morphism. Then the set of s ∈ S such that
the fiber Xs is algebraically hyperbolic is open with respect to the countable
Zariski topology of S (by definition, this is the topology for which closed sets
are countable unions of algebraic sets).

Proof. Without loss of generality, we can suppose that the total space X is
quasi-projective. Let ω be the Kähler metric on X obtained by pulling-back
the Fubini-Study metric via an embedding in a projective space. Fix integers
d > 0 and g ≥ 0 and call Ad,g the set of s ∈ S such that Xs contains an

algebraic 1-cycle C =
∑
mj Cj with degω C = d and g(Ĉ) =

∑
mj g(Ĉj) ≤

g.
This set is closed in S, by the existence of a relative cycle space of curves

of given degree and the lower semicontinuity with respect to the Zariski
topology of the geometric genus. But then, the set of non hyperbolic fibers
is by definition ⋂

k>0

⋃
2g−2<d/k

Ad,g.

An interesting property of algebraically hyperbolic manifolds is

Proposition 2.1.3. Let X be an algebraically hyperbolic projective manifold
and V be an abelian variety. Then any holomorphic map f : V → X is
constant.

Proof. Let m be a positive integer and mV : V → V , s 7→ m · s. Consider
fm := f ◦mV and A an ample line bundle on X. Let C be a smooth curve
in V and fm|C : C → X. Then

2g(C)− 2 ≥ εC · f∗mA = εm2C · f∗A.

Letting m go to infinity, we obtain that necessarily C · f∗A = 0. Thus f is
constant on all curves in V and therefore f is constant on V .

It is worthwhile here to mention that in the projective algebraic case,
Kobayashi hyperbolicity and algebraic hyperbolicity are expected to be
equivalent, but not much is known about it. Both of these properties should
be equivalent to the following algebraic property.

Conjecture 2.1.1 (Lang). Let X be a projective manifold. Then X is
hyperbolic if and only if there are no nontrivial holomorphic maps V → X
where V = Cp/Λ is a compact complex torus.
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One may be tempted to extend the conjecture to non-projective mani-
folds but then it becomes false, as shown by the following

Example 2.1.1 ( [Can00]). Let X be a non-projective K3 surface1 with no
algebraic curves (the existence of such a surface is a classical result on K3
surfaces). Then there exists a non-constant entire curve f : C→ X. On the
other hand, if V is a compact torus every holomorphic map F : V → X is
constant.

Let us justify briefly the claims of the example. The existence of non-
constant entire curves is a consequence of the density of Kummer surfaces2

in the moduli space of K3 surfaces. Since Kummer surfaces contain lots
of entire curves (inherited from the starting torus), one just has to apply
Brody’s theorem. The second claim follows from the non-existence of surjec-
tive maps F : V → X. Indeed, considering Ω a non-vanishing holomorphic
2-form on X, if F is surjective, then F ∗Ω is a non-zero section of the triv-
ial bundle Λ2T ∗V : the rank of this 2-form is therefore constant, equal to 2.
Then, one obtains that F factors through a 2-dimensional compact torus
and induces a covering V → X which contradicts the fact that X is simply
connected.

Another characterization of hyperbolicity should be the following.

Conjecture 2.1.2 (Lang). Let X be a smooth projective algebraic mani-
fold. Then X is hyperbolic if and only if all subvarieties of X including X
itself are of general type.

In the next section we shall see some partial result in this direction. The
latter conjecture should be put in perspective with this other celebrated one.

Conjecture 2.1.3 (Green-Griffiths [GG80], Lang). Let X be a smooth
projective algebraic manifold of general type. Then there should exist a
proper algebraic subvariety Y ( X such that all entire curves f : C → X
have image f(C) contained in Y .

This conjecture is largely open, too. Nevertheless, related to algebraic
hyperbolicity we have the following.

Theorem 2.1.4 (Bogomolov [Bog78]). Let X be a smooth projective surface
of general type with c1(X)2 > c2(X). Then there are only finitely many
rational or elliptic curves in X.

1A K3 surface is a simply connected surface X with irregularity q(X) = h1(X,OX) = 0
and trivial canonical bundle KX ' OX .

2Let T be a two dimensional complex torus with a base point chosen. The involution
ι : T → T has exactly 16 fixed point, namely the points of order 2 on T , so that the
quotient T/〈1, ι〉 has sixteen ordinary double points. Resolving the double points we
obtain a smooth surface X, the Kummer surface Km(T ) of T . Kummer surfaces are
special case of K3 surfaces.
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Proof. We will see later in some details that the hypothesis on the second
Segre number c1(X)2 > c2(X) implies that h0(X,SmT ∗X) ∼ m3. A non-
trivial symmetric differential ω ∈ H0(X,SmT ∗X) defines a multifoliation on
X. Recall that there is an isomorphism (we will come back later on this,
too)

H0(X,SmT ∗X) ∼= H0(P (TX),OP (TX)(m)).

If σ ∈ H0(X,SmT ∗X) and x ∈ X then σ(x) defines naturally a polynomial of
degree m on P (TX,x) ' P1. The zeroes of σ(x) determines the directions of
the multifoliation. Let C be a smooth projective curve and f : C → X. The
curve f(C) is a leaf of the multifoliation defined by σ if f∗σ ∈ H0(C, T ∗⊗mC )
is trivial. Equivalently if tf : C → P (TX) is the lifting of f then f(C) is a
leaf if tf (C) lies in the zero locus of σ ∈ H0(P (TX),OP (TX)(m)).

The sections of OP (TX)(m) for m large enough provide a rational map

ϕ : P (TX)→ PN generically 1−1 onto its image. Let us denote Zm ⊂ P (TX)
the union of the positive dimensional fibers of ϕ and of the base locus of
OP (TX)(m).

Let f : C → X be a curve. Then, f(C) is said to be irregular if tf (C) ⊂
Zm, otherwise it is regular. The set of irregular curves can be broken into 2
sets: the curves that are leaves of multifoliations and the curves whose lifts
lie on the positive dimensional fibers of ϕ.

Let C ′ be a regular curve with normalization f : C → C ′ ⊂ X. There is
a symmetric differential σ ∈ H0(X,SmT ∗X) such that f∗σ ∈ H0(C, (T ∗C)⊗m)
is non-trivial but vanishes somewhere. Hence degC T

∗⊗m
C = m degKC > 0

and C cannot be rational or elliptic.

Let C ′ be an irregular curve and write Zm = Z1
m ∪ Z2

m where Z1
m is the

union of components not dominating X, Z2
m is the union of components

dominating X. The number of curves that lift in Z1
m is clearly finite. The

components of Z2
m have a naturally defined foliation on them. Curves whose

lifts lie in Z2
m are leaves of these foliations. By Jouanolou’s theorem on

compact leaves of foliations, either there are finitely many compact leaves
or they are fibers of a fibration. Thus there are finitely many such elliptic or
rational curves: X being of general type, the second situation is not possible
since a surface of general type cannot be ruled or elliptic.

In the transcendental case, the only result for a quite general case has
been obtained Mc Quillan in [McQ98], for dimX = 2 and the second Segre
number c1(X)2 − c2(X) of X positive. The heart of his proof is

Theorem 2.1.5. Consider a (possibly singular) holomorphic foliation on
a surface of general type. Then any parabolic leaf of this foliation is alge-
braically degenerate.

An immediate corollary of the two previous results is a confirmation of
the Green-Griffiths conjecture in this situation.
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Corollary 2.1.6. Let X be a smooth projective surface of general type with
c1(X)2 > c2(X). Then there are finitely many curves C ⊂ X such that any
non-constant entire curve takes value in one of these curves.

Unfortunately, these “order one” techniques are insufficient to work with
surfaces of degree d in projective 3-space. In this case in fact

c1(X)2 = d(d− 4)2 < d(d2 − 4d+ 6) = c2(X), d ≥ 3.

In higher dimensions, there are few results. For the algebraic version,
let us mention the following result of Lu and Miyaoka.

Theorem 2.1.7 ( [LM97]). Let X be a projective manifold of general type.
Then X has only a finite number of nonsingular codimension-one subva-
rieties having pseudo-effective anticanonical divisor. In particular, X has
only a finite number of non singular codimension one Fano, Abelian and
Calabi-Yau subvarieties.

For some partial result in all dimensions for the transcendental case, we
refer to next chapters.

2.2 Algebraic hyperbolicity of generic projective
hypersurfaces of high degree

Consider the Grassmannian G(1, n + 1) of projective lines in Pn+1 which
is canonically identified with the Grassmannian Gr(2, n + 2) of 2-planes in
Cn+2: its complex dimension is 2n. We are interested in understanding when
a generic projective hypersurfaces X ⊂ Pn+1 contains a line. Fix an integer
d > 0. Then a projective hypersurface of degree d is an element of the linear
system |OPn+1(d)| or, equivalently, can be identified with a point in the pro-
jectivization P(H0(Pn+1,OPn+1(d))). One has dimP(H0(Pn+1,OPn+1(d))) =
Nd − 1, where Nd =

(
n+d+1
n+1

)
= h0(Pn+1,OPn+1(d)) is the dimension of ho-

mogeneous polynomials of degree d in n+ 2 variables.
Now, consider the incidence variety

L = {(`,X) ∈ G(1, n+ 1)× PNd−1 | the line ` is contained in X}.

By construction, the image of L in PNd−1 by the second projection is the set
of projective hypersurfaces of degree d which contain at least one line. Of
course, if dimL is less than Nd − 1, then a generic projective hypersurface
of degree d does not contain lines, since the second projection cannot be
dominant. On the other hand, L is always mapped onto G(1, n + 1) by
the first projection, since every line is always contained in some degree d
hypersurface. Next, an easy parameter computation shows that generically
a homogeneous polynomial of degree d in n+ 2 variables must satisfy d+ 1
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condition in order to contain a line. Therefore, the fiber of the first projection
has dimension Nd − d− 2 and thus dimL = Nd + 2n− d− 2.

After all, the second projection maps a variety of dimensionNd+2n−d−2
to a variety of dimension Nd − 1 and so we have proved the following.

Proposition 2.2.1. If d ≥ 2n, then a generic projective hypersurface of
degree d in Pn+1 cannot contain any line.

This digression shows that if we are interested in hyperbolicity of generic
projective hypersurfaces, we surely have to exclude low degree ones. On the
other hand, by the Euler short exact sequence

0→ OPn+1 →
n+2⊕
j=1

OPn+1(1)→ TPn+1 → 0,

combined with the classical adjunction formula

KD ' (KY ⊗OY (D))|D

for smooth divisors D ⊂ Y in a smooth manifold Y , one finds straight-
forwardly, by taking determinants, that the canonical bundle of a smooth
hypersurface X of degree d in projective (n+ 1)-space is given by

KX = OX(d− n− 2).

So, the higher the degree of the hypersurface X is, the more positive its
canonical bundle is. This is somehow consistent with the picture presented
at the end of Chapter 1, where hyperbolicity was heuristically linked to the
positivity properties of the canonical bundle.

More precisely, Kobayashi made the following.

Conjecture 2.2.1 ( [Kob70]). Le X ⊂ Pn+1 be a generic projective hyper-
surfaces of degree d, n ≥ 2. Then X is Kobayashi hyperbolic if its degree is
sufficiently high, say d ≥ 2n+ 1.

This conjecture and the bound on the degree are closely related to the
conjecture in the case of complements of hypersurfaces.

Conjecture 2.2.2 ( [Kob70]). Le X ⊂ Pn be a generic projective hyper-
surfaces of degree d. Then Pn \ X is Kobayashi hyperbolic if its degree is
sufficiently high, say d ≥ 2n+ 1.

One possible explanation for the bounds on the degrees comes, as far
as we know, from the following facts. Consider in Pn with homogeneous
coordinates [Z1 : · · · : Zn] the divisor D of degree d defined by the homo-
geneous equation P (Z) = 0. Then, one can construct a cyclic d : 1 cover
of Pn by taking in Pn+1 with homogeneous coordinates [Z0 : · · · : Zn] the
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divisor X defined by Zd0 = P (Z1, . . . , Zn) together with its projection onto
Pn. This covering ramifies exactly along D and thus all holomorphic map
f : C→ Pn \D lift to X. It is then clear that the hyperbolicity of Pn \D is
intimately correlated with the hyperbolicity of X. On the other hand, if a
holomorphic map f : C→ Pn misses 2n+ 1 or more hyperplanes in general
position, then it is a constant map; this is the by now classical result of
Dufresnoy [Duf44] and Green [Gre72]. Now, just remark that a configura-
tion of d hyperplanes in general position can be seen as a generic completely
reducible divisor of degree d.

One has to notice anyway, that if one believes to the equivalence of
Kobayashi and algebraic hyperbolicity in the projective algebraic setting
then, as we shall see in the next section, this bound should probably be
d ≥ 2n, at least for n ≥ 6 [Pac04]. Anyway the state of the art on the
subject is for the moment very far from this optimal bounds, no matter in
which one we want to believe.

The rest of this chapter will be devoted to prove several algebraic proper-
ties of generic projective hypersurfaces of high degree, such as their algebraic
hyperbolicity and the property of their subvarieties of being of general type.

2.2.1 Global generation of the twisted tangent bundle of the
universal family

First, given a holomorphic vector bundle E → X over a compact complex
manifold X, we say that E is globally generated, if the global sections eval-
uation maps

H0(X,E)→ Ex

are surjective for all x ∈ X, where Ex is the fiber of E over the point x.
If a vector bundle is globally generated, so are all its exterior powers, in
particular its determinant, as it is easy to verify.

Now, consider the universal family of projective hypersurfaces in Pn+1

of a given degree d > 0. It is the subvariety X of the product Pn+1 ×
P(H0(Pn+1,OPn+1(d))) defined by the pairs ([x], X) such that [x] ∈ X. The
starting point is the following global generation statement.

Proposition 2.2.2 (See [Voi96], [Siu04]). The twisted tangent bundle

TX ⊗ p∗OPn+1(1)

is globally generated, where p : X → Pn+1 is the first projection.

Proof. We shall exhibit on an affine open set of X a set of generating holo-
morphic vector fields and then show that when extended to the whole space,
the pole order of such vector fields in the Pn+1-variables is one.

Consider homogeneous coordinates (Zj)j=0,...,n+1 and (Aα)|α|=d respec-

tively on Pn+1 and PNd−1, where α = (α0, . . . , αn+1) ∈ Nn+2 is a multi-index
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and |α| =
∑
αj . The equation of the universal hypersurface is then given

by ∑
|α|=d

Aα Z
α = 0, Zα = Zα0

0 · · ·Z
αn+1

n+1 .

Next, we fix the affine open set U = {Z0 6= 0} × {Ad0···0 6= 0} ' Cn+1 ×
CNd−1 in Pn+1 × PNd−1 with the corresponding inhomogeneous coordinates
(zj)j=1,...,n+1 and (aα)|α|=d,α0<d. On this affine open set we have

X ∩ U =

∑
|α|=d

aα z
α1
1 · · · z

αn+1

n+1 = 0

 , ad0···0 = 1.

Its tangent space in Cn+1 × CNd−1 × Cn+1 × CNd−1 with affine coordinates
(zj , aα, z

′
j , a
′
α) is then given by the two equations
∑
|α|=d aα z

α1
1 · · · z

αn+1

n+1 = 0, ad0···0 = 1∑
|α|=d,α0<d

∑n+1
j=1 αj aα z

α1
1 · · · z

αj−1
j · · · zαn+1

n+1 z′j
+
∑
|α|=d,α0<d

zα1
1 · · · z

αn+1

n+1 a′α = 0,

the second of which is obtained by formal derivation. For any multi-index
α with αj ≥ 1, set

V j
α =

∂

∂aα
− zj

∂

∂ajα
,

where ajα is obtained by the multi-index aα lowering the j-th entry by one.
It is immediate to verify that these vector fields are tangent to X0 and, by an
affine change of coordinates, that once extended to the whole X it becomes
rational with pole order equal to one in the z-variables.

Now consider a vector field on Cn+1 of the form

V0 =
n+1∑
j=1

vj
∂

∂zj
,

where vj =
∑n+1

k=1 vj,k zk + vj,0 is a polynomial of degree at most one in the
z-variables. We can then modify it by added some “slanted”direction in
order to obtain a vector field tangent to X0 as follows. Let

V =
∑

|α|=d,α0<d

vα
∂

∂aα
+ V0,

where the vα’s have to be determined. The condition to be satisfied in order
to be tangent to X0 clearly is∑

α

vα z
α +

∑
α,j

aα vj
∂zα

∂zj
≡ 0
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and thus it suffices to select the vα to be constants such that the coefficient
in each monomial zα is zero. Here, an affine change of variables shows that
once the extension of V to the whole X is taken, the pole order is at most
one in the z-variables.

It is then straightforward to verify that these packages of vector field
generate the tangent bundle, and the poles are compensated by twisting by
OPn+1(1), since they appear at order at most one and only in the variables
living in Pn+1.

2.2.2 Consequences of the twisted global generation

Two remarkable consequences of the twisted global generation of the tan-
gent space of the universal family are the following. First, the very generic
projective hypersurface of high degree (is of general type and) admits only
subvarieties of general type, that is very generic projective hypersurfaces of
high degree satisfy Lang’s conjecture stated above, which is conjecturally
equivalent to Kobayashi hyperbolicity. Second, very generic projective hy-
persurfaces are algebraically hyperbolic, which would be implied by their
hyperbolicity (and should be in principle equivalent) as we have seen: this
can be regarded as another evidence towards Kobayashi’s conjecture.

Theorem 2.2.3. Let X ⊂ Pn+1 be a (very) generic projective hypersurface
of degree d ≥ 2n + 2. If Y ⊂ X is any subvariety, let ν : Ỹ → Y be a
desingularization. Then

H0(Ỹ ,K
Ỹ
⊗ ν∗OPn+1(−1)) 6= 0.

Proof. Let X ⊂ Pn+1×PNd−1 the universal hypersurface of degree d and Y ⊂
X be a subvariety such that the second projection Y → PNd−1 is dominant
of relative dimension `. For simplicity, we shall skip here a technical point
which consists to allow an étale base change U → PNd−1 for the family.

Let ν : Ỹ → Y be a desingularization and consider an open dense subset
U ⊂ PNd−1 over which both Ỹ and X are smooth. What we have to show
is that

H0(Ỹs,KỸs
⊗ ν∗OPn+1(−1)) 6= 0,

for Ys the fiber over a generic point s ∈ U . To this aim, observe that, since
the normal bundle of a fiber in a family is trivial,

K
Ỹs
' KỸ |Ỹs =

k+Nd−1∧
T ∗Ỹ

∣∣∣∣
Ỹs

,

by adjunction and that

k+Nd−1∧
T ∗X

∣∣∣∣
Xs

' KXs ⊗
n−k∧

TX

∣∣∣∣
Xs



2.2 Algebraic hyperbolicity of generic projective hypersurfaces of high degree 21

by linear algebra and adjunction again.
Therefore, we have to show that

∧k+Nd−1 T ∗
Ỹ
⊗ ν∗OPn+1(−1)

∣∣
Ỹs

is effec-

tive. Now, we have a map

k+Nd−1∧
T ∗X ⊗OPn+1(−1)

∣∣∣∣
Xs

→
k+Nd−1∧

T ∗Ỹ ⊗ ν
∗OPn+1(−1)

∣∣∣∣
Ỹs

induced by the generically surjective restriction T ∗X → T ∗
Ỹ

, which is non zero

for a generic choice of s ∈ U .
It is then sufficient to prove that KXs⊗

∧n−k TX
∣∣
Xs
⊗OXs(−1) is globally

generated. Now,

KXs = OXs(d− n− 2) = OXs((n− k) + (d− 2n+ k − 2))

and thus

KXs ⊗
n−k∧

TX

∣∣∣∣
Xs

⊗OXs(−1) =

n−k∧
TX ⊗OPn+1(1)

∣∣∣∣
Xs

⊗OXs(d− 2n+k− 3).

By the global generation of TX ⊗OPn+1(1), the right hand term is globally
generated as soon as d ≥ 2n+ 3− k so that d ≥ 2n+ 2 will do the job.

We have thus proved that the theorem holds for the general fiber of the
family Y. To conclude, it suffices to let the family Y vary, that is to let vary
the Hilbert polynomial. In this way we obtain the same statement for all
subvarieties of Xs outside a countable union of closed algebraic subvarieties
of the parameter space U , that is for very generic X.

Corollary 2.2.4. Let X ⊂ Pn+1 be a (very) generic projective hypersurface
of degree d ≥ 2n+ 2. Then any subvariety Y ⊂ X (and of course X itself)
is of general type.

Proof. This is an immediate consequence of the theorem above: such a
subvariety has in fact a desingularization whose canonical bundle can be
written as an effective divisor twisted by a big one (the pull-back by a
modification of the ample divisor OPn+1(1)) and hence it is big.

This corollary can be sharpened as soon as n ≥ 6, see [Pac04].

Corollary 2.2.5. A very generic projective hypersurfaces in Pn+1 of degree
greater than or equal to 2n+ 2 is algebraically hyperbolic.

Proof. Let ω = iΘ(OX(1)) be the reference hermitian metric on X and
C ⊂ X a curve. Consider the finite-to-one normalization morphism ν : C̃ →
C, which is in fact a desingularization, if necessary. Then, the preceding
theorem states that K

C̃
⊗ ν∗OPn+1(−1) is effective and so of non negative

degree on C̃. By the Hurwitz formula c1(K
C̃

) = 2g(C̃)− 2 and thus

−χ(C̃) = 2g(C̃)− 2 ≥ ν∗OPn+1(1) · C̃ =

∫
C
ω.
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Another consequence of the global generation statement is the following
result on the non-deformability of entire curves in projective hypersurfaces
of high degree.

Theorem 2.2.6 ( [DPP06]). Consider X ⊂ Pn+1 × PNd−1 the universal
hypersurface of degree d, U ⊂ PNd−1 an open set and Φ: C × U → X a
holomorphic map such that Φ(C × {t}) ⊂ Xt for all t ∈ U . If d ≥ 2n + 2,
the rank of Φ cannot be maximal anywhere.

In other words, the Kobayashi conjecture may possibly fail only if there
is an entire curve on a general hypersurface X which is not preserved by a
deformation of X.

Now, let us sketch the proof of the previous result.

Proof. Suppose that Φ: C×U → X has maximal rank and U is the polydisc
B(δ0)Nd−1. We consider the sequence of maps

Φk : B(δ0k)Nd → X

given by Φk(z, ξ1, . . . ξNd−1) = Φ(zkNd−1, 1
kξ1, . . . ,

1
kξNd−1). The sections

JΦk(z, ξ) =
∂Φ

∂z
∧ ∂Φ

∂ξ1
∧ · · · ∧ ∂Φ

∂ξNd−1
(z, ξ) ∈ ΛNdTX ,Φ(z,ξ)

are not identically zero and we can assume JΦk(0) non-zero. Thanks to the
global generation statement of TX ⊗ OPn+1(1), we can choose n − 1 vector
fields

V1, . . . , Vn−1 ∈ TX ⊗OPn+1(1)

such that
JΦk(0) ∧ Φ∗k(V1 ∧ · · · ∧ Vn−1) 6= 0

in K−1
X ⊗OPn+1(n− 1)Φk(0). We consider the sections

σk = JΦk ∧ Φ∗k(V1 ∧ · · · ∧ Vn−1),

of Φ∗k(K
−1
X ⊗OPn+1(n− 1)) over the polydisk. If d ≥ 2n+ 2 the restriction

of KX ⊗OPn+1(1− n) over U is ample and we can endow this bundle with
a metric h of positive curvature. We consider the sequence of functions
fk : B(δ0k)Nd → R+ defined by

fk(w) = ||σk(w)||2/Nd
Φ∗kh

−1 .

The ampleness implies that there exists a positive C such that

∆ log fk ≥ Cfk.
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This gives

fk(0) ≤ Ck−2,

and therefore fk(0) → 0 which contradicts the fact that, by construction,
there exists a positive constant b such that for all k, fk(0) = b.

Let us briefly describe the generalization of the above results to the
logarithmic case, that is the case of complements of hypersurfaces. If X
is a n-dimensional complex manifold and D a normal crossing divisor, i.e.
in local coordinates D = {z1 . . . zl = 0}, l ≤ n, we call the pair (X,D) a
log-manifold.

In the case of complements we have the following notion stronger than
hyperbolicity.

Definition 2.2.1. Let (X,D) be a log-manifold and ω a hermitian metric
on X. The complement X \D is said to be hyperbolically embedded in X,
if there exists ε > 0 such that for every x ∈ X \D and ξ ∈ TX,x, we have

kX(ξ) ≥ ε||ξ||ω.

To generalize to this setting the notion of algebraic hyperbolicity, we
need to introduce the following.

Definition 2.2.2. Let (X,D) be a log-manifold, C ⊂ X a curve not con-
tained in D and ν : Ĉ → C the normalization. Then we define i(C,D) to be
the number of distinct points in ν−1(D).

Then, we have the next.

Definition 2.2.3. The pair (X,D) is algebraically hyperbolic if there exists
ε > 0 such that

2g(Ĉ)− 2 + i(C,D) ≥ εdegω(C)

for all curves C ⊂ X not contained in D.

As in the compact case, analytic and algebraic hyperbolicity are closely
related.

Proposition 2.2.7 ( [PR07]). Let (X,D) be a log-manifold such that X \D
is hyperbolic and hyperbolically embedded in X. Then (X,D) is algebraically
hyperbolic.

The algebraic version of the Kobayashi conjecture is also verified.

Theorem 2.2.8 ( [PR07]). Let Xd ⊂ Pn be a very generic hypersurface of
degree d ≥ 2n+ 1 in Pn. Then (Pn, Xd) is algebraically hyperbolic.
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2.3 A little history of the above results

The chronicle of the above results about algebraic hyperbolicity is the fol-
lowing.

First, in [Cle86] it is shown that if X is a generic hypersurface of degree
d ≥ 2 in Pn+1, then X does not admit an irreducible family f : C → X of
immersed curves of genus g and fixed immersion degree deg f which cover
a variety of codimension less than D = ((2 − 2g)/ deg f) + d − (n + 2). As
an immediate consequence, one gets, for example, that there are no rational
curves on generic hypersurfaces X of degree d ≥ 2n+ 1 in Pn+1.

Two years later, [Ein88] studies the Hilbert scheme of X ⊆ G, a generic
complete intersection of type (m1, . . . ,mk) in the Grassmann variety G =
G(r, n+ 2). As a remarkable corollary one gets that any smooth projective
subvariety of X is of general type if m1 +m2 + · · ·+mk ≥ dimX+n+2. It is
also proved that the Hilbert scheme of X is smooth at points corresponding
to smooth rational curves of “low” degree.

The variational method presented here, is due to [Voi96]. By variational
method we mean the idea of putting the hypersurfaces in family and to use
the positivity property of the tangent bundle of the family itself. The main
result of this paper is the following theorem which improves Ein’s result in
the case of hypersurfaces: let X ⊂ Pn+1 be a hypersurface of degree d. If
d ≥ 2n − ` + 1, 1 ≤ ` ≤ n − 2, then any `-dimensional subvariety Y of X
has a desingularization Ỹ with an effective canonical bundle. Moreover, if
the inequality is strict, then the sections of K

Ỹ
separate generic points of

Ỹ . The bound is now optimum and, in particular, the theorem implies that
generic hypersurfaces in Pn+1 of degree d ≥ 2n, n ≥ 3, contain no rational
curves. The method also gives an improvement of a result of [Xu94] as well
as a simplified proof of Ein’s original result.

Lastly, let us cite [Pac04]: this paper gives the sharp bound d ≥ 2n
for a general projective hypersurface X of degree d in Pn+1 containing only
subvarieties of general type, for n ≥ 6. This result improves the aforesaid
results of Voisin and Ein. The author proves the bound by showing that,
under some numerical conditions, the locus W spanned by subvarieties not of
general type (even more than this), is contained in the locus spanned by lines.
This is obtained in two steps. First, with the variational technique inherited
by Voisin the author proves that W is contained in the locus spanned by
lines with highly nonreduced intersection with X, the so called bicontact
locus. Then the latter is proved to be contained in the locus of lines by
using the global generation of certain bundles. Finally, let us mention that
similar results have also been obtained independently and at the same time
in [CR04].



Chapter 3

Jets spaces

Abstract. This chapter is devoted to the theory of jet spaces and jet differentials.

The idea of using differential equations in hyperbolicity problems can be traced back

to work of Bloch [Blo26a]. The modern language adopted here has been initiated

by [GG80] and later refined by several authors, such as [Dem97] and [SY97]. We

shall describe the construction of the vector bundle of jet differentials and explain

how to build in a functorial way a tower of projective bundles together with the

corresponding tautological line bundles on any given manifold which provide a

relative compactification of the classical jets spaces. Then, a characterization of

jet differentials in terms of direct images of these tautological line bundles will be

given.

3.1 Projectivization of directed manifolds

We introduce a functorial construction in the category of directed manifold
in order to produce the so-called projectivized space of 1-jets over X.

So, let (X,V ) be a complex directed manifold, rankV = r, and set
X̃ = P (V ). Here, P (V ) is the projectivized bundle of lines of V and there
is a natural projection π : X̃ → X; moreover, if dimX = n, then dim X̃ =
n + r − 1. On X̃, we consider the tautological line bundle O

X̃
(−1) ⊂ π∗V

which is defined fiberwise as

O
X̃

(−1)(x,[v])
def
= C v,

for (x, [v]) ∈ X̃, with x ∈ X and v ∈ Vx \ {0}. We also have the following
short exact sequence which comes from the very definition of X̃:

0→ T
X̃/X

→ T
X̃
→ π∗TX → 0.

Of course, the surjection here is given by the differential π∗ and T
X̃/X

=

kerπ∗ is the relative tangent bundle.
Now, in the above exact sequence, we want to replace π∗TX byO

X̃
(−1) ⊂

π∗V ⊂ π∗TX , in order to build a subbundle of T
X̃

which takes into account
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just one significant “horizontal” direction and the “vertical” ones; namely
we define Ṽ to be the inverse image π−1

∗ OX̃(−1) so that we have a short
exact sequence

0→ T
X̃/X

→ Ṽ → O
X̃

(−1)→ 0

and rank Ṽ = rankV = r. There is another short exact sequence attached
to this projectivization, which is the relative version of the usual Euler exact
sequence of projective spaces:

0→ O
X̃
→ π∗V ⊗O

X̃
(1)→ T

X̃/X
→ 0.

By definition, (X̃, Ṽ ) is a new complex directed manifold, which is compact
as soon as X is compact and such that π : (X̃, Ṽ ) → (X,V ) is a morphism
of complex directed manifolds.

3.1.1 Lifting of curves

Let ∆R ⊂ C be the open disc {|z| < R} of radius R > 0 and center 0 ∈ C
and f : ∆R → X a holomorphic map. Suppose moreover that f(0) = x for
some x ∈ X and that f is a non-constant tangent trajectory of the directed
manifold, that is f ′(t) ∈ Vf(t) for each t ∈ ∆R.

In this case, there is a well-defined and unique tangent line [f ′(t)] ⊂ Vf(t)

for every t ∈ ∆R even at the stationary points of f : if f ′(t0) = 0 for some
t0 ∈ ∆R, write f ′(t) = (t − t0)mu(t) with m ∈ N \ {0} and u(t0) 6= 0 and
define the tangent line at t0 to be [u(t0)].

We define the lifting f̃ of f as the map

f̃ : ∆R → X̃

which sends t 7→ f̃(t) = (f(t), [f ′(t)]). It is clearly holomorphic and the
derivative f ′ gives rise to a section

f ′ : T∆R
→ f̃∗O

X̃
(−1).

Observe moreover that, as π ◦ f̃ = f , one has π∗f̃
′(t) = f ′(t), so that f̃ ′(t)

belongs to Ṽ(f(t),[f ′(t)]) = Ṽ
f̃(t)

. Thus, if f is a tangent trajectory of (X,V )

then f̃ is a tangent trajectory of (X̃, Ṽ ).
On the other hand, if g : ∆R → X̃ is a tangent trajectory of (X̃, Ṽ ), then

f
def
= π ◦ g is a tangent trajectory of (X,V ) and g coincides with f̃ unless g

is contained in a vertical fiber P (Vx): in this case f is constant.

3.1.2 Jets of curves

Let X be a complex n-dimensional manifold. Here, we follow [GG80] to
define the bundle JkTX → X of k-jets of germs of parametrized holomorphic
curves in X.
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It is the set of equivalence classes of holomorphic maps f : (C, 0) →
(X,x), with the equivalence relation f ∼ g if and only if all derivatives
f (j)(0) = g(j)(0) coincide, for 0 ≤ j ≤ k, in some (and hence in all) holo-
morphic coordinates system of X near x. Here, the projection is simply
f 7→ f(0).

These are not vector bundles, unless k = 1: in this case J1TX is simply
the holomorphic tangent bundle TX . However, in general, the JkTX ’s are
holomorphic fiber bundles, with typical fiber (Cn)k (in fact the elements
of the fiber JkTX,x are uniquely determined by the Taylor expansion up to
order k of a germ of curve f , once a system of coordinate is fixed).

Now, we translate these concepts to the setting of complex directed
manifolds.

Definition 3.1.1. Let (X,V ) be a complex directed manifold. We define
the bundle JkV → X to be the set of k-jets of curves f : (C, 0)→ X which
are tangent to V , together with the projection map f 7→ f(0).

To check that this is in fact a subbundle of Jk we shall describe a special
choice of local coordinates: for any point x0 ∈ X, there are local coordinates
(z1, . . . , zn) on a neighborhood Ω of x0 such that the fibers Vx, for x ∈ Ω,
can be defined by linear equations

Vx =

v =
n∑
j=1

vj
∂

∂zj
such that vj =

r∑
k=1

ajk(x) vk, j = r + 1, . . . , n

 ,

where (ajk(x)) is a holomorphic (n − r) × r matrix. From this description
of the fibers, it follows that to determine a vector v ∈ Vx it is sufficient to
know its first r components v1, . . . , vr, and the affine chart vr 6= 0 of P (Vx)
can be endowed with the coordinates system (z1, . . . , zn, ξ1, . . . , ξr−1), where
ξj = vj/vr, j = 1, . . . , r − 1 (and in an analogous way for the other affine
charts).

Now, if f ' (f1, . . . , fn) is a holomorphic tangent trajectory to (X,V )
contained in Ω, then by a simple Cauchy problem argument, we see that f
is uniquely determined by its initial value x0 and its first r components: as
f ′(t) ∈ Vf(t), we can recover the remaining components by integrating the
differential system

f ′j(t) =

r∑
k=1

ajk(f(t)) f ′k(t),

where j = r + 1, . . . , n, and initial data f(0) = x0. This shows that the
fibers JkVx are locally parametrized by(

(f ′1, . . . , f
′
r), . . . , (f

(k)
1 , . . . , f (k)

r )
)
,

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of JkTX .
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3.2 Projectivized jet bundles

In this section, we iterate the construction of the projectivization of a com-
plex directed manifold, in order to obtain a projectivized version of the jet
bundles. This construction is essentially due to Jean-Pierre Demailly.

We start with a complex directed manifold (X,V ), with dimX = n and
rankV = r. We also suppose that r ≥ 2, otherwise the projectivization of
V is trivial. Now, we start the inductive process in the directed manifold
category by setting

(X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽk−1).

In other words, (Xk, Vk) is obtained from (X,V ) by iterating k times the
projectivization construction (X,V ) 7→ (X̃, Ṽ ) described above.

In this process, the rank of Vk remains constantly equal to r while the
dimension of Xk growths linearly with k: dimXk = n + k(r − 1). Let us
call πk : Xk → Xk−1 the natural projection. Then we have, as before, a
tautological line bundle OXk(−1) ⊂ π∗kVk−1 over Xk which fits into short
exact sequences

0→ TXk/Xk−1
→ Vk

(πk)∗→ OXk(−1)→ 0 (3.1)

and
0→ OXk → π∗kVk−1 ⊗OXk(1)→ TXk/Xk−1

→ 0. (3.2)

Now we come back to the lifting of curves. Our precedent discussion has
shown that given a non-constant tangent trajectory f : ∆R → X to (X,V )
we have a well-defined non-constant tangent trajectory f̃ : ∆R → X̃ = X1

to (X̃, Ṽ ) = (X1, V1). Now, set inductively

f[0] = f, f[k] = f̃[k−1].

Then, for each k, we get a tangent trajectory f[k] : ∆R → Xk to (Xk, Vk)
and the derivative f ′[k−1] gives rise to a section

f ′[k−1] : T∆R
→ f∗[k]OXk(−1).

3.2.1 Regular and singular loci

By construction, there exists a canonical injection OXk(−1) ↪→ π∗kVk−1 and,
a composition with the projection (πk−1)∗ gives for all k ≥ 2 a line bundle
morphism

OXk(−1) �
� //

22
π∗kVk−1

// π∗kOXk−1
(−1).

The zero divisor of this morphism is clearly the projectivization of the rela-
tive tangent bundle TXk−1/Xk−2

, which is, of course, (fiber-wise, with respect
to πk : Xk → Xk−1) a hyperplane subbundle of Xk. Thus, if we set

Dk = P (TXk−1/Xk−2
) ⊂ P (Vk−1) = Xk, k ≥ 2,
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we find

OXk(−1) ' π∗kOXk−1
(−1)⊗OXk(−Dk). (3.3)

Now, take a regular germ of curve f : (C, 0)→ (X,x) tangent to V , that
is f ′(0) 6= 0, and consider, for j = 2, . . . , k, its j-th lifting f[j]: we claim that
then f[j](0) /∈ Dj . In this case, in fact, all the liftings of f are regular and
f[j](0) ∈ Dj if and only if (πj−1)∗f

′
[j−1](0) = f ′[j−2](0) = 0.

On the other hand, if f is a non-constant germ of curve tangent to V
such that, for all j = 2, . . . , k, f[j](0) /∈ Dj then f ′(0) 6= 0.

Summarizing, if we define

πj,k
def
= πj+1 ◦ · · · ◦ πk : Xk → Xj ,

then a point w ∈ Xk can be reached by a lifting of some regular germ of
curve (if and) only if πj,k(w) /∈ Dj , for all j = 2, . . . , k. It is then natural to
define

Xreg
k

def
=

k⋂
j=2

π−1
j,k (Xj \Dj)

and

Xsing
k

def
=

k⋃
j=2

π−1
j,k (Dj) = Xk \Xreg

k .

This singular locus comes out also if one studies the base locus of the linear
system associated to the anti-tautological line bundle OXk(1). In fact, we
have the following proposition:

Proposition 3.2.1 ( [Dem97]). For every m > 0, the base locus of the
linear system associated to the restriction of OXk(m) to every fiber π−1

0,k(x),

x ∈ X, is exactly Xsing
k ∩ π−1

0,k(x). In other words, Xsing
k is the “relative”

base locus of |OXk(m)|. Moreover, OXk(1) is relatively big.

This proposition also shows that OXk(1) cannot be relatively ample,
unless k = 1. Observe finally that the fibers π−1

0,k(x) are all isomorphic
to a “universal” (and quite mysterious) nonsingular projective variety of
dimension k(r− 1) which will be denoted by Rr,k: it is not hard to see that
Rr,k is rational.

3.3 Jet differentials

Let (X,V ) be a complex directed manifold. Let Gk be the group of germs
of k-jets of biholomorphisms of (C, 0), that is, the group of germs of biholo-
morphic maps

t 7→ ϕ(t) = a1 t+ a2 t
2 + · · ·+ ak t

k, a1 ∈ C∗, aj ∈ C, j ≥ 2,
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in which the composition law is taken modulo terms tj of degree j > k. Then
Gk admits a natural fiberwise right action on JkV consisting of reparametriz-
ing k-jets of curves by a biholomorphic change of parameter. Moreover the
subgroup H ' C∗ of homotheties ϕ(t) = λ t is a (non normal) subgroup of
Gk and we have a semidirect decomposition Gk = G′k nH, where G′k is the
group of k-jets of biholomorphisms tangent to the identity. The correspond-
ing action on k-jets is described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

As in [GG80], we introduce the vector bundle Jk,mV ∗ → X whose fibres
are complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibres of JkV , of
weighted degree m with respect to the C∗ action defined by H, that is, such
that

Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k)),

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV .

Next, we define the bundle of Demailly-Semple jet differentials (or in-
variant jet differentials) as a subbundle of the Green-Griffiths bundle.

Definition 3.3.1 ( [Dem97]). The bundle of invariant jet differentials of
order k and weighted degree m is the subbundle Ek,mV

∗ ⊂ Jk,mV ∗ of poly-
nomial differential operators Q(f ′, f ′′, . . . , f (k)) which are equivariant under
arbitrary changes of reparametrization, that is, for every ϕ ∈ Gk

Q((f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

Alternatively, Ek,mV
∗ = (Jk,mV ∗)G

′
k is the set of invariants of Jk,mV ∗ under

the action of G′k.

Remark 1. From the hyperbolicity point of view, it is of course more natural
to consider the invariant jet differentials. In fact, we are only interested in
the geometry of the entire curves in a given manifold. For this reason, it is
redundant how the entire curves are parametrized: we just want to look at
their conformal class.

Remark 2. In the sequel, it will be useful to look at global invariant jet
differentials not only as sections of a vector bundle but also as holomorphic
maps Q : JkV → C which are invariant with respect to the fiberwise action
of Gk.

We now define a filtration on Jk,mV ∗: a coordinate change f 7→ Ψ ◦
f transforms every monomial (f (•))` = (f ′)`1(f ′′)`2 · · · (f (k))`k of partial
weighted degree |`|s := `1 + 2`2 + · · · + s`s, 1 ≤ s ≤ k, into a polynomial
((Ψ◦f)(•))` in (f ′, f ′′, . . . , f (k)), which has the same partial weighted degree
of order s if `s+1 = · · · = `k = 0 and a larger or equal partial degree of order
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s otherwise. Hence, for each s = 1, . . . , k, we get a well defined decreasing
filtration F •s on Jk,mV ∗ as follows:

F ps (Jk,mV ∗) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ Jk,mV ∗ involving

only monomials (f (•))` with |`|s ≥ p

}
, ∀p ∈ N.

The graded terms Grpk−1(Jk,mV ∗), associated with the (k − 1)-filtration

F pk−1(Jk,mV ∗), are precisely the homogeneous polynomials Q(f ′, . . . , f (k))

whose all monomials (f (•))` have partial weighted degree |`|k−1 = p; hence,
their degree `k in f (k) is such that m− p = k`k and Grpk−1(Jk,mV ∗) = 0 un-
less k|m−p. Looking at the transition automorphisms of the graded bundle
induced by the coordinate change f 7→ Ψ ◦ f , it turns out that f (k) behaves
as an element of V ⊂ TX and, as a simple computation shows, we find

Grm−k`kk−1 (Jk,mV ∗) = Jk−1,m−k`kV
∗ ⊗ S`kV ∗.

Combining all filtrations F •s together, we find inductively a filtration F • on
Jk,mV ∗ such that the graded terms are

Gr`(Jk,mV ∗) = S`1V ∗ ⊗ S`2V ∗ ⊗ · · · ⊗ S`kV ∗, ` ∈ Nk, |`|k = m.

Moreover there are natural induced filtrations F ps (Ek,mV
∗) = Ek,mV

∗ ∩
F ps (Jk,mV ∗) in such a way that

Gr•(Ek,mV
∗) =

 ⊕
|`|k=m

S`1V ∗ ⊗ S`2V ∗ ⊗ · · · ⊗ S`kV ∗
G′k

.

Let us see more concretely which are the elements of the bundles we have
introduced above in the following examples. For the sake of simplicity we
shall consider here only the “absolute” case, that is V = TX .

Example 3.3.1. Let us first look at the Green-Griffiths jet differentials.
So, we fix a point x ∈ X and look at the elements of the fiber Jk,mT ∗X,x.

• For k = 1, we simply have J1,mT
∗
X = SmT ∗X . This is the usual bundle

of symmetric differentials.

• For another example, when k = 3, we have that a typical element of
the fiber is ∑

aif
′
i , for m = 1,∑

aijf
′
if
′
j + bif

′′
i , for m = 2,∑

aijkf
′
if
′
jf
′
k + bijf

′
if
′′
j + cif

′′′
i , for m = 3,

where the coefficients are holomorphic functions.
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In conclusion, sections of Jk,mT ∗X are locally given by homogeneous poly-
nomials with holomorphic coefficients in the variables f ′, . . . , f (k), of total

weight m, where f
(l)
i is assigned weight l.

Example 3.3.2. For the invariant jet differentials, we still have E1,mT
∗
X =

SmT ∗X , but for k ≥ 2 things become much more complicated. To ex-
plain the difficulty, let us translate the condition of being invariant under
reparametrization in terms of classical invariant theory.

As above, let G′k be the group of k-jets of biholomorphisms tangent to
the identity

ϕ(t) = t+ a2t
2 + · · ·+ akt

k.

Then, G′k acts on (f ′, f ′′, . . . , f (k)) linearly:

(f ◦ ϕ)′ = f ′,

(f ◦ ϕ)′′ = f ′′ + 2a2f
′,

(f ◦ ϕ)′′′ = f ′′′ + 6a2f
′′ + 6a3f

′, . . .

We see that G′k acts by explicit matrix multiplication by the group of ma-
trices 

1 0 0 0 0
2a2 1 0 0 0
6a3 6a2 1 0 0
... ... ... ... 0
k!ak ... ... ... 1

 .

For instance, for X a complex surface, local sections of E2,mT
∗
X are given by

polynomials invariant under the action of the unipotent group U(2)∑
α1+α2+3β=m

aα1α2β(f ′1)α1(f ′2)α2(f ′1f
′′
2 − f ′′1 f ′2)β.

The algebraic characterization of E2,mT
∗
X enables us to make explicit the

filtration described above, namely

Gr•(E2,mT
∗
X) =

⊕
0≤j≤m/3

Sm−3jT ∗X ⊗K
j
X .

For k ≥ 3 this group of matrices is a proper subroup of the unipotent group,
hence it is non-reductive and therefore we cannot apply the well-known
invariant theory of reductive actions. It turns out that for proper subgroup
of the unipotent group the theory is much less developed.

Thus, in general, it is still an unsolved (and probably very difficult)
problem to determine the structure of the algebra

Ak =
⊕
m≥0

Ek,mT
∗
X,x.
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Among the few results we have, we know [Rou06b] for instance, for X a
threefold, that A3 is generated by the following polynomials:

W =

∣∣∣∣∣∣
f ′1 f ′2 f ′3
f ′′1 f ′′2 f ′′3
f ′′′1 f ′′′2 f ′′′3

∣∣∣∣∣∣ ,
wij = f ′if

′′
j − f ′′i f ′j ,

wkij = f ′k(f
′
if
′′′
j − f ′′′i f ′j)− 3f ′′k (f ′if

′′
j − f ′′i f ′j).

As above, one can then deduce the filtration

Gr•(E3,mT
∗
X) =

⊕
a+3b+5c+6d=m

Γ(a+b+2c+d, b+c+d, d)T ∗X ,

where Γ denotes the Schur functor which provides the list of all irreducible
representation of the general linear group.

In this direction, we want to cite here the other results we have: the
structure of A2, A3 and A4 for dimX = 2 (9 generators) was found by De-
mailly and, recently, Merker [Mer08] found A5 for dimX = 2 (56 generators)
and A4 for dimX = 4 (2835 generators).

The general structure of Ak appears to be far from being understood
even in the surface case.

We would like to mention here that recent progresses have been made in
the invariant theory of non-reductive groups with applications to Demailly-
Semple jets by Berczi and Kirwan. In particular, they can prove that Ak is
finitely generated [BK10].

3.3.1 Invariant jet differentials and projectivized jet bundles

Associated to the graded algebra bundle Jk,•V ∗ =
⊕

m≥0 Jk,mV ∗, there is
an analytic fiber bundle, namely Proj(Jk,•V ∗) = JkV

nc/C∗, where JkV
nc is

the bundle of non-constant k-jets tangent to V , whose fibers are weighted
projective spaces P(r, . . . , r; 1, 2, . . . , k) (for a definition of weighted projec-
tive spaces and much more, see [Dol82]).

However, we would be mostly interested in a more “geometric” quotient,
for instance something like JkV

nc/Gk.
In [Dem97], it has been constructed something similar, that is the quo-

tient space of JkV
reg/Gk of regular (i.e. with non-vanishing first derivative)

k-jets tangent to V and we shall see how the projectivized jet bundles can
be seen as a relative compactification of this quotient space.

This is exactly the content of the next theorem.

Theorem 3.3.1 ( [Dem97]). Suppose rankV ≥ 2 and let π0,k : Xk → X be
the projectivized k-th jet bundle of (X,V ). Then
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• the quotient JkV
reg/Gk has the structure of a locally trivial bundle over

X and there is a holomorphic embedding JkV
reg/Gk ↪→ Xk over X,

which identifies JkV
reg/Gk with Xreg

k .

• The direct image sheaf

(π0,k)∗OXk(m) ' O(Ek,mV
∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

Let us say a few words about this result. First of all, one needs to use
JkV

reg instead of JkV
nc in order to lift a k-jet of curve f by taking the

derivative (f, [f ′]) without any cancellation of zeroes in f ′: in this way one
gets a uniquely defined (k − 1)-jet f̃ so that, inductively, f[k](0) is indepen-
dent of the choice of the representative f .

Moreover, as the reparametrization commutes with the lifting process,

that is (̃f ◦ ϕ) = f̃ ◦ϕ, and more generally (f ◦ϕ)[k] = f[k] ◦ϕ, we get a well
defined map

JkV
reg/Gk → Xreg

k .

This map can be described explicitely in local coordinates. Take coor-

dinates (z1, . . . , zn) near x0 ∈ X such that Vx0 = Vect
(

∂
∂z1

, . . . , ∂
∂zr

)
. Let

f = (f1, . . . , fn) be a regular k-jet tangent to V such that fr(t) = t. Xk

is a k-stage tower of Pr−1-bundles. In the corresponding inhomogeneous
coordinates, the point f[k](0) is given by(

(f ′1(0), . . . , f ′r−1(0)); (f ′′1 (0), . . . , f ′′r−1(0)); . . . ; (f
(k)
1 (0), . . . , f

(k)
r−1(0))

)
.

We see easily that the map JkV
reg/Gk → Xreg

k is a bijection onto Xreg
k . This

is the embedding of the first part of the theorem.
Next, part two of the theorem says that, for x ∈ X, we have an identi-

fication H0(π−1
0,k(x),OXk(m)) ' Ek,mV

∗
x : we want to describe briefly what

this identification is. Fix a section σ ∈ H0(π−1
0,k(x),OXk(m)). Recall that

given regular k-jet of curve at x ∈ X, the derivative f ′[k−1](0) defines an ele-

ment of the fiber of OXk(−1) at f[k](0). Then we get a well-defined complex
valued operator

Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′[k−1](0))m.

Such a Q is holomorphic and extends to singular jets by an easy Riemann’s
extension theorem argument (since codimJkVx JkV

sing
x = r ≥ 2). The Gk-

invariance is satisfied since f[k](0) does not depend on the reparametrization
and (f ◦ϕ)′[k−1](0) = f ′[k−1](0)·ϕ′(0). Moreover, the invariance implies in par-
ticular that Q must be polynomial. Thus Q ∈ Ek,mV ∗x . This correspondence
is easily shown to be bijective and is in fact the one given in the theorem.
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3.3.2 Sufficient conditions for relative positivity

The relative structure of the fibration π0,k : Xk → X is completely universal
and its fibers are smooth rational varieties which depend only on k and on
the rank of V .

Moreover, as Xk arises as a sequence of successive compactifications of
vector bundles, its Picard group has a quite simple structure, namely we
have

Pic(Xk) ' Pic(X)⊕ Zu1 · · · ⊕ Zuk,

where uj , j = 1, . . . , k, is the class of OXj (1).

As we already observed, the line bundle OXk(1) is never relatively ample
over X for k ≥ 2. Now, for each a = (a1, . . . , ak) ∈ Zk, we define a line
bundle OXk(a) as

OXk(a)
def
= π∗1,kOX1(a1)⊗ π∗2,kOX2(a2)⊗ · · · ⊗ OXk(ak).

By formula (4.3), we get inductively

π∗j,kOXj (1) = OXk(1)⊗OXk(−π∗j+1,kDj+1 − · · · −Dk).

Set, for j = 1, . . . , k − 1, D?
j = π∗j+1,kDj+1 and D?

k = 0. Then, if we define

the weight b = (b1, . . . , bk) ∈ Zk by bj = a1 + · · ·+ aj , j = 1, . . . , k, we find
an identity

OXk(a) ' OXk(bk)⊗OXk(−b ·D?),

where

b ·D? def
=

k−1∑
j=1

bj π
∗
j+1,kDj+1.

In particular, as all the Dj ’s are effective, if b ∈ Nk, that is a1 + · · ·+aj ≥ 0
for all j = 1, . . . , k, we get a non-trivial bundle morphism

OXk(a) ' OXk(bk)⊗OXk(−b ·D?)→ OXk(bk). (3.4)

Set theoretically, we have seen that the relative base locus of the complete
linear system |OXk(m)| is exactly Xsing

k =
⋃k
j=2 π

−1
j,k (Dj).

Now, we would like to twist the line bundle OXk(m) by an ideal sheaf I,

possibly co-supported on Xsing
k , in order to get rid of this base locus. If one

wants to remain in the category of invertible sheaves, then this ideal sheaf
should be something of the form OXk(−b ·D?), for b ∈ Nk.

Next proposition gives sufficient conditions to solve this problem.

Proposition 3.3.2 ( [Dem97]). Let a = (a1, . . . , ak) ∈ Nk be a weight and
m = bk = a1 + · · ·+ ak. Then
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• we have the direct image formula

(π0,k)∗OXk(a) ' O(F
a
Ek,mV

∗) ⊂ O(Ek,mV
∗)

where F
a
Ek,mV

∗ is the subbundle of polynomials Q(f ′, f ′′, . . . , f (k)) ∈
Ek,mV

∗ involving only monomials (f (•))` such that

`s+1 + 2`s+2 + · · ·+ (k − s)`k ≤ as+1 + · · ·+ ak

for all s = 0, . . . , k − 1.

• if a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1 and ak−1 ≥ 2ak ≥ 0, then the line
bundle OXk(a) is relatively nef over X.

• if a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1 and ak−1 > 2ak > 0, then the line
bundle OXk(a) is relatively ample over X.

Note that formula 4.4 gives a sheaf injection

(π0,k)∗OXk(a) ↪→ (π0,k)∗OXk(m) = O(Ek,mV
∗),

which is the inclusion of the first part of the proposition. The two last
positivity properties are obtained by induction on k.



Chapter 4

Hyperbolicity and negativity
of the curvature

Abstract. In this chapter we shall explain how negativity properties of the curva-

ture of complex manifolds is connected to hyperbolicity. We start with some basic

notions of curvature and then prove the classical Ahlfors-Schwarz lemma. Then, we

come back to higher order jets, and prove the basic result that every entire curve

automatically satisfies every global jet differential with values in an antiample line

bundle; as a consequence we deduce Bloch’s theorem about entire curves on com-

plex tori. To conclude the chapter we illustrate a general strategy to prove algebraic

degeneracy of entire curves.

4.1 Curvature and positivity

Let X be a complex manifold of complex dimension n and π : E → X a
hermitian vector bundle of rank r with hermitian metric h. Fix a point
x0 ∈ X, some local holomorphic coordinates (z1, . . . , zn) centered in x0 and
a local holomorphic frame (e1, . . . , er) of E, which we can suppose without
loss of generality orthonormal in x0 with respect to h.

We recall that, on E, there exists a unique linear connection Dh which
respects both the complex structures of E andX and the hermitian structure
of E given by h: it is called the Chern connection. Its curvature

iΘ(E, h) = iD2
h

is the Chern curvature of the pair (E, h): it is a (1, 1)-form with values in the
hermitian endomorphisms of E. Locally, in terms of the natural hermitian
matrix H associated to h with respect to the local frame (eλ), it is given by

iΘ(E, h) = i ∂(H
−1
∂H).
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At the given point x0 ∈ X, write

iΘx0(E, h) = i
n∑

j,k=1

r∑
λ,µ=1

cjkλµ dzj ∧ dzk ⊗ e∗λ ⊗ eµ.

To iΘx0(E, h) corresponds a natural hermitian form θE on TX,x0 ⊗ Ex0
defined by

θE =
∑
j,k,λ,µ

cjkλµ (dzj ⊗ e∗λ)⊗ (dzk ⊗ e∗µ).

Its evaluation on rank one tensors gives rise to the notion of Griffiths posi-
tivity for vector bundles.

Definition 4.1.1. The hermitian vector bundle (E, h) is said to be Griffiths
positive (resp. Griffiths semi-negative) at x0 if for all v ∈ TX,x0 \ {0} and
s ∈ Ex0 \ {0} we have

θE(v ⊗ s, v ⊗ s) > 0 (resp. ≤ 0).

The bundle (E, h) is said to be Griffiths positive (resp. Griffiths semi-
negative) if it is Griffiths positive (resp. semi-negative) at all point x ∈ X.

We shall not list here all the remarkable properties of Griffiths positive
bundles, but just mention that Griffiths positivity implies (and is conjec-
turally equivalent to) the ampleness for the bundle E, that is global section
of high symmetric powers of E generates 1-jets of sections at any point.

Obviously these notions are still valid in the particular case when E = TX
is the tangent bundle of X and the metric h is then a hermitian metric on
X. In this case the notion of Griffiths curvature coincides with the classical
notion of holomorphic bisectional curvature and if the hermitian form θTX
is just tested on tensors of the form v ⊗ v, with v ∈ TX , this gives back
the holomorphic sectional curvature. In particular, if the tangent bundle
of a manifold is Griffiths positive (resp. Griffiths semi-negtive) then it has
positive (resp. semi-negative) holomorphic sectional curvature.

When hermitian metrics on the tangent bundle are given, we have and
we shall often confuse the hermitian form h and its naturally associated
(1, 1)-form ω = −=h (and vice-versa): if h is given locally by

h =
n∑

j,k=1

hjk dzj ⊗ dzk,

then ω is given simply by

ω =
i

2

n∑
j,k=1

hjk dzj ∧ dzk,

as one can immediately check.
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4.1.1 Special case of hermitian line bundles

When r = 1, that is when E is a hermitian line bundle, the positive definite
hermitian matrix H is just a positive function which we write H = e−ϕ; we
call ϕ a local weight for h. The above formulae then give locally

iΘ(E, h) = i ∂∂ϕ.

Especially, we see that in this case iΘ(E, h) is a closed real (1, 1)-form. It
is (semi-)positive (in the sense of Griffiths) if and only if the local weight
ϕ is strictly plurisubharmonic (resp. plurisubharmonic). By the celebrated
Kodaira theorem, this happens if and only if E is an ample line bundle.
With a slight abuse of notation, in the case of line bundle we could indicate
in the sequel with

iΘ(E, h)(v), v ∈ TX ,

the evaluation on v of the hermitian form naturally associated to the (1, 1)-
form iΘ(E, h).

More generally, we can relax the smoothness requirements on h and
just ask the local weights to be locally integrable: this gives the so-called
notion of singular hermitian metric. In this framework, the curvature is still
well defined provided we take derivatives in the sense of distributions. The
positivity in the sense of distribution becomes now to ask the local weights
ϕ to satisfy the following property: for all w = (w1, . . . , wn) ∈ Cn \ {0} the
distribution

n∑
j,k=1

∂2ϕ

∂zj∂zk
wjwk

is a positive measure. This is again equivalent to ask the local weights ϕ to
be plurisubharmonic. We say that a singular hermitian h admits a closed
subset Σh ⊂ X as its degeneration set if ϕ is locally bounded on X \Σh and
is unbounded on a neighborhood of any point of Σh.

Example 4.1.1. Let L → X be a holomorphic line bundle and suppose
we have non zero global sections σ1, . . . , σN ∈ H0(X,L). Then, there is
a natural way to construct a (posssibily) singular hermitian metric h−1 on
L−1 (and therefore on L by taking its dual): we let

h−1(ξ) =

( N∑
j=1

(
ξ(σj(x))

)2)1/2

, ∀ξ ∈ L−1
x .

The local weights of the induced metric on L are then given by

ϕ(x) =
1

2
log

N∑
j=1

|sj(x)|2
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where sj is the holomorphic function which is the local expression in a given
trivialization of the global section σj , j = 1, . . . , N .

Since the sj ’s are holomorphic, the weights of such a metric are always
plurisubharmonic and hence the corresponding Chern curvature is semi-
positive (in the sense of distribution). In particular every effective line bun-
dle carries a singular hermitian metric with semi-positive curvature current
constructed in this fashion and its degeneracy locus is exactly the base locus
of the sections.

If the sections σ1, . . . , σN globally generate the space of sections of L
(that is, for each x ∈ X there exists a j0 = 1, . . . , N , such that σj0(x) 6= 0)
then the metric h is smooth and semi-positively curved, in particular L is
nef. If they generate 1-jets of sections at any given point, then the metric
h has strictly plurisubharmonic weights and it is positively curved. Both
of these properties can be easily shown by direct computation on the local
weights.

Riemann surfaces

In the special case dimX = 1, the tangent bundle of X is in fact a line
bundle.

The curvature of TX becomes then a real number and coincide (modulo a
positive factor) with the classical notion of Gaussian curvature for Riemann
surfaces. For if the metric h is given locally by the single positive smooth
function e−ϕ, the Chern curvature is given by

i ∂∂ϕ = i
∂2ϕ

∂z∂z
dz ∧ dz

and
∂2ϕ

∂z∂z
=

1

4
∆ϕ =

1

4
∆(− log h),

while the Gaussian curvature of h is given by

κ(X,h) = − 1

2h
∆ log h.

Thus, we see that hyperbolic Riemann surfaces are exactly the ones which
admits a negatively curved hermitian metric (the ones of genus greater than
or equal to two which are covered by the disc and inherit its Poincaré metric).

Tautological line bundle on projectivized vector bundles

We want to derive here the relation between the curvature of a hermitian
vector bundle and the curvature of the associated tautological line bundle
over its projectivization.
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So let E → X be a hermitian vector bundle of rank r with hermitian
metric h, where X is any n-dimensional complex manifold and consider the
projectivization π : P (E)→ X of lines of E.

Then, OP (E)(−1) ⊂ π∗E admits a natural hermitian metric which is just
the restriction of the pull-back of h by π. Fix an arbitrary point x0 ∈ X, a
unit vector v0 ∈ Ex0 , local holomorphic coordinates (zj) centered at x0 and
choose a local holomorphic frame (eλ) for E near x0 such that

h(eλ(z), eµ(z)) = δλµ − cjkλµ zjzk +O(|z3|),

and er(x0) = v0, where the cjkλµ’s are the coefficients of the Chern curvature

iΘx0(E, h) = i
∑
j,k

∑
λ,µ

cjkλµ dzj ∧ dzk ⊗ e∗λ ⊗ eµ.

It is a standard fact in hermitian differential geometry that such a choice of
a holomorphic local frame is always possible.

We shall compute the curvature iΘ(OP (E)(−1)) at the (arbitrary) point
(x0, [v0]) ∈ P (E). Local holomorphic coordinates centered at (x0, [v0]) are
given by (z1, . . . , zn, ξ1, . . . , ξr−1), where the (r− 1)-tuple (ξ1, . . . , ξr−1) cor-
responds to the direction [ξ1 e1(z) + · · · + ξr−1 er−1(z) + er(z)] in the fiber
over the point of coordinates (z1, . . . , zn). Next, a local holomorphic non
vanishing section of OP (E)(−1) around (x0, [v0]) ' (0, 0) is given by

η(z, ξ) = ξ1 e1(z) + · · ·+ ξr−1 er−1(z) + er(z)

and its squared length by

||η||2h = 1 + |ξ|2 −
n∑

j,k=1

cjkrr zjzk +O((|z|+ |ξ|)3).

Thus, we obtain

iΘ(x0,[v0])(OP (E)(−1)) = −i ∂∂ log ||η||2h
∣∣
(z,ξ)=(0,0)

= i

 n∑
j,k=1

cjkrr dzj ∧ dzk −
r−1∑
λ=1

dξλ ∧ dξλ


= θE(• ⊗ v0, • ⊗ v0)− || • ||2FS ,

(4.1)

where || • ||2FS is the Fubini-Study metric induced by h on the projective
space P (Ex0).

In particular, we see that if (E, h) is Griffiths negative then OP (E)(−1)
is negative (and OP (E)(1) is positive).
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4.2 The Ahlfors-Schwarz lemma

A basic idea is that Kobayashi hyperbolicity is somehow related with suitable
properties of negativity of the curvature even in dimension greater than one.
The first result in this direction is the following, which was already observed
in [Kob70].

Proposition 4.2.1. Let X be a compact hermitian manifold. Assume that
TX has negative Griffiths curvature, or more generally that T ∗X is ample.
Then X is hyperbolic.

Proof. Since T ∗X is ample, the large symmetric powers SmT ∗X of T ∗X have
enough global section σ1, . . . , σN in order to generate 1-jets of sections at
any point. This means that the function η : TX → R defined by

η(v) =

( N∑
j=1

|σj(x) · v⊗m|2
)1/2m

, v ∈ TX,x,

is strictly plurisubharmonic on TX minus the zero section.

Now assume that X is not hyperbolic: then, by Brody’s lemma, there
exists a non constant entire curve g : C→ X with bounded first derivative,
with respect to any hermitian metric on X. Then, the composition η ◦ g′
is a bounded subharmonic function on C which is strictly plurisubharmonic
on {g′ 6= 0}. But then g must be constant by the maximum principle and
we get a contradiction.

We now state and give a sketch of the proof of the Ahlfors-Schwarz
lemma, in order to generalize the preceding proposition to higher order jets.

Lemma 4.2.2 (Ahlfors-Schwarz). Let γ(ζ) = i γ0(ζ) dζ ∧ dζ be a hermtian
metric on ∆R, where log γ0 is a subharmonic function such that

i ∂∂ log γ0(ζ) ≥ Aγ(ζ)

in the sense of distribution, for some positive constant A. Then γ can be
compared with the Poincaré metric of ∆R as follows:

γ(ζ) ≤ 2

A

R−2|dζ|2

(1− |ζ|2/R2)2
.

Proof. Assume first that γ0 is smooth and defined on ∆R. Take a point
ζ0 ∈ ∆R at which (1− |ζ|2/R2)2γ0 is maximum. Then its logarithmic i ∂∂-
derivative at ζ0 must be non positive, hence

i ∂∂ log γ0(ζ)|ζ=ζ0 − 2i ∂∂ log(1− |ζ|2/R2)−1|ζ=ζ0 ≤ 0.
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But now the hypothesis implies that

Aγ0(ζ0) ≤ i ∂∂ log γ0(ζ)|ζ=ζ0 ≤ 2i ∂∂ log(1− |ζ|2/R2)−1|ζ=ζ0

and

2i ∂∂ log(1− |ζ|2/R2)−1|ζ=ζ0 = 2R−2(1− |ζ0|2/R2)−2.

Hence, we conclude that

(1− |ζ|2/R2)2γ0(ζ) ≤ (1− |ζ0|2/R2)2γ0(ζ0) ≤ 2

AR2
.

If γ0 is just defined on ∆R, we consider instead γε0(ζ) = γ0((1 − ε)ζ) and
then we let ε tend to 0.

When γ0 is not smooth one uses a standard regularization argument by
taking the convolution with a family of smoothing kernels (ρε), but we shall
skip the details here.

The general philosophy of the theory of jet differentials is that their
global sections with values in an antiample divisor provide algebraic differ-
ential equations which every entire curve must satisfy. We start illustrating
this philosophy with the following application of the Ahlfors-Schwarz lemma.
First of all, we give the following definition.

Definition 4.2.1. Let hk be a k-jet metric on the directed manifold (X,V ),
that is a (possibly singular) hermitian metric on the k-th tautological line
bundle OXk(−1). We say that hk has negative jet curvature if the curva-
ture iΘ(OXk(−1), hk) is negative definite along the subbundle Vk ⊂ TXk
(possibly in the sense of distributions).

Remark 3. In the special case of 1-jets, formula (5.1) shows that if h1 is
smooth and comes from a hermitian metric h on V , then h1 has negative
jet curvature if and only if V has negative holomorphic sectional curvature.

Theorem 4.2.3 ( [Dem97]). Let (X,V ) be a compact complex directed man-
ifold. If (X,V ) has a k-jet metric hk with negative jet curvature, then every
entire curve f : C→ X tangent to V is such that f[k](C) is contained in the
degeneration set Σhk of hk.

As an immediate corollary we get the following generalization of Propo-
sition 5.2.1.

Corollary 4.2.4. Let X be a compact complex manifold with negative holo-
morphic sectional curvature. Then X is Brody hence Kobayashi hyperbolic.

More generally, if X is a complex manifold whose holomorphic sectional
curvature is bounded above by a negative constant then X is Brody hyperbolic.

Here is a more algebraic consequence.
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Corollary 4.2.5 ( [GG80], [SY97] [Dem97]). Assume that there exist inte-
gers k,m > 0 and an ample line bundle A→ X such that

H0(Xk,OXk(m)⊗ π∗0,kA−1) ' H0(X,Ek,mV
∗ ⊗A−1)

has non zero sections σ1, . . . , σN . Let Z ⊂ Xk be the base locus of these
sections. Then every entire curve f : C → X tangent to V is such that
f[k](C) ⊂ Z.

Remark that an analogous statement holds for non necessarily invariant
jet differentials, when V = TX .

Proof. In fact, from the sections (σj) we get a singular hermitian metric
on OXk(−1) whose degeneration set is exactly the base locus Z and whose
curvature is bounded above by the one of π∗0,kA

−1 (this is not completely

correct, since π∗0,kA
−1 does not bound the “vertical eigenvalues”, see [Dem97]

for all the details).

Proof of Theorem 5.2.3. Chose an arbitrary smooth hermitian metric ωk on
TXk . By hypothesis there exists ε > 0 such that

iΘ(OXk(1), h−1
k )(ξ) ≥ ε||ξ||2ωk , ∀ξ ∈ Vk.

Next, by definition, (πk)∗ maps continuously Vk onto OXk(−1); write hk lo-
cally eϕ and notice that the weight ϕ is locally bounded from above. There-
fore, we can find a constant C > 0 such that

||(πk)∗ξ||2hk ≤ C ||ξ||
2
ωk
, ∀ξ ∈ Vk.

Putting together the two inequalities, we get

iΘ(OXk(1), h−1
k )(ξ) ≥ ε

C
||(πk)∗ξ||2hk , ∀ξ ∈ Vk.

Now take any f : C → X tangent to V , fix an arbitrary radius R > 0 and
consider the restriction f : ∆R → X. Thus, we get a line bundle morphism

F = f ′[k−1] : T∆R
→ f∗[k]OXk(−1)

by which we can pull-back the metric hk to obtain a

γ = γ0 dζ ⊗ dζ = F ∗hk.

If f[k](∆R) ⊂ Σhk then γ ≡ 0. If not, γ0 vanishes precisely at points where F

vanishes (which are isolated) and at points of the degeneration set f−1
[k] (Σhk),

which is polar in ∆R. At other points ζ, the Gaussian curvature of γ is

i ∂∂ log γ0(ζ) = −i f∗[k]Θ(OXk(−1), hk) = i f∗[k]Θ(OXk(1), h−1
k )
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and, when computed as hermitian form on ∂/∂ζ, one gets

i f∗[k]Θ(OXk(1), h−1
k )

(
∂

∂ζ

)
= iΘ(OXk(1), h−1

k )(f ′[k](ζ))

≥ ε

C
||f ′[k−1](ζ)||2hk

=
ε

C
γ0(ζ),

since f ′[k−1](ζ) = (πk)∗f
′
[k](ζ) and γ = F ∗hk. Thus, the Ahlfors-Schwarz

lemma implies

γ(ζ) ≤ 2C

ε

R−2|dζ|2

(1− |ζ|2/R2)2
,

that is

||f ′[k−1](ζ)||2hk ≤
2C

ε

R−2

(1− |ζ|2/R2)2
.

Letting R tend to infinity, we obtain that f[k−1] must be constant, and hence
f , too.

4.2.1 The Bloch theorem

Bloch’s theorem is a characterization of the (Zariski) closure of entire curves
on a complex torus. Following [Dem97], we shall derive it here as a conse-
quence of Theorem 5.2.3.

Theorem 4.2.6. Let Z be a complex torus and let f : C → Z be an en-

tire curve. Then the (analytic) Zariski closure f(C)
Zar

is a translate of a
subtorus.

The converse is clearly true, too: for any translate of a subtorus a +
Z ′ ⊂ Z, one can choose a dense line L ⊂ Z ′ and the corresponding map

f : C ' a+ L ↪→ Z has Zariski closure f(C)
Zar

= a+ Z ′.
Before giving the proof, we list here some immediate consequences (the

first of which has already been proved by elementary methods in Chapter
1).

Corollary 4.2.7. Let X be a complex analytic subvariety in a complex torus
Z. Then X is hyperbolic if and only if X does not contain any translate of
a subtorus.

Corollary 4.2.8. Let X be a complex analytic subvariety of a complex torus
Z. If X is not a translate of a subtorus then every entire curve drawn in X
is analytically degenerate.

In particular, if X is a complex analytic subvariety of general type of
a complex torus Z then it cannot be a translate of a subtorus and the



46 Hyperbolicity and negativity of the curvature

corollary applies. Anyway, observe that a priori this corollary just states
that there are no Zariski dense entire curves in such a subvariety and not
the stronger property of the existence of a closed proper subvariety of X
which contains the images of every entire curve in X. The corollary is thus
a weak confirmation of the Green-Griffiths conjecture for subvarieties of
general type of complex tori.

Nevertheless, once we have the analytic degeneracy of entire curves, the
stronger version of the Green-Griffiths conjecture can be deduced from the
following result of Kawamata.

Theorem 4.2.9 ( [Kaw80]). Let X be a subvariety of general type of a
complex torus Z. Then there is a proper subvariety Y ⊂ X which contains
all the translates of subtori contained in X.

Here is the Bloch theorem itself [Blo26b,Kaw80].

Corollary 4.2.10 (Bloch’s theorem). Let X be a compact complex Kähler
manifold such that the irregularity q = h0(X,T ∗X) is larger than the di-
mension n = dimX. Then every entire curve drawn in X is analytically
degenerate.

Observe that if the irregularity is larger than the dimension there exists
a map from X to a complex torus Z such that the image of X is of general
type.

Proof. The Albanese map α : X → Alb(X) sends X onto a proper subva-
riety Y ⊂ Alb(X), since dim Alb(X) = q > n. Moreover, by the universal
property of the Albanese map, α(X) is not a translate of a subtorus. Hence,
given an entire curve f : C → X, the composition α ◦ f : C → Y is analyti-
cally degenerate; but then, f itself is analytically degenerate.

Now, we give a

Proof of Theorem 5.2.6. Let f : C→ Z be an entire curve and let X be the
Zariski closure of its image. Call Zk the projectivized k-jet bundle of (Z, TZ)
and Xk the closure of the projectivized k-jet bundle of (Xreg, TXreg) in Zk.
As TZ ' Z ×Cn, dimZ = n, we have that Zk = Z ×Rn,k, where Rn,k is the
rational variety introduced in the previous chapter. By Proposition 4.3.2,
there exists a weight a ∈ Nk such that OZk(a) is relatively very ample. This
means that there exists a very ample line bundle ORn,k(a) over Rn,k such
that OZk(a) is its pull-back by the second projection. Now, consider the
restriction to Xk of the second projection map and call it Φk : Xk → Rn,k;
by functoriality, one has that OXk(a) = Φ∗kORn,k(a).

Define Bk ⊂ Xk to be the set of points x ∈ Xk such that the fiber of Φk

passing through x is positive dimensional and assume that Bk 6= Xk.
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Lemma 4.2.11. There exists a singular hermitian metric on OXk(a) with
strictly positive curvature current and such that its degeneration set is exactly
Bk.

Proof. This a quite standard fact. A proof can be found for example in
[Dem97].

Thus, Theorem 5.2.3 shows that f[k](C) ⊂ Bk (and this is trivially also
true if Bk = Xk).This means that through every point f[k](t0) there is a germ

of positive dimensional variety in the fiber Φ−1
k (Φk(f[k](t0))), say a germ of

curve ζ → u(ζ) = (z(ζ), jk) ∈ Xk ⊂ Z × Rn,k with u(0) = f[k](t0) = (z0, jk)
and z0 = f(t0). Then (z(ζ), jk) is the image of f[k](t0) by the k-th lifting of
the translation τs : z 7→ z + s defined by s = z(ζ)− z0.

Next, we have f(C) 6⊂ Xsing since X is the Zariski closure of f(C) and
we may then choose t0 so that f(t0) ∈ Xreg and f ′(t0) 6= 0. Define

Ak(f) = {s ∈ Z | f[k](t0) ∈ Xk ∩ τ−s(X)k}.

Clearly Ak(f) is an analytic subset of Z containing the curve ζ → s(ζ) =
z(ζ)− z0 through 0. By the Noetherian property, since

A1(f) ⊃ A(f) ⊃ · · · ⊃ Ak(f) ⊃ · · · ,

this sequence stabilizes at some Ak(f). Therefore, there is a curve ∆r → Z,
ζ 7→ s(ζ) such that the infinite jet j∞ defined by f at t0 is s(ζ)-translation
invariant for all t ∈ C and ζ ∈ ∆r. As X is the Zariski closure of f(C), we
must have s(ζ) +X ⊂ X for all ζ ∈ ∆r; moreover, X is irreducible and then
we have in fact s(ζ) +X = X.

Now, define

W = {s ∈ Z | s+X = X}.

Then, W is a closed positive dimensional subgroup of Z. Let p : Z/W be
the natural projection. As Z/W is a complex torus with of strictly lower
dimension that Z, we conclude by inducion on dimension that the curve

f̂ = p ◦ f : C → Z/W has its Zariski closure X̂ = f̂(C)
Zar

= p(X) equal to
a translate ŝ + T̂ of some subtorus T̂ ⊂ Z/W . Since X is W -invariant, we
get X = s+ p−1(T̂ ), where p−1(T̂ ) is a closed subgroup of Z. This implies
that X is a translate of a subtorus.

4.3 A general strategy for algebraic degeneracy

We state here a quite general theorem which gives sufficient conditions in
order to have algebraic degeneracy of entire curves in a given compact com-
plex manifold. This statement somehow combine and sums up several ideas
and strategies by different authors in the last three decades.
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Theorem 4.3.1 ( [Siu04], [Pău08], [Rou07], [DMR10], [DT10]). Let X be
a compact complex manifold. Suppose there exist two ample line bundle
A,B → X and integers k,m > 0 such that

(i) there is a non zero section P ∈ H0(X,Ek,mT
∗
X ⊗A−1),

(ii) the twisted tangent space TJkTX⊗p∗kB of the space of k-jets pk : JkTX →
X is globally generated over its regular part JkT

reg
X by its global sec-

tions, and suppose moreover that one can choose such generating vector
fileds to be equivariant with respect to the action of Gk on JkTX ,

(iii) the line bundle A⊗B−⊗m is ample.

Call Y ( X the zero locus of the section P . Then every holomorphic entire
curve f : C→ X has image contained in Y .

If moreover the effective cone of X is contained in the ample cone (which
is the case for instance if the Picard group of X is Z), then the ample line
bundle A can be chosen in such a way to force Y to have codimension at
least two in X.

Proof. Start with the given non zero section P ∈ H0(X,Ek,mT
∗
X⊗A−1) and

call

Y = {P = 0} ( X

its zero locus. Look at P as an invariant (under the action of the group Gk)
map

JkTX → p∗kA
−1

where pk : JkTX → X is the space of k-jets of germs of holomorphic curves
f : (C, 0) → X. Then P is a weighted homogeneous polynomial in the jet
variables of degree m with coefficients holomorphic functions of the coordi-
nates of X and values in p∗kA

−1.

By hypothesis (ii), we have enough global holomorphic Gk-invariant vec-
tor fields on JkTX with values in the pull-back from X of the ample divisor B
in order to generate TJkTX ⊗ p∗kB, at least over the dense open set JkT

reg
X of

regular k-jets, i.e. of k-jets with nonvanishing first derivative. Considering
jet differentials as functions on JkTX , the idea is to produce lots of them
starting from the first one simply by derivation.

If f : C→ X is an entire curve, consider its lifting jk(f) : C→ JkTX and

suppose that jk(f)(C) 6⊂ JkT sing
X

def
= JkTX \JkT reg

X (otherwise f is constant).
Arguing by contradiction, let f(C) 6⊂ Y and x0 = f(ζ0) ∈ X \ Y .

Then, by Corollary 5.2.5, the point jk(f)(ζ0) must lie in the zero locus
of the restriction Px0 of P to the affine fiber p−1

k (x0) (see Figure 5.1): this
restriction is not identically zero by construction, since the point x0 is outside
the zero locus of P regarded as a section of Ek,mT

∗
X ⊗A−1.
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v

X

Y

JkTX,x0

f(C)

x0

Px0=0

jk(f)(ζ0)

Figure 4.1: The lifting of the curve f and the zero locus of Px0

If we take a global section V ∈ H0(JkTX , TJkTX ⊗ p∗kB), by combining
with the pairing

H0(JkTX , p
∗
kA
−1)×H0(JkTX , p

∗
kB)→ H0(JkTX , p

∗
k(A

−1 ⊗B)),

we can form the Lie derivative LV P of P with respect to V and obtain
in this way a new global invariant (since V is an invariant vector field) jet
differential of weighted degree m and order k with values in A−1 ⊗B.

Since Px0 is a polynomial of weighted degree m, there exist v1, . . . , vp ∈
TJkTX ,jk(f)(ζ0), p ≤ m, such that given V1, . . . Vp ∈ H0(JkTX , TJkTX ⊗ p∗kB)
with the property that Vj(jk(f)(ζ0)) = vj , j = 1, . . . , p, one has

LVp · · ·LV1P (jk(f)(ζ0)) 6= 0.

For instance, if the point jk(f)(ζ0) is a regular point of the zero locus of
Px0 in JkTX,x0 , it suffices to take p = 1 and any v = v1 ∈ TJkTX ,jk(f)(ζ0)

transverse to the zero locus will do the job (see again Figure 5.1). In general,
this zero locus has at most a singularity of order m at jk(f)(ζ0) and thus
one needs to take at most m derivatives in order to guarantee the non
vanishing of the derived polynomial at the given point. The existence of the
global sections with prescribed valued at jk(f)(ζ0) is assured by the global
generation hypothesis (ii).

Summing up, one can produce, by differentiating at most m times, a
new invariant k-jet differential Q = LVp · · ·LV1P of weighted degree m with
values in A−1⊗B⊗p such that Q(jk(f)(ζ0)) 6= 0, thus contradicting Corollary
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5.2.5, provided A−1⊗B⊗p is antiample, i.e. provided Q is still with value in
an antiample divisor. But this is assured by hypothesis (iii), since p ≤ m.

For the last assertion, the starting point is the following general, straight-
forward remark. Let E → X be a holomorphic vector bundle over a compact
complex manifold X and let σ ∈ H0(X,E) 6= 0; then, up to twisting by the
dual of an effective divisor, one can suppose that the zero locus of σ has no
divisorial components. This is easily seen, for let D be the divisorial (and
effective) part of the zero locus of σ and twist E by OX(−D). Then, σ is
also a holomorphic section of H0(X,E ⊗OX(−D)) and seen as a section of
this new bundle, it vanishes on no codimension 1 subvariety of X.

Now, we use this simple remark in our case, the vector bundle E being
here Ek,mT

∗
X ⊗ A−1. Since, by hypothesis, every effective line bundle on X

is ample the corresponding OX(−D) is antiample. After all, we see that in
the above proof of one can suppose that the “first” invariant jet differential
vanishes at most on a codimension 2 subvariety of X, provided one looks
at it as a section of H0(Ek,mT

∗
X ⊗ A−1 ⊗OX(−D)) and A−1 ⊗OX(−D) is

again antiample. In fact it is even “more antiample” than A−1: in particular,
condition (iii) in the hypotheses is still fulfilled:

A⊗OX(D)⊗B−⊗m > A⊗B−⊗m > 0

and everything works in the same way, but now with a Y of codimension at
least two.

One then gets immediately.

Corollary 4.3.2. A compact complex surface which satisfies the hypotheses
of Theorem 5.3.1 is Kobayashi hyperbolic.

Corollary 4.3.3. Let X be a compact complex threefold which satisfies the
hypotheses of Theorem 5.3.1. Suppose moreover that X does not contain
any rational or elliptic curve. Then X is Kobayashi hyperbolic.

Proof. Let f : C → X an entire curve in X. Then f(C)
Zar

is an algebraic
curve of X which admits a non constant holomorphic image of C. By uni-
formization, it must be rational or elliptic, contradiction.



Chapter 5

Hyperbolicity of generic
surfaces in projective 3-space

Abstract. The main topic of these notes is hyperbolicity of generic projective

hypersurfaces of high degree. In this chapter we shall describe how to prove it in

the simpler case of surfaces in projective 3-space. While Kobayashi’s conjecture

predicts in the case of surfaces a lower bound for the degree equal to 5, nowadays

the hyperbolicity is only known for degree greater than or equal to 18 [Pău08], after

36 [McQ99] and 21 [DEG00].

5.1 General strategy

The idea we present here to attack the Kobayashi conjecture is to apply
Theorem 5.3.1 in the context of projective hypersurfaces. Unluckily, to
verify the validity of hypothesis (ii) even in this framework is very difficult
(and maybe even not true): we shall instead use a kind of the variational
method introduced in [Voi96] as explained in [Siu04].

The strategy is the following. First of all, it is known [Sak79] that on a
smooth projective hypersurface of dimension greater than or equal to two
there is no symmetric differentials at all. This means that we cannot expect
to work with order one jet differentials for this conjecture. In fact, in general,
one has the following

Theorem 5.1.1 ( [Div08]). On a smooth projective complete intersection
X one has the following vanishing:

H0(X,Ek,mT
∗
X) = 0, ∀m > 0 and 0 < k < dimX/ codimX.

In particular, if X is a smooth hypersurface one has to look at least for
invariant jet differentials of order equal to the dimension of X.

Following [Dem97], for X a smooth surface in projective 3-space we
shall see that to find the first non zero jet differential (see hypothesis (i) of
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Theorem 5.3.1) it suffices to apply a Riemann-Roch argument together with
a vanishing theorem of Bogomolov [Bog78]. One gets in this way an order
two jet differential on every smooth hypersurface in P3 of degree greater than
or equal to 15; a more involved Riemann-Roch computation made in [GG80]
shows in fact that on every smooth projective surface of general type there
is a global jet differential of some (possibly very high) order1. Thus one
has a global jet differential on every smooth projective hypersurface in P3

starting from degree 5 (this is the first degree for which the canonical bundle
is ample). Anyway, for our purposes order two techniques will suffice.

Then, one has to produce meromorphic vector fields with controlled pole
order like in the case of the proof of algebraic hyperbolicity. For this, one
consider the universal hypersurface X ⊂ P3 × PNd−1 of degree d in P3 and
the vertical tangent bundle V ⊂ TX , kernel of the differential of the second
projection. Next, one forms the corresponding directed manifold (X ,V):
entire curves in X tangent to V are in fact contained in some fiber and then
map to some hypersurface. The aim is to globally generate the (twisted)
tangent space TJ2V ⊗ OP3(•) ⊗ OPNd−1(•) to vertical 2-jets: this is done
in [Pău08] using “slanted” vector fields which permit to gain some positivity
from the moduli space.

But now, the problem is that in order to be able to take derivatives one
needs global jet differentials not only defined over the fibers (that is over
every single smooth hypersurface) but over an open set in X .

The vector bundle Ek,mV∗ → X has the tautological property that its
restriction to any smooth fiber Xs of the second projection (that is to the
hypersurface corresponding to a given modulus s in PNd−1) is just the vector
bundle Ek,mT

∗
Xs
→ Xs. Since we know that on any smooth projective

hypersurface of degree ≥ 15 there is an order two global jet differential
we can use a standard semicontinuity argument in order to extend it to a
section of E2,mV∗ over (the inverse image by the second projection of) a
Zariski open set of the moduli space: this is the desired extension to use the
meromorphic vector fields.

We shall see later how the more technical in nature hypothesis (iii) of
Theorem 5.3.1 is fulfilled in this situation.

5.2 Existence of jet differentials

We start this section with a simple Riemann-Roch computation for order
one jet differential on a smooth surface in order to give the flavor of the kind
of methods employed.

1Recently, in july 2010, Demailly has announced to be able to construct a non zero
jet differential on every variety of general type by differential geometric and probabilistic
techniques: this is a substantial step toward the Green-Griffiths conjecture in arbitrary
dimension.
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Let X be a smooth compact surface. Consider the projectivization
π : P (TX)→ X of lines of TX and the corresponding (anti)tautological line
bundle OP (TX)(1); call u the first Chern class of OP (TX)(1).

On the one hand, we have the following standard relation:

u2 + π∗c1(X) · u+ π∗c2(X) = 0.

On the other hand, we know that the following higher direct image formula
is valid:

Rqπ∗OP (TX)(m) =

{
OX(SmT ∗X) if q = 0 and m ≥ 0,

0 otherwise.

Therefore, we have the following isomorphism in cohomology:

Hq(X,SmT ∗X) ' Hq(P (TX),OP (TX)(m)), ∀m, q ≥ 0.

In particular, we have equality for the Euler characteristics

χ(SmT ∗X) = χ(OP (TX)(m)).

Now, the Hirzebruch–Riemann–Roch theorem gives us

χ(OP (TX)(m)) =

∫
P (TX)

ch(OP (TX)(m)) · Td(P (TX))

=
m3

3!
u3 +O(m2)

=
m3

6
(c1(X)2 − c2(X)) +O(m2),

where the last equality is obtained using the above relation. We then have
that if the second Segre number c1(X)2 − c2(X) of X is positive, then the
asymptotic Euler characteristic of the symmetric powers of the cotangent
bundle of X has maximal growth. Moreover, since we deal with the asymp-
totic Euler characteristic, the same result holds true if we twist the symmet-
ric powers by any fixed line bundle.

Concerning the existence of sections, suppose now that X is a smooth
surface of general type (that is KX is big). Then, a vanishing theorem of
Bogomolov contained in [Bog78] implies that

H0(X,SpTX ⊗K⊗qX ) = 0, ∀p− 2q > 0.

In particular, H0(X,SmTX ⊗KX) = 0 whenever m ≥ 3. But then,

h0(X,SmT ∗X) = h0(P (TX),OP (TX)(m))

≥ χ(OP (TX)(m))− h2(P (TX),OP (TX)(m))

= χ(OP (TX)(m))− h2(X,SmT ∗X)

= χ(OP (TX)(m))− h0(X,SmTX ⊗KX)

= χ(OP (TX)(m)), m ≥ 3.
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Thus, the zeroth cohomology group is asymptotically minorated by the Euler
characteristic, which is asymptotically positive if the second Segre number
is.

Unfortunately, as we have said, this first order result is not sufficient
to deal with surfaces in P3. For order two jets, we have seen that the full
composition series of E2,mT

∗
X is given by

Gr•(E2,mT
∗
X) =

m/3⊕
j=0

Sm−3jT ∗X ⊗K
j
X .

Thus, a slightly more involved Euler characteristic computation gives the
following:

χ(E2,mT
∗
X) = χ(Gr•(E2,mT

∗
X)) =

m4

648
(13 c1(X)2 − 9 c2(X)) +O(m3).

Again by Bogomolov’s vanishing we obtain

Proposition 5.2.1 ( [Dem97]). If X is an algebraic surface of general type
and A an ample line bundle over X, then

h0(X,E2,mT
∗
X ⊗A−1) ≥ m4

648
(13 c1(X)2 − 9 c2(X)) +O(m3).

In particular, every smooth surface X ⊂ P3 of degree d ≥ 15 admits non
trivial sections of E2,mT

∗
X ⊗A−1 for m large.

Proof. Only the last assertion remains to be proved. But it follows from a
standard computation of Chern classes of smooth projective hypersurface.
In this case, in fact, we have

c1(X) = (4− d)h, c2(X) = (d2 − 4d+ 6)h2,

where h is the hyperplane class on X, h2 = d, and then 13 c1(X)2−9 c2(X) >
0 for d ≥ 15.

This means that smooth projective surfaces in P3 of degree d ≥ 15 satisfy
hypothesis (i) of Theorem 5.3.1 for k = 2 and m large enough.

In the sequel, we shall need a slightly more general and precise knowledge
of the vanishing order of these sections. Thus, we shall need the following
result.

Proposition 5.2.2 (see also [Pău08]). Let X be a projective surface of
general type. Then

h0(X,E2,mT
∗
X⊗K−δmX ) ≥ m4

648

(
(54δ2−48δ+13) c1(X)2−9 c2(X)

)
+O(m3),

provided 0 ≤ δ < 1/3.
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Please note that the original statement contained in [Pău08] has a minor
computational error for the Euler characteristic which has been fixed here.

Proof. First of all, one shows using

Gr•(E2,mT
∗
X ⊗K−δmX ) =

m/3⊕
j=0

Sm−3jT ∗X ⊗K
j−δm
X

that the right hand side is the Euler characteristic of E2,mT
∗
X⊗K

−δm
X . Then,

as usual, one applies Serre’s duality for the second cohomology group and
the Bogomolov vanishing to each piece of the dualized graded bundle: they
are of the form

Sm−3jTX ⊗Kδm−j+1
X

and they vanish ifm−3j−2(δm−j+1) > 0, which is the case if δ < 1/3−1/m
since 0 ≤ j ≤ m/3. The result follows, since the inequality in the statement
is asymptotic with m→ +∞.

5.3 Global generation of the twisted tangent space
of the universal family

In this section, we shall reproduce the proof of [Pău08] of the twisted global
generation of the tangent space of the space of vertical two jets. First of all,
we fix again the notation.

Consider the universal hypersurface X ⊂ P3 × PNd−1 of degree d given
by the equation ∑

|α|=d

Aα Z
α,

where [A] ∈ PNd−1, [Z] ∈ P3 and α = (α0, . . . , α3) ∈ N4.
Next, we fix the affine open set U = {Z0 6= 0}×{A0d00 6= 0} ' C3×CNd−1

in P3 × PNd−1 with the corresponding inhomogeneous coordinates (zj =
Zj/Z0)j=1,2,3 and (aα = Aα/A0d00)|α|=d,α1<d. Since α0 is determined by
α0 = d− (α1 +α2 +α3), with a slight abuse of notation in the sequel α will
be seen as a multiindex (α1, α2, α3) in N3, with moreover the convention
that ad00 = 1.

On this affine open set we have

X0 := X ∩ U =

zd1 +
∑

|α|≤d,α1<d

aα z
α = 0

 .

We now write down equations for the open variety J2V0, where we indicated
with V0 the restriction of V ⊂ TX , the kernel of the differential of the second
projection, to X0: elements in J2V0 are therefore 2-jets of germs of “vertical”
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holomorphic curves in X0, that is curves tangent to vertical fibers. Here are
the equations, which naturally live in C3

zj × CNd−1
aα × C3

z′j
× C3

z′′j
:

∑
|α|≤d

aα z
α = 0,

3∑
j=1

∑
|α|≤d

aα
∂zα

∂zj
z′j = 0,

3∑
j=1

∑
|α|≤d

aα
∂zα

∂zj
z′′j +

3∑
j,k=1

∑
|α|≤d

aα
∂2zα

∂zj∂zk
z′jz
′
k = 0.

Define Σ0 to be the closed algebraic subvariety of J2V0 defined by

Σ0 = {(z, a, z′, z′′) ∈ J2V0 | z′ ∧ z′′ = 0}

and let Σ be the Zariski closure of Σ0 in J2V: we call this set the wronskian
locus of J2V.

To begin with, observe that an affine change of coordinates z 7→ 1/z
induces on jet variables the following transformation rules

z′ 7→ − z
′

z2
and z′′ 7→ 2(z′)2 − zz′′

z3
.

Now, consider a general vector field in the vector space C3
zj ×CNd−1

aα ×C3
z′j
×

C3
z′′j

; it is of the form

V =
∑

|α|≤d,α1<d

vα
∂

∂aα
+

3∑
j=1

vj
∂

∂zj
+

3∑
j=1

ξ
(1)
j

∂

∂z′j
+

3∑
j=1

ξ
(2)
j

∂

∂z′′j
.

Thus, the conditions to be satisfied by the coefficients of V in order to belong
to J2V0 are: ∑

|α|≤d,α1<d

vα z
α +

3∑
j=1

∑
|α|≤d

aα
∂zα

∂zj
vj = 0,

3∑
j=1

∑
|α|≤d,α1<d

vα
∂zα

∂zj
z′j+

3∑
j,k=1

∑
|α|≤d

aα
∂2zα

∂zk∂zj
vkz
′
j+

3∑
j=1

∑
|α|≤d

aα
∂zα

∂zj
ξ

(1)
j ,
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∑
|α|≤d,α1<d

 3∑
j=1

∂zα

∂zj
z′′j +

3∑
j,k=1

∂2zα

∂zk∂zj
z′jz
′
k

 vα

+
3∑
j=1

∑
|α|≤d

aα

 3∑
k=1

∂2zα

∂zk∂zj
z′′k +

3∑
i,k=1

∂3zα

∂zi∂zk∂zj
z′kz
′
i

 vj

+
∑
|α|≤d

3∑
j,k=1

aα
∂2zα

∂zk∂zj

(
ξ

(1)
j z′k + ξ

(1)
k z′j

)
+

3∑
j=1

aα
∂zα

∂zj
ξ

(2)
j .

First family of tangent vector fields

For all multiindex α such that α1 ≥ 3, consider the vector field

V 300
α =

∂

∂aα
− 3z1

∂

∂aα−δ1
+ 3z2

1

∂

∂aα−2δ1

− z3
1

∂

∂aα−3δ1

,

where δj ∈ N4 is the multiindex whose j-th component is equal to 1 and the
others are zero. For the multiindexes α which verify α1 ≥ 2 and α2 ≥ 1,
define

V 210
α =

∂

∂aα
− 2z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
+ z2

1

∂

∂aα−2δ1

+ 2z1z2
∂

∂aα−δ1−δ2
− z2

1z2
∂

∂aα−2δ1−δ2
.

Finally, for those α for which α1, α2, α3 ≥ 1, set

V 111
α =

∂

∂aα
− z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
− z3

∂

∂aα−δ3

+ z1z2
∂

∂aα−δ1−δ2
+ z1z3

∂

∂aα−δ1−δ3
+ z2z3

∂

∂aα−δ2−δ3

− z1z2z3
∂

∂aα−δ1−δ2−δ3
.

The pole order of these vector fields is equal to 3, as a change of variables
easily shows. Moreover, they are all tangent to J2V0 and invariant under
the action of G2 (because they do not contain any jet variable, on which the
group acts).

Of course, there are similarly defined vector fields constructed by per-
muting the z-variables, and changing the multiindex α as indicated by per-
mutations: it is straightforward to see that all these vector fields together
span a codimension 7 vector space in ker(TJ2V → TJ2TP3 ). The vector fields
which generate the remaining seven directions will be constructed at the end
of this section.
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Second family of tangent vector fields

We construct here the vector fields in order to span the ∂/∂zj-directions.
For j = 1, 2, 3, consider the vector field

∂

∂zj
−

∑
|α+δj |≤d

(αj + 1)aα+δj

∂

∂aα
.

It is immediate to check that these vector fields, once applied to the
first defining equation of J2V0, make it identically vanish. Since the other
equations of J2V0 are obtained by deriving the first just with respect to
the zj and z′j variables, they make identically vanish the other two defining
equations, too. Therefore they are tangent to J2V0. Their pole order is one
in the aα’s variables and they are G2-invariant since they do not contain jet
variables.

Third family of tangent vector fields

In order to span the jet directions, consider a vector field of the following
form:

VB =
∑

|α|≤d,α1<d

pα(z, a, b)
∂

∂aα
+

3∑
j=1

2∑
k=1

ξ
(k)
j

∂

∂z
(k)
j

,

where ξ(k) = B · z(k), k = 1, 2, and B = (bjk) varies among 3× 3 invertible
matrices with complex entries. The additional condition on the Wronskian

z′∧z′′ 6= 0 implies that the family (VB) spans all the ∂/∂z
(k)
j -directions on Σ0,

as it is straightforward to see. We claim that one can choose the coefficients
pα(z, a, b) to be polynomials of degree at most 2 in z and at most one in a in
such a way that VB is tangent to J2V0. To see the invariance with respect to
G2, observe that the action is the following: if ϕ : (C, 0) → (C, 0) is a 2-jet
of biholomorphism of the origin then the action is

ϕ · (z, a, z′, z′′) 7→ (z, a, ϕ′ · z′, (ϕ′)2 · z′′ + ϕ′′ · z′)

and the corresponding induced action on vector fields is

∂

∂z
7→ ∂

∂z
,

∂

∂a
7→ ∂

∂a
,

∂

∂z′
7→ ϕ′

∂

∂z′
+ ϕ′′

∂

∂z′′
,

∂

∂z′′
7→ (ϕ′)2 ∂

∂z′′
.

For VB, only the second addendum needs to be verified to be invariant: it
is of the form

z′
∂

∂z′
+ z′′

∂

∂z′′
.

On the one hand, letting ϕ act on coordinates, one has

z′
∂

∂z′
+ z′′

∂

∂z′′
7→ ϕ′ · z′ ∂

∂z′
+
(
(ϕ′)2 · z′′ + ϕ′′ · z′

) ∂

∂z′′
;
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on the other hand, letting ϕ act on vector fields by its differential, one has

z′
∂

∂z′
+ z′′

∂

∂z′′
7→ z′

(
ϕ′

∂

∂z′
+ ϕ′′

∂

∂z′′

)
+ z′′

(
(ϕ′)2 ∂

∂z′′

)
,

and the invariance follows.
As the proof of the claim is not so difficult and rests just on some linear

algebra, we skip it here and refer the reader to [Pău08].

Finally, as announced, we have to span the remaining directions in the
vector space ker(TJ2V → TJ2TP3 ). So, consider a vector field with the follow-
ing shape: ∑

|α|≤2

vα
∂

∂aα
.

To be tangent to J2V0, its coefficients have to satisfy∑
|α|≤2

vα z
α = 0,

∑
|α|≤2

3∑
j=1

vα
∂zα

∂zj
z′j = 0

and ∑
α≤2

 3∑
j=1

∂zα

∂zj
z′′j +

3∑
j,k=1

∂2zα

∂zj∂zk
z′jz
′
k

 vα.

We place ourself outside Σ0 and we suppose for simplicity that z′1z
′′
2−z′2z′′1 6=

0, the other cases being analogous. Then, we can solve this system with v000,
v100 and v010 as unknowns:

v000 + z1 v100 + z2 v010 = · · ·
z′1 v100 + z′2 v010 = · · ·
z′′1 v100 + z′′2 v010 = · · ·

By the Cramer rule, we see that each of these quantities are linear combi-
nations of the vα’s, where |α| ≤ 2, α 6= (000), (100), (010), with coefficients
rational functions in z, z′, z′′. The denomitaor of each such coefficient is
just the Wronskian z′1z

′′
2 − z′2z′′1 and the numerator is a polynomial whose

monomials have either degree at most 2 in z and at most 1 in z′ and z′′, or
degree 1 in z and three in z′; thus, the pole order here is at most 7. Next,
the system itself is G2-invariant: letting ϕ ∈ G2 act on it, we find∑

|α|≤2

vα z
α = 0,
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ϕ′
∑
|α|≤2

3∑
j=1

vα
∂zα

∂zj
z′j = 0

and

(ϕ′)2
∑
α≤2

 3∑
j=1

∂zα

∂zj
z′′j +

3∑
j,k=1

∂2zα

∂zj∂zk
z′jz
′
k

 vα + ϕ′′
∑
α≤2

3∑
j=1

vα
∂zα

∂zj
z′j︸ ︷︷ ︸

=0

= 0.

Therefore its solutions are invariant, too. Summing up, we have proved the
following

Theorem 5.3.1 ( [Pău08]). The twisted tangent space

TJ2V ⊗OP3(7)⊗OPNd−1(1)

is generated over J2V\Σ by its global sections. Moreover, one can choose the
generating global sections in order to be invariant with respect to the action
of G2 on J2V.

5.4 Proof of the hyperbolicity

In this last section we want to show the following.

Theorem 5.4.1 ( [McQ99], [DEG00], [Pău08]). Let X ⊂ P3 be a (very)
generic smooth surface of degree d ≥ 18. Then X is Kobayashi hyperbolic.

We shall in fact prove a slightly weaker form of this theorem, as far as
the lower bound on the degree is concerned: the strategy of proof adopted
here, which will be the one that we will use in all dimensions, will provide
the worst bound d ≥ 90 for the degree of X.

Let us fix once again the notations. We consider X ⊂ P3 a generic
(or very generic) smooth surface of degree d. Its canonical bundle is then
expressed in term of the hyperplane bundle as KX = OX(d− 4); thus, Kδm

X

is the (ample) Q-line bundle OX(δm(d − 4)). The Chern classes of X are
given by

c1(X) = (4− d)h, c2(X) = (d2 − 4d+ 6)h2,

so that the quantity (54δ2 − 48δ + 13) c1(X)2 − 9 c2(X) considered above is
equal to

(54δ2−48δ+4) d3 +(−432δ2 +384δ−68) d2 +(864δ2−768δ+154) d. (5.1)

Notice that if 0 ≤ δ < 1/3 and 54δ2 − 48δ + 4 > 0 then by Proposition
6.2.2, for m� d� 1 we have a non zero global section of E2,mT

∗
X ⊗K

−δm
X

(compare with hypothesis (i) in Theorem 5.3.1).
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Now, consider the universal hypersurface X ⊂ P3×PNd−1 of degree d in
P3 and the holomorphic subbundle V ⊂ TX given by the differential of the
kernel of the second projection. By the results of the previous section, we
know that

TJ2V ⊗OP3(7)⊗OPNd−1(1)

is globally generated by its global holomorphic sections over J2V \ Σ and
moreover the generating sections can be chosen to be invariant by the action
of G2 on J2V (compare with hypothesis (ii) of Theorem 5.3.1, the bundle
OP3(7) here plays the role of the bundle B there).

Concerning hypothesis (iii) of Theorem 5.3.1, we want Kδm
X ⊗OP3(7)−⊗m

to be ample: this is the case if

δ >
7

d− 4
,

so δ will be chosen a little bit larger than 7/(d− 4).
Start with a non zero section P ∈ H0(X,E2,mT

∗
X ⊗K

−δm
X ). Call

Y = {P = 0} ( X

the base locus of such a non zero section.
If s ∈ P(H0(P3,OP3(d))) parametrizes any smooth hypersurface Xs, then

one has

H0(Xs, E2,mT
∗
Xs ⊗K

−δm
Xs

) ' H0(Xs, E2,mV∗ ⊗OP3(−δm(d− 4))|Xs).

Suppose X = X0 corresponds to the parameter 0 ∈ P(H0(P3,OP3(d))).
Since we have chosen X to be generic, standard semicontinuity arguments
show that there exists an open neighborhood U 3 0 such that the restriction
morphism

H0(pr−1
2 (U), E2,mV∗ ⊗OP3(−δm(d− 4)))→ H0(X0, E2,mT

∗
X0
⊗K−δmX0

)

is surjective. Therefore the “first” jet differential P may be extended to a
neighborhood of the starting hypersurface.

Now, suppose we have a holomorphic entire curve f : C → X and con-
sider its lifting j2(f) : C → J2TX ⊂ J2V. If f(C) ⊂ Σ then we have the
following.

Lemma 5.4.2. Let f : C→ CN be a holomorphic map. If f ′∧f ′′∧· · ·∧f (k) ≡
0, then f(C) lies inside a codimension N − k + 1 affine linear subspace.

Proof. Without loss of generality, we can suppose k > 1, f ′ ∧ f ′′ ∧ · · · ∧
f (k−1) 6≡ 0, f ′(0) 6= 0 and (f ′ ∧ f ′′ ∧ · · · ∧ f (k−1))(0) 6= 0. Then there exists
an open neighborhood Ω ⊂ C of 0 such that for each t ∈ Ω we have a linear
combination

f (k)(t) =

k−1∑
j=1

λj(t) f
(j)(t)
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and the λj ’s depend holomorphically on t. By taking derivatives, one sees
inductively that, in Ω, every f (`), ` ≥ k, is a linear combination of the f (j)’s,
1 ≤ j ≤ k − 1. Thus, all the derivatives in 0 of f lie in the linear space
generated by f ′(0), . . . , f (k−1)(0). The conclusion follows by expanding f in
power series at 0.

In fact, this lemma shows that the image of the entire curve lies in a
codimension two subvariety of X (the intersection of X with a codimension
two linear subspace of P3), provided X is generic. Therefore f is constant
in this case.

Thus, we can suppose j2(f) 6⊂ Σ. Then, if f(C) 6⊂ Y the proof proceed
exactly as the one of Theorem 5.3.1: we have extended on an open set the
global jet differential P and we can now take derivatives with meromorphic
vector fields in TJ2V . After having taken at most m derivatives, we restrict
again everything to X0 and we are done.

Observe now that if we take X very generic, by the Noether-Lefschetz
theorem, the Picard group of X is infinite cyclic. Thus, we can apply in full
strength the statement of Theorem 5.3.1 and obtain that Y has codimension
two in X. But then Y has dimension zero and f is constant: this proves
hyperbolicity.

We now come to the effective part concerning the degree of X. If we
plainly substitute in (6.1) δ = 7/(d− 4), we obtain

4 d3 − 404 d2 + 4144 d,

whose larger root is a little smaller than 90. Then, by continuity, if δ is
chosen to be a little larger than 7/(d − 4) as announced, everything fit for
d ≥ 90: we have in fact that 7/(d− 4) < δ < 1/3 and (6.1) is positive.

Thus, very generic smooth projective surfaces in P3 of degree greater
than or equal to 90 are hyperbolic.

Finally, we remark here that in order to go down till degree 18, a more
complicated combination of this variational method together with deep re-
sult by Mc Quillan [McQ98] on parabolic leaves of algebraic (multi)foliations
on surfaces of general type is required, but we shall skip here this part
(see [Pău08] for more details).

In the next chapter, we shall treat the general case in arbitrary dimen-
sion: the strategy will be exactly the same as here (anyway, we would not
be able to invoke anymore the work of Mc Quillan which unfortunately for
the moment is available in dimension two only). A major difficulty will be
the step one, that is to find the first jet differential; this will be overcome
by means of the algebraic version of Demailly’s holomorphic Morse inequal-
ities. Then, a generalization of the global generation statement obtained
in [Mer09] (compare also with [Siu04]) will permit us to let the strategy
work in full generality.



Chapter 6

Algebraic degeneracy for
generic projective
hypersurfaces

Abstract. This chapter will treat the general case of projective hypersurfaces

in every dimension. We will prove an algebraic degeneracy result for entire curve

in generic projective hypersurfaces of high degree, taken from [DMR10]. The first

part will be concerned in finding jet differentials, as in [Div09], then we shall cite

the general result on meromorphic vector fields contained in [Mer09]. Finally, we

shall discuss some effective aspects of the proof.

6.1 Statement of the result and scheme of proof

The aim of this chapter is to give the proof of (the tools needed to prove)
the following.

Theorem 6.1.1 ( [DMR10], [DT10]). Let X ⊂ Pn+1 be a generic smooth
projective hypersurface of arbitrary dimension n ≥ 2. If the degree of X
satisfies the effective lower bound:

deg(X) ≥ 2n
5
,

then there exists a proper, of codimension at least two, closed subvariety
Y ( X such that every entire non constant holomorphic curve f : C → X
has its image contained in Y .

In small dimensions, better bounds can be obtained.

Theorem 6.1.2 ( [DMR10], [DT10]). Let X ⊂ Pn+1 be a (very) generic
smooth projective hypersurface. If the degree of X satisfies the effective
bounds:
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• for n = 3, degX > 593;

• for n = 4, degX > 3203;

• for n = 5, degX > 35355;

• for n = 6, degX > 172925,

then there exists a proper, codimension two, closed subvariety Y ( X such
that every entire non constant holomorphic curve f : C → X has its image
contained in Y .

Before going on, we state the following

Corollary 6.1.3 ( [DT10]). Let X ⊂ P4 be a very generic smooth projective
hypersurface of degree d. Then X is Kobayashi hyperbolic, provided d ≥ 593.

Proof. The Zariski closure of the image of a nonconstant entire curve, if
any, must be an algebraic curve in X. Then, such an algebraic curve must
be rational or elliptic. But, as we have seen, this contradicts the following
classical result by Clemens [Cle86]: Let X ⊂ Pn+1 be a smooth very generic
hypersurface. Then X contains no rational curves (resp. elliptic curves)
provided degX ≥ 2n (resp. 2n+ 1).

The considerably better lower bound 593 � 235 is reached by using
the knowledge of the full composition series of E3,mT

∗
X in dimension 3 and

the global generation of meromorphic vector fields on the total space of
vertical jets outside the wronskian locus, obtained respectively in [Rou06b]
and [Rou07], see [DT10] for details.

Note that the slightly weaker result of algebraic degeneracy of entire
curves in the same setting was already proved in [Rou07].

The scheme of the proof of Theorem 7.1.1 is, as in the two dimensional
case, the following. Start with a nonzero section P ∈ H0(X,En,mT

∗
X ⊗

K−δmX ), for some m � 0 and 0 < δ � 1, where X ⊂ Pn+1 is a smooth
generic projective hypersurface of degree d large enough (in order to have
such a section). Call

Y = {P = 0} ( X

the base locus of such a nonzero section. Look at P as an invariant (under
the action of the group Gn of n-jets of biholomorphic changes of parameter
of (C, 0)) map

JnTX → p∗K−δmX

where p : JnTX → X is the space of n-jets of germs of holomorphic curves
f : (C, 0) → X. Then P is a weighted homogeneous polynomial in the jet
variables of degree m with coefficients holomorphic functions of the coordi-
nates of X and values in p∗K−δmX .
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Suppose for a moment that we have enough global holomorphic Gn-
invariant vector fields on JnTX with values in the pull-back from X of some
ample divisor in order to generate TJnTX ⊗ p∗OX(`), at least over the dense
open set JnT

reg
X of regular n-jets, i.e. of n-jets with nonvanishing first deriva-

tive.
If f : C→ X is an entire curve, consider its lifting jn(f) : C→ JnTX and

suppose that jn(f)(C) 6⊂ JnT sing
X

def
= JnTX \JnT reg

X (otherwise f is constant).
Arguing by contradiction, let f(C) 6⊂ Y and x0 = f(t0) ∈ X \ Y . Thus,
one can produce, by differentiating at most m times, a new invariant n-jet
differential Q of weighted degree m with values in

K−δmX ⊗OX(m`) ' OX(−δm(d− n− 2) +m`)

such that Q(jn(f)(t0)) 6= 0, thus contradicting Corollary 5.2.5, provided
δ > `/(d− n− 2), i.e. provided Q is still with value in an antiample divisor
(this last condition is clearly achieved by letting the degree d of X grow
sufficiently).

Unfortunately, in this setting probably we can’t hope for such a global
generation statement for meromorphic vector fields of JnTX to hold. Thus,
as in [Siu04, Pău08, Rou07], one has to use “slanted vector fields” in order
to gain some positivity.

Consider the universal hypersurface X ⊂ Pn+1 × P(H0(Pn+1,O(d))) of
degree d in Pn+1. Next, consider the subbundle V ⊂ TX given by the
kernel of the differential of the second projection. If s ∈ P(H0(Pn+1,O(d)))
parametrizes any smooth hypersurface Xs, then one has

H0(Xs, En,mT
∗
Xs ⊗K

−δm
Xs

) ' H0(Xs, En,mV∗ ⊗ pr∗1K
−δm
Xs
|Xs).

Suppose X = X0 corresponds to the parameter 0 ∈ P(H0(Pn+1,O(d))).
Since we have chosen X to be generic, standard semicontinuity arguments
show that there exists an open neighborhood U 3 0 such that the restriction
morphism

H0(pr−1
2 (U), En,mV∗ ⊗ pr∗1OPn+1(−δm(d− n− 2)))

→ H0(X0, En,mT
∗
X0
⊗K−δmX0

)

is surjective. Therefore the “first” jet differential may be extended to a
neighborhood of the starting hypersurface, and one can use the following
global generation statement (we shall come back on this result later on).

Theorem 6.1.4 ( [Mer09], compare also with [Siu04]). The twisted tangent
bundle

TJnV ⊗ pr∗1O(n2 + 2n)⊗ pr∗2O(1)

is generated over JnVreg by its global sections. Moreover, one can choose
such generating global sections to be invariant under the action of Gn on
JnV.
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Thus, by replacing ` by n2 + 2n in our previous discussion and by re-
moving the hyperplane which corresponds to the poles given by pr∗2O(1) in
the parameter space, one gets the desired result of algebraic degeneracy.

Observe that no information is known about the multiplicity of the sub-
variety Y , thus we are not able to bound a priori the number of derivative
needed in order to reduce the vanishing locus of the first jet differential.

Finally, to obtain codimension two, we just remark that if X is a very
generic surface in P3 or any smooth projective hypersurface of dimension at
least three, then its Picard group is infinite cyclic, so that the final statement
of Theorem 5.3.1 applies (the contribution of [DT10] in Theorem 7.1.1 and
7.1.2 is this qualitative part on the codimension of the subvariety Y ).

At this point it should be clear that in order to prove Theorem 7.1.1 we
have to

(i) construct a global invariant jet differential of order n and degree m
with values in K−δmX for X a smooth projective hypersurface of high
degree,

(ii) globally generate the tangent space of vertical n jets with meromorphic
vector fields of controlled pole order,

(iii) estimate the minimal degree of the hypersurface which makes the ma-
chinery work.

This will be the content of the next sections.

6.2 Existence of jet differentials

In this section, we want to solve the above point (i). For surfaces, we have
used the vanishing of the cohomology group H2(X,E2,mT

∗
X). In higher

dimensions, one major difficulty is that we do not have the vanishing of the
higher cohomology groups anymore. A useful tool to control the cohomology
are the holomorphic Morse inequalities by Demailly.

6.2.1 Algebraic holomorphic Morse inequalities

Let L → X be a holomorphic line bundle over a compact Kähler manifold
of dimension n and E → X a holomorphic vector bundle of rank r. Suppose
that L can be written as the difference of two nef line bundles, say L =
F ⊗G−1, with F,G→ X numerically effective. Then we have the following
asymptotic estimate for the dimension of cohomology groups of powers of L
with values in E.

Theorem 6.2.1 ( [Dem01]). With the previous notation, we have
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• Weak algebraic holomorphic Morse inequalities:

hq(X,L⊗m ⊗ E) ≤ r mn

(m− q)!q!
Fn−q ·Gq + o(mn).

• Strong algebraic holomorphic Morse inequalities:

q∑
j=0

(−1)q−jhj(X,L⊗m⊗E) ≤ rm
n

n!

q∑
j=0

(−1)q−j
(
n

j

)
Fn−j ·Gj + o(mn).

In particular [Tra95] (see also [Siu93]), L⊗m ⊗ E has a global section
for m large as soon as Fn − nFn−1 ·G > 0.

Then we have two possible strategies to obtain global jet differentials.
The first one consists in computing the Euler characteristic χ(X,Ek,mT

∗
X)

and then in finding upper bounds for the higher even cohomology groups
H2i(X,Ek,mT

∗
X) using the weak Morse inequalities. The drawback with

this method is that to do the Riemann-Roch computation, one needs the
algebraic characterization of Ek,mT

∗
X which is not available in general as we

have seen. We shall describe this method in dimension 3 below.

Theorem 6.2.2 ( [Rou06a]). Let X ⊂ P4 a smooth projective hypersurface
of degree d and A→ X any ample line bundle. Then

H0(X,E3,mT
∗
X ⊗A−1) 6= 0

provided d ≥ 97.

The second method consists in using the strong Morse inequalities for
q = 1 to L = OXk(a). Using this, we shall prove below the following.

Theorem 6.2.3 ( [Div09]). Let X ⊂ Pn+1 a smooth projective hypersurface
of degree d and A→ X any ample line bundle. Then

H0(X,En,mT
∗
X ⊗A−1) 6= 0

provided m� d� 1.

6.3 Proof of the existence of jet differentials in
dimension 3

Let X ⊂ P4 be a sooth hypersurface of degree d. Recall that we have

Gr•(E3,mT
∗
X) =

⊕
a+3b+5c+6d=m

Γ(a+b+2c+d, b+c+d, d)T ∗X .
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Thus, we can do a Riemann-Roch computation which provides

χ(X,E3,mT
∗
X) = m9P (d) +O(m8)

where P is an explicit polynomial of degree 4 such that P (d) > 0 for d ≥ 43.

Now, to control the cohomology of the vector bundle of jet differentials
using weak Morse inequalities, we have to reduce the problem to the control
of the cohomology of a line bundle. This can be achieved by working on flag
manifolds as follows. We denote by π : Fl(T ∗X)→ X the flag manifold of T ∗X
i.e. the bundle whose fibers Fl(T ∗X,x) consists of sequences of vector spaces

D := {0 = E3 ⊂ E2 ⊂ E1 ⊂ E0 := T ∗X,x}.

Let λ = (λ1, λ2, λ3) be a partition such that λ1 > λ2 > λ3. Then we can
define a line bundle Lλ := Lλ(T ∗X) over Fl(T ∗X) such that its fiber over D is

LλD :=
3⊗
i=1

det(Ei−1/Ei)
⊗λi .

Then by a classical theorem of Bott, if m ≥ 0,

π∗(Lλ)⊗m = O(ΓmλT ∗X),

Rqπ∗(Lλ)⊗m = 0 if q > 0.

Thus ΓmλT ∗X and (Lλ)⊗m have the same cohomology. We can use the weak
holomorphic Morse inequalities on the flag manifold to obtain

h2(X,E3,mT
∗
X) ≤ Cd(d+ 13)m9 +O(m8).

The key point is to write in our situation Lλ as the difference of two nef
line bundles. This is done as follows. It is well known that the cotangent
space of the projective space twisted by O(2) is globally generated. Hence,
T ∗X ⊗OX(2) is globally generated as a quotient of T ∗P4 |X ⊗OX(2). Therefore

Lλ(T ∗X ⊗OX(2)) ∼= Lλ ⊗ π∗(OX(2|λ|) =: F

is nef, and we can write

Lλ = F ⊗G−1,

as a difference of two nef line bundles where G := π∗(OX(2|λ|). Obviously
we have

h0(X,E3,mT
∗
X) ≥ χ(X,E3,mT

∗
X)− h2(X,E3,mT

∗
X),

and we obtain that

H0(X,E3,mT
∗
X ⊗A−1) 6= 0,
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provided d ≥ 97, where A is an ample line bundle. As a corollary, any entire
curve in such an hypersurface must satisfy the corresponding differential
equation.

As we have noted above, the previous computations rely on the knowl-
edge of the decomposition in irreducible representations of Ek,mT

∗
X and

therefore, for the moment, cannot be generalized to dimension 5 and more.
Nevertheless, in the recent work [Mer10], Merker has been able to apply the
strategy described above to the bundle of Green-Griffths jet differentials and
obtained the existence of jet differentials on smooth hypersurfaces X ⊂ Pn+1

of general type, i.e. of degree deg(X) ≥ n+ 3 for any n.

6.4 Proof of the existence of jet differentials in
higher dimensions

The idea of the proof is to apply the algebraic holomorphic Morse inequalities
to a particular relatively nef line bundle over Xn which admits a nontrivial
morphism to (a power of) OXn(1) and then to conclude by the direct image
argument of Theorem 4.3.1, and Proposition 4.3.2.

From now on, we will set in the “absolute” case V = TX .

6.4.1 Choice of the appropriate subbundle

Recall that, for a = (a1, . . . , ak) ∈ Zk, we have defined a line bundle OXk(a)
on Xk as

OXk(a) = π∗1,kOX1(a1)⊗ π∗2,kOX2(a2)⊗ · · · ⊗ OXk(ak)

and an associated weight b = (b1, . . . , bk) ∈ Zk such that bj = a1 + · · ·+ aj ,
j = 1, . . . , k. Moreover, if b ∈ Nk, that is if a1 + · · · + aj ≥ 0, we had a
nontrivial morphism

OXk(a) = OXk(bk)⊗OXk(−b ·D?)→ OXk(bk)

and, if
a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1 and ak−1 ≥ 2ak > 0, (6.1)

then OXk(a) is relatively nef over X.
Now, let X ⊂ Pn+1 be a smooth complex projective hypersurface. Then

it is always possible to express OXk(a) as the difference of two globally nef
line bundles, provided condition (7.1) is satisfied.

Lemma 6.4.1. Let X ⊂ Pn+1 be a projective hypersurface. Set Lk = OXk(2·
3k−2, . . . , 6, 2, 1). Then Lk ⊗ π∗0,kOX(`) is nef if ` ≥ 2 · 3k−1. In particular,

Lk = Fk ⊗ G−1
k ,

where Fk
def
= Lk ⊗ π∗0,kOX(2 · 3k−1) and Gk

def
= π∗0,kOX(2 · 3k−1) are nef.
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Proof. Of course, as a pull-back of an ample line bundle,

Gk = π∗0,kOX(2 · 3k−1)

is nef. As we have seen, T ∗X ⊗OX(2) is globally generated as a quotient of
T ∗Pn+1 |X ⊗OX(2), so that OX1(1)⊗ π∗0,1OX(2) = OP(T ∗X⊗OX(2))(1) is nef.

Next, we construct by induction on k, a nef line bundle Ak → Xk such
that OXk+1

(1) ⊗ π∗kAk is nef. By definition, this is equivalent to say that
the vector bundle V ∗k ⊗ Ak is nef. By what we have just seen, we can take
A0 = OX(2) on X0 = X. Suppose A0, . . . , Ak−1 as been constructed. As
an extension of nef vector bundles is nef, dualizing the short exact sequence
(4.1) we find

0 −→ OXk(1) −→ V ∗k −→ T ∗Xk/Xk−1
−→ 0,

and so we see, twisting by Ak, that it suffices to select Ak in such a way that
both OXk(1)⊗Ak and T ∗Xk/Xk−1

⊗Ak are nef. To this aim, considering the

second wedge power of the central term in (4.2), we get an injection

0 −→ TXk/Xk−1
−→

∧
2(π∗kVk−1 ⊗OXk(1))

and so dualizing and twisting by OXk(2)⊗ π∗kA
⊗2
k−1, we find a surjection

π∗k
∧

2(V ∗k−1 ⊗Ak−1) −→ T ∗Xk/Xk−1
⊗OXk(2)⊗ π∗kA⊗2

k−1 −→ 0.

By induction hypothesis, V ∗k−1 ⊗ Ak−1 is nef so the quotient T ∗Xk/Xk−1
⊗

OXk(2)⊗π∗kA
⊗2
k−1 is nef, too. In order to have the nefness of bothOXk(1)⊗Ak

and T ∗Xk/Xk−1
⊗Ak, it is enough to select Ak in such a way that Ak⊗π∗kA∗k−1

and Ak ⊗OXk(−2)⊗ π∗kA∗k−1
⊗2 are both nef: therefore we set

Ak = OXk(2)⊗ π∗kA⊗3
k−1 =

(
OXk(1)⊗ π∗kAk−1

)⊗2 ⊗ π∗kAk−1,

which, as a product of nef line bundles, is nef and satisfies the two conditions
above. This gives Ak inductively, and the resulting formula for OXk(1) ⊗
π∗kAk−1 is

OXk(1)⊗ π∗kAk−1 = Lk ⊗ π∗0,kOX(2 · (1 + 2 + · · ·+ 2 · 3k−2))

= Lk ⊗ π∗0,kOX(2 · 3k−1).

The lemma is proved.

We now use the above lemma to deal with general weights satisfying
condition (7.1).
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Proposition 6.4.2. Let X ⊂ Pn+1 be a smooth projective hypersurface
and OX(1) be the hyperplane divisor on X. If condition (7.1) holds, then
OXk(a)⊗ π∗0,kOX(`) is nef provided that ` ≥ 2|a|, where |a| = a1 + · · ·+ ak.

In particular OXk(a) =
(
OXk(a) ⊗ π∗0,kOX(2|a|)

)
⊗ π∗0,kOX(−2|a|) and

both OXk(a)⊗ π∗0,kOX(2|a|) and π∗0,kOX(2|a|) are nef.

Proof. By Lemma 7.4.1, we know that the line bundle

OXk(2 · 3k−2, 2 · 3k−3, . . . , 6, 2, 1)⊗ π∗0,kOX(`)

is nef as soon as ` ≥ 2 · (1 + 2 + 6 + · · ·+ 2 · 3k−2) = 2 · 3k−1. Now we take
a = (a1, . . . , ak) ∈ Nk such that a1 ≥ 3a2, . . . , ak−2 ≥ 3ak−1, ak−1 ≥ 2ak > 0
and we proceed by induction, the case k = 1 being obvious. Write

OXk(a1, a2, . . . , ak)⊗ π∗0,kOX(2 · (a1 + · · ·+ ak))

=
(
OXk(2 · 3k−2, . . . , 6, 2, 1)⊗ π∗0,kOX(2 · 3k−1)

)⊗ak
⊗ π∗k

(
OXk−1

(a1 − 2 · 3k−2ak, . . . , ak−2 − 6ak, ak−1 − 2ak)

⊗ π∗0,k−1OX
(
2 · (a1 + · · ·+ ak − 3k−1ak)

))
.

Therefore, we have to prove that

OXk−1
(a1 − 2 · 3k−2ak, . . . , ak−2 − 6ak, ak−1 − 2ak)

⊗ π∗0,k−1OX
(
2 · (a1 + · · ·+ ak − 3k−1ak)

)
is nef. Our chain of inequalities gives, for 1 ≤ j ≤ k− 2, aj ≥ 3k−j−1ak and
ak−1 ≥ 2ak. Thus, condition (7.1) is satisfied by the weights of

OXk−1
(a1 − 2 · 3k−2ak, . . . , ak−2 − 6ak, ak−1 − 2ak)

and 2 · (a1 + · · ·+ak−3k−1ak) is exactly twice the sum of these weights.

Remark 4. At this point it should be clear that to prove Theorem 7.2.3 is
sufficient to show the existence of an n-tuple (a1, . . . , an) satisfying condition
(7.1) and such that(

OXn(a)⊗ π∗0,nOX(2|a|)
)n2

− n2
(
OXn(a)⊗ π∗0,nOX(2|a|)

)n2−1 · π∗0,nOX(2|a|) > 0
(6.2)

for d = degX large enough, where n2 = n+ n(n− 1) = dimXn.
In fact, this would show the bigness of OXn(a) ↪→ OXn(|a|) and so the

bigness of OXn(1).

Now, we will explain how to compute this intersection number using the
inductive structure of Demailly’s tower.
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6.4.2 Cohomology ring of Xk

Denote by c•(E) the total Chern class of a vector bundle E. The short exact
sequences (4.1) and (4.2) give us, for each k > 0, the following formulae:

c•(Vk) = c•(TXk/Xk−1
)c•(OXk(−1))

and
c•(π

∗
kVk−1 ⊗OXk(1)) = c•(TXk/Xk−1

),

so that
c•(Vk) = c•(OXk(−1))c•(π

∗
kVk−1 ⊗OXk(1)). (6.3)

Let us call uj = c1(OXj (1)) and c
[j]
l = cl(Vj). With these notations, (7.3)

becomes

c
[k]
l =

l∑
s=0

[(
n− s
l − s

)
−
(

n− s
l − s− 1

)]
ul−sk · π∗kc[k−1]

s , 1 ≤ l ≤ r. (6.4)

Since Xj is the projectivized bundle of line of Vj−1, we also have the poly-
nomial relations

urj + π∗j c
[j−1]
1 · ur−1

j + · · ·+ π∗j c
[j−1]
r−1 · uj + π∗j c

[j−1]
r = 0, 1 ≤ j ≤ k. (6.5)

After all, the cohomology ring of Xk is defined in terms of generators and
relations as the polynomial algebra H•(X)[u1, . . . , uk] with the relations

(7.5) in which, utilizing recursively (7.4), we have that c
[j]
l is a polynomial

with integral coefficients in the variables u1, . . . , uj , c1(V ), . . . , cl(V ).
In particular, for the first Chern class of Vk, we obtain the very simple

expression

c
[k]
1 = π∗0,kc1(V ) + (r − 1)

k∑
s=1

π∗s,kus. (6.6)

6.4.3 Evaluation in terms of the degree

For X ⊂ Pn+1 a smooth projective hypersurface of degree degX = d, we
have a short exact sequence

0 −→ TX −→ TPn+1 |X −→ OX(d) −→ 0;

so we get the following relation for the total Chern class of X:

(1 + h)n+2 = (1 + d h)c•(X),

where h = c1(OPn+1(1)) and (1 + h)n+2 is the total Chern class of Pn+1.
Thus, an easy computation shows that

cj(X) = cj(TX) = (−1)jhj
j∑

k=0

(−1)k
(
n+ 2

k

)
dj−k,
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where h ∈ H2(X,Z) is the hyperplane class. In particular

cj(X) = hj
(
(−1)jdj + o(dj)

)
, j = 1, . . . , n,

and o(dj) is a polynomial in d of degree at most j − 1.

Proposition 6.4.3. The quantities(
OXk(a)⊗ π∗0,kOX(2|a|)

)n+k(n−1)

− [n+ k(n− 1)]
(
OXk(a)⊗ π∗0,kOX(2|a|)

)n+k(n−1)−1 · π∗0,kOX(2|a|)

and
OXk(a)n+k(n−1)

are both polynomials in the variable d with coefficients in Z[a1, . . . , ak] of
degree at most n+ 1 and the coefficients of dn+1 of the two expressions are
equal.

Moreover this coefficient is a homogeneous polynomial in a1, . . . , ak of
degree n+ k(n− 1) or identically zero.

Proof. Set Fk(a) = OXk(a)⊗π∗0,kOX(2|a|) and Gk(a) = π∗0,kOX(2|a|). Then
we have

Fk(a)n+k(n−1) + [n+ k(n− 1)]Fk(a)n+k(n−1)−1 · Gk(a)

= OXk(a)n+k(n−1) + terms which have Gk(a) as a factor.

Now we use relations (7.4) and (7.5) to observe that

OXk(a)n+k(n−1) =
∑

j1+2j2+···+njn=n

P
[k]
j1···jn(a) c1(X)j1 · · · cn(X)jn ,

where the P
[k]
j1···jn(a)’s are homogeneous polynomial of degree n + k(n − 1)

in the variables a1, . . . , ak (or possibly identically zero). Thus, substituting
the cj(X)’s with their expression in terms of the degree, we get

OXk(a)n+k(n−1) = (−1)n

 ∑
j1+2j2+···+njn=n

P
[k]
j1···jn(a)

 dn+1 + o(dn+1),

since hn = d. On the other hand, utilizing relations (7.4) and (7.5) on terms
which have Gk(a) as a factor, gives something of the form∑

j1+2j2+···+njn+i=n
i>0

Q
[k]
j1···jni(a)hi · c1(X)j1 · · · cn(X)jn ,

since c1(Gk(a)) = |a|h and Gk(a) is always a factor. Substituting the cj(X)’s
with their expression in terms of the degree, we get here

hi · c1(X)j1 · · · cn(X)jn = (−1)j1+···+jn hn︸︷︷︸
=d

·dj1+···+jn = o(dn+1).
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At this point, we need an elementary lemma to deal with “generic”
weights.

Lemma 6.4.4. Let C ⊂ Rk be a cone with nonempty interior. Let Zk ⊂ Rk
be the canonical lattice in Rk. Then Zk ∩ C is Zariski dense in Rk.

Proof. Since C is a cone with nonempty interior, it contains cubes of arbi-
trary large edges, so Zk ∩C contains a product of integral intervals

∏
[αi, βi]

with βi − αi > N . By using induction on dimension, this implies that a
polynomial P of degree at most N vanishing on Zk ∩ C must be identically
zero. As N can be taken arbitrary large, we conclude that Zk ∩ C is Zariski
dense.

Remark 5. This lemma is in fact the elementary key for the effective esti-
mates on the degree. This will be explained in the next sections.

Corollary 6.4.5. If the top self-intersection OXk(a)n+k(n−1) has degree
exactly equal to n+ 1 in d for some choice of a, then OXk(m)⊗π∗0,kA−1 has
a global section for all line bundle A→ X and for all d,m sufficiently large.

Proof. The real k-tuples which satisfy condition (7.1), form a cone with
non-empty interior in Rk. Thus, by Lemma 7.4.4, there exists an inte-
gral a′ satisfying condition (7.1) and such that OXk(a′)n+k(n−1) has degree
exactly n + 1 in d. For reasons similar to those in the proof of Propo-
sition 7.4.3, the coefficient of degree n + 1 in d of OXk(a′)n+k(n−1) and(
OXk(a′) ⊗ π∗0,kOX(2|a′|)

)n+k(n−1)
are the same; the second one being nef,

this coefficient must be positive.

Now, by Proposition 7.4.3, this coefficient is the same as the coefficient
of degree n+ 1 in d of(
OXk(a′)⊗ π∗0,kOX(2|a′|)

)n+k(n−1)

− [n+ k(n− 1)]
(
OXk(a′)⊗ π∗0,kOX(2|a′|)

)n+k(n−1)−1 · π∗0,kOX(2|a′|).

But then this last quantity is positive for d large enough, and the corollary
follows by an application of algebraic holomorphic Morse inequalities.

Corollary 6.4.6. For k < n, the coefficient of dn+1 in the expression of

OXk(a)n+k(n−1)

is identically zero.

Proof. Otherwise, we would have global sections of OXk(m) for m large and
k < n, which is impossible by Theorem 6.1.1.
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6.4.4 Bigness of OXn(1)

Thanks to the results of the previous subsection, to show the existence of a
global section of OXn(m)⊗π∗0,nA−1 for m and d large, we just need to show

that OXn(a)n
2

has degree exactly n+ 1 in d for some n-tuple (a1, . . . , an).

The multinomial theorem gives

(a1π
∗
1,ku1 + · · ·+ akuk)

n+k(n−1)

=
∑

j1+···+jk=n+k(n−1)

(n+ k(n− 1))!

j1! · · · jk!
aj11 · · · a

jk
k π∗1,ku

j1
1 · · ·u

jk
k .

We need two technical lemmas.

Lemma 6.4.7. The coefficient of degree n + 1 in d of the two following
intersections is zero:

• π∗1,ku
j1
1 ·π∗2,ku

j2
2 · · ·u

jk
k for all 1 ≤ k ≤ n−1 and j1+· · ·+jk = n+k(n−1)

• π∗1,n−i−1u
j1
1 ·π∗2,n−i−1u

j2
2 · · ·u

jn−i−1

n−i−1 ·π∗0,n−i−1c1(X)i for all 1 ≤ i ≤ n−2
and j1 + · · ·+ jn−i−1 = (n− i− 1)n+ 1.

Proof. The first statement is straightforward: if it fails to be true, we would
find an a which satisfies the hypothesis of Corollary 7.4.5 for k < n, contra-
dicting Corollary 7.4.6.

For the second statement we proceed by induction on i. Let us start
with i = 1. By the first part of the present lemma, we have that

π∗1,n−1u
j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · u
n
n−1 = o(dn+1).

On the other hand, relation (7.5) gives

π∗1,n−1u
j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · u
n
n−1

= π∗1,n−1u
j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2

·
(
−π∗n−1c

[n−2]
1 · un−1

n−1 − · · · − π
∗
n−1c

[n−2]
n−1 · un−1 − π∗n−1c

[n−2]
n

)
= −π∗1,n−1u

j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · π
∗
n−1c

[n−2]
1 · un−1

n−1

and the second equality is true for degree reasons:

uj11 · u
j2
2 · · ·u

jn−2

n−2 · c
[n−2]
l , l = 2, . . . , n,

“lives” on Xn−2 and has total degree n+(n−2)(n−1)−1+l which is strictly

greater than n+(n−2)(n−1) = dimXn−2, so that uj11 ·u
j2
2 · · ·u

jn−2

n−2 ·c
[n−2]
l = 0.
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Now, we use relation (7.6) and obtain in this way

π∗1,n−1u
j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · u
n
n−1

= −π∗1,n−1u
j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · u
n−1
n−1

·
(
π∗0,n−1c1(X) + (n− 1)

n−2∑
s=1

π∗s,n−1us

)
= −π∗1,n−1u

j1
1 · π

∗
2,n−1u

j2
2 · · ·π

∗
n−1u

jn−2

n−2 · u
n−1
n−1 · π

∗
0,n−1c1(X)

− (n− 1)un−1
n−1 ·

n−2∑
s=1

π∗1,n−1u
j1
1 · · ·π

∗
s,n−1u

js+1
s · · ·π∗n−1u

jn−2

n−2 .

An integration along the fibers of Xn−1 → Xn−2 then gives

π∗1,n−2u
j1
1 · π

∗
2,n−2u

j2
2 · · ·u

jn−2

n−2 · π
∗
0,n−2c1(X)

= −(n− 1) ·
n−2∑
s=1

π∗1,n−2u
j1
1 · · ·π

∗
s,n−2u

js+1
s · · ·ujn−2

n−2︸ ︷︷ ︸
=o(dn+1) by the first part of the lemma

+ o(dn+1)

and so π∗1,n−2u
j1
1 · π∗2,n−2u

j2
2 · · ·u

jn−2

n−2 · π∗0,n−2c1(X) = o(dn+1).

To complete the proof, observe that – as before – relations (7.5) and
(7.6) together with a completely similar degree argument give

π∗1,n−iu
j1
1 · π

∗
2,n−iu

j2
2 · · ·u

jn−i−1

n−i · π∗0,n−ic1(X)i · unn−i
= −π∗1,n−iu

j1
1 · π

∗
2,n−iu

j2
2 · · ·π

∗
n−iu

jn−i−1

n−i−1 · u
n−1
n−i · π

∗
0,n−ic1(X)i+1

− (n− 1)un−1
n−i ·

n−i−1∑
s=1

π∗1,n−iu
j1
1 · · ·π

∗
s,n−iu

js+1
s · · ·π∗n−iu

jn−i−1

n−i−1 .

But

π∗1,n−iu
j1
1 · π

∗
2,n−iu

j2
2 · · ·u

jn−i−1

n−i · π∗0,n−ic1(X)i · unn−i = o(dn+1)

by induction, and

π∗1,n−iu
j1
1 · · ·π

∗
s,n−iu

js+1
s · · ·π∗n−iu

jn−i−1

n−i−1 = o(dn+1),

1 ≤ s ≤ n− i− 1, thanks to the first part of the lemma.

Lemma 6.4.8. The coefficient of degree n+ 1 in d of π∗1,nu
n
1 · π∗2,nun2 · · ·unn

is the same of the one of (−1)nc1(X)n, that is 1.
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Proof. An explicit computation yields:

π∗1,nu
n
1 · π∗2,nun2 · · ·unn

(i)
= π∗1,nu

n
1 · π∗2,nun2 · · ·π∗nunn−1

(
−π∗nc

[n−1]
1 · un−1

n

− · · · − π∗nc
[n−1]
n−1 · un − π

∗
nc

[n−1]
n

)
(ii)
= −π∗1,nun1 · π∗2,nun2 · · ·π∗nunn−1 · un−1

n · π∗nc
[n−1]
1

(iii)
= −π∗1,nun1 · π∗2,nun2 · · ·π∗nunn−1 · un−1

n

· π∗n
(
π∗0,n−1c1(X) + (n− 1)

n−1∑
s=1

π∗s,n−1us

)
(iv)
= −π∗1,nun1 · π∗2,nun2 · · ·π∗nunn−1 · un−1

n · π∗0,nc1(X)

+ o(dn+1)

= · · ·
(v)
= (−1)nπ∗0,kc1(X)n · π∗1,kun−1

1 · · ·un−1
n + o(dn+1)

(vi)
= (−1)nc1(X)n + o(dn+1).

Let us say a few words about the previous equalities. Equality (i) is just

relation (7.5). Equality (ii) is true for degree reasons: un1 ·un2 · · ·unn−1 ·c
[n−1]
l ,

l = 2, . . . , n, “lives” on Xn−1 and has total degree n(n−1)+l which is strictly

greater than n+(n−1)(n−1) = dimXn−1, so that un1 ·un2 · · ·unn−1 ·c
[n−1]
l = 0.

Equality (iii) is just relation (7.6). Equality (iv) follows from the first part
of Lemma 7.4.7: un1 · · ·un+1

s · · ·unn−1 = o(dn+1). Equality (v) is obtained by
applying repeatedly the second part of Lemma 7.4.7. Finally, equality (vi)
is simply integration along the fibers. The lemma is proved.

Now, look at the coefficient of degree n+ 1 in d of the expression

OXn(a)n
2

=
(
a1π

∗
1,nu1 + · · ·+ anun

)n2

,

where we consider the aj ’s as variables: we claim that it is a non identically
zero homogeneous polynomial of degree n2. To see this, we just observe
that, thanks to Lemma 7.4.8, the coefficient of the monomial an1 · · · ann is
(n2)!/(n!)n.

Hence there exists an a which satisfies the hypothesis of Corollary 7.4.5
for k = n, and the existence of jet differentials is proved.

Existence of jet differential with controlled vanishing

In our applications, it will be crucial to be able to control in a more precise
way the order of vanishing of these differential operators along the ample
divisor. Thus, we shall need here a slightly different version of Theorem
7.2.3.
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Theorem 6.4.9 ( [DMR10]). Let X ⊂ Pn+1 by a smooth complex hyper-
surface of degree degX = d. Then, for all positive rational numbers δ
small enough, there exists a positive integer dn such that the following non-
vanishing holds:

H0(Xn,OXn(m)⊗ π∗0,nK−δmX ) = H0(X,En,mT
∗
X ⊗K−δmX ) 6= 0,

provided d ≥ dn and m is large and divisible enough.

Remark 6. Recall that for X a smooth projective hypersurface of degree d
in Pn+1, the canonical bundle has the following expression in terms of the
hyperplane bundle:

KX ' OX(d− n− 2).

Thus, a non-zero section in H0(X,En,mT
∗
X ⊗K

−δm
X ), has vanishing order at

least δm(d− n− 2), seen as a section of H0(X,En,mT
∗
X).

Proof of Theorem 7.4.9. For each weight a ∈ Nn which satisfies (7.1), we

first of all express OXn(a) ⊗ π∗0,nK
−δ|a|
X as the difference of two nef line

bundles:

OXn(a)⊗ π∗0,nK
−δ|a|
X

=
(
OXn(a)⊗ π∗0,nOX(2|a|)

)
⊗
(
π∗0,nOX(2|a|)⊗ π∗0,nK

δ|a|
X )

)−1
.

This leads to evaluate, in order to apply holomorphic Morse inequalities,
the following intersection product:

(
OXn(a)⊗ π∗0,nOX(2|a|)

)n2

− n2
(
OXn(a)⊗ π∗0,nOX(2|a|)

)n2−1 ·
(
π∗0,nOX(2|a|)⊗ π∗0,nK

δ|a|
X )

)
.

After elimination, this intersection product gives back a polynomial in d
of degree less than or equal to n + 1, whose coefficients are polynomial
in a and δ of bidegree (n2, 1), homogeneous in a. Notice that, for δ =
0, this gives back (7.2) for which we know that there exists a weight a
satisfying condition (7.1) such that this polynomial has exactly degree n+ 1
and positive leading coefficient, which is what we need to achieve to proof.
Thus, by continuity, for the same weight a, for all δ > 0 small enough, we
get the same conclusion.

6.5 Meromorphic vector fields

The other ingredient in the proof is, as we have seen in the previous chapter,
the existence of enough global meromorphic vector fields with controlled pole
order on the space of vertical jets of the universal hypersurface: this result
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has been obtained in the case of arbitrary dimension in [Mer09] and general-
izes the corresponding versions in dimension 2 and 3 contained respectively
in [Pău08] and [Rou07].

Before stating the theorem, we fix once again the notations. Let X ⊂
Pn+1 × PNd be the universal projective hypersurface of degree d in Pn+1,
whose parameter space is the projectivization P

(
H0(Pn+1,O(d))

)
= PNd−1,

Nd =
(
n+d+1

d

)
; then we have two natural projections

X
pr1

||

pr2

##
Pn+1 PNd−1.

Consider the relative tangent bundle V ⊂ TX with respect to the second
projection V = ker(pr2)∗, and form the corresponding directed manifold
(X ,V).

Now, let p : JnV → X be the bundle of n-jets of germs of holomorphic
curves in X tangent to V, i.e. of vertical jets, and consider the subbundle
JnVreg of regular n-jets of maps f : (C, 0) → X tangent to V such that
f ′(0) 6= 0.

Theorem 6.5.1 ( [Mer09]). The twisted tangent space to vertical n-jets

TJnV ⊗ p∗pr∗1OPn+1(n2 + 2n)⊗ p∗pr∗2OPNd−1(1)

is generated over JnVreg by its global holomorphic sections.

Moreover, one may choose such global generating vector fields to be in-
variant with respect to the action of Gn on JnV.

The proof of this theorem is in essence the same of the one presented
above for the two dimensional case. Nevertheless the computational and
combinatorial aspects, as one can guess, are much more involved. We refer
to the original paper of Merker for a complete proof.

Note that this statement is stronger than the one described in the pre-
vious chapter: the global generation is over a bigger open subset of JnV, no
wronskian locus appears. The price for this is a bigger order of poles (for
n = 2, the pole order here is 8 instead of 7), but this permits a more precise
localization of the entire curves.

There is also a weaker version of this theorem, which is the precise gen-
eralization of the statement in [Pău08] and [Rou07], which gives better pole
order. This version gives global generation outside the wronskian locus Σ,
with pole order (n2 + 5n)/2, and it suffices for instance to treat the case of
threefold in projective 4-space (see Corollary 7.1.3).

Of course, the pole order is important as far as the effective aspects on
the degree of the hypersurfaces are concerned.
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6.6 Effective aspects

In this section we shall try to outline the idea of the proof for the effective
part of Theorem 7.1.1. The interested reader can find all the details in
[DMR10]: we shall skip this here, since the combinatorics and the complexity
of the computations are very involved.

Recall that we have to show that if d ≥ 2n
5
, then we have the existence

of the proper subvariety Y ⊂ X absorbing the images of non constant entire
curves, for X ⊂ Pn+1 a generic smooth projective hypersurface of degree d.

As a byproduct of the proof of the theorem we gave above, we deduce
that the bound for the degree depends on

(i) the lowest integer d1 such that δ > (n2 + 2n)/(d2 − n− 2), whenever
degX = d1;

(ii) the lowest integer d2 such that H0(X,En,mT
∗
X⊗K

−δm
X ) 6= 0 for m� 1,

whenever degX = d2.

Then, d0 = max{d1, d2} will do the job.

6.6.1 The strategy of the effective estimate

The starting point of our effective estimate is the following, elementary
lemma.

Lemma 6.6.1. Let p(z) = zd + a1 z
d−1 + · · · + ad ∈ C[z] be a monic poly-

nomial of degree d and let z0 be a root of p. Then

|z0| ≤ 2 max
j=1,...,d

|aj |1/j .

Proof. Otherwise |z0| > 2|aj |1/j for every j = 1, . . . , d and, from −1 =
a1/z0 + · · ·+ ad/z

d
0 we would obtain

1 ≤ 2−1 + · · ·+ 2−d,

contradiction.

Recall that, in order to produce a global invariant jet differential with
controlled vanishing order, we had to ensure the positivity of a certain in-
tersection product, namely(
OXn(a)⊗ π∗0,nOX(2|a|)

)n2

− n2
(
OXn(a)⊗ π∗0,nOX(2|a|)

)n2−1 ·
(
π∗0,nOX(2|a|)⊗ π∗0,nK

δ|a|
X )

)
,

for some a satisfying (7.1) and δ > 0 (cf. Theorem 7.4.9). This intersection
product, after elimination, gives back a polynomial in the degree of the
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hypersurfaces (seen as an indeterminate) of degree n+ 1, whose coefficients
are polynomial in a and δ of bidegree (n2, 1), homogeneous in a. Call it

Pa,δ(d) = Pa(d) + δ P′a(d).

Observe once again that the above polynomial with δ = 0 is the result of
the intersection product (7.2), the positivity of which gives the existence of
global invariant jet differentials with no control on their vanishing order.

Now, suppose we are able to choose the weight a explicitly, depending
on n, in such a way that it satisfies (7.1) and that Pa has positive leading
coefficient and we have an explicit control of its coefficients in terms of n
only. This will be possible, as anticipated in Remark 5, by the following
basic observation.

Proposition 6.6.2. The cube in Rn(a1,...,an) with integral edges defined by

1 ≤ an ≤ 1 + n2, 3n2 ≤ an−1 ≤ (3 + 1)n2,

(32 + 3)n2 ≤ an−2 ≤ (32 + 3 + 1)n2, . . .

(3n−1 + · · ·+ 3)n2 ≤ a1 ≤ (3n−1 + · · ·+ 3 + 1)n2

is contained in the cone defined by (7.1) and there exists at least one n-tuple
a of integers belonging to this cube with the property that pn+1,a is non zero.

Moreover, for such an a we have the effective, explicit control

max
1≤j≤n

aj = a1 ≤
3n − 1

2
n2 ≤ 3n

2
n2.

Proof. This is just an explicit rephrasing of Lemma 7.4.4.

In addition, suppose we have for this choice of the weight an explicit
control of the coefficients of P′a and that its leading coefficient is negative
(the latter trivially holds true since otherwise (7.2) would be positive for
δ � 1, which is impossible, since KX is ample). Write

Pa(d) =
n+1∑
k=0

pk,a d
k, P′a(d) =

n+1∑
k=0

p′k,a d
k,

with |pj,a| ≤ Ej , j = 0, . . . , n, pn+1,a ≥ Gn+1 ≥ 1 and |p′j,a| ≤ E′j , j =
0, . . . , n+ 1, the aforesaid explicit, depending on n only, bounds.

Next, choose δ to be one half of Gn+1/E
′
n+1 so that the leading coefficient

pn+1,a − δ|p′n+1,a| of Pa,δ(d) is bounded below by 1/2. In order to apply
Lemma 7.6.1, we divide Pa,δ(d) by its leading coefficient and thus we obtain
that the biggest integral root of Pa,δ(d) is less than or equal to

d2
def
= 2 max

j=1,...,n+1

(
2Ej +

Gn+1

E′n+1

E′j

) 1
n+1−j

.
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In order to have not only the existence of global invariant jet differentials
with controlled vanishing order, but also algebraic degeneracy, we have to
insure condition (i) above to be satisfied, too. This means that d must be
greater than

d1
def
= n+ 2 + 2

E′n+1

Gn+1
(n2 + 2n).

In conclusion, we would have the effective estimate of Theorem 7.1.1 if

max{d1, d2} < 2n
5
. (6.7)

Thus, inequality (7.7) amounts to bound the quantities Ej , E′j , Gn+1,
j = 1, . . . , n + 1. For that, one has to control (7.2) by estimating at each
step the process of elimination of all the Chern classes living at each level of
the jet tower, which happens to be of high algebraic complexity. The reason
sits in the intertwining of four different combinatoric aspects: the presence
of several relations shared by all the Chern classes of the lifted horizontal
contact distributions Vk, the Newton expansion of large n2-powers by the
multinomial theorem, the differences of various multinomial coefficients and
the appearance of many Jacobi-Trudy type determinants.

As said before, we refer to the original paper [DMR10] for the details of
these computations.
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