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1. Introduction

Let Ω be an open bounded subset of R
N with regular boundary and let T > 0.

We study existence, uniqueness and regularity for the solution of the linear pseudo-
parabolic problem with memory, given by

−div



C∇ut + A∇u+

t
∫

0

B(x, t− τ)∇u dτ



 = f , in Ω× (0, T );

u = 0 , on ∂Ω × (0, T );
u(x, 0) = u0(x) , in Ω,

(1.1)
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where A,B,C : Ω × (0, T ) → RN2

are symmetric matrices, A is positive definite and
C is only positive semi-definite. Here, f : Ω× (0, T ) → R and u0 : Ω → R are given
functions.
This problem, in the coercive case, arises in the study of electrical conduction in

conductive media with microscopical dielectrical inclusions [6, 7] and more recently
in [8], in the case of the so-called connected/connected geometry; i.e., when the two
conductive regions separated by the interface are both connected. The noncoercive
case is expected to appear in the layered geometry; i.e., when the interfaces are
layered (see [8, Remark 4.10]).
The coercive elliptic version of the previous problem arises as the homogenization

limit in the study of some models for electrical conduction in biological tissues ([1,
3, 4, 5]) and has been considered from the point of view of the well-posedness in [2].
From the physical point of view, problem (1.1) describes the effective behaviour

of the homogenized potential appearing in the macroscopic model of the composite
material mentioned above. Here, the unknown u represents the electrical potential
and the driven electrical current

−C(x, t)∇ut −A(x, t)∇u−
t

∫

0

B(x, t− τ)∇u(x, τ) dτ

depends on the history of the electrical field −∇u, therefore it is non local in time.
The term −C(x, t)∇ut originates from the displacement currents due to the presence
of the dielectric interfaces.

Diffusion problems with history are well known not only in the framework of bi-
ological applications but also in continuum mechanics; for instance, to model fluid
flow and heat conduction (see, e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and the
references therein).

When problems of type (1.1) appear as homogenization limit, this automatically
yields the existence of solutions. Here, we prove an independent result of existence
and uniqueness under more general assumptions.

The paper is organized as follows. In Section 2, we state and prove the existence
and uniqueness of the corresponding coercive problem. In Section 3, we prove the
existence and uniqueness in the positive semi-definite case.

2. The coercive case

In this section, we will assume that B ∈ L2(0, T ;L∞(Ω;RN2

)) and A,C ∈ L∞(Ω ×
(0, T );RN2

) are such that

λ|ξ|2 ≤ A(x, t)ξ · ξ ≤ Λ|ξ|2 , for a.e. (x, t) ∈ Ω × (0, T ) and ∀ξ ∈ R
N ; (2.1)

λ|ξ|2 ≤ C(x, t)ξ · ξ ≤ Λ|ξ|2 , for a.e. (x, t) ∈ Ω × (0, T ) and ∀ξ ∈ R
N , (2.2)

for suitable 0 < λ < Λ < +∞. For the sake of brevity, we will employ the notation
‖v‖2 to denote the usual L2(Ω× (0, T ))-norm of a given function v ∈ L2(Ω× (0, T )).
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Theorem 2.1. Assume that f ∈ L2(Ω× (0, T )) and u0 ∈ H1
0 (Ω). Then, there exists

a unique function u ∈ L2(0, T ;H1
0(Ω)) satisfying in the sense of distributions problem

(1.1). The initial data is taken in the sense of L2(Ω).

Proof. Consider the Banach space X = L2(0, T1;H
1
0 (Ω)) , endowed with the usual

norm

‖u‖X :=





T1
∫

0

∫

Ω

|∇u|2 dx dt





1/2

,

where T1 ≤ T will be chosen later. Let us introduce an operator H acting on X by
means of H(u) = w, where

w(x, t) = u0(x) +

t
∫

0

w(x, τ) dτ , for a.e. (x, t) ∈ Ω × (0, T1), (2.3)

and w is the weak solution of

− div
(

C(x, t)∇w
)

= div
(

A(x, t)∇u(x, t) +

t
∫

0

B(x, t− τ)∇u(x, τ) dτ
)

+ f(x, t) ,

in X . Clearly, the operator H is well defined; indeed, multiplying the previous
equation by w and integrating by parts, we obtain

λ‖w‖2X ≤
T1
∫

0

∫

Ω

C∇w · ∇w dx dt =

−
T1
∫

0

∫

Ω

A∇u · ∇w dx dt−
T1
∫

0

∫

Ω





t
∫

0

B∇u dτ



 · ∇w dx dt+

T1
∫

0

∫

Ω

fw dx dt ≤

Λ

2δ
‖u‖2X +

Λδ

2
‖w‖2X +

T1‖B‖2L2(0,T1;L∞(Ω))

2δ
‖u‖2X +

δ

2
‖w‖2X +

‖f‖22
2δ

+
cδ

2
‖w‖2X ,

where c is the Poincaré’s constant. Therefore, taking δ = λ
Λ+1+c

, we can absorb the
second, the fourth and the sixth term on the right-most hand side into the left-most
hand side, thus obtaining

‖w‖2X ≤ Λ + 1 + c

λ2

[

(Λ + T1‖B‖2L2(0,T1;L∞(Ω)))‖u‖2X + ‖f‖22
]

. (2.4)

Hence, by (2.3) and (2.4), it follows

‖w‖2X ≤ T1‖u0‖2H1

0
(Ω) + T 2

1 ‖w‖2X ≤

T1‖u0‖2H1

0
(Ω) + T 2

1

Λ + 1 + c

λ2

[

(Λ + T1‖B‖2L2(0,T1;L∞(Ω)))‖u‖2X + ‖f‖22
]

. (2.5)

Therefore, H(X) ⊂ X and, taking into account (2.3), we have also w = H(u) ∈
H1(Ω × (0, T1)).
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Next, let us prove that the operator H is a contraction map. Indeed, given u1, u2 ∈
X , we have that w := H(u1)−H(u2) has null trace on the boundary ∂Ω, w(x, 0) = 0
and it solves

− div
(

C(x, t)∇w
)

= div
(

A(x, t)∇u+

t
∫

0

B(x, t− τ)∇u(x, τ) dτ
)

,

where u = u1 − u2 and, according to (2.3), w = wt. Hence, by (2.5), we obtain

‖H(u1)−H(u2)‖2X = ‖w‖2X ≤ T 2
1

Λ+ 1 + c

λ2
(Λ+T1‖B‖2L2(0,T1;L∞(Ω)))‖u1−u2‖2X . (2.6)

Now, recalling that T1 ≤ T , setting

γ =
Λ + 1 + c

λ2
(Λ + T‖B‖2L2(0,T1;L∞(Ω))) ,

and choosing T1 = 1/2
√
γ, we obtain that H is a contraction. So, it admits a unique

fixed point, i.e., a unique solution of (1.1) exists in X . Noting that the width T1 of
the time interval is independent of the iteration step, we may conclude the proof by
iterating this argument over (0, T ). �

Remark 2.2. Actually, (2.3) proves that the solution to problem (1.1) belongs to the
space H1(0, T ;H1

0(Ω)). �

3. Main Result

The aim of this section is to prove an existence and uniqueness result for the general
non-coercive case. To this purpose, we first regularize the problem adding an ε-
perturbation, ε > 0, to the matrix C, in order to make it coercive. Then, we prove
suitable uniform estimates with respect to ε. Finally, we obtain the desired result
letting ε → 0. Thus, for any ε > 0, set

Cε(x, t) = C(x, t) + εI , (3.1)

where ε > 0, I is the identity matrix and C ∈ L∞
(

Ω;W 1,∞(0, T ;RN2

)
)

satisfies

C(x, t)ξ · ξ ≥ 0, for a.e. (x, t) ∈ Ω × (0, T ) and every ξ ∈ R
N , (3.2)

Ct(x, t)ξ · ξ ≤ 0 for a.e. (x, t) ∈ Ω × (0, T ) and every ξ ∈ R
N, or ‖Ct‖∞ ≤ λ. (3.3)

For the sake of brevity, we employ the notation ‖D‖∞ to denote the L∞(Ω ×
(0, T );RN2

)-norm of a given matrix D ∈ L∞(Ω × (0, T );RN2

).
Notice that, when C is independent of t, we are simply requiring that (3.2) holds

and C ∈ L∞(Ω;RN2

), while condition (3.3) is automatically satisfied.
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We assume also that A,B ∈ L∞(Ω × (0, T );RN2

) and A satisfies (2.1). For any
ε > 0, we consider the coercive problem

−div



Cε∇uε
t + A∇uε +

t
∫

0

B(x, t− τ)∇uε dτ



 = f , in Ω× (0, T );

uε = 0 , on ∂Ω× (0, T );
uε(x, 0) = u0(x) , in Ω;

(3.4)
whose weak formulation is the following

T
∫

0

∫

Ω

Cε∇uε
t · ∇ϕ dx dt +

T
∫

0

∫

Ω

A∇uε · ∇ϕ dx dt

+

T
∫

0

∫

Ω





t
∫

0

B(x, t− τ)∇uε(x, τ) dτ



 · ∇ϕ dx dt =

T
∫

0

∫

Ω

fϕ dx dt , (3.5)

for all test functions ϕ ∈ H1(Ω × (0, T )) such that ϕ |∂Ω= 0 in [0, T ]. By Theorem
2.1, it follows that, for any ε > 0, there exists a unique solution uε ∈ X of the
previous problem, with the extra-regularity given in Remark 2.2.

Theorem 3.1. Let A,B ∈ L∞(Ω × (0, T );RN2

) and C ∈ L∞(Ω;W 1,∞(0, T ;RN2

)).
Assume that A satisfies (2.1) and C satisfies (3.2) and (3.3). Assume that f ∈
L2(Ω × (0, T )), u0 ∈ H1

0 (Ω) and let uε be the solution of (3.4). Then, there exists
γ > 0, independent of ε, such that

‖uε‖L2(0,T ;H1

0
(Ω)) ≤ γ .

Proof. Choosing ϕ = uε in (3.5) and taking into account (2.1), we obtain

T1
∫

0

∫

Ω

Cε∇uε
t · ∇uε dx dt+ λ

T1
∫

0

∫

Ω

|∇uε|2 dx dt

≤ −
T1
∫

0

∫

Ω





t
∫

0

B∇uε dτ



 · ∇uε dx dt+

T1
∫

0

∫

Ω

fuε dx dt

≤ ‖B‖∞
2

T1
∫

0

∫

Ω

d

dt





t
∫

0

|∇uε(x, τ)| dτ





2

dx dt +
‖f‖22
2δ

+
cδ

2
‖uε‖X ,

where T1 ≤ T will be chosen later, and X = L2(0, T1;H
1
0 (Ω)), as in the proof of

Theorem 2.1. Then, integrating in time in the first integral on the left-hand side and
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on the right-hand side, it follows

1

2

∫

Ω

Cε(x, T1)∇uε(x, T1) · ∇uε(x, T1) dx+ λ

T1
∫

0

∫

Ω

|∇uε|2 dx dt

≤ 1

2

∫

Ω

Cε(x, 0)∇u0 · ∇u0 dx+
1

2

T1
∫

0

∫

Ω

Ct∇uε · ∇uε dx dt

+
‖B‖∞

2

∫

Ω





T1
∫

0

|∇u(x, τ)| dτ





2

dx+
‖f‖22
2δ

+
cδ

2
‖uε‖2X

≤ 1

2

∫

Ω

Cε(x, 0)∇u0 · ∇u0 dx+
1

2

T1
∫

0

∫

Ω

Ct∇uε · ∇uε dx dt

+
T1‖B‖∞

2
‖uε‖2X +

‖f‖22
2δ

+
cδ

2
‖uε‖2X , (3.6)

where we recall that (3.1) implies Cεt = Ct. Now, taking into account (3.3), choosing
δ = λ

2c
and T1 =

λ
4‖B‖∞

, we can absorb the second, the third and the fifth term in the

left-hand side, thus getting

T1
∫

0

∫

Ω

|∇uε|2 dx dt ≤ 4

λ

∫

Ω

Cε(x, 0)∇u0 · ∇u0 dx+
8‖f‖22
λ2

≤ 4

λ
(‖C‖∞ + 1)‖u0‖2H1

0
(Ω) +

8‖f‖22
λ2

,

(3.7)

∫

Ω

Cε(x, T1)∇uε(x, T1) · ∇uε(x, T1) dx ≤
∫

Ω

Cε(x, 0)∇u0 · ∇u0 dx+
2‖f‖22
λ

≤ (‖C‖∞ + 1)‖u0‖2H1

0
(Ω) +

2‖f‖22
λ

.

(3.8)

Repeating the same argument in (T1, 2T1), by (3.7) and (3.8), we obtain

2T1
∫

T1

∫

Ω

|∇uε|2 dx dt ≤ 4

λ

∫

Ω

Cε(x, T1)∇uε(x, T1) · ∇uε(x, T1) dx+
8‖f‖22
λ2

≤ 4

λ

(

(‖C‖∞ + 1)‖u0‖2H1

0
(Ω) +

2‖f‖22
λ

)

+
8‖f‖22
λ2

,
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and
∫

Ω

Cε(x, 2T1)∇uε(x, 2T1) · ∇uε(x, 2T1) dx

≤
∫

Ω

Cε(x, T1)∇uε(x, T1) · ∇uε(x, T1) dx+
2‖f‖22
λ

≤ (‖C‖∞ + 1)‖u0‖2H1

0
(Ω) +

2‖f‖22
λ

+
2‖f‖22
λ

.

Hence, since only a finite number n of steps is required, in order to recover the whole
interval (0, T ), it follows that

‖uε‖2L2(0,T ;H1

0
(Ω)) =

n
∑

i=1

Ti
∫

Ti−1

∫

Ω

|∇uε|2 dx dt+
T
∫

Tn

∫

Ω

|∇uε|2 dx dt ≤ γ ,

where we set T0 = 0 and the bound γ does not depend on ε. This concludes the
proof. �

As a consequence of Theorem 3.1, there exists a function u ∈ L2(0, T ;H1
0(Ω)) such

that, up to a subsequence,

uε ⇀ u weakly in L2(Ω × (0, T )), (3.9)

∇uε ⇀ ∇u weakly in L2(Ω × (0, T )). (3.10)

Theorem 3.2. Let A,B ∈ L∞(Ω × (0, T );RN2

) and C ∈ L∞(Ω;W 1,∞(0, T ;RN2

)).
Assume that A satisfies (2.1) and C satisfies (3.2) and (3.3). Assume that f ∈
L2(Ω×(0, T )) and u0 ∈ H1

0 (Ω). Then, there exists a unique function u ∈ L2(0, T ;H1
0(Ω))

satisfying problem (1.1) in the sense (3.11) below, for all test functions ϕ ∈ H1(0, T ;H1
0(Ω))

such that ϕ(x, T ) = 0 a.e. in Ω.

Proof. Integrating by parts with respect to the time t the first integral in (3.5),
recalling that Cεt = Ct, and passing to the limit for ε → 0, by (3.9) and (3.10), it
follows

−
T
∫

0

∫

Ω

C∇u · ∇ϕt dx dt−
T
∫

0

∫

Ω

Ct∇u · ∇ϕ dx dt+

T
∫

0

∫

Ω

A∇u · ∇ϕ dx dt

+

T
∫

0

∫

Ω





t
∫

0

B(x, t− τ)∇u(x, τ) dτ



 · ∇ϕ dx dt

=

T
∫

0

∫

Ω

fϕ dx dt+

∫

Ω

C(x, 0)∇u0 · ∇ϕ(x, 0) dx , (3.11)
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for all test functions ϕ ∈ H1(0, T ;H1
0(Ω)) such that ϕ(x, T ) = 0 a.e. in Ω. Here,

we used the fact that, by (3.1), Cε → C strongly in L2(Ω × (0, T );RN2

). Moreover,
setting

gε(t) =

t
∫

0

∫

Ω

B(x, t− τ)∇uε(x, τ) dτ and g(t) =

t
∫

0

∫

Ω

B(x, t− τ)∇u(x, τ) dτ ,

we have that gε(t) → g(t) pointwise a.e. in (0, T ) and, by Theorem 3.1, |g(t)| ≤
γ‖B‖∞‖∇uε‖22 ≤ γ, so that gε → g strongly in L2(0, T ). Therefore, u is a weak
solution of problem (1.1). In order to prove the uniqueness, we proceed as follows.
Set U = u1 − u2, where ui, i = 1, 2 are two different solutions of (1.1). Then,
U ∈ L2(0, T ;H1

0(Ω)) satisfies (1.1) with f ≡ 0 and homogeneous boundary and
initial conditions. Moreover, by the energy estimate, we get

0 =

T1
∫

0

∫

Ω

C∇Ut · ∇U dx dt +

T1
∫

0

∫

Ω

A∇U · ∇U dx dt

+

T1
∫

0

∫

Ω





t
∫

0

B(x, t− τ)∇U(x, τ) dτ



 · ∇U dx dt

=
1

2

∫

Ω

C(x, T1)∇U(x;T1)·∇U(x, T1) dx−
1

2

T1
∫

0

∫

Ω

Ct∇U ·∇U dx+

T1
∫

0

∫

Ω

A∇U ·∇U dx dt

+

T1
∫

0

∫

Ω





t
∫

0

B(x, t− τ)∇U(x, τ) dτ



 · ∇U dx dt ,

and therefore, reasoning as in (3.6), it follows

λ

T1
∫

0

∫

Ω

|∇U |2 dx dt ≤
(

λ+ T1‖B‖∞
2

)

T1
∫

0

∫

Ω

|∇U |2 .

If we choose T1 =
λ

4‖B‖∞
, this implies that

∫ T1

0

∫

Ω
|∇U |2 dx dt ≤ 0, so that u1 = u2 a.e.

in Ω × (0, T1). Since T1 depends only on λ and ‖B‖∞, we repeat the same argument
for a finite number of steps and we get that u1 = u2 in the whole Ω × (0, T ). This,
in particular, implies that the whole sequence uε → u. This concludes the proof. �

Remark 3.3. We may consider a non homogeneous boundary condition u = g on
∂Ω × (0, T ). To this purpose, it is enough to assume g ∈ H1(0, T ;H1(Ω)) with

g(·, 0) ∈ H1
0 (Ω), B ∈ L∞(Ω × (0, T );RN2

) and to replace in (1.1) u with v = u− g,
u0 with u0 = u0 − g(x, 0) and f with

f̃(x, t) = f(x, t)− div
(

C(x, t)∇gt + A(x, t)∇g +

t
∫

0

B(x, t− τ)∇g(x, τ) dτ
)

.
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It is worthwhile to notice that all the proofs can be carried out in essentially the same
way for f̃ ∈ L2(0, T ;H−1(Ω)). �
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