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bUniversità telematica Giustino Fortunato7

Viale Raffaele Delcogliano 12, 82100 Benevento, Italy8

cDipartimento di Matematica e Informatica9
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1. Introduction19

We consider a family (depending on a small parameter ε > 0 and on a20

parameter α ≥ −1) of elliptic problems involving a singular lower order term21

and representing the Euler equations of energy functionals, which describe22

the equilibrium for the heat conduction in composite materials with two23

finely mixed phases having a microscopic periodic structure (for details on24

the related physical models see for instance [18, 19, 24] and the reference25

quoted therein). The same kind of energies can be also useful to study the26

electrical conduction in biological tissues (see for instance [6]–[9], where the27
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related evolutive problems without singular source are considered). Similar28

models in the framework of electrical or thermal conduction in composite29

materials are treated in [5, 10, 11].30

We assume that the domain Ω ⊆ R
N , which models the region occupied31

by the material, is made by two phases separated by an active interface. The32

parameter ε, which will be sent to 0, is related to the period of the microstruc-33

ture (for more details on the geometrical setting, see the next section). The34

mathematical description of our model in the microscopic setting is given by35

two non-homogeneous elliptic equations in each phase, complemented with36

the assumption that the flux of the solution uε is continuous across the inter-37

face and proportional to the jump of uε. Moreover, we assume that in both38

phases the rate of heat generation is given by a singular source of the form39

f

uθ
ε
, with 0 < θ < 1 and f ∈ L

2
1+θ . The restriction on θ is required in order40

to get suitable a priori estimates, although the source term is singular.41

Our main results concern the study of the limit (as ε→ 0) of the solutions42

uε, focusing our attention on the differences of the limit equations (charac-43

terizing the properties of the material from the macroscopic point of view)44

with respect to the parameter α (appearing in the interface condition). We45

confine our study to the case α ≥ −1, where a suitable Poincare’s inequality46

for general geometries is available.47

In order to get the homogenized problem, we use the two-scale conver-
gence technique (see for instance [2, 3, 4, 26]). In particular, we obtain four
different behaviours:

α > 1, α = 1, α ∈ (−1, 1), α = −1 .

In the first three cases, we get in the limit a second order elliptic equation48

with singular source, whose homogenized matrix is different in each case.49

Instead, for α = −1, we get a bidomain governed by a system of two coupled50

elliptic equations. Moreover, we remark that, when α > 1 or α ∈ (−1, 1),51

the homogenized problem loses memory of the physical properties of the52

interfaces, thus suggesting that the main models are those with α = ±1.53

In order to handle with the singular term, we follow some ideas already54

present in [18] and in some previous papers (see, in particular, [20]), but55

our different geometrical setting gives rise to technical difficulties due to the56

interaction between jumps and singularities, which can be overcome by means57

of a new strategy (see, for instance, the proof of theorem 4.1).58

Another crucial point, in order to get the homogenized problem, is the59

proof of the strict positivity of the limit solution, which is a non trivial re-60
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sult, at least when α = −1. In this case, our geometry does not allow to61

follow the arguments in [18], but it requires a new idea (see Lemma 5.7).62

To get this result, it should be possible to use the so-called two-scale decom-63

position introduced in [29] in order to prove the lower semicontinuity of a64

suitable functional, which implies as a by-product, the requested positivity65

of the limit solution. However, due to the special structure of our model, we66

prefer to follow a more direct approach, appealing to the unfolding technique67

introduced by Cioranescu, Damlamian and Griso in 2002 (see for instance68

[16, 17]).69

The paper is organized as follows: in Section 2 we recall notations and70

preliminary results and we set our problems; in Section 3 we state the neces-71

sary estimates for the compactness results; in Section 4 we state and prove72

our main homogenization theorems. Finally, the paper contains an Appendix73

divided into two parts: in the first one, we prove the well-posedness of our74

microscopic problem (10), while in the second one we recall some tools from75

the unfolding technique and we prove the strict positivity of the homogenized76

solution for α = −1.77

2. Preliminaries78

2.1. The geometrical setting79

For N ≥ 3, let Ω ⊂ R
N be an open, connected and bounded set. Let E

be a periodic open subset of RN , so that E + z = E for all z ∈ Z
N . For all

ε > 0 we define the two open sets

Ωε
1 = Ω ∩ εE, Ωε

2 = Ω \ εE.

We assume that Ω and E have Lipschitz continuous boundary and that Ωε
2

is connected. We set

Γ ε = ∂Ωε
1 ∩ Ω = ∂Ωε

2 ∩ Ω,

so that we have Ω = Ωε
1∪Ω

ε
2∪Γ

ε. We also employ the notation Y = (0, 1)N ,80

and E1 = E∩Y , E2 = Y \E, Γ = ∂E∩Y and we assume that |Γ∩∂Y |N−1 = 081

and that E2 is connected.82

In the following, we will consider two different situations.83

• We will name the connected/disconnected geometry the case where Γ ∩84

∂Y = ∅, and in this case we will assume that dist(Γ ε, ∂Ω) ≥ γ0ε, for85
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a suitable γ0 > 0. To this purpose, for each ε, we are ready to remove86

the inclusions in all the cells which are not completely contained in Ω.87

In this case, the sets Ωε
1 and Ωε

2 are usually called the inner and the88

outer domain, respectively (see Figure 1).

Figure 1: Left: the periodic cell Y . E1 is the shaded region and E2 is the white region.

Right: the region Ω.

89

• We will name the connected/connected geometry the case where E1, E2,90

Ωε
1, Ω

ε
2 are connected. In this case, we will assume that both ∂E1 and91

∂E2 have Lipschitz regularity and, moreover, we will need that Ω, E192

and E2 are such that ∂Ωε
1 and ∂Ωε

2 are still Lipschitz regular at each93

ε-step, at least for a suitable choice of a subsequence εn tending to94

zero. For instance, this is the case when Ω is a rectangular domain95

with εn = |Ω|/n; indeed, this choice implies that Ω always contains an96

integer number of ε-cells. In the following, that regularity assumption97

will be always implicit; however, we will omit the subindex n, even in98

the case in which it should be necessary.99

We denote by νε the normal unit vector to Γ ε pointing into Ωε
2 and by ν100

the normal unit vector to Γ pointing into E2.101

For a function u defined on Ω, we denote by u(1) and u(2) the restriction
of u to Ωε

1 and Ωε
2, respectively. On Γ ε we define

[u] := u(2) − u(1) .
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Figure 2: the periodic cell Y . E1 is the shaded region and E2 is the white region.

We use the same notation for functions defined in the unit cell Y , where u(1)102

and u(2) stands here for the restriction of u to E1 and E2, respectively.103

In the following x and y will denote the macro and micro-variable, re-104

spectively, so that, for a function u(x, y) defined on Ω × Y , we denote by105

∇xu, ∇yu and divxu, divyu the gradient and the divergence of u computed106

with respect to the variables x and y, respectively. When no confusion is107

possible, we write ∇u for ∇xu and divu for divxu.108

Given ξ, η ∈ R
N , ξ⊗η will denote the matrix whose entries are (ξ⊗η)ij =109

ξiηj. We denote by e1, . . . , eN the euclidian basis of RN . In the sequel C will110

denote a positive constant, which may vary from line to line.111

2.2. Functional spaces112

We set

V ε
0 (Ω) = {u = (u(1), u(2)), u(1) ∈ H1(Ωε

1), u
(2) ∈ H1(Ωε

2), u = 0 on ∂Ω} ,

and

L
ε
0(Ω) = {u = (u(1), u(2)), u(1) ∈ Lip(Ωε

1), u
(2) ∈ Lip(Ωε

2), u = 0 on ∂Ω}.

Analogously, we define the following space

V#(Y ) = {v = (v(1), v(2)), v is Y -periodic, v(1) ∈ H1
#(E1), v

(2) ∈ H1
#(E2)},
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and

L#(Y ) = {v = (v(1), v(2)), v is Y -periodic, v(1) ∈ Lip(E1), v
(2) ∈ Lip(E2)}.

Here Y is identified with the flat torus in R
N .113

Remark 2.1. Notice that, if u ∈ V ε
0 (Ω), then [u] ∈ L2(Γ ε) and, analogously,114

if v ∈ V#(Y ), then [v] ∈ L2(Γ ).115

We recall the following Poincaré’s inequality (see [23, Lemma 6]).116

Theorem 2.2. There exists C > 0, independent of ε, such that117

∫

Ω

v2 dx ≤ C

{∫

Ω

|∇v|2 dx+ ε

∫

Γε

[v]2 dσ

}
∀v ∈ V ε

0 (Ω). (1)

Remark 2.3. Notice that (1) holds in this form (i.e., with ε in front of the118

integral over the interface Γ ε), since we have assumed that Ωε
2 is connected.119

We also recall the following technical lemma proved in [2, Lemma 2.10],120

which will be useful in the sequel.121

Lemma 2.4. For any vector function Φ ∈ L2(Ω;RN), there exists a vector122

function Ψ ∈ L2(Ω;H1
#(E2;R

N)) such that123

divyΨ(x, y) = 0 , in E2 ;
Ψ(x, y) = 0 , on Γ ;∫

E2

Ψ(x, y) dy = Φ(x) .
(2)

Moreover, ||Ψ||L2(Ω;H1
#(E2;RN )) ≤ C||Φ||L2(Ω;RN ) .124

Clearly, in the connected/connected case, an analogous result holds with125

E2 replaced by E1.126

2.3. Two-scale convergence127

We recall some basic definitions and properties of the two-scale conver-128

gence technique. For more details see, for instance, [2, 3, 4, 9, 22] and the129

references therein.130
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Definition 2.5. A function ϕ ∈ L2(Ω×Y ) is said an admissible test function
if ϕ is Y -periodic with respect to the second variable and satisfies:

lim
ε→0

∫

Ω

ϕ2
(
x,
x

ε

)
dx =

∫

Ω×Y

ϕ2(x, y) dx dy.

Remark 2.6. If ϕ ∈ C0(Ω; C0#(Y )) or, more in general, if ϕ ∈ L2(Ω; C0#(Y ))131

or ϕ ∈ L2
#(Y ; C

0(Ω)), then ϕ is an admissible test function. Moreover, if132

ϕ(x, y) = ϕ1(x)ϕ2(y) with ϕ1 ∈ L
2(Ω) and ϕ2 ∈ L

2
#(Y ), then ϕ is an admis-133

sible test function.134

Definition 2.7 (Two-scale convergence). For {uε} ⊂ L2(Ω) and u0 ∈ L2(Ω×
Y ), we say that {uε} two-scale converges to u0 in L2(Ω × Y ) as ε→ 0 (and

we write uε
2−sc
−→ u0) if

lim
ε→0

∫

Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫

Ω×Y

u0(x, y)ϕ(x, y) dx dy ,

for every admissible test function ϕ.135

Definition 2.8 (Two-scale convergence on surfaces). For {wε} ⊂ L2(Γε) and
w0 ∈ L2(Ω × Γ ), we say that {wε} two-scale converges to w0 in L2(Ω × Γ )

as ε→ 0 (and, as above, we use the notation wε
2−sc
−→ w0) if

lim
ε→0

ε

∫

Γε

wε(x)ϕ
(
x,
x

ε

)
dσ =

∫

Ω×Γ

w0(x, y)ϕ(x, y) dx dσ(y) ,

for every ϕ ∈ C0(Ω; C0#(Y )).136

Theorem 2.9. Let {uε} be a bounded sequence in L2(Ω). Then there exist137

a subsequence of {uε} (still denoted by {uε}) and a function u0 ∈ L2(Ω×Y )138

such that uε
2−sc
−→ u0 in L2(Ω × Y ).139

Proposition 2.10. Let {uε} be a sequence of functions in L2(Ω), which two-
scale converges to a limit u0(x, y) ∈ L2(Ω × Y ). Then, uε converges weakly
to u(x) =

∫
Y
u0(x, y)dy in L2(Ω). Furthermore, we have

lim inf
ε→0

||uε||L2(Ω) ≥ ||u0||L2(Ω×Y ) ≥ ||u||L2(Ω).
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Theorem 2.11. Let {wε} ⊂ L2(Γε). Assume that there exists C > 0, inde-
pendent of ε, such that

ε

∫

Γε

|wε|
2 dσ ≤ C , ∀ε > 0.

Then, there exist a subsequence of {wε} (still denoted by {wε}) and a function140

w0 ∈ L2(Ω × Γ ) such that wε
2−sc
−→ w0 in L2(Ω × Γ ).141

Theorem 2.12. Let {uε} ⊂ V ε
0 (Ω). Assume that there exists C > 0 (inde-142

pendent of ε) such that143

∫

Ω

|uε|
2 dx+

∫

Ω

|∇uε|
2 dx ≤ C , ∀ε > 0. (3)

Then, there exists u ∈ L2(Ω;V#(Y )), whose restrictions to E1 and E2 satisfy

u(x, y) = u(1)(x) ∈ H1(Ω) , in E1 , u(x, y) = u(2)(x) ∈ H1(Ω) , in E2 ;

and there exists u1 ∈ L2(Ω;V#(Y )) such that, up to subsequence, as ε → 0
we have

χΩε
1
u(1)ε

2−sc
−→ χE1u

(1) and χΩε
2
u(2)ε

2−sc
−→ χE2u

(2) , in L2(Ω × Y ) ; (4)

χΩε
1
∇u(1)ε

2−sc
−→ χE1

(
∇u(1) +∇yu

(1)
1

)
, in L2(Ω × Y ) ; (5)

χΩε
2
∇u(2)ε

2−sc
−→ χE2

(
∇u(2) +∇yu

(2)
1

)
, in L2(Ω × Y ) . (6)

where, for O ⊆ R
N , χO denotes the characteristic function of O. Moreover,

we have also

ε

∫

Γ

[uε]
2 dσ ≤ C , ∀ε > 0 ,

with C independent of ε, and144

[uε]
2−sc
−→ [u] , in L2(Ω × Γ ) . (7)

We refer to [2, Theorem 2.9] (see also [3, Theorem 4.6]) for the proof of145

(4)–(6) and to [4, Proposition 2.6], which must be applied separately in Ωε
1146

and Ωε
2, in order to prove (7).147

8



2.4. Extension result148

In this subsection, we recall an extension result (see [1, Theorem 2.1]),149

which will be used in the proof of Theorems 4.7 and 4.10. This result per-150

mits to extend a function from the connected set Ωε
2 to Ω, without any151

assumption on the connection of the set Ωε
1. Actually, when we are in the152

connected/disconnected geometry, we could apply a more classical exten-153

sion theorem due to Tartar (see [15, 28]), but this is not the case in the154

connected/connected geometry.155

We state below the version proposed in [25, Lemma 1]; to this purpose, let
us define

V ε
2,0 = {w ∈ H

1(Ωε
2) : w |∂Ω∩∂Ωε

2
= 0} .

Theorem 2.13. For every ε > 0, there exist a continuous linear operator
T 2
ε : V ε

2,0 → H1(Ω) and a constant C > 0 (independent on ε) such that
T 2
εw = w a.e. in Ωε

2 and

‖T 2
εw‖L2(Ω) ≤ C‖w‖L2(Ωε

2)
, (8)

‖∇T 2
εw‖L2(Ω) ≤ C‖∇w‖L2(Ωε

2)
. (9)

Notice that, in the connected/connected case, where the role of Ωε
2 and156

Ωε
1 can be interchanged, the previous theorem can be applied also to extend157

from Ωε
1 into Ω, defining an operator T 1

ε , in an analogous way as done for158

T 2
ε .159

2.5. Statement of the problem160

Let λ1, λ2, β be positive constants and θ ∈ (0, 1). In the following, we will

assume that f ∈ L
2

1+θ (Ω) is a nonnegative function a.e. in Ω, not identically
equal to zero in Ωε

1 nor in Ωε
2, for every ε > 0. Let us define the functions

λε : Ω → R and λ : Y → R as

λε(x) =

{
λ1, if x ∈ Ωε

1

λ2, if x ∈ Ωε
2

and λ(y) =

{
λ1, if y ∈ E1

λ2, if y ∈ E2

and set λ0 = λ1|E1|+ λ2|E2|. For α ≥ −1, we consider the problem161

−div(λε∇uε) = f

uθ
ε
, in Ωε

1 ∪ Ω
ε
2;

[λε∇uε · ν] = 0, on Γε;
β

εα
[uε] = λ2∇u

(2)
ε · ν, on Γ ε;

uε > 0, in Ω;
uε = 0, on ∂Ω .

(10)

9



Definition 2.14. We say that u ∈ V ε
0 (Ω) is a weak solution of (10) if uε > 0

a.e. in Ω and it satisfies

∣∣∣∣
∫

Ω

f

uθε
ψ dx

∣∣∣∣ < +∞ , (11)

∫

Ω

λε∇uε · ∇ψ dx+
β

εα

∫

Γ ε

[uε][ψ] dσ =

∫

Ω

f

uθε
ψ dx (12)

for every ψ ∈ V ε
0 (Ω).162

Remark 2.15. Note that the assumption (11) is indeed contained in (12),
since it is a consequence of the finiteness of the left-hand side of (12); never-
theless we prefer to require it explicitly, being crucial in the proof of existence
and homogenization results. Moreover, taking into account that uε and f are
positive and recalling the decomposition ψ = ψ+ − ψ−, (11) can be rewritten
for ψ > 0 and without the absolute value, or even in the apparently stronger
form ∫

Ω

f

uθε
|ψ| dx < +∞ .

We will prove in the Appendix (Theorem 5.1) that, for every ε > 0 fixed,163

the problem (10) admits a unique solution uε ∈ V ε
0 (Ω).164

Notice that, for the sake of simplicity, in the problem (10) we have consid-165

ered only the model case, where the singular term is given by f(x)
sθ

; however,166

all the proofs also work if we take into account a more general singularity of167

the form f(x)·g(s), with a non increasing function g such that 0 ≤ g(s) ≤ 1
sθ
.168

3. Estimates169

The aim of this section is to prove that the solution uε satisfies some170

uniform (with respect to ε) estimates.171

Proposition 3.1. Let uε be the weak solution of problem (10). Then there
exists C > 0, independent of ε (and α), such that

∫

Ω

|∇uε|
2 dx+

1

εα

∫

Γ ε

[uε]
2 dσ ≤ C‖f‖

2
1+θ

L
2

1+θ (Ω)
, ∀ε > 0 , (13)

∫

Ω

u2ε dx ≤ C||f ||
2

1+θ

L
2

1+θ (Ω)
, ∀ε > 0 . (14)
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Proof. Taking ψ = uε in (12), we get172

∫

Ω

λε|∇uε|
2 dx+

β

εα

∫

Γ ε

[uε]
2 dσ =

∫

Ω

fu1−θ
ε dx ≤ ||f ||

L
2

1+θ (Ω)
||uε||

1−θ
L2(Ω). (15)

By Theorem 2.2 (α ≥ −1), it follows173

||uε||
1−θ
L2(Ω) ≤ C

[∫

Ω

|∇uε|
2 dx+ ε

∫

Γ ε

[uε]
2 dσ

] 1−θ
2

(16)

≤ C

[∫

Ω

|∇uε|
2 dx+

1

εα

∫

Γ ε

[uε]
2 dσ

] 1−θ
2

.

Hence, (13) follows by (15) and (16), and by (16) and (13), we get (14).174

Proposition 3.2. Let uε be the weak solution of problem (10). Then, for175

every ψ ∈ H1
0 (Ω), we have176

∣∣∣∣
∫

Ω

f

uθε
ψ(x)dx

∣∣∣∣ ≤ C||∇ψ||L2(Ω)||∇uε||L2(Ω) (17)

with C = max(λ1, λ2).177

Proof. Taking in (12) a testing function ψ ∈ H1
0 (Ω), and applying Holder’s178

inequality, we find that179

∣∣∣∣
∫

Ω

f

uθε
ψ dx

∣∣∣∣ =

∣∣∣∣
∫

Ω

λ∇uε · ∇ψ dx

∣∣∣∣

≤ max(λ1, λ2)

(∫

Ω

|∇uε|
2 dx

) 1
2
(∫

Ω

|∇ψ|2 dx

) 1
2

.

180

4. Homogenization181

4.1. The case α = 1182

In this subsection we will assume to be in anyone of the geometrical183

settings described in Section 2. We will see that the homogenized problem184

will depend on the physical properties of the bulk regions (i.e., λ1, λ2) as well185

as the physical properties of the interfaces (i.e. β).186
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Theorem 4.1. For ε > 0, let uε ∈ V ε
0 (Ω) be the weak solution of the

problem (10). Then, there exist u ∈ H1
0 (Ω) and u1 ∈ L2(Ω;V#(Y )) with∫

Y
u1(x, y) dy = 0 a.e. in Ω, such that, as ε→ 0, we have

uε → u , strongly in L2(Ω) ; (18)

uε
2−sc
−→ u , in L2(Ω × Y ) ; (19)

χΩ\Γ ε∇uε
2−sc
−→ ∇u+∇yu1 , in L2(Ω × Y ) : (20)

1

ε
[uε]

2−sc
−→ [u1] , in L2(Ω;L2(Γ )) . (21)

Moreover,187 ∣∣∣∣
∫

Ω

f

uθ
ϕ dx

∣∣∣∣ < +∞ , ∀ϕ ∈ H1
0 (Ω) , (22)

and the pair (u, u1) solve

− div

(
λ0∇u+

∫

Y

λ∇yu1 dy

)
=

f

uθ
, in Ω ; (23)

− divy (λ(∇u+∇yu1)) = 0 , in E1 ∪ E2 ; (24)

[λ(∇u+∇yu1) · ν] = 0 , on Ω × Γ ; (25)

β[u1] = λ2(∇u+∇yu1) · ν , on Ω × Γ ; (26)

u > 0 , in Ω ; (27)

u = 0 , on ∂Ω , (28)

where λ0 and λ are defined at the beginning of Subsection 2.5.188

Remark 4.2. As usual, from (24)–(26), we can factorize u1 as189

u1(x, y) = χ(y) · ∇u(x), (29)

with χ = (χ1, . . . , χN) and χj ∈ V#(Y ) with
∫
Y
χj dy = 0, for each j ∈190

{1, . . . , N}, satisfying191

−divy(λ(∇yχj + ej)) = 0 , in E1 ∪ E2 ;

[λ(∇yχj + ej) · ν] = 0 , on Γ ;

β [χj ] = λ2(∇yχj + ej) · ν , on Γ .

(30)
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By [23, Theorem 2] the previous problem (30) admits a unique solution. Re-192

placing (29) in (23), it follows that u solves193

−div(Ahom∇u) =
f

uθ
, in Ω ;

u = 0 , on ∂Ω ,
(31)

where the matrix Ahom is defined as194

Ahom = λ0I +

∫

Y

λ(∇yχ)
T dy. (32)

Here, ∇yχ is the matrix whose entries are (∇yχ)ij =
∂χi

∂yj
and (∇yχ)

T denotes195

its transposed. Therefore, we have196

(∫

Y

λ(∇χ)T dy

)

ij

=

∫

Y

λ
∂χj

∂yi
dy =

∫

E1

λ1
∂χj

∂yi
dy +

∫

E2

λ2
∂χj

∂yi
dy

=

∫

Γ

λ1χjνi dσ −

∫

Γ

λ2χjνi dσ = −

∫

Γ

[λχj ]νi dσ

and hence we may write197

Ahom = λ0I +

∫

Y

λ(∇yχ)
T dy = λ0I −

∫

Γ

ν ⊗ [λχ] dσ. (33)

We can prove that the factorization (29) is unique. Indeed, as we have re-198

called above, the problem (30) is well posed. Moreover, the homogenized199

matrix Ahom is symmetric and positive definite, as proved in [23, end of Sec-200

tion 3.2 ]. Therefore, by [13, Theorem 5.2 and Remark 5.4] we obtain the201

existence and uniqueness of a solution of (31).202

Remark 4.3. Notice that the problem (23)–(28) admits at most one pair of
solutions (u, u1). Indeed, assume by contradiction that (ui, ui1), for i = 1, 2
are two pair of solutions and denote by U = u1 − u2 and U1 = u11 − u21.
Using U as test function in (23) written for u1 and U1 as test function in
(24) written for u11, adding the two equations, integrating by parts and using
(25)–(26), we get

∫

Ω

∫

Y

λ(∇u1 +∇yu
1
1) · ∇U dx dy +

∫

Ω

∫

Y

λ(∇u1 +∇yu
1
1) · ∇yU1 dx dy

+ β

∫

Ω

∫

Γ

[u11][U1] dx dσ(y) =

∫

Ω

f

(u1)θ
U dx .
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Repeating the same procedure for (u2, u21) and subtracting the equation for203

(u1, u11) from the equation for (u2, u21), it follows204

∫

Ω

∫

Y

λ|∇U +∇yU1|
2 dx dy

+ β

∫

Ω

∫

Γ

[U1]
2 dx dσ(y) =

∫

Ω

f

(
1

(u1)θ
−

1

(u2)θ

)
(u1 − u2) dx .

Taking into account that the function s 7→ 1
sθ

is decreasing, it follows that the
right-hand side in the last equality is non positive, which implies [U1] = 0.
Moreover,

∫

Ω

|∇U |2 dx+

∫

Ω

∫

Y

|∇yU1|
2 dx dy =

∫

Ω

|∇U |2 dx+

∫

Ω

∫

Y

|∇yU1|
2 dx dy

+ 2

∫

Ω

∇u ·

(∫

Y

∇yU1 dy

)
dx =

∫

Ω

∫

Y

|∇U +∇yU1|
2 dx dy = 0 ,

where we have taken into account that
∫
Y
∇yU1 dy = 0, because of the Y -205

periodicity of U1 and the fact that [U1] = 0. Thus, ∇U = ∇yU1 = 0, which206

implies U = 0 in Ω, since it satisfies the homogeneous boundary condition,207

and U1 = 0, since it has null mean average on Y .208

As a consequence of Remarks 4.2 and 4.3, we get that the homogenized209

problem (23)–(28) admits a unique solution and that such a solution can be210

factorized as in (29).211

Proof of Theorem 4.1. By Proposition 3.1 and [22, Proposition 5.5] we get212

that (18)–(21) hold. Hence, taking into account (13) and (18) and passing213

to the limit in (17), when ε→ 0, by Fatou’s Lemma we get (22) which also214

implies that u is not identically zero in Ω.215

In order to pass to the two-scale limit in (12), with α = 1, we choose as
test function ψ(x) = ϕ(x)+εΦ

(
x, x

ε

)
with ϕ ∈ C1c (Ω) and Φ ∈ C1c (Ω;L#(Y )).

Then, we get

∫

Ω

λε∇uε · ∇ϕ dx+ ε

∫

Ω

λε∇uε · ∇xΦdx+

∫

Ω

λε∇uε · ∇yΦdx

+ β

∫

Γ ε

[uε][Φ] dσ =

∫

Ω

f

uθε
ϕ dx+ ε

∫

Ω

f

uθε
Φdx. (34)
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By (20) and (21), as ε→ 0, the left-hand side of (34) converges to

∫

Ω

∫

Y

λ(∇u+∇yu1) · ∇ϕ dx dy +

∫

Ω

∫

Y

λ(∇u+∇yu1) · ∇yΦdx dy

+ β

∫

Ω

∫

Γ

[u1][Φ] dx dσ(y). (35)

We now focus our attention on the right-hand side of (34) and we set216

Iε :=

∫

Ω

f

uθε
ϕ dx , Jε := ε

∫

Ω

f

uθε
Φdx . (36)

In order to deal with the term Jε, we rewrite the function Φ
(
x, x

ǫ

)
=217

ϕ1(x)ϕ2

(
x
ǫ

)
; moreover, by the decomposition ϕ1 = ϕ+

1 − ϕ
−
1 and ϕ2 = ϕ+

2 −218

ϕ−
2 , we can assume ϕ1, ϕ2 ≥ 0 (notice that the Lipschitz continuity of ϕ1 is219

enough for our purposes). We have that220

0 ≤ Jε = ε

∫

Ω

f

uθε
ϕ1(x)ϕ2

(x
ε

)
dx ≤ ε||ϕ2||L∞(Y )

∫

Ω

f

uθε
ϕ1(x) dx

≤ Cε||ϕ2||L∞(Y )||∇ϕ1||L2(Ω)||f ||
1

1+θ

L
2

1+θ (Ω)
,

(37)
where we used (17) and (13). Since C is independent of ε, as ε → 0, also221

Jε → 0. In order to study the limit of Iε, having in mind the decomposition222

ϕ = ϕ+ − ϕ− (notice again that the Lipschitz continuuity of ϕ is enough223

for our purposes), we may assume ϕ ≥ 0. Moreover, we have to split the224

behaviour of the singular term into the part near to and far away from the225

singularity. To this purpose, we write226

Iε =

∫

Ω∩{0<uε≤δ}

f

uθε
ϕ dx+

∫

Ω∩{uε>δ}

f

uθε
ϕ dx := I1ε,δ + I2ε,δ . (38)

where, by the Lebesgue dominated convergence theorem and taking into227

account that 0 ≤ f

uθ
ε
ϕ ≤ f

δθ
ϕ ∈ L1(Ω) in the set {uε > δ} (here it is crucial228

that ϕ is bounded), we get229

lim
δ→0

lim
ε→0

I2ε,δ =

∫

Ω∩{u>0}

f

uθ
ϕ dx , (39)

once we have taken δ 6∈ C = {δ > 0 : |{u(x) = δ}| > 0}, which is at most230

countable (exactly as in [18, Proof of Theorem 3.6]).231
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Moreover, introducing the function Zδ : R→ [0,+∞) defined by232

Zδ(s) =





1 , if 0 ≤ s ≤ δ ;
− s

δ
+ 2 , if δ ≤ s ≤ 2δ ;

0 , if s ≥ 2δ ,
(40)

using as test function in (12) (with α = 1) the function Zδ(uε)ϕ, with ϕ as
above, and recalling that s 7→ Zδ(s) is decreasing, we arrive at

I1ε,δ ≤

∫

Ω

λε∇uε · ∇ϕZδ(uε) dx

=

∫

Ω

λε∇uε · ∇ϕ[Zδ(uε)− Zδ(u)] dx+

∫

Ω

λε∇uε · ∇ϕZδ(u) dx (41)

since
β

ε

∫

Γ ε

[uε]
(
Zδ(u

(2)
ε )− Zδ(u

(1)
ε )

)
ϕ dx ≤ 0

and ∫

Ω∩{δ≤uε≤2δ}

f

uθε
Zδ(uε)ϕ dx ≥ 0.

In order to pass to the two-scale limit in (41), we have to take into account233

that λε∇uε is bounded in L2(Ω) and Zδ(uε)− Zδ(u)→ 0 strongly in L2(Ω)234

(since s 7→ Zδ(s) is continuous and (18) holds), so that the first integral in235

(41) vanishes, while in the second integral, thanks to Remark 2.6, we can236

take λε∇ϕZδ(u) as admissible test function for the two-scale convergence.237

Therefore, we get238

lim
δ→0

lim
ε→0

I1ε,δ ≤

∫

Ω∩{u=0}

∫

Y

|λ(∇u+∇yu1)| |∇ϕ| dx dy. (42)

In order to prove that the right-hand side of (42) is zero, we notice that,
choosing ϕ ≡ 0 in (34) and letting ε→ 0, we obtain

∫

Ω

∫

Y

λ(∇u+∇yu1) · ∇yΦdx dy + β

∫

Ω

∫

Γ

[u1][Φ] dx dσ(y) = 0 ,

which is the problem in the micro variable y (i.e. (24)–(26)); therefore, we239

get the factorization (29) for u1. This implies that240

∫

Ω∩{u=0}

∫

Y

|λ(∇u+∇yu1)| |∇ϕ| dx dy = (43)

=

∫

Ω∩{u=0}

∫

Y

|λ(I +∇yχ)∇u||∇ϕ| dx dy = 0,
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where, in the last equality, we used that u is a Sobolev function and hence
its gradient vanishes on the level sets of u. Then, passing to the limit for
ε → 0 in (34), by (35), (39), (42), (43) and taking into account the density
of our test functions in H1

0 (Ω)× L2(Ω;V#(Y )), we obtain

∫

Ω×Y

λ(∇u+∇yu1) · ∇ϕ dx dy +

∫

Ω×Y

λ(∇u+∇yu1) · ∇yΦdx dy

+ β

∫

Ω

∫

Γ

[u1][Φ] dx dσ(y) =

∫

Ω

f

uθ
ϕχ{u>0} dx . (44)

Taking first ϕ = 0 and then Φ = 0 in (44), it follows that u is a nonnegative241

(being the limit of the sequence of positive solutions uε) weak solution of242

the problem (23)–(26) and (28), with f

uθ replaced by f

uθχ{u>0}. In order to243

conclude the proof, it remains to show that u > 0 a.e. in Ω. To this purpose,244

we recall again the factorization given in (29), where u solves the problem245

(31) with the new nonnegative source f

uθχ{u>0} and the matrix Ahom defined246

in (33) is positive definite. Therefore, taking into account (22), we can apply247

the strong maximum principle to deduce that u > 0 a.e. in Ω. Finally, by248

Remark 4.3, it follows that the whole sequence {uε} converges and the thesis249

is accomplished. �250

4.2. The case α > 1251

As in the previous subsection, we will assume to be in anyone of the252

geometrical setting described in Section 2. Moreover, we will see that, due253

to the particular scaling ε−α in front of the interface term, the homogenized254

problem will not take memory of β, as pointed out in Remark 4.6.255

Theorem 4.4. For ε > 0, let uε ∈ V ε
0 (Ω) be the weak solution of the

problem (10). Then, there exist u ∈ H1
0 (Ω) and u1 ∈ L2(Ω;H1

#(Y )) with∫
Y
u1(x, y) dy = 0 a.e. in Ω, such that, as ε→ 0, (18)–(22) hold. Moreover,

the pair (u, u1) solve

− div

(
λ0∇u+

∫

Y

λ∇yu1 dy

)
=

f

uθ
, in Ω ; (45)

− divy (λ(∇u+∇yu1)) = 0 , in Y ; (46)

u > 0 , in Ω ; (47)

u = 0 , on ∂Ω , (48)

where λ0 and λ are defined at the beginning of Subsection 2.5.256
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Remark 4.5. Notice that, similarly as in Remark 4.3, it is possible to prove257

that the problem (45)–(48) admits at most one pair of solutions (u, u1). More-258

over, we can factorize u1 as in (29) with χ = (χ1, . . . , χN) and χj ∈ H1
#(Y )259

such that
∫
Y
χj dy = 0, for each j = 1, . . . , n, χj, we get that χj must solve260

−divy(λ(∇yχj + ej)) = 0 , in Y . (49)

Replacing the factorization of u1 in (45), it follows that u solves261

− div(Ahom∇u) =
f

uθ
, in Ω ;

u > 0 , in Ω;

u = 0 , on ∂Ω;

(50)

where the matrix Ahom is defined as262

Ahom = λ0I −

∫

Y

λ(∇yχ)
T dy = λ0I −

∫

Γ

[λ]ν ⊗ χ dσ. (51)

We recall that by standard arguments equation (49) admits a unique solution.263

Moreover by Proposition 4.1 in [6] we know that Ahom is symmetric and264

positive definite and therefore, by [13, Theorem 5.2 and Remark 5.4], also265

the solution of equation (50) is unique.266

Remark 4.6. Notice that, from the definition (49), the cell functions do not267

depend on the coefficient β. Therefore, the homogenized matrix and, hence,268

the macroscopic function u lose any memory of the physical properties of the269

interfaces.270

Proof of Theorem 4.4. By Proposition 3.1, [22, Proposition 5.5] and271

Fatou’s Lemma, we get that (18)–(21) and (22) hold (as in the proof of272

Theorem 4.1).273

Moreover, by (13) we also know that

1

εα

∫

Γ ε

[uε]
2 dx = ε

∫

Γ ε

(
[uε]

ε
α+1
2

)2

dx ≤ C ,

uniformly with respect to ε. Hence, as ε tends to 0, by Theorem 2.11 it274

follows that there exists v ∈ L2(Ω × Γ ) such that, up to subsequence, vε :=275

[uε]

ε
α+1
2

2−sc
−→ v in L2(Ωε). However, by (21) we already know that [uε]

ε

2−sc
−→ [u1];276

18



therefore, taking into account that [uε]
ε

= ε
α−1
2 vε, with

α−1
2
> 0, we infer that277

[u1] = 0, so that u1 ∈ L2(Ω;H1
#(Y )).278

In order to pass to the two-scale limit in (12), with α > 1, we choose as279

test function ψ(x) = ϕ(x)+ εΦ
(
x, x

ε

)
with ϕ ∈ C1c (Ω) and Φ ∈ C1c (Ω; C1#(Y ))280

(i.e., we can take [Φ] = 0, since [u1] = 0) and we get281

∫

Ω

λ∇uε · ∇ϕ dx+ ε

∫

Ω

λ∇uε · ∇xΦdx+

∫

Ω

λ∇uε · ∇yΦdx =

=

∫

Ω

f

uθε
ϕ dx+ ε

∫

Ω

f

uθε
Φdx. (52)

By (20), we obtain that the left-hand side of (52) converges to

∫

Ω×Y

λ(∇u+∇yu1) · ∇ϕ dx dy +

∫

Ω×Y

λ(∇u+∇yu1) · ∇yΦdx dy .

Moreover, by (17) and reasoning as in (37), the second term in the right-hand282

side tends to 0. Finally, arguing as in the proof of Theorem 4.1 for the study283

of the first integral in the right-hand side of (52), as ε goes to 0, we have284

∫

Ω

f

uθε
ϕ dx→

∫

Ω

f

uθ
ϕχ{u>0} dx. (53)

The proof that u > 0 a.e. in Ω follows, as usual, from the strong maxi-285

mum principle, taking into account (22), so that we can replace the source286

f

uθϕχ{u>0} with f

uθϕ. Finally, recalling the density of our test functions in287

H1
0 (Ω) × L2(Ω;H1

#(Y )), taking alternatively ϕ = 0 and Φ = 0 in (53) and288

integrating by parts, we deduce (45) and (46). Therefore, by the uniqueness289

of the problem (45)–(48) (see Remark 4.5), it follows that the whole sequence290

{uε} converges and the thesis is accomplished.291

�292

4.3. The case α ∈ (−1, 1)293

As in the previous subsections, we will assume to be in anyone of the294

geometrical settings described in Section 2. Moreover, analogously to the295

case α > 1, we will see that also in this case, due to the particular scaling296

ε−α in front of the interface term, the homogenized problem will not take297

memory of β (see the end of Remark 4.8).298
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Theorem 4.7. For ε > 0, let uε ∈ V ε
0 (Ω) be the weak solution of the

problem (10). Then, there exist u ∈ H1
0 (Ω) and u1 ∈ L2(Ω;V#(Y )) with

u1 = (u
(1)
1 , u

(2)
1 ),

∫
E1
u
(1)
1 (x, y) dy = 0 =

∫
E2
u
(2)
1 (x, y) dy a.e. in Y , such that,

as ε→ 0, we have

uε
2−sc
−→ u , in L2(Ω × Y ) ; (54)

χΩ\Γ ε∇uε
2−sc
−→ ∇u+∇yu1 , in L2(Ω × Y ) ; (55)

[uε]
2−sc
−→ 0 , in L2(Ω;L2(Γ )) . (56)

Moreover, (18) and (22) hold and the pair (u, u1) solve

− div

(
λ0∇u+

∫

Y

λ∇yu1 dy

)
=

f

uθ
, in Ω ; (57)

− divy(λ(∇u+∇yu1)) = 0 , in E1 ∪ E2 ; (58)

[λ(∇u+∇yu1) · ν] = 0 , on Ω × Γ ; (59)

λ2(∇u
(2) +∇yu

(2)
1 ) · ν = 0 on Ω × Γ ; (60)

u > 0 , in Ω ; (61)

u = 0 , on ∂Ω , (62)

where λ0 and λ1 are defined in Subsection 2.5.299

Remark 4.8. Following the same ideas as in Remarks 4.2 and 4.3, we have300

that the problem (57)–(62) admits at most one pair of solutions (u, u1) and301

that u1 can be factorized as in (29) where, in this case, the cell function302

χ = (χ1, . . . , χN) is such that χj ∈ V#(Y ) with
∫
E1
χ
(1)
j dy = 0 =

∫
E2
χ
(2)
j dy303

for each j ∈ {1, . . . , N} and satisfies the cell problem304

−divy(λ(∇yχj + ej)) = 0 , in E1 ∪ E2 ;
[λ(∇yχj + ej) · ν] = 0 , on Γ ;

λ2(∇yχ
(2)
j + ej) · ν = 0 , on Γ ,

(63)

which admits a unique solution. Replacing the factorization of u1 in (57),305

we still obtain that u solves an elliptic problem analogous to (31), where the306

new matrix Ahom is defined as in (32) and (33) in terms of the cell functions307

given in (63). Following [14, Proposition 5.1 and Remark 5.2], as done in308

[24, Section 7], we obtain that the matrix Ahom is symmetric and positive309

definite.310

As in the case α > 1, from the definition (63), we see that the cell func-311

tions do not depend on the coefficient β.312
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Proof of Theorem 4.7. As a consequence of Theorem 2.2 and Proposition313

3.1, we can apply Theorem 2.12, obtaining that (4)–(7) hold. Moreover, by314

(13), it follows315

ε

∫

Γ ε

(
[uε]

ε
α+1
2

)2

dσ =
1

εα

∫

Γ ε

[uε]
2 dσ ≤ C , (64)

with C independent of ε. Hence, after setting vε := [uε]

ε
α+1
2
, as in the proof316

of Theorem 4.4, we can apply Theorem 2.11 to {vε}, obtaining that, up to317

subsequence, vε two-scale converges in L2(Ω × Γ ) to some v ∈ L2(Ω × Γ ),318

so that319

0
2−sc
←− vεε

α+1
2 = [uε]

2−sc
−→ [u] , (65)

where we have taken into account that α+ 1 > 0. Therefore, (56) holds and320

[u] = 0. Taking into account (65), (4)–(6) become (54)–(55).321

Now, let us choose ψ(x) = ϕ(x) + εΦ
(
x, x

ε

)
, with ϕ ∈ C1c (Ω) and Φ ∈322

C1c (Ω;L#(Y )), as test function in (12). Then, we get323

∫

Ω

λε∇uε · ∇ϕ dx+ ε

∫

Ω

λε∇uε · ∇xΦdx+ (66)

+

∫

Ω

λε∇uε · ∇yΦdx+ βε1−α

∫

Γ ε

[uε][Φ] dσ =

=

∫

Ω

f

uθε
ϕ dx+ ε

∫

Ω

f

uθε
Φdx := Iε + Jε.

By (55), as ε→ 0, we obtain

∫

Ω

λε∇uε · ∇ϕ dx+ ε

∫

Ω

λε∇uε · ∇xΦdx+

∫

Ω

λε∇uε · ∇yΦdx

→

∫

Ω×Y

λ(∇u+∇yu1) · ∇ϕ dx dy +

∫

Ω×Y

λ(∇u+∇yu1) · ∇yΦdx dy.

(67)

Moreover, we can write324

βε1−α

∫

Γ ε

[uε][Φ] dσ = βε
1−α
2 ε

∫

Γ ε

[uε]

ε
α+1
2

[Φ] dσ → 0 , (68)

as a consequence of (64) and the fact that 1− α > 0.325

21



In order to pass to the limit in the right-hand side of (66), i.e. to deal
with the singular term, we consider the extension of uε from Ωε

2 to Ωε
1 as

in Theorem 2.13, and for the sake of simplicity, let us denote by T (uε) this
extension, i.e. T (uε) ∈ H1(Ω), T (uε) = uε in Ω

ε
2, ‖T (uε)‖L2(Ω) ≤ C‖uε‖L2(Ωε

2)

and ‖∇T (uε)‖L2(Ω) ≤ C‖∇uε‖L2(Ωε
2)
, with C independent of ε. Then, by

(13), it follows that there exists υ ∈ H1(Ω) such that, up to a subsequence,
T (uε) ⇀ υ weakly in H1(Ω) and T (uε) → υ strongly in L2(Ω). Moreover,

recalling [2, Proposition 1.14 (i)] we have also T (uε)
2−sc
−→ υ in L2(Ω×Y ). By

Lemma 6 of [23] applied to function uε − T (uε), we have that

‖uε − υ‖
2
L2(Ω) = ‖(uε − T (uε)) + (T (uε)− υ)‖

2
L2(Ω)

≤ 2
(
‖uε − T (uε)‖

2
L2(Ω) + ‖T (uε)− υ‖

2
L2(Ω)

)

≤ C
(
‖uε − T (uε)‖

2
L2(Ωε

2)
+ ε

∫

Γ ε

[uε − T (uε)]
2 dσ

+ ε2‖∇uε −∇T (uε)‖
2
L2(Ω) + ‖T (uε)− υ‖

2
L2(Ω)

)

≤ C
(
ε1+α 1

εα

∫

Γ ε

[uε]
2 dσ + ε2‖∇uε‖

2
L2(Ω)

+ ε2‖∇T (uε)‖
2
L2(Ω) + ‖T (uε)− υ‖

2
L2(Ω)

)
→ 0 ,

where we have taken into account again that α+ 1 > 0. It remains to prove
that υ = u, but this is a direct consequence of the fact that T (uε) = uε in
Ωε

2, indeed taking a test function φ
(
x, x

ε

)
= φ1(x)φ2

(
x
ε

)
, with φ1 ∈ C

0
c (Ω)

and φ2 ∈ C0#(Y ) with compact support in E2, it follows

(∫

Ω

u(x)φ1(x) dx

)(∫

E2

φ2(y) dy

)
←

∫

Ω

uε(x)φ
(
x,
x

ε

)
dx

=

∫

Ω

T (uε)(x)φ
(
x,
x

ε

)
dx→

(∫

Ω

υ(x)φ1(x) dx

)(∫

E2

φ2(y) dy

)
.

Therefore, uε → u strongly in L2(Ω), i.e. (18) holds. In order to get the
homogenous boundary condition (62), we proceed as in [9, Proof of Theorem
2.2]. Let Φ ∈ L2(Ω;RN) and let Ψ be the function associated to Φ on E2 by
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Lemma 2.4. Integrating by parts and passing to the two-scale limit, we have

∫

Ω

∫

E2

(∇u(x) +∇yu1(x, y))Ψ(x, y) dy dx←

∫

Ωε
2

∇uε(x)·Ψ
(
x,
x

ε

)
dx

= −

∫

Ωε
2

uε(x)divxΨ
(
x,
x

ε

)
dx→ −

∫

Ω

∫

E2

u(x)divxΨ(x, y) dy dx

= −

∫

Ω

u(x)divΦ(x) dx . (69)

Moreover, by (2) there holds326

∫

E2

∇yu1(x, y)Ψ(x, y) dy=−

∫

Γ

u1(x, y)Ψ·ν dσ−

∫

E2

u1(x, y)divyΨ(x, y) dy=0 .

(70)
By (69) and (70), we conclude327

∫

Ω

∇u(x)Φ(x) dx =

∫

Ω

∇u(x)

(∫

E2

Ψ(x, y) dy

)
dx = −

∫

Ω

u(x)divΦ(x) dx ,

(71)
and hence u = 0 on ∂Ω. Then, we can repeat the argument in the proof of328

Theorem 4.1 in order to obtain (22) and329

Iε →

∫

Ω

f

uθ
ϕχ{u>0} dx , Jε → 0 , for ε→ 0. (72)

Moreover, using the strong maximum principle as in Theorem 4.1, we obtain330

u > 0 a.e. in Ω, so that we can drop the characteristic function χ{u>0} in331

(72). Finally, taking first ϕ = 0 and then Φ = 0, we deduce the strong332

formulation (57)–(62). �333

Remark 4.9. Notice that, when we are in the connected/disconnected case,334

as already pointed out in Subsection 2.4, we can refer to the more classical335

extension theorem in [15, 28], where the extension is found directly in H1
0 (Ω).336

Thus the proof of Theorem 4.7 can be achieved in a simpler way, avoiding337

steps (69)–(71).338

4.4. The case α = −1339

In this subsection we will assume to be in the connected/connected geom-340

etry. Moreover, we stipulate that the source f ∈ L
2

1+θ (Ω) is strictly positive341
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a.e. in Ω. We will see that the homogenized problem will take into account342

the physical properties of the bulk regions (i.e., λ1, λ2) as well as the physical343

properties of the interfaces (i.e. β).344

Theorem 4.10. For ε > 0, let uε ∈ V ε
0 (Ω) be the weak solution of the

problem (10). Then, there exist u =
(
u(1), u(2)

)
∈ H1

0 (Ω) × H1
0 (Ω) and

u1 =
(
u
(1)
1 , u

(2)
1

)
∈ L2(Ω;V#(Y )) with

∫
E1
u
(1)
1 dy = 0 =

∫
E2
u
(2)
1 dy, such

that

χΩε
1
u(1)ε

2−sc
−→ χE1u

(1), χΩε
2
u(2)ε

2−sc
−→ χE2u

(2) , in L2(Ω × Y ) ; (73)

χΩε
1
∇u(1)ε

2−sc
−→ χE1

(
∇u(1) +∇yu

(1)
1

)
, in L2(Ω × Y ) ; (74)

χΩε
2
∇u(2)ε

2−sc
−→ χE2

(
∇u(2) +∇yu

(2)
1

)
, in L2(Ω × Y ) ; (75)

[uε]
2−sc
−→ [u] , in L2(Ω;L2(Γ )) . (76)

Moreover,345

∣∣∣∣
∫

Ω

f

(u(i))θ
ϕ dx

∣∣∣∣ < +∞ , ∀ϕ ∈ H1
0 (Ω) , i = 1, 2 , (77)

and the pair (u, u1) solve

− div

(
λ1|E1|∇u

(1) +

∫

E1

λ1∇yu
(1)
1 dy

)
= |E1|

f

(u(1))θ
+ |Γ |β[u], in Ω ;

(78)

− div

(
λ2|E2|∇u

(2) +

∫

E2

λ2∇yu
(2)
1 dy

)
= |E2|

f

(u(2))θ
− |Γ |β[u], in Ω ;

(79)

− divy(λ(∇u+∇yu1)) = 0 , in E1 ∪ E2 ; (80)

λ1(∇u
(1) +∇yu

(1)
1 ) · ν = 0 , on Ω × Γ ; (81)

λ2(∇u
(2) +∇yu

(2)
1 ) · ν = 0 , on Ω × Γ ; (82)

u(1), u(2) > 0 , in Ω , (83)

u(1) = u(2) = 0 , on ∂Ω , (84)

where, with a slight abuse of notation, we set [u] = u(2) − u(1).346
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Remark 4.11. Following the same ideas as in Remark 4.3, we obtain that347

problem (78) admits at most one pair of solutions (u, u1). Moreover, we can348

factorize u1 as349

u
(1)
1 (x, y) = χ(1)(y)∇u(1)(x) , u

(2)
1 (x, y) = χ(2)(y)∇u(2)(x) , (85)

where χ(k) = (χ
(k)
1 , . . . , χ

(k)
N ), for k = 1, 2,

∫
E1
χ
(1)
j dy = 0 =

∫
E2
χ
(2)
j dy,350

for each j ∈ {1, . . . , N}, and, recalling the usual notation, we set χ =351

(χ(1), χ(2)) ∈
(
V#(Y )

)N
. Then by (78) we obtain that, for each j ∈ {1, . . . , N},352

χj satisfies (63) and u(1), u(2) solve the following system353

−div(A(1)
hom∇u

(1)) = |E1|
f

(u(1))θ
+ |Γ |β

(
u(2) − u(1)

)
, in Ω ;

−div(A(2)
hom∇u

(2)) = |E2|
f

(u(2))θ
− |Γ |β

(
u(2) − u(1)

)
, in Ω ;

u(1) = u(2) = 0 , on ∂Ω ,

(86)

where, for k = 1, 2, the matrix A
(k)
hom is defined as

A
(k)
hom = λk|Ek|I + λk

∫

Ek

(∇yχ
(k))T dy.

Since

(∫

Ek

(∇χ(k))T dy

)

ij

=

∫

Ek

∂χ
(k)
j

∂yi
dy = −(−1)k

∫

Γ

χ
(k)
j νi dy,

we also have354

A
(k)
hom = λk|Ek|I − (−1)kλk

∫

Γ

ν ⊗ χ(k) dσ. (87)

Following the same ideas as in [12, Remark 2.6], it is not difficult to prove

that the matrices A
(k)
hom are symmetric and positive definite. Therefore, the

solution u = (u(1), u(2)) of (86) is unique. In fact, if û = (û(1), û(2)) and
ū = (ū(1), ū(2)) are two different solutions, then for ϕ ∈ H1

0 (Ω) and k = 1, 2,
we have

∫

Ω

A
(k)
hom∇û

(k) · ∇ϕ dx=|Ek|

∫

Ω

f

(û(k))θ
ϕ dx− (−1)k|Γ |β

∫

Ω

[û]ϕ dx , (88)

∫

Ω

A
(k)
hom∇ū

(k) · ∇ϕ dx=|Ek|

∫

Ω

f

(ū(k))θ
ϕ dx− (−1)k|Γ |β

∫

Ω

[ū]ϕ dx . (89)
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Subtracting (89) from (88) and taking ϕ = û(k)− ū(k), separately for k = 1, 2,355

we have356

∫

Ω

A
(k)
hom∇

(
û(k) − ū(k)

)
· ∇

(
û(k) − ū(k)

)
dx

=|Ek|

∫

Ω

(
f

(û(k))θ
−

f

(ū(k))θ

)(
û(k) − ū(k)

)
dx− |Γ |β

∫

Ω

(
û(k) − ū(k)

)2
dx

+ |Γ |β

∫

Ω

(
û(1) − ū(1)

) (
û(2) − ū(2)

)
dx.

(90)
Summing (90) for k = 1, 2, we get357

∫

Ω

A
(1)
hom∇

(
û(1) − ū(1)

)
· ∇

(
û(1) − ū(1)

)
dx (91)

+

∫

Ω

A
(2)
hom∇

(
û(2) − ū(2)

)
· ∇

(
û(2) − ū(2)

)
dx

= |E1|

∫

Ω

(
f

(û(1))θ
−

f

(ū(1))θ

)(
û(1) − ū(1)

)
dx

+ |E2|

∫

Ω

(
f

(û(2))θ
−

f

(ū(2))θ

)(
û(2) − ū(2)

)
dx

− |Γ|β

∫

Ω

(
(û(1) − ū(1))− (û(2) − ū(2))

)2
dx.

Recalling that A
(1)
hom and A

(2)
hom are positive definite and taking into account

that the function s 7→ 1
sθ

is decreasing, by (91) we infer

∫

Ω

∣∣∇
(
û(1) − ū(1)

)∣∣2 +
∫

Ω

∣∣∇
(
û(2) − ū(2)

)∣∣2 ≤ 0 ,

which implies û(1) = ū(1) and û(2) = ū(2).358

Proof. First we note that (73)–(76) follow by Proposition 3.1 and Theo-359

rem 2.12. In order to proceed with the homogenization, we choose ψ =360

(ψ(1), ψ(2)), ψ(i)(x) = ϕi(x) + εΦi

(
x, x

ε

)
in Ωε

i × Ei, with ϕi ∈ C
1
c (Ω) and361

Φi ∈ C1c (Ω;L#(Y )), for i = 1, 2, as test function in (12), with α = −1. We362
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get363

∫

Ωε
1

λ1∇uε · ∇ϕ1 dx+

∫

Ωε
2

λ2∇uε · ∇ϕ2 dx+ ε

∫

Ωε
1

λ1∇uε · ∇xΦ1 dx

+ ε

∫

Ωε
2

λ2∇uε · ∇xΦ2 dx+

∫

Ωε
1

λ1∇uε∇yΦ1 dx+

∫

Ωε
2

λ2∇uε∇yΦ2 dx

+ βε

∫

Γ ε

[uε][ψ] dσ

=

∫

Ωε
1

f

uθε
ϕ1 dx+

∫

Ωε
2

f

uθε
ϕ2 dx+ ε

∫

Ωε
1

f

uθε
Φ1 dx+ ε

∫

Ωε
2

f

uθε
Φ2 dx

=: I1ε + I2ε + J1
ε + J2

ε . (92)

Hence, taking into account (73)–(76), as ε→ 0, the left-hand side converges
to
∫

Ω×E1

λ1(∇u
(1)+∇yu

(1)
1 )·∇ϕ1 dx dy+

∫

Ω×E2

λ2(∇u
(2)+∇yu

(2)
1 )·∇ϕ2 dx dy

+

∫

Ω×E1

λ1(∇u
(1)+∇yu

(1)
1 )·∇yΦ1 dx dy+

∫

Ω×E2

λ2(∇u
(2)+∇yu

(2)
1 )·∇yΦ2 dx dy

+ β

∫

Ω×Γ

[u][ϕ] dx dσ(y). (93)

In order to treat the right-hand side of (92), we will need to making use
of the extension operator introduced in Subsection 2.4. More precisely, we
consider the extensions of u

(1)
ε and u

(2)
ε , which can be obtained applying

Theorem 2.13 both in Ωε
1 and Ωε

2. In the sequel, for the sake of simplicity,

we set T (u
(i)
ε ) = T i

εu
(i)
ε , i = 1, 2. We recall that u

(1)
ε and u

(2)
ε are positive

and, without loss of generality, we can assume that also T (u
(1)
ε ) and T (u

(2)
ε )

are positive (in fact, if the extension given by Theorem 2.13 would not be
positive, we could replace it with its positive part). Moreover, by Theorem
2.13 and (73) we get

T (u(1)ε )χΩε
1
= u(1)ε χΩε

1
, T (u(2)ε )χΩε

2
= u(2)ε χΩε

2
, (94)

u(1)ε χΩε
1

2−sc
−→ u(1)χE1 , u(2)ε χΩε

2

2−sc
−→ u(2)χE2 , (95)

and, by (8), (9), (13) and (14), it follows that there exist v1, v2 such that364

T (u(1)ε )→ υ1 , T (u(2)ε )→ υ2 strongly in L2(Ω). (96)
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Finally, we obtain365

υ1(x) = u(1)(x), υ2(x) = u(2)(x), for a.e. x ∈ Ω. (97)

In fact, for i = 1, 2, we have that T (u
(i)
ε )χΩε

i

2−sc
−→ υiχEi

, since T (u
(i)
ε ) → υk

strongly in L2(Ω) on compact sets contained in Ω. Hence, by (95), it follows∫

Ω

u(i)|Ei|ϕ dx←

∫

Ω

u(i)ε χΩε
i
ϕ dx=

∫

Ω

T (u(i)ε )χΩε
i
ϕ dx→

∫

Ω

υ(i)|Ei|ϕ dx ,

for every ϕ ∈ C1c (Ω). Therefore, we have proved that366

T (u(1)ε )→ u(1) , T (u(2)ε )→ u(2) strongly in L2(Ω). (98)

We remark also that, arguing as in (69)–(71), both for u(1) and u(2), we get367

u(1) = u(2) = 0 on ∂Ω.368

We are now ready to deal with the right hand side of (92). Taking into
account that the integrands in J1

ε and J2
ε can be assumed positive, we can

estimate from above each J i
ε, i = 1, 2, with the integral over the whole Ω.

Therefore, reasoning as in (37), we obtain that, as ε→ 0,

J1
ε → 0 and J2

ε → 0.

On the other hand, we rewrite I iε, i = 1, 2, in the following way

I iε =

∫

Ωε
i
∩{0≤uε<δ}

f

uθε
ϕi dx+

∫

Ωε
i
∩{uε≥δ}

f

uθε
ϕi dx := I i,1ε,δ + I i,2ε,δ .

We can adapt the same argument used for the term I i,1ε,δ in the case α = 1. In369

particular, as in the proof of Theorem 4.1, we take Zδ(uε)ϕi as test function370

in (12) with Zδ defined in (40) and we assume ϕi ≥ 0, obtaining371

I i,1ε,δ ≤

∫

Ω

λε∇uε · ∇ϕiZδ(uε) dx =

∫

Ω

λε∇uε · ∇ϕiZδ(uε)
(
χΩε

1
+ χΩε

2

)
dx

=
2∑

k=1

∫

Ω

λkε∇u
(k)
ε · ∇ϕiZδ(u

(k)
ε )χΩε

k
dx

=
2∑

k=1

∫

Ω

λkε∇T (u
(k)
ε ) · ∇ϕiZδ(T (u

(k)
ε ))χΩε

k
dx

=
2∑

k=1

∫

Ω

λkε∇T (u
(k)
ε ) · ∇ϕi

(
Zδ(T (u

(k)
ε ))− Zδ(u

(k))
)
χΩε

k
dx

+
2∑

k=1

∫

Ω

λkε∇T (u
(k)
ε ) · ∇ϕiZδ(u

(k))χΩε
k
dx . (99)
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Recalling that λε∇T (u
(k)
ε )χΩε

k
is equi-bounded in L2(Ω), using (98) in order372

to obtain that Zδ(T (u
(k)
ε ))→ Zδ(u

(k)) strongly in L2(Ω), we get373

lim
ε→0

∫

Ω

λε∇uε · ∇ϕiZδ(uε) dx =

=

2∑

k=1

∫

Ω×Ek

λk
(
∇u(k) +∇yu

(k)
1

)
∇ϕiZδ(u

(k)) dx dy ,

where we have taken into account (74), (74) and (94). Hence,374

lim
δ→0

lim
ε→0

I i,1ε,δ ≤
2∑

k=1

∫

(Ω∩{u(k)=0})×Ek

∣∣∣λk(∇u(k) +∇yu
(k)
1 )

∣∣∣ |∇ϕi|. (100)

By Remark (4.11), for k = 1, 2, we may rewrite375

∫

(Ω∩{u(k)=0})×Ek

∣∣∣λk(∇u(k) +∇yu
(k)
1 )

∣∣∣ |∇ϕi| =

=

∫

(Ω∩{u(k)=0})×Ek

∣∣λk(I +∇yχ
(k))∇u(k)

∣∣ |∇ϕi| = 0 ,

because ∇u(k) vanishes on {u(k) = 0}. Therefore, we conclude376

lim
δ→0

lim
ε→0

I i,1ε,δ = 0 . (101)

We now focus our attention on the term I i,2ε,δ. We have377

I i,2ε,δ =

∫

Ωε
i∩{u

(i)
ε ≥δ}

f

(u
(i)
ε )θ

ϕi dx =

∫

Ω

f

(T (u
(i)
ε ))θ

χΩε
i
χ
{T (u

(i)
ε )≥δ}

ϕi dx . (102)

Since 0 ≤ f

(T (u
(i)
ε ))θ

ϕi ≤
f

δθ
ϕi ∈ L

1(Ω) in the set {T (u(i)ε ) ≥ δ} and χΩε
i
⇀ |Ei|378

weakly∗ in L∞(Ω), we can argue as in (39), once we have taken δ 6∈ C =379 ⋃2
k=1{δ > 0 : |{u(k)(x) = δ}| > 0}, which is at most countable. Thus we380

obtain381

lim
ε→0

I i,2ε,δ = |Ei|

∫

Ω

f

(u(i))θ
χ{u(i)>δ}ϕi dx . (103)
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Finally, by (92), (93), (101) and (103), we arrive at382

∫

Ω×E1

λ1(∇u
(1) +∇yu

(1)
1 ) · ∇ϕ1 dx dy (104)

+

∫

Ω×E2

λ2(∇u
(2) +∇yu

(2)
1 ) · ∇ϕ2 dx dy

+

∫

Ω×E1

λ1(∇u
(1) +∇yu

(1)
1 ) · ∇yΦ1 dx dy

+

∫

Ω×E2

λ2(∇u
(2) +∇yu

(2)
1 ) · ∇yΦ2 dx dy + β

∫

Ω×Γ

[u][ϕ] dx dσ(y)

= |E1|

∫

Ω

f

(u(1))θ
χ{u(1)>0}ϕ1 dx+ |E2|

∫

Ω

f

(u(2))θ
χ{u(2)>0}ϕ2 dx .

Choosing ϕ1, ϕ2,Φ1,Φ2 respectively equal to 0 in (104), we obtain (78)–(82)383

and (84) with f

(u(i))θ
replaced by f

(u(i))θ
χ{u(i)>0}, i = 1, 2. Moreover, using the384

factorization of u
(1)
1 and u

(2)
1 given in Remark 4.11, we obtain that (u(1), u(2))385

solve the system (86), with the new sources f

(u(i))θ
χ{u(i)>0}, i = 1, 2. In order386

to conclude the proof, we have to show that (77) and (83) hold so that we387

can drop χ{u(i)>0} in (104)). These properties will be proved in Lemma 5.7388

in Section 5.2.389

5. Appendix390

5.1. Existence and uniqueness for the ε-problem391

We devote this subsection to prove the existence and uniqueness for prob-392

lem (10), following the ideas in [13] as done in [18, Theorem 3.1]. The main393

difference in the present case is the underline geometrical setting, which re-394

quires different a-priori estimates. For this reason and for convenience of the395

reader, we will give a sketch of the proof.396

Since here ε is fixed, we will omit it so that, similarly to Section 2, we
rewrite Ω = Ω1 ∪ Ω2 ∪ Γ and

V0(Ω) = {u = (u(1), u(2)), u(1) ∈ H1(Ω1), u
(2) ∈ H1(Ω2), u = 0 on ∂Ω},

endowed with the norm defined by

‖u‖V0(Ω) := ‖∇u‖L2(Ω1∪Ω2) + ‖[u]‖L2(Γ ) .
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Moreover, we denote by

L0(Ω) = {ϕ = (ϕ(1), ϕ(2)) : ϕ(1) ∈ Lip(Ω1), ϕ
(2) ∈ Lip(Ω2), ϕ = 0 on ∂Ω}.

Finally, we set λ(x) = λ1 a.e. in Ω1 and λ(x) = λ2 a.e. in Ω2.397

Theorem 5.1. Assume that f ∈ L
2

1+θ (Ω), θ ∈ (0, 1), and f ≥ 0 a.e. in Ω,398

with f not identically zero in Ω1 nor in Ω2. Then, the problem399

∣∣∣∣
∫

Ω

f

uθ
ψ dx

∣∣∣∣ < +∞ ,

∫

Ω

λ∇u · ∇ψ dx+ β

∫

Γ

[u][ψ] dσ =

∫

Ω

f

uθ
ψ dx , ∀ψ ∈ V0(Ω) ,

(105)

admits a unique solution u ∈ V0(Ω), with u > 0 a.e. in Ω.400

In order to prove the previous result, we first need a preliminary existence401

result for a sequence of approximating problems. To this purpose, for n ∈ N,402

we set403

fn(x) = min{f(x), n} (106)

and we consider the problem to find un ∈ V0(Ω) satisfying the system404

−div(λ∇un) = fn

(un+
1
n)

θ , in Ω1 ∪ Ω2;

[λ∇un · ν] = 0, on Γ;

β[un] = λ∇u(2)n · ν, on Γ;
un ≥ 0, in Ω;
un = 0, on ∂Ω,

(107)

whose weak formulation is405

∫

Ω

λ∇un · ∇ψ dx+ β

∫

Γ

[un][ψ] dσ =

∫

Ω

fn(
un +

1
n

)θψ dx , ∀ψ ∈ V0(Ω).

(108)

Theorem 5.2. The problem (107) admits a unique nonnegative solution un ∈406

V0(Ω).407
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Proof. Let w ∈ L2(Ω) be fixed. For any n ∈ N we consider the following408

nonsingular linear problem409

−div(λ∇un) = fn

(|w|+ 1
n)

θ , in Ω1 ∪Ω2 ;

[λ∇un · ν] = 0 , on Γ ;

β[un] = λ2∇u
(2)
n · ν , on Γ ;

un = 0 , on ∂Ω,

(109)

whose weak formulation is410 ∫

Ω

λ∇un · ∇ψ dx+ β

∫

Γ

[un][ψ] dσ =

∫

Ω

fn(
|w|+ 1

n

)θψ dx , ∀ψ ∈ V0(Ω).

(110)
Since the datum (|w|+ 1

n
)−θfn is bounded by n1+θ, there exists a unique so-411

lution un ∈ V0(Ω), as a consequence of the well-known Lax-Milgram Lemma.412

Moreover, by standard energy estimates and by Poincaré’s inequality (2.2),413

there exists a positive constant C, depending on n but not on w, such that414

||un||L2(Ω) ≤ C||un||V0(Ω) ≤ C. (111)

In order to prove the existence of a solution to problem (107), we will use
Schauder’s Theorem. To this purpose we introduce the map F : L2(Ω) →
L2(Ω) defined by F (w) = un, where un is the solution of (109). Let B be
the ball in L2(Ω) of radius C, where C is the constant appearing in (111).
Clearly F (B) ⊆ B. In order to apply the Schauder’s Theorem, we need to
prove that F is continuous and compact on B. The compactness of F follows
by the fact that the inclusion of V0 in L2(Ω) is compact. In order to prove
that F is continuous we proceed as follows. Let {wr} ⊂ B be a sequence
in L2(Ω) strongly converging to a function w ∈ L2(Ω). We want to prove
that un,r := F (wr) strongly converges in L2(Ω) to un = F (w), for r → +∞.
Since wr is strongly convergent in L2(Ω) to w, we have also that, up to a

subsequence, wr(x)→ w(x) for a.e. x ∈ Ω and therefore also
(
|wr|+

1
n

)−θ
fn

converges to
(
|w|+ 1

n

)−θ
fn a.e. in Ω, which implies the strong convergence in

Lq(Ω) for every q ≥ 1. By (111) with un replaced by un,r and the compactness
of the inclusion of V0 in L

2(Ω), it follows that there exists un ∈ V0 such that,
up to a subsequence,

un,r → un , strongly in L2(Ω),

∇un,r ⇀ ∇un , weakly in L2(Ω),

[un,r]⇀ [un] , weakly in L2(Γ).
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Passing to the limit in (110) written for un,r and wr, it follows that un = F (w)
and by the uniqueness of the solution of problem (109)–(110) we have that
the whole sequence F (wn,r) = un,r → un = F (w), strongly in L2(Ω), for
r → +∞. Hence F is continuous and therefore there exists a fixed point un
which is a solution of the problem
∫

Ω

λ∇un · ∇ψ dx+ β

∫

Γ

[un][ψ] dσ =

∫

Ω

fn(
|un|+

1
n

)θψ dx , ∀ψ ∈ V0(Ω).

The proof that un is nonnegative can be obtained following the same com-415

putations at page 15 of [18, Proof of Theorem 3.1], as well as the proof that416

the solution un is unique follows by [18, Proof of Theorem 3.5].417

Proof of Theorem 5.1. Taking un as test function in (108) and using the418

Poincaré inequality (1), we obtain419

∫

Ω

u2n dx ≤ C

(∫

Ω

|∇un|
2 dx+

∫

Γ

[un]
2 dσ

)
≤ C

∫

Ω

fn(
un +

1
n

)θun dx

≤ C||f ||
L

2
1+θ (Ω)

||un||
1−θ
L2(Ω)

and hence420

||un||L2(Ω) ≤ C||un||V0 ≤ C||f ||
1

1+θ

L
2

1+θ (Ω)
, (112)

where C is independent of n. By (112) and the compactness of the inclusion421

of V0 in L2(Ω), we infer that there exists u ∈ V0, u ≥ 0 a.e. in Ω, such that,422

up to a subsequence,423

un → u , strongly in L2(Ω);
∇un ⇀ ∇u , weakly in L2(Ω);
[un]⇀ [u] , weakly in L2(Γ ).

(113)

Moreover, by (108), with ψ ∈ V0(Ω), and (112), we obtain

∣∣∣∣
∫

Ω

fn
(un +

1
n
)θ
ψ dx

∣∣∣∣ ≤ C ,

so that, when n→ +∞, by Fatou’s Lemma it follows424

∣∣∣∣
∫

Ω

f

uθ
ψ dx

∣∣∣∣ ≤ C , (114)
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which also implies that u is not identically zero in Ω (nor in Ω1 neither in425

Ω2). Now, we can pass to the limit in the weak formulation (108). Clearly,426

the left-hand side converges to the left-hand side of (105). In order to pass to427

the limit in the right-hand side, we proceed again as in [18, Proof of Theorem428

3.1], assuming that ψ is a nonnegative function belonging to L0(Ω). As in429

(38), we can write430

In =

∫

Ω∩{0≤un≤δ}

fn(
un +

1
n

)θψ dx+

∫

Ω∩{un>δ}

fn(
un +

1
n

)θψ dx := I1n,δ + I2n,δ ,

(115)
where431

lim
δ→0

lim
n→+∞

I2n,δ =

∫

Ω∩{u>0}

f

uθ
ψ dx . (116)

Moreover, using as test function in (108) the function Zδ(un)ψ, with Zδ432

defined in (40) and ψ as above, we arrive at433

I1n,δ ≤

∫

Ω

λ∇un · ∇ψZδ(un) dx+ 2βδ||ψ(2) + ψ(1)||L1(Γ ), (117)

as in [18, Proposition 4.4]. Therefore,

lim
n→+∞

I1n,δ ≤

∫

Ω

λ∇u · ∇ψZδ(u) dx+ 2βδ||ψ(2) + ψ(1)||L1(Γ ),

where we have taken into account that ∇un ⇀ ∇u weakly in L2(Ω) and434

Zδ(un)→ Zδ(u) strongly in L2(Ω), since s 7→ Zδ(s) is continuous and un → u435

strongly in L2(Ω). Then, passing to the limit as δ → 0, we get436

lim
δ→0

lim
n→+∞

I1n,δ ≤

∫

Ω∩{u=0}

λ∇u · ∇ψ dx = 0 , (118)

where we have taken into account that ∇u = 0 a.e. on the level set {u = 0}.437

Clearly, as done before, we have paid attention to choose δ 6∈ C = {δ > 0 :438

|{u(x) = δ}| > 0}, which is at most countable.439

From (115), (116), (118), the density of L0(Ω) in V0(Ω) and the standard
decomposition of ψ ∈ V0(Ω) as ψ = ψ+ − ψ−, it follows that u satisfies

∫

Ω

λ∇u · ∇ψ dx+ β

∫

Γ

[u][ψ] dσ =

∫

Ω

f

uθ
χ{u>0}ψ dx ,
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for every ψ ∈ V0(Ω). It remains to prove that u > 0 a.e. in Ω, in order440

to replace f

uθχ{u>0} with f

uθ . This is a direct consequence of the maximum441

principle (see [21, Theorem 8.19] and also [20, Proposition 3.5]) applied to u442

in Ω1 and Ω2, separately, recalling that (114) implies that u is not identically443

zero in Ω1 nor in Ω2. Indeed, in the connected/connected geometry the444

maximum principle can be applied since inf u = 0 in each Ωi, i = 1, 2 (being445

u = 0 in ∂Ω ∩ ∂Ωi 6= ∅, i = 1, 2). The same approach can be followed in the446

connected/disconnected geometry for the outer domain Ω2, where we have447

u = 0 on ∂Ω ∩ ∂Ω2 6= ∅. On the contrary in Ω1, taking into account that u448

is nonnegative (being the strong L2-limit of the sequence of positive function449

un) we should distinguish two different situations: or inf u > 0 in Ω1 and,450

therefore, there is nothing to prove, or inf u = 0 in Ω1 and in this case we451

can appeal again to the maximum principle. �452

5.2. Positivity of the bidomain homogenized solution453

We devote this subsection to the proof of the strict positivity a.e. in Ω454

of the solution of the bidomain problem (78)–(84) obtained from the homog-455

enization of the system (10) in the case α = −1 (Lemma 5.7 below). Notice456

that this result can be obtained from (17), by using the so-called two-scale457

decomposition introduced in [29] and following the approach used in [30, Sec-458

tion 1]. However, due to the special factorized form of the integral in the459

left-hand side of (17), we prefer to give a direct proof based on the unfolding460

homogenization technique which, in this case, essentially corresponds to the461

two-scale decomposition. To this purpose, we recall the definition and those462

properties of the unfolding operator which are necessary in order to achieve463

our result (see [16, 17]).464

Let us set

Ξε =
{
ξ ∈ Z

N , ε(ξ + Y ) ⊂ Ω
}
, Ω̂ε = interior

{
⋃

ξ∈Ξε

ε(ξ + Y )

}
.

Denoting by [r] the integer part of r ∈ R, we define for x ∈ R
N

[x
ε

]
Y
=

( [x1
ε

]
, . . . ,

[xN
ε

] )
, so that x = ε

([x
ε

]
Y
+
{x
ε

}
Y

)
.
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Definition 5.3. For w Lebesgue-measurable on Ω the periodic unfolding op-
erator Tε is defined as

Tε(w)(x, y) =




w
(
ε
[x
ε

]
Y
+ εy

)
, (x, y) ∈ Ω̂ε × Y ,

0 , otherwise.

Clearly, Tε is linear and for w1, w2 as in Definition 5.3465

Tε(w1w2) = Tε(w1)Tε(w2) . (119)

Proposition 5.4. Let w ∈ L1(Ω), then466

∫

Ω×Y

|Tε(w)| dx dy ≤

∫

Ω

|w| dx . (120)

Proposition 5.5. Let {wε} be a sequence of functions in Lp(Ω), p > 1.467

If wε → w strongly in Lp(Ω) as ε→ 0, then468

Tε(wε)→ w , strongly inLp(Ω × Y ) . (121)

Proposition 5.6. Let φ : Y → R be a function extended by Y -periodicity to469

the whole of RN and define the sequence470

φε(x) = φ
(x
ε

)
, x ∈ R

N . (122)

If φ is measurable on Y , then471

Tε(φ
ε)(x, y) =

{
φ(y) , (x, y) ∈ Ω̂ε × Y ,

0 , otherwise.
(123)

Moreover, if φ ∈ Lp(Y ), p > 1, as ε→ 0472

Tε(φ
ε)→ φ , strongly inLp(Ω × Y ) . (124)

Lemma 5.7. Under the assumption of Theorem 4.10,473

∣∣∣∣
∫

Ω

f

(u(i))θ
ϕ dx

∣∣∣∣ < +∞ , ∀ϕ ∈ H1
0 (Ω) , i = 1, 2 , (125)

holds and the functions u(1) and u(2) are strictly positive a.e. in Ω.474
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Proof. As in the proof of Theorem 4.10, let T denotes the extension operator.
Recalling that, for a.e. x ∈ Ω, χΩε

1
(x) = χE1(ε

−1x) and χΩε
2
(x) = χE2(ε

−1x),
extended by periodicity from Y to the whole of RN , and taking into account
(98) and the properties of the unfolding operator (119), (121) and (124), we
have that

Tε(uε) = Tε(uεχΩε
1
+ uεχΩε

2
) = Tε

(
T (u(1)ε )χΩε

1
+ T (u(2)ε )χΩε

2

)

= Tε
(
T (u(1)ε )

)
Tε

(
χΩε

1

)
+ Tε

(
T (u(2)ε )

)
Tε

(
χΩε

2

)

−→ u(1)χE1 + u(2)χE2 , strongly in L1(Ω × Y ).

Therefore, there exists a set N ⊂ Ω × Y , with |N | = 0, such that

Tε(uε)(x, y)→ u(1)(x)χE1(y) + u(2)(x)χE2(y)

for every (x, y) ∈ (Ω × Y ) \ N . Then, by (17) with ψ ∈ C1c (Ω), ψ ≥ 0, (13)
and applying Fatou’s Lemma, we get

∫

Ω×Y

f

(u(1)χE1 + u(2)χE2)
θ
ψ dx dy ≤ lim inf

ε→0

∫

Ω×Y

Tε(f)

Tε(uε)θ
Tε(ψ) dx dy

= lim inf
ε→0

∫

Ω×Y

Tε

(
f

uθε
ψ

)
dx dy ≤ lim inf

ε→0

∫

Ω

f

uθε
ψ dx ≤ C , (126)

where we used also (120). Inequality (126) implies, in particular,475

|Ei|

∫

Ω

f

(u(i))θ
ψ dx =

∫

Ω×Ei

f

(u(i)χEi
)θ
ψ dx dy ≤ C , i = 1, 2 ; (127)

thus, (125) is proved and hence, taking into account that f > 0 a.e. in Ω,476

(127) implies u(i) > 0 a.e. in Ω, i = 1, 2.477
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partielles, Cours Peccot Collège de France, 1977, partiaellement rédigé557
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