Homogenization of elliptic problems involving interfaces and singular data

Micol Amar ${ }^{\text {a }}$, Ida De Bonis ${ }^{\text {b }}$, Giuseppe Riey ${ }^{\text {c }}$
${ }^{a}$ Dipartimento di Scienze di Base e Applicate per l'Ingegneria
Sapienza - Università di Roma Via A. Scarpa 16, 00161 Roma, Italy
${ }^{b}$ Università telematica Giustino Fortunato
Viale Raffaele Delcogliano 12, 82100 Benevento, Italy
${ }^{c}$ Dipartimento di Matematica e Informatica Università della Calabria
Via P. Bucci, 87036 Rende (CS), Italy

Abstract

We prove existence and homogenization results for a family of elliptic problems involving interfaces and a singular lower order term. These problems model heat or electrical conduction in composite media.

Keywords: Homogenization, two-scale convergence, interfaces, singular data 2010 MSC: 5B27, 35J65, 35J75 Acknowledgments: The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

1. Introduction

We consider a family (depending on a small parameter $\varepsilon>0$ and on a parameter $\alpha \geq-1$) of elliptic problems involving a singular lower order term and representing the Euler equations of energy functionals, which describe the equilibrium for the heat conduction in composite materials with two finely mixed phases having a microscopic periodic structure (for details on the related physical models see for instance [18, 19, 24] and the reference quoted therein). The same kind of energies can be also useful to study the electrical conduction in biological tissues (see for instance [6]-[9], where the
related evolutive problems without singular source are considered). Similar models in the framework of electrical or thermal conduction in composite materials are treated in [5, 10, 11].

We assume that the domain $\Omega \subseteq \mathbb{R}^{N}$, which models the region occupied by the material, is made by two phases separated by an active interface. The parameter ε, which will be sent to 0 , is related to the period of the microstructure (for more details on the geometrical setting, see the next section). The mathematical description of our model in the microscopic setting is given by two non-homogeneous elliptic equations in each phase, complemented with the assumption that the flux of the solution u_{ε} is continuous across the interface and proportional to the jump of u_{ε}. Moreover, we assume that in both phases the rate of heat generation is given by a singular source of the form $\frac{f}{u_{\varepsilon}^{\epsilon}}$, with $0<\theta<1$ and $f \in L^{\frac{2}{1+\theta}}$. The restriction on θ is required in order to get suitable a priori estimates, although the source term is singular.

Our main results concern the study of the limit (as $\varepsilon \rightarrow 0$) of the solutions u_{ε}, focusing our attention on the differences of the limit equations (characterizing the properties of the material from the macroscopic point of view) with respect to the parameter α (appearing in the interface condition). We confine our study to the case $\alpha \geq-1$, where a suitable Poincare's inequality for general geometries is available.

In order to get the homogenized problem, we use the two-scale convergence technique (see for instance $[2,3,4,26]$). In particular, we obtain four different behaviours:

$$
\alpha>1, \quad \alpha=1, \quad \alpha \in(-1,1), \quad \alpha=-1 .
$$

In the first three cases, we get in the limit a second order elliptic equation with singular source, whose homogenized matrix is different in each case. Instead, for $\alpha=-1$, we get a bidomain governed by a system of two coupled elliptic equations. Moreover, we remark that, when $\alpha>1$ or $\alpha \in(-1,1)$, the homogenized problem loses memory of the physical properties of the interfaces, thus suggesting that the main models are those with $\alpha= \pm 1$.

In order to handle with the singular term, we follow some ideas already present in [18] and in some previous papers (see, in particular, [20]), but our different geometrical setting gives rise to technical difficulties due to the interaction between jumps and singularities, which can be overcome by means of a new strategy (see, for instance, the proof of theorem 4.1).

Another crucial point, in order to get the homogenized problem, is the proof of the strict positivity of the limit solution, which is a non trivial re-
sult, at least when $\alpha=-1$. In this case, our geometry does not allow to follow the arguments in [18], but it requires a new idea (see Lemma 5.7). To get this result, it should be possible to use the so-called two-scale decomposition introduced in [29] in order to prove the lower semicontinuity of a suitable functional, which implies as a by-product, the requested positivity of the limit solution. However, due to the special structure of our model, we prefer to follow a more direct approach, appealing to the unfolding technique introduced by Cioranescu, Damlamian and Griso in 2002 (see for instance $[16,17])$.

The paper is organized as follows: in Section 2 we recall notations and preliminary results and we set our problems; in Section 3 we state the necessary estimates for the compactness results; in Section 4 we state and prove our main homogenization theorems. Finally, the paper contains an Appendix divided into two parts: in the first one, we prove the well-posedness of our microscopic problem (10), while in the second one we recall some tools from the unfolding technique and we prove the strict positivity of the homogenized solution for $\alpha=-1$.

2. Preliminaries

2.1. The geometrical setting

For $N \geq 3$, let $\Omega \subset \mathbb{R}^{N}$ be an open, connected and bounded set. Let E be a periodic open subset of \mathbb{R}^{N}, so that $E+z=E$ for all $z \in \mathbb{Z}^{N}$. For all $\varepsilon>0$ we define the two open sets

$$
\Omega_{1}^{\varepsilon}=\Omega \cap \varepsilon E, \quad \Omega_{2}^{\varepsilon}=\Omega \backslash \overline{\varepsilon E} .
$$

We assume that Ω and E have Lipschitz continuous boundary and that Ω_{2}^{ε} is connected. We set

$$
\Gamma^{\varepsilon}=\partial \Omega_{1}^{\varepsilon} \cap \Omega=\partial \Omega_{2}^{\varepsilon} \cap \Omega
$$

so that we have $\Omega=\Omega_{1}^{\varepsilon} \cup \Omega_{2}^{\varepsilon} \cup \Gamma^{\varepsilon}$. We also employ the notation $Y=(0,1)^{N}$, and $E_{1}=E \cap Y, E_{2}=Y \backslash \bar{E}, \Gamma=\partial E \cap \bar{Y}$ and we assume that $|\Gamma \cap \partial Y|_{N-1}=0$ and that E_{2} is connected.

In the following, we will consider two different situations.

- We will name the connected/disconnected geometry the case where $\Gamma \cap$ $\partial Y=\emptyset$, and in this case we will assume that $\operatorname{dist}\left(\Gamma^{\varepsilon}, \partial \Omega\right) \geq \gamma_{0} \varepsilon$, for
a suitable $\gamma_{0}>0$. To this purpose, for each ε, we are ready to remove the inclusions in all the cells which are not completely contained in Ω. In this case, the sets Ω_{1}^{ε} and Ω_{2}^{ε} are usually called the inner and the outer domain, respectively (see Figure 1).

Figure 1: Left: the periodic cell $Y . E_{1}$ is the shaded region and E_{2} is the white region. Right: the region Ω.

- We will name the connected/connected geometry the case where E_{1}, E_{2}, $\Omega_{1}^{\varepsilon}, \Omega_{2}^{\varepsilon}$ are connected. In this case, we will assume that both ∂E_{1} and ∂E_{2} have Lipschitz regularity and, moreover, we will need that Ω, E_{1} and E_{2} are such that $\partial \Omega_{1}^{\varepsilon}$ and $\partial \Omega_{2}^{\varepsilon}$ are still Lipschitz regular at each ε-step, at least for a suitable choice of a subsequence ε_{n} tending to zero. For instance, this is the case when Ω is a rectangular domain with $\varepsilon_{n}=|\Omega| / n$; indeed, this choice implies that Ω always contains an integer number of ε-cells. In the following, that regularity assumption will be always implicit; however, we will omit the subindex n, even in the case in which it should be necessary.

We denote by ν_{ε} the normal unit vector to Γ^{ε} pointing into Ω_{2}^{ε} and by ν the normal unit vector to Γ pointing into E_{2}.

For a function u defined on Ω, we denote by $u^{(1)}$ and $u^{(2)}$ the restriction of u to Ω_{1}^{ε} and Ω_{2}^{ε}, respectively. On Γ^{ε} we define

$$
[u]:=u^{(2)}-u^{(1)} .
$$

Figure 2: the periodic cell $Y . E_{1}$ is the shaded region and E_{2} is the white region.

We use the same notation for functions defined in the unit cell Y, where $u^{(1)}$ and $u^{(2)}$ stands here for the restriction of u to E_{1} and E_{2}, respectively.

In the following x and y will denote the macro and micro-variable, respectively, so that, for a function $u(x, y)$ defined on $\Omega \times Y$, we denote by $\nabla_{x} u, \nabla_{y} u$ and $\operatorname{div}_{x} u, \operatorname{div}_{y} u$ the gradient and the divergence of u computed with respect to the variables x and y, respectively. When no confusion is possible, we write ∇u for $\nabla_{x} u$ and $\operatorname{div} u$ for $\operatorname{div}_{x} u$.

Given $\xi, \eta \in \mathbb{R}^{N}, \xi \otimes \eta$ will denote the matrix whose entries are $(\xi \otimes \eta)_{i j}=$ $\xi_{i} \eta_{j}$. We denote by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}$ the euclidian basis of \mathbb{R}^{N}. In the sequel C will denote a positive constant, which may vary from line to line.

2.2. Functional spaces

We set

$$
V_{0}^{\varepsilon}(\Omega)=\left\{u=\left(u^{(1)}, u^{(2)}\right), u^{(1)} \in H^{1}\left(\Omega_{1}^{\varepsilon}\right), u^{(2)} \in H^{1}\left(\Omega_{2}^{\varepsilon}\right), u=0 \text { on } \partial \Omega\right\},
$$

and

$$
\mathfrak{L}_{0}^{\varepsilon}(\Omega)=\left\{u=\left(u^{(1)}, u^{(2)}\right), u^{(1)} \in \operatorname{Lip}\left(\overline{\Omega_{1}^{\bar{\varepsilon}}}\right), u^{(2)} \in \operatorname{Lip}\left(\overline{\Omega_{2}^{\bar{\varepsilon}}}\right), u=0 \text { on } \partial \Omega\right\} .
$$

Analogously, we define the following space

$$
V_{\#}(Y)=\left\{v=\left(v^{(1)}, v^{(2)}\right), v \text { is } Y \text {-periodic, } v^{(1)} \in H_{\#}^{1}\left(E_{1}\right), v^{(2)} \in H_{\#}^{1}\left(E_{2}\right)\right\},
$$

and

$$
\mathfrak{L}_{\#}(Y)=\left\{v=\left(v^{(1)}, v^{(2)}\right), v \text { is } Y \text {-periodic, } v^{(1)} \in \operatorname{Lip}\left(\overline{E_{1}}\right), v^{(2)} \in \operatorname{Lip}\left(\overline{E_{2}}\right)\right\} .
$$

Here Y is identified with the flat torus in \mathbb{R}^{N}.
Remark 2.1. Notice that, if $u \in V_{0}^{\varepsilon}(\Omega)$, then $[u] \in L^{2}\left(\Gamma^{\varepsilon}\right)$ and, analogously, if $v \in V_{\#}(Y)$, then $[v] \in L^{2}(\Gamma)$.

We recall the following Poincaré's inequality (see [23, Lemma 6]).
Theorem 2.2. There exists $C>0$, independent of ε, such that

$$
\begin{equation*}
\int_{\Omega} v^{2} \mathrm{~d} x \leq C\left\{\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x+\varepsilon \int_{\Gamma^{\varepsilon}}[v]^{2} \mathrm{~d} \sigma\right\} \quad \forall v \in V_{0}^{\varepsilon}(\Omega) \tag{1}
\end{equation*}
$$

Remark 2.3. Notice that (1) holds in this form (i.e., with ε in front of the integral over the interface Γ^{ε}), since we have assumed that Ω_{2}^{ε} is connected.

We also recall the following technical lemma proved in [2, Lemma 2.10], which will be useful in the sequel.

Lemma 2.4. For any vector function $\Phi \in L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$, there exists a vector function $\Psi \in L^{2}\left(\Omega ; H_{\#}^{1}\left(E_{2} ; \mathbb{R}^{N}\right)\right)$ such that

$$
\begin{array}{ll}
\operatorname{div}_{y} \Psi(x, y)=0, & \text { in } E_{2} \\
\Psi(x, y)=0, & \text { on } \Gamma \\
\int_{E_{2}} \Psi(x, y) \mathrm{d} y=\Phi(x) .
\end{array}
$$

Moreover, $\|\Psi\|_{L^{2}\left(\Omega ; H_{\#}^{1}\left(E_{2} ; \mathbb{R}^{N}\right)\right)} \leq C\|\Phi\|_{L^{2}\left(\Omega ; \mathbb{R}^{N}\right)}$.
Clearly, in the connected/connected case, an analogous result holds with E_{2} replaced by E_{1}.

2.3. Two-scale convergence

We recall some basic definitions and properties of the two-scale convergence technique. For more details see, for instance, $[2,3,4,9,22]$ and the references therein.

Definition 2.5. A function $\varphi \in L^{2}(\Omega \times Y)$ is said an admissible test function if φ is Y-periodic with respect to the second variable and satisfies:

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \varphi^{2}\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x=\int_{\Omega \times Y} \varphi^{2}(x, y) \mathrm{d} x \mathrm{~d} y .
$$

${ }_{131}$ Remark 2.6. If $\varphi \in \mathcal{C}^{0}\left(\bar{\Omega} ; \mathcal{C}_{\#}^{0}(Y)\right)$ or, more in general, if $\varphi \in L^{2}\left(\Omega ; \mathcal{C}_{\#}^{0}(Y)\right)$ or $\varphi \in L_{\#}^{2}\left(Y ; \mathcal{C}^{0}(\bar{\Omega})\right)$, then φ is an admissible test function. Moreover, if $\varphi(x, y)=\varphi_{1}(x) \varphi_{2}(y)$ with $\varphi_{1} \in L^{2}(\Omega)$ and $\varphi_{2} \in L_{\#}^{2}(Y)$, then φ is an admissible test function.

Definition 2.7 (Two-scale convergence). For $\left\{u_{\varepsilon}\right\} \subset L^{2}(\Omega)$ and $u_{0} \in L^{2}(\Omega \times$ Y), we say that $\left\{u_{\varepsilon}\right\}$ two-scale converges to u_{0} in $L^{2}(\Omega \times Y)$ as $\varepsilon \rightarrow 0$ (and we write $u_{\varepsilon} \xrightarrow{2-s c} u_{0}$) if

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} u_{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x=\int_{\Omega \times Y} u_{0}(x, y) \varphi(x, y) \mathrm{d} x \mathrm{~d} y
$$

for every admissible test function φ.
Definition 2.8 (Two-scale convergence on surfaces). For $\left\{w_{\varepsilon}\right\} \subset L^{2}\left(\Gamma^{\varepsilon}\right)$ and $w_{0} \in L^{2}(\Omega \times \Gamma)$, we say that $\left\{w_{\varepsilon}\right\}$ two-scale converges to w_{0} in $L^{2}(\Omega \times \Gamma)$ as $\varepsilon \rightarrow 0$ (and, as above, we use the notation $w_{\varepsilon} \xrightarrow{2-s c} w_{0}$) if

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma^{\varepsilon}} w_{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} \sigma=\int_{\Omega \times \Gamma} w_{0}(x, y) \varphi(x, y) \mathrm{d} x \mathrm{~d} \sigma(y)
$$

for every $\varphi \in \mathcal{C}^{0}\left(\bar{\Omega} ; \mathcal{C}_{\#}^{0}(Y)\right)$.
Theorem 2.9. Let $\left\{u_{\varepsilon}\right\}$ be a bounded sequence in $L^{2}(\Omega)$. Then there exist a subsequence of $\left\{u_{\varepsilon}\right\}$ (still denoted by $\left\{u_{\varepsilon}\right\}$) and a function $u_{0} \in L^{2}(\Omega \times Y)$ such that $u_{\varepsilon} \xrightarrow{2-s c} u_{0}$ in $L^{2}(\Omega \times Y)$.

Proposition 2.10. Let $\left\{u_{\varepsilon}\right\}$ be a sequence of functions in $L^{2}(\Omega)$, which twoscale converges to a limit $u_{0}(x, y) \in L^{2}(\Omega \times Y)$. Then, u_{ε} converges weakly to $u(x)=\int_{Y} u_{0}(x, y) d y$ in $L^{2}(\Omega)$. Furthermore, we have

$$
\liminf _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)} \geq\left\|u_{0}\right\|_{L^{2}(\Omega \times Y)} \geq\|u\|_{L^{2}(\Omega)}
$$

Theorem 2.11. Let $\left\{w_{\varepsilon}\right\} \subset L^{2}\left(\Gamma^{\varepsilon}\right)$. Assume that there exists $C>0$, independent of ε, such that

$$
\varepsilon \int_{\Gamma^{\varepsilon}}\left|w_{\varepsilon}\right|^{2} \mathrm{~d} \sigma \leq C, \quad \forall \varepsilon>0
$$

Then, there exist a subsequence of $\left\{w_{\varepsilon}\right\}$ (still denoted by $\left\{w_{\varepsilon}\right\}$) and a function $w_{0} \in L^{2}(\Omega \times \Gamma)$ such that $w_{\varepsilon} \xrightarrow{2-s c} w_{0}$ in $L^{2}(\Omega \times \Gamma)$.

Theorem 2.12. Let $\left\{u_{\varepsilon}\right\} \subset V_{0}^{\varepsilon}(\Omega)$. Assume that there exists $C>0$ (independent of ε) such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{\varepsilon}\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x \leq C, \quad \forall \varepsilon>0 . \tag{3}
\end{equation*}
$$

Then, there exists $u \in L^{2}\left(\Omega ; V_{\#}(Y)\right)$, whose restrictions to E_{1} and E_{2} satisfy $u(x, y)=u^{(1)}(x) \in H^{1}(\Omega), \quad$ in $E_{1}, \quad u(x, y)=u^{(2)}(x) \in H^{1}(\Omega), \quad$ in $E_{2} ;$ and there exists $u_{1} \in L^{2}\left(\Omega ; V_{\#}(Y)\right)$ such that, up to subsequence, as $\varepsilon \rightarrow 0$ we have

$$
\begin{array}{ll}
\chi_{\Omega_{1}^{\varepsilon}} u_{\varepsilon}^{(1)} \xrightarrow{2-s c} \chi_{E_{1}} u^{(1)} \quad \text { and } \quad \chi_{\Omega_{2}^{\varepsilon}} u_{\varepsilon}^{(2)} \xrightarrow{2-s c} \chi_{E_{2}} u^{(2)}, & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega_{1}^{\varepsilon}} \nabla u_{\varepsilon}^{(1)} \xrightarrow{2-s c} \chi_{E_{1}}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right), & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega_{2}^{\varepsilon}} \nabla u_{\varepsilon}^{(2)} \xrightarrow{2-s c} \chi_{E_{2}}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right), & \text { in } L^{2}(\Omega \times Y) . \tag{6}
\end{array}
$$

where, for $\mathcal{O} \subseteq \mathbb{R}^{N}$, $\chi_{\mathcal{O}}$ denotes the characteristic function of \mathcal{O}. Moreover, we have also

$$
\varepsilon \int_{\Gamma}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma \leq C, \quad \forall \varepsilon>0
$$

with C independent of ε, and

$$
\begin{equation*}
\left[u_{\varepsilon}\right] \xrightarrow{2-s c}[u], \quad \text { in } L^{2}(\Omega \times \Gamma) . \tag{7}
\end{equation*}
$$

We refer to [2, Theorem 2.9] (see also [3, Theorem 4.6]) for the proof of (4)-(6) and to [4, Proposition 2.6], which must be applied separately in Ω_{1}^{ε} and Ω_{2}^{ε}, in order to prove (7).

2.4. Extension result

In this subsection, we recall an extension result (see [1, Theorem 2.1]), which will be used in the proof of Theorems 4.7 and 4.10. This result permits to extend a function from the connected set Ω_{2}^{ε} to Ω, without any assumption on the connection of the set Ω_{1}^{ε}. Actually, when we are in the connected/disconnected geometry, we could apply a more classical extension theorem due to Tartar (see [15, 28]), but this is not the case in the connected/connected geometry.
We state below the version proposed in [25, Lemma 1]; to this purpose, let us define

$$
V_{2,0}^{\varepsilon}=\left\{w \in H^{1}\left(\Omega_{2}^{\varepsilon}\right):\left.w\right|_{\partial \Omega \cap \partial \Omega_{2}^{\varepsilon}}=0\right\}
$$

Theorem 2.13. For every $\varepsilon>0$, there exist a continuous linear operator $T_{\varepsilon}^{2}: V_{2,0}^{\varepsilon} \rightarrow H^{1}(\Omega)$ and a constant $C>0$ (independent on ε) such that $T_{\varepsilon}^{2} w=w$ a.e. in Ω_{2}^{ε} and

$$
\begin{align*}
& \left\|T_{\varepsilon}^{2} w\right\|_{L^{2}(\Omega)} \leq C\|w\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}, \tag{8}\\
& \left\|\nabla T_{\varepsilon}^{2} w\right\|_{L^{2}(\Omega)} \leq C\|\nabla w\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)} \tag{9}
\end{align*}
$$

Notice that, in the connected/connected case, where the role of Ω_{2}^{ε} and Ω_{1}^{ε} can be interchanged, the previous theorem can be applied also to extend from Ω_{1}^{ε} into Ω, defining an operator T_{ε}^{1}, in an analogous way as done for T_{ε}^{2}.

2.5. Statement of the problem

Let $\lambda_{1}, \lambda_{2}, \beta$ be positive constants and $\theta \in(0,1)$. In the following, we will assume that $f \in L^{\frac{2}{1+\theta}}(\Omega)$ is a nonnegative function a.e. in Ω, not identically equal to zero in Ω_{1}^{ε} nor in Ω_{2}^{ε}, for every $\varepsilon>0$. Let us define the functions $\lambda_{\varepsilon}: \Omega \rightarrow \mathbb{R}$ and $\lambda: Y \rightarrow \mathbb{R}$ as

$$
\lambda_{\varepsilon}(x)=\left\{\begin{array}{ll}
\lambda_{1}, & \text { if } x \in \Omega_{1}^{\varepsilon} \\
\lambda_{2}, & \text { if } x \in \Omega_{2}^{\varepsilon}
\end{array} \quad \text { and } \quad \lambda(y)= \begin{cases}\lambda_{1}, & \text { if } y \in E_{1} \\
\lambda_{2}, & \text { if } y \in E_{2}\end{cases}\right.
$$

and set $\lambda_{0}=\lambda_{1}\left|E_{1}\right|+\lambda_{2}\left|E_{2}\right|$. For $\alpha \geq-1$, we consider the problem

$$
\begin{align*}
-\operatorname{div}\left(\lambda_{\varepsilon} \nabla u_{\varepsilon}\right) & =\frac{f}{u_{\varepsilon}^{\epsilon}}, & & \text { in } \Omega_{1}^{\varepsilon} \cup \Omega_{2}^{\varepsilon} ; \\
{\left[\lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nu\right] } & =0, & & \text { on } \Gamma^{\varepsilon} ; \\
\frac{\beta}{\varepsilon^{\alpha}}\left[u_{\varepsilon}\right] & =\lambda_{2} \nabla u_{\varepsilon}^{(2)} \cdot \nu, & & \text { on } \Gamma^{\varepsilon} ; \tag{10}\\
u_{\varepsilon} & >0, & & \text { in } \Omega ; \\
u_{\varepsilon} & =0, & & \text { on } \partial \Omega .
\end{align*}
$$

Definition 2.14. We say that $u \in V_{0}^{\varepsilon}(\Omega)$ is a weak solution of (10) if $u_{\varepsilon}>0$ a.e. in Ω and it satisfies

$$
\begin{align*}
& \left|\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \psi \mathrm{d} x\right|<+\infty, \tag{11}\\
& \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \psi \mathrm{d} x+\frac{\beta}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \psi \mathrm{d} x \tag{12}
\end{align*}
$$

for every $\psi \in V_{0}^{\varepsilon}(\Omega)$.
Remark 2.15. Note that the assumption (11) is indeed contained in (12), since it is a consequence of the finiteness of the left-hand side of (12); nevertheless we prefer to require it explicitly, being crucial in the proof of existence and homogenization results. Moreover, taking into account that u_{ε} and f are positive and recalling the decomposition $\psi=\psi^{+}-\psi^{-}$, (11) can be rewritten for $\psi>0$ and without the absolute value, or even in the apparently stronger form

$$
\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}}|\psi| \mathrm{d} x<+\infty .
$$

We will prove in the Appendix (Theorem 5.1) that, for every $\varepsilon>0$ fixed, the problem (10) admits a unique solution $u_{\varepsilon} \in V_{0}^{\varepsilon}(\Omega)$.

Notice that, for the sake of simplicity, in the problem (10) we have considered only the model case, where the singular term is given by $\frac{f(x)}{s^{\theta}}$; however, all the proofs also work if we take into account a more general singularity of the form $f(x) \cdot g(s)$, with a non increasing function g such that $0 \leq g(s) \leq \frac{1}{s^{\theta}}$.

3. Estimates

The aim of this section is to prove that the solution u_{ε} satisfies some uniform (with respect to ε) estimates.

Proposition 3.1. Let u_{ε} be the weak solution of problem (10). Then there exists $C>0$, independent of ε (and α), such that

$$
\begin{array}{ll}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x+\frac{1}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma \leq C\|f\|_{L^{\frac{1}{2+\theta}}(\Omega)}^{\frac{2}{1+\theta}}, & \forall \varepsilon>0, \\
\int_{\Omega} u_{\varepsilon}^{2} \mathrm{~d} x \leq C \|\left. f\right|_{L^{\frac{2}{1+\theta}}} ^{\frac{2}{1+\theta}(\Omega)}, & \forall \varepsilon>0 . \tag{14}
\end{array}
$$

$$
\begin{equation*}
\int_{\Omega} \lambda_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x+\frac{\beta}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma=\int_{\Omega} f u_{\varepsilon}^{1-\theta} \mathrm{d} x \leq\|f\|_{L^{\frac{2}{1+\theta}}(\Omega)}\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{1-\theta} . \tag{15}
\end{equation*}
$$

By Theorem $2.2(\alpha \geq-1)$, it follows

$$
\begin{align*}
\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{1-\theta} & \leq C\left[\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x+\varepsilon \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma\right]^{\frac{1-\theta}{2}} \tag{16}\\
& \leq C\left[\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x+\frac{1}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma\right]^{\frac{1-\theta}{2}}
\end{align*}
$$

Hence, (13) follows by (15) and (16), and by (16) and (13), we get (14).
Proposition 3.2. Let u_{ε} be the weak solution of problem (10). Then, for every $\psi \in H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\left|\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \psi(x) d x\right| \leq C| | \nabla \psi\left\|_{L^{2}(\Omega)}| | \nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)} \tag{17}
\end{equation*}
$$

with $C=\max \left(\lambda_{1}, \lambda_{2}\right)$.
Proof. Taking in (12) a testing function $\psi \in H_{0}^{1}(\Omega)$, and applying Holder's inequality, we find that

$$
\begin{aligned}
\left|\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \psi \mathrm{d} x\right| & =\left|\int_{\Omega} \lambda \nabla u_{\varepsilon} \cdot \nabla \psi \mathrm{d} x\right| \\
& \leq \max \left(\lambda_{1}, \lambda_{2}\right)\left(\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\Omega}|\nabla \psi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} .
\end{aligned}
$$

4. Homogenization

4.1. The case $\alpha=1$

In this subsection we will assume to be in anyone of the geometrical settings described in Section 2. We will see that the homogenized problem will depend on the physical properties of the bulk regions (i.e., λ_{1}, λ_{2}) as well as the physical properties of the interfaces (i.e. β).

Theorem 4.1. For $\varepsilon>0$, let $u_{\varepsilon} \in V_{0}^{\varepsilon}(\Omega)$ be the weak solution of the problem (10). Then, there exist $u \in H_{0}^{1}(\Omega)$ and $u_{1} \in L^{2}\left(\Omega ; V_{\#}(Y)\right)$ with $\int_{Y} u_{1}(x, y) \mathrm{d} y=0$ a.e. in Ω, such that, as $\varepsilon \rightarrow 0$, we have

$$
\begin{array}{ll}
u_{\varepsilon} \rightarrow u, & \text { strongly in } L^{2}(\Omega) ; \\
u_{\varepsilon} \xrightarrow{2-s c} u, & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega \backslash \Gamma^{\varepsilon}} \nabla u_{\varepsilon} \xrightarrow{2-s c} \nabla u+\nabla_{y} u_{1}, & \text { in } L^{2}(\Omega \times Y): \\
\frac{1}{\varepsilon}\left[u_{\varepsilon}\right] \xrightarrow{2-s c}\left[u_{1}\right], & \text { in } L^{2}\left(\Omega ; L^{2}(\Gamma)\right) . \tag{21}
\end{array}
$$

187 Moreover,

$$
\begin{equation*}
\left|\int_{\Omega} \frac{f}{u^{\theta}} \varphi \mathrm{d} x\right|<+\infty, \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{22}
\end{equation*}
$$

and the pair $\left(u, u_{1}\right)$ solve

$$
\begin{array}{ll}
-\operatorname{div}\left(\lambda_{0} \nabla u+\int_{Y} \lambda \nabla_{y} u_{1} \mathrm{~d} y\right)=\frac{f}{u^{\theta}}, & \text { in } \Omega ; \\
-\operatorname{div}_{y}\left(\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right)=0, & \text { in } E_{1} \cup E_{2} ; \\
{\left[\lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nu\right]=0,} & \text { on } \Omega \times \Gamma ; \\
\beta\left[u_{1}\right]=\lambda_{2}\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nu, & \text { on } \Omega \times \Gamma ; \\
u>0, & \text { in } \Omega ; \\
u=0, & \text { on } \partial \Omega, \tag{28}
\end{array}
$$

188 where λ_{0} and λ are defined at the beginning of Subsection 2.5.
Remark 4.2. As usual, from (24)-(26), we can factorize u_{1} as

$$
\begin{equation*}
u_{1}(x, y)=\chi(y) \cdot \nabla u(x), \tag{29}
\end{equation*}
$$

190 with $\chi=\left(\chi_{1}, \ldots, \chi_{N}\right)$ and $\chi_{j} \in V_{\#}(Y)$ with $\int_{Y} \chi_{j} \mathrm{~d} y=0$, for each $j \in$ $191 \quad\{1, \ldots, N\}$, satisfying

$$
\begin{array}{ll}
-\operatorname{div}_{y}\left(\lambda\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right)\right)=0, & \text { in } E_{1} \cup E_{2} ; \\
{\left[\lambda\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right) \cdot \nu\right]=0,} & \text { on } \Gamma \tag{30}\\
\beta\left[\chi_{j}\right]=\lambda_{2}\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right) \cdot \nu, & \text { on } \Gamma .
\end{array}
$$

By [23, Theorem 2] the previous problem (30) admits a unique solution. Replacing (29) in (23), it follows that u solves

$$
\begin{array}{ll}
-\operatorname{div}\left(A_{h o m} \nabla u\right)=\frac{f}{u^{\theta}}, & \text { in } \Omega \tag{31}\\
u=0, & \text { on } \partial \Omega
\end{array}
$$

where the matrix $A_{\text {hom }}$ is defined as

$$
\begin{equation*}
A_{h o m}=\lambda_{0} I+\int_{Y} \lambda\left(\nabla_{y} \chi\right)^{T} \mathrm{~d} y \tag{32}
\end{equation*}
$$

$$
\begin{aligned}
\left(\int_{Y} \lambda(\nabla \chi)^{T} \mathrm{~d} y\right)_{i j} & =\int_{Y} \lambda \frac{\partial \chi_{j}}{\partial y_{i}} \mathrm{~d} y=\int_{E_{1}} \lambda_{1} \frac{\partial \chi_{j}}{\partial y_{i}} \mathrm{~d} y+\int_{E_{2}} \lambda_{2} \frac{\partial \chi_{j}}{\partial y_{i}} \mathrm{~d} y \\
& =\int_{\Gamma} \lambda_{1} \chi_{j} \nu_{i} \mathrm{~d} \sigma-\int_{\Gamma} \lambda_{2} \chi_{j} \nu_{i} \mathrm{~d} \sigma=-\int_{\Gamma}\left[\lambda \chi_{j}\right] \nu_{i} \mathrm{~d} \sigma
\end{aligned}
$$

and hence we may write

$$
\begin{equation*}
A_{\text {hom }}=\lambda_{0} I+\int_{Y} \lambda\left(\nabla_{y} \chi\right)^{T} \mathrm{~d} y=\lambda_{0} I-\int_{\Gamma} \nu \otimes[\lambda \chi] \mathrm{d} \sigma . \tag{33}
\end{equation*}
$$

We can prove that the factorization (29) is unique. Indeed, as we have recalled above, the problem (30) is well posed. Moreover, the homogenized matrix $A_{\text {hom }}$ is symmetric and positive definite, as proved in [23, end of Section 3.2]. Therefore, by [13, Theorem 5.2 and Remark 5.4] we obtain the existence and uniqueness of a solution of (31).
Remark 4.3. Notice that the problem (23)-(28) admits at most one pair of solutions $\left(u, u_{1}\right)$. Indeed, assume by contradiction that $\left(u^{i}, u_{1}^{i}\right)$, for $i=1,2$ are two pair of solutions and denote by $U=u^{1}-u^{2}$ and $U_{1}=u_{1}^{1}-u_{1}^{2}$. Using U as test function in (23) written for u^{1} and U_{1} as test function in (24) written for u_{1}^{1}, adding the two equations, integrating by parts and using (25)-(26), we get

$$
\begin{array}{rl}
\int_{\Omega} \int_{Y} \lambda\left(\nabla u^{1}+\nabla_{y} u_{1}^{1}\right) \cdot \nabla U \mathrm{~d} & x \mathrm{~d} y+\int_{\Omega} \int_{Y} \lambda\left(\nabla u^{1}+\nabla_{y} u_{1}^{1}\right) \cdot \nabla_{y} U_{1} \mathrm{~d} x \mathrm{~d} y \\
& +\beta \int_{\Omega} \int_{\Gamma}\left[u_{1}^{1}\right]\left[U_{1}\right] \mathrm{d} x \mathrm{~d} \sigma(y)=\int_{\Omega} \frac{f}{\left(u^{1}\right)^{\theta}} U \mathrm{~d} x .
\end{array}
$$

Repeating the same procedure for $\left(u^{2}, u_{1}^{2}\right)$ and subtracting the equation for (u^{1}, u_{1}^{1}) from the equation for $\left(u^{2}, u_{1}^{2}\right)$, it follows

$$
\begin{aligned}
& \int_{\Omega} \int_{Y} \lambda\left|\nabla U+\nabla_{y} U_{1}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
+ & \beta \int_{\Omega} \int_{\Gamma}\left[U_{1}\right]^{2} \mathrm{~d} x \mathrm{~d} \sigma(y)=\int_{\Omega} f\left(\frac{1}{\left(u^{1}\right)^{\theta}}-\frac{1}{\left(u^{2}\right)^{\theta}}\right)\left(u^{1}-u^{2}\right) \mathrm{d} x .
\end{aligned}
$$

Taking into account that the function $s \mapsto \frac{1}{s^{\theta}}$ is decreasing, it follows that the right-hand side in the last equality is non positive, which implies $\left[U_{1}\right]=0$. Moreover,

$$
\begin{array}{r}
\int_{\Omega}|\nabla U|^{2} \mathrm{~d} x+\int_{\Omega} \int_{Y}\left|\nabla_{y} U_{1}\right|^{2} \mathrm{~d} x \mathrm{~d} y=\int_{\Omega}|\nabla U|^{2} \mathrm{~d} x+\int_{\Omega} \int_{Y}\left|\nabla_{y} U_{1}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
\quad+2 \int_{\Omega} \nabla u \cdot\left(\int_{Y} \nabla_{y} U_{1} \mathrm{~d} y\right) \mathrm{d} x=\int_{\Omega} \int_{Y}\left|\nabla U+\nabla_{y} U_{1}\right|^{2} \mathrm{~d} x \mathrm{~d} y=0
\end{array}
$$

where we have taken into account that $\int_{Y} \nabla_{y} U_{1} \mathrm{~d} y=0$, because of the Y periodicity of U_{1} and the fact that $\left[U_{1}\right]=0$. Thus, $\nabla U=\nabla_{y} U_{1}=0$, which implies $U=0$ in Ω, since it satisfies the homogeneous boundary condition, and $U_{1}=0$, since it has null mean average on Y.

As a consequence of Remarks 4.2 and 4.3 , we get that the homogenized problem (23)-(28) admits a unique solution and that such a solution can be factorized as in (29).

Proof of Theorem 4.1. By Proposition 3.1 and [22, Proposition 5.5] we get that (18)-(21) hold. Hence, taking into account (13) and (18) and passing to the limit in (17), when $\varepsilon \rightarrow 0$, by Fatou's Lemma we get (22) which also implies that u is not identically zero in Ω.

In order to pass to the two-scale limit in (12), with $\alpha=1$, we choose as test function $\psi(x)=\varphi(x)+\varepsilon \Phi\left(x, \frac{x}{\varepsilon}\right)$ with $\varphi \in \mathcal{C}_{c}^{1}(\Omega)$ and $\Phi \in \mathcal{C}_{c}^{1}\left(\Omega ; \mathfrak{L}_{\#}(Y)\right)$. Then, we get

$$
\begin{align*}
\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x+\varepsilon & \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi \mathrm{~d} x+\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{y} \Phi \mathrm{~d} x \\
& +\beta \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right][\Phi] \mathrm{d} \sigma=\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \Phi \mathrm{d} x . \tag{34}
\end{align*}
$$

By (20) and (21), as $\varepsilon \rightarrow 0$, the left-hand side of (34) converges to

$$
\begin{align*}
\int_{\Omega} \int_{Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} y+\int_{\Omega} \int_{Y} \lambda(\nabla u & \left.+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \Phi \mathrm{~d} x \mathrm{~d} y \\
& +\beta \int_{\Omega} \int_{\Gamma}\left[u_{1}\right][\Phi] \mathrm{d} x \mathrm{~d} \sigma(y) . \tag{35}
\end{align*}
$$

We now focus our attention on the right-hand side of (34) and we set

$$
\begin{equation*}
I_{\varepsilon}:=\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x, \quad J_{\varepsilon}:=\varepsilon \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \Phi \mathrm{d} x . \tag{36}
\end{equation*}
$$

In order to deal with the term J_{ε}, we rewrite the function $\Phi\left(x, \frac{x}{\epsilon}\right)=$ $\varphi_{1}(x) \varphi_{2}\left(\frac{x}{\epsilon}\right)$; moreover, by the decomposition $\varphi_{1}=\varphi_{1}^{+}-\varphi_{1}^{-}$and $\varphi_{2}=\varphi_{2}^{+}-$ φ_{2}^{-}, we can assume $\varphi_{1}, \varphi_{2} \geq 0$ (notice that the Lipschitz continuity of φ_{1} is enough for our purposes). We have that

$$
\begin{align*}
0 \leq J_{\varepsilon}=\varepsilon \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{1}(x) \varphi_{2}\left(\frac{x}{\varepsilon}\right) \mathrm{d} x & \leq \varepsilon\left\|\varphi_{2}\right\|_{L^{\infty}(Y)} \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{1}(x) \mathrm{d} x \\
& \leq C \varepsilon\left\|\varphi_{2}\right\|_{L^{\infty}(Y)}\left\|\nabla \varphi_{1}\right\|_{L^{2}(\Omega)}\|f\|_{L^{\frac{2}{1+\theta}}(\Omega)}^{\frac{1}{1+\theta}}, \tag{37}
\end{align*}
$$

(13) and (13). Since C is independent of ε, as $\varepsilon \rightarrow 0$, also $J_{\varepsilon} \rightarrow 0$. In order to study the limit of I_{ε}, having in mind the decomposition $\varphi=\varphi^{+}-\varphi^{-}$(notice again that the Lipschitz continuuity of φ is enough for our purposes), we may assume $\varphi \geq 0$. Moreover, we have to split the behaviour of the singular term into the part near to and far away from the singularity. To this purpose, we write

$$
\begin{equation*}
I_{\varepsilon}=\int_{\Omega \cap\left\{0<u_{\varepsilon} \leq \delta\right\}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x+\int_{\Omega \cap\left\{u_{\varepsilon}>\delta\right\}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x:=I_{\varepsilon, \delta}^{1}+I_{\varepsilon, \delta}^{2} . \tag{38}
\end{equation*}
$$

where, by the Lebesgue dominated convergence theorem and taking into account that $0 \leq \frac{f}{u_{\varepsilon}^{\theta}} \varphi \leq \frac{f}{\delta^{\theta}} \varphi \in L^{1}(\Omega)$ in the set $\left\{u_{\varepsilon}>\delta\right\}$ (here it is crucial that φ is bounded), we get

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} I_{\varepsilon, \delta}^{2}=\int_{\Omega \cap\{u>0\}} \frac{f}{u^{\theta}} \varphi \mathrm{d} x \tag{39}
\end{equation*}
$$

once we have taken $\delta \notin \mathcal{C}=\{\delta>0:|\{u(x)=\delta\}|>0\}$, which is at most countable (exactly as in [18, Proof of Theorem 3.6]).

Moreover, introducing the function $Z_{\delta}: \mathbb{R} \rightarrow[0,+\infty)$ defined by

$$
Z_{\delta}(s)= \begin{cases}1, & \text { if } 0 \leq s \leq \delta \tag{40}\\ -\frac{s}{\delta}+2, & \text { if } \delta \leq s \leq 2 \delta \\ 0, & \text { if } s \geq 2 \delta\end{cases}
$$

using as test function in (12) (with $\alpha=1$) the function $Z_{\delta}\left(u_{\varepsilon}\right) \varphi$, with φ as above, and recalling that $s \mapsto Z_{\delta}(s)$ is decreasing, we arrive at

$$
\begin{align*}
I_{\varepsilon, \delta}^{1} \leq & \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi Z_{\delta}\left(u_{\varepsilon}\right) \mathrm{d} x \\
& =\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi\left[Z_{\delta}\left(u_{\varepsilon}\right)-Z_{\delta}(u)\right] \mathrm{d} x+\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi Z_{\delta}(u) \mathrm{d} x \tag{41}
\end{align*}
$$

since

$$
\frac{\beta}{\varepsilon} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]\left(Z_{\delta}\left(u_{\varepsilon}^{(2)}\right)-Z_{\delta}\left(u_{\varepsilon}^{(1)}\right)\right) \varphi \mathrm{d} x \leq 0
$$

and

$$
\int_{\Omega \cap\left\{\delta \leq u_{\varepsilon} \leq 2 \delta\right\}} \frac{f}{u_{\varepsilon}^{\theta}} Z_{\delta}\left(u_{\varepsilon}\right) \varphi \mathrm{d} x \geq 0
$$

In order to pass to the two-scale limit in (41), we have to take into account that $\lambda_{\varepsilon} \nabla u_{\varepsilon}$ is bounded in $L^{2}(\Omega)$ and $Z_{\delta}\left(u_{\varepsilon}\right)-Z_{\delta}(u) \rightarrow 0$ strongly in $L^{2}(\Omega)$ (since $s \mapsto Z_{\delta}(s)$ is continuous and (18) holds), so that the first integral in (41) vanishes, while in the second integral, thanks to Remark 2.6, we can take $\lambda_{\varepsilon} \nabla \varphi Z_{\delta}(u)$ as admissible test function for the two-scale convergence. Therefore, we get

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} I_{\varepsilon, \delta}^{1} \leq \int_{\Omega \cap\{u=0\}} \int_{Y}\left|\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right||\nabla \varphi| \mathrm{d} x \mathrm{~d} y . \tag{42}
\end{equation*}
$$

In order to prove that the right-hand side of (42) is zero, we notice that, choosing $\varphi \equiv 0$ in (34) and letting $\varepsilon \rightarrow 0$, we obtain

$$
\int_{\Omega} \int_{Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \Phi \mathrm{~d} x \mathrm{~d} y+\beta \int_{\Omega} \int_{\Gamma}\left[u_{1}\right][\Phi] \mathrm{d} x \mathrm{~d} \sigma(y)=0
$$

which is the problem in the micro variable y (i.e. (24)-(26)); therefore, we get the factorization (29) for u_{1}. This implies that

$$
\begin{align*}
& \int_{\Omega \cap\{u=0\}} \int_{Y}\left|\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right||\nabla \varphi| \mathrm{d} x \mathrm{~d} y= \tag{43}\\
= & \int_{\Omega \cap\{u=0\}} \int_{Y}\left|\lambda\left(I+\nabla_{y} \chi\right) \nabla u\right||\nabla \varphi| \mathrm{d} x \mathrm{~d} y=0,
\end{align*}
$$

where, in the last equality, we used that u is a Sobolev function and hence its gradient vanishes on the level sets of u. Then, passing to the limit for $\varepsilon \rightarrow 0$ in (34), by (35), (39), (42), (43) and taking into account the density of our test functions in $H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; V_{\#}(Y)\right)$, we obtain

$$
\begin{align*}
\int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot & \nabla \varphi \mathrm{d} x \mathrm{~d} y+\int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \Phi \mathrm{~d} x \mathrm{~d} y \\
& +\beta \int_{\Omega} \int_{\Gamma}\left[u_{1}\right][\Phi] \mathrm{d} x \mathrm{~d} \sigma(y)=\int_{\Omega} \frac{f}{u^{\theta}} \varphi \chi_{\{u>0\}} \mathrm{d} x . \tag{44}
\end{align*}
$$

Taking first $\varphi=0$ and then $\Phi=0$ in (44), it follows that u is a nonnegative (being the limit of the sequence of positive solutions u_{ε}) weak solution of the problem (23)-(26) and (28), with $\frac{f}{u^{\theta}}$ replaced by $\frac{f}{u^{\theta}} \chi_{\{u>0\}}$. In order to conclude the proof, it remains to show that $u>0$ a.e. in Ω. To this purpose, we recall again the factorization given in (29), where u solves the problem (31) with the new nonnegative source $\frac{f}{u^{\theta}} \chi_{\{u>0\}}$ and the matrix $A_{\text {hom }}$ defined in (33) is positive definite. Therefore, taking into account (22), we can apply the strong maximum principle to deduce that $u>0$ a.e. in Ω. Finally, by Remark 4.3, it follows that the whole sequence $\left\{u_{\varepsilon}\right\}$ converges and the thesis is accomplished.

4.2. The case $\alpha>1$

As in the previous subsection, we will assume to be in anyone of the geometrical setting described in Section 2. Moreover, we will see that, due to the particular scaling $\varepsilon^{-\alpha}$ in front of the interface term, the homogenized problem will not take memory of β, as pointed out in Remark 4.6.
Theorem 4.4. For $\varepsilon>0$, let $u_{\varepsilon} \in V_{0}^{\varepsilon}(\Omega)$ be the weak solution of the problem (10). Then, there exist $u \in H_{0}^{1}(\Omega)$ and $u_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y)\right)$ with $\int_{Y} u_{1}(x, y) \mathrm{d} y=0$ a.e. in Ω, such that, as $\varepsilon \rightarrow 0$, (18)-(22) hold. Moreover, the pair $\left(u, u_{1}\right)$ solve

$$
\begin{array}{ll}
-\operatorname{div}\left(\lambda_{0} \nabla u+\int_{Y} \lambda \nabla_{y} u_{1} \mathrm{~d} y\right)=\frac{f}{u^{\theta}}, & \text { in } \Omega \\
-\operatorname{div}_{y}\left(\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right)=0, & \text { in } Y ; \\
u>0, & \text { in } \Omega \\
u=0, & \text { on } \partial \Omega \tag{48}
\end{array}
$$

where λ_{0} and λ are defined at the beginning of Subsection 2.5.

Remark 4.5. Notice that, similarly as in Remark 4.3, it is possible to prove that the problem (45)-(48) admits at most one pair of solutions (u, u_{1}). Moreover, we can factorize u_{1} as in (29) with $\chi=\left(\chi_{1}, \ldots, \chi_{N}\right)$ and $\chi_{j} \in H_{\#}^{1}(Y)$ such that $\int_{Y} \chi_{j} \mathrm{~d} y=0$, for each $j=1, \ldots, n, \chi_{j}$, we get that χ_{j} must solve

$$
\begin{equation*}
-\operatorname{div}_{y}\left(\lambda\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right)\right)=0, \quad \text { in } Y . \tag{49}
\end{equation*}
$$

Replacing the factorization of u_{1} in (45), it follows that u solves

$$
\begin{array}{ll}
-\operatorname{div}\left(A_{h o m} \nabla u\right)=\frac{f}{u^{\theta}}, & \text { in } \Omega ; \\
u>0, & \text { in } \Omega ; \tag{50}\\
u=0, & \text { on } \partial \Omega ;
\end{array}
$$

where the matrix $A_{\text {hom }}$ is defined as

$$
\begin{equation*}
A_{\text {hom }}=\lambda_{0} I-\int_{Y} \lambda\left(\nabla_{y} \chi\right)^{T} \mathrm{~d} y=\lambda_{0} I-\int_{\Gamma}[\lambda] \nu \otimes \chi \mathrm{d} \sigma . \tag{51}
\end{equation*}
$$

We recall that by standard arguments equation (49) admits a unique solution. Moreover by Proposition 4.1 in [6] we know that $A_{\text {hom }}$ is symmetric and positive definite and therefore, by [13, Theorem 5.2 and Remark 5.4], also the solution of equation (50) is unique.

Remark 4.6. Notice that, from the definition (49), the cell functions do not depend on the coefficient β. Therefore, the homogenized matrix and, hence, the macroscopic function u lose any memory of the physical properties of the interfaces.

Proof of Theorem 4.4. By Proposition 3.1, [22, Proposition 5.5] and Fatou's Lemma, we get that (18)-(21) and (22) hold (as in the proof of Theorem 4.1).

Moreover, by (13) we also know that

$$
\frac{1}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} x=\varepsilon \int_{\Gamma^{\varepsilon}}\left(\frac{\left[u_{\varepsilon}\right]}{\varepsilon^{\frac{\alpha+1}{2}}}\right)^{2} \mathrm{~d} x \leq C,
$$

uniformly with respect to ε. Hence, as ε tends to 0 , by Theorem 2.11 it follows that there exists $v \in L^{2}(\Omega \times \Gamma)$ such that, up to subsequence, $v_{\varepsilon}:=$ $\frac{\left[u_{\varepsilon}\right]}{\varepsilon^{\frac{\alpha+1}{2}}} \xrightarrow{2-s c} v$ in $L^{2}\left(\Omega^{\varepsilon}\right)$. However, by (21) we already know that $\frac{\left[u_{\varepsilon}\right]}{\varepsilon} \xrightarrow{2-s c}\left[u_{1}\right] ;$
therefore, taking into account that $\frac{\left[u_{\varepsilon}\right]}{\varepsilon}=\varepsilon^{\frac{\alpha-1}{2}} v_{\varepsilon}$, with $\frac{\alpha-1}{2}>0$, we infer that $\left[u_{1}\right]=0$, so that $u_{1} \in L^{2}\left(\Omega ; H_{\#}^{1}(Y)\right)$.

In order to pass to the two-scale limit in (12), with $\alpha>1$, we choose as test function $\psi(x)=\varphi(x)+\varepsilon \Phi\left(x, \frac{x}{\varepsilon}\right)$ with $\varphi \in \mathcal{C}_{c}^{1}(\Omega)$ and $\Phi \in \mathcal{C}_{c}^{1}\left(\Omega ; \mathcal{C}_{\#}^{1}(Y)\right)$ (i.e., we can take $[\Phi]=0$, since $\left[u_{1}\right]=0$) and we get

$$
\begin{align*}
& \int_{\Omega} \lambda \nabla u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \lambda \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi \mathrm{~d} x+\int_{\Omega} \lambda \nabla u_{\varepsilon} \cdot \nabla_{y} \Phi \mathrm{~d} x= \\
= & \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \Phi \mathrm{d} x . \tag{52}
\end{align*}
$$

By (20), we obtain that the left-hand side of (52) converges to

$$
\int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} y+\int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \Phi \mathrm{~d} x \mathrm{~d} y .
$$

Moreover, by (17) and reasoning as in (37), the second term in the right-hand side tends to 0 . Finally, arguing as in the proof of Theorem 4.1 for the study of the first integral in the right-hand side of (52), as ε goes to 0 , we have

$$
\begin{equation*}
\int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x \rightarrow \int_{\Omega} \frac{f}{u^{\theta}} \varphi \chi_{\{u>0\}} \mathrm{d} x . \tag{53}
\end{equation*}
$$

The proof that $u>0$ a.e. in Ω follows, as usual, from the strong maximum principle, taking into account (22), so that we can replace the source $\frac{f}{u^{\theta}} \varphi \chi_{\{u>0\}}$ with $\frac{f}{u^{\theta}} \varphi$. Finally, recalling the density of our test functions in $H_{0}^{1}(\Omega) \times L^{2}\left(\Omega ; H_{\#}^{1}(Y)\right)$, taking alternatively $\varphi=0$ and $\Phi=0$ in (53) and integrating by parts, we deduce (45) and (46). Therefore, by the uniqueness of the problem (45)-(48) (see Remark 4.5), it follows that the whole sequence $\left\{u_{\varepsilon}\right\}$ converges and the thesis is accomplished.

4.3. The case $\alpha \in(-1,1)$

As in the previous subsections, we will assume to be in anyone of the geometrical settings described in Section 2. Moreover, analogously to the case $\alpha>1$, we will see that also in this case, due to the particular scaling $\varepsilon^{-\alpha}$ in front of the interface term, the homogenized problem will not take memory of β (see the end of Remark 4.8).

Theorem 4.7. For $\varepsilon>0$, let $u_{\varepsilon} \in V_{0}^{\varepsilon}(\Omega)$ be the weak solution of the problem (10). Then, there exist $u \in H_{0}^{1}(\Omega)$ and $u_{1} \in L^{2}\left(\Omega ; V_{\#}(Y)\right)$ with $u_{1}=\left(u_{1}^{(1)}, u_{1}^{(2)}\right), \int_{E_{1}} u_{1}^{(1)}(x, y) \mathrm{d} y=0=\int_{E_{2}} u_{1}^{(2)}(x, y) \mathrm{d} y$ a.e. in Y, such that, as $\varepsilon \rightarrow 0$, we have

$$
\begin{array}{ll}
u_{\varepsilon} \xrightarrow{2-s c} u, & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega \backslash \Gamma^{\varepsilon}} \nabla u_{\varepsilon} \xrightarrow{2-s c} \nabla u+\nabla_{y} u_{1}, & \text { in } L^{2}(\Omega \times Y) ; \\
{\left[u_{\varepsilon}\right] \xrightarrow{2-s c} 0,} & \text { in } L^{2}\left(\Omega ; L^{2}(\Gamma)\right) . \tag{56}
\end{array}
$$

Moreover, (18) and (22) hold and the pair $\left(u, u_{1}\right)$ solve

$$
\begin{array}{ll}
-\operatorname{div}\left(\lambda_{0} \nabla u+\int_{Y} \lambda \nabla_{y} u_{1} \mathrm{~d} y\right)=\frac{f}{u^{\theta}}, & \text { in } \Omega ; \\
-\operatorname{div}_{y}\left(\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right)=0, & \text { in } E_{1} \cup E_{2} ; \\
{\left[\lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nu\right]=0,} & \text { on } \Omega \times \Gamma ; \\
\lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nu=0 & \text { on } \Omega \times \Gamma ; \\
u>0, & \text { in } \Omega ; \\
u=0, & \text { on } \partial \Omega \tag{62}
\end{array}
$$

where λ_{0} and λ_{1} are defined in Subsection 2.5.
Remark 4.8. Following the same ideas as in Remarks 4.2 and 4.3, we have that the problem (57)-(62) admits at most one pair of solutions $\left(u, u_{1}\right)$ and that u_{1} can be factorized as in (29) where, in this case, the cell function $\chi=\left(\chi_{1}, \ldots, \chi_{N}\right)$ is such that $\chi_{j} \in V_{\#}(Y)$ with $\int_{E_{1}} \chi_{j}^{(1)} \mathrm{d} y=0=\int_{E_{2}} \chi_{j}^{(2)} \mathrm{d} y$ for each $j \in\{1, \ldots, N\}$ and satisfies the cell problem

$$
\begin{array}{ll}
-\operatorname{div}_{y}\left(\lambda\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right)\right)=0, & \text { in } E_{1} \cup E_{2} ; \\
{\left[\lambda\left(\nabla_{y} \chi_{j}+\mathbf{e}_{j}\right) \cdot \nu\right]=0,} & \text { on } \Gamma ; \tag{63}\\
\lambda_{2}\left(\nabla_{y} \chi_{j}^{(2)}+\mathbf{e}_{j}\right) \cdot \nu=0, & \text { on } \Gamma,
\end{array}
$$

which admits a unique solution. Replacing the factorization of u_{1} in (57), we still obtain that u solves an elliptic problem analogous to (31), where the new matrix $A_{\text {hom }}$ is defined as in (32) and (33) in terms of the cell functions given in (63). Following [14, Proposition 5.1 and Remark 5.2], as done in [24, Section 7], we obtain that the matrix $A_{\text {hom }}$ is symmetric and positive definite.

As in the case $\alpha>1$, from the definition (63), we see that the cell functions do not depend on the coefficient β.

Proof of Theorem 4.7. As a consequence of Theorem 2.2 and Proposition 3.1, we can apply Theorem 2.12, obtaining that (4)-(7) hold. Moreover, by (13), it follows

$$
\begin{equation*}
\varepsilon \int_{\Gamma^{\varepsilon}}\left(\frac{\left[u_{\varepsilon}\right]}{\varepsilon^{\frac{\alpha+1}{2}}}\right)^{2} \mathrm{~d} \sigma=\frac{1}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma \leq C, \tag{64}
\end{equation*}
$$

with C independent of ε. Hence, after setting $v_{\varepsilon}:=\frac{\left[u_{\varepsilon}\right]}{\varepsilon^{\frac{\varepsilon}{\alpha+1}} 2}$, as in the proof of Theorem 4.4, we can apply Theorem 2.11 to $\left\{v_{\varepsilon}\right\}$, obtaining that, up to subsequence, v_{ε} two-scale converges in $L^{2}(\Omega \times \Gamma)$ to some $v \in L^{2}(\Omega \times \Gamma)$, so that

$$
\begin{equation*}
0 \stackrel{2-s c}{\leftrightarrows} v_{\varepsilon} \varepsilon^{\frac{\alpha+1}{2}}=\left[u_{\varepsilon}\right] \xrightarrow{2-s c}[u], \tag{65}
\end{equation*}
$$

where we have taken into account that $\alpha+1>0$. Therefore, (56) holds and $[u]=0$. Taking into account (65), (4)-(6) become (54)-(55).

Now, let us choose $\psi(x)=\varphi(x)+\varepsilon \Phi\left(x, \frac{x}{\varepsilon}\right)$, with $\varphi \in \mathcal{C}_{c}^{1}(\Omega)$ and $\Phi \in$ $\mathcal{C}_{c}^{1}\left(\Omega ; \mathfrak{L}_{\#}(Y)\right)$, as test function in (12). Then, we get

$$
\begin{align*}
& \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi \mathrm{~d} x+ \tag{66}\\
+ & \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{y} \Phi \mathrm{~d} x+\beta \varepsilon^{1-\alpha} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right][\Phi] \mathrm{d} \sigma= \\
= & \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \Phi \mathrm{d} x:=I_{\varepsilon}+J_{\varepsilon} .
\end{align*}
$$

By (55), as $\varepsilon \rightarrow 0$, we obtain

$$
\begin{align*}
& \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x+\varepsilon \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi \mathrm{~d} x+\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla_{y} \Phi \mathrm{~d} x \\
& \quad \rightarrow \int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} y+\int_{\Omega \times Y} \lambda\left(\nabla u+\nabla_{y} u_{1}\right) \cdot \nabla_{y} \Phi \mathrm{~d} x \mathrm{~d} y \tag{67}
\end{align*}
$$

Moreover, we can write

$$
\begin{equation*}
\beta \varepsilon^{1-\alpha} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right][\Phi] \mathrm{d} \sigma=\beta \varepsilon^{\frac{1-\alpha}{2}} \varepsilon \int_{\Gamma^{\varepsilon}} \frac{\left[u_{\varepsilon}\right]}{\varepsilon^{\frac{\alpha+1}{2}}}[\Phi] \mathrm{d} \sigma \rightarrow 0 \tag{68}
\end{equation*}
$$

In order to pass to the limit in the right-hand side of (66), i.e. to deal with the singular term, we consider the extension of u_{ε} from Ω_{2}^{ε} to Ω_{1}^{ε} as in Theorem 2.13, and for the sake of simplicity, let us denote by $T\left(u_{\varepsilon}\right)$ this extension, i.e. $T\left(u_{\varepsilon}\right) \in H^{1}(\Omega), T\left(u_{\varepsilon}\right)=u_{\varepsilon}$ in $\Omega_{2}^{\varepsilon},\left\|T\left(u_{\varepsilon}\right)\right\|_{L^{2}(\Omega)} \leq C\left\|u_{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}$ and $\left\|\nabla T\left(u_{\varepsilon}\right)\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla u_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{\varepsilon}\right)}$, with C independent of ε. Then, by (13), it follows that there exists $v \in H^{1}(\Omega)$ such that, up to a subsequence, $T\left(u_{\varepsilon}\right) \rightharpoonup v$ weakly in $H^{1}(\Omega)$ and $T\left(u_{\varepsilon}\right) \rightarrow v$ strongly in $L^{2}(\Omega)$. Moreover, recalling [2, Proposition 1.14 (i)] we have also $T\left(u_{\varepsilon}\right) \xrightarrow{2-s c} v$ in $L^{2}(\Omega \times Y)$. By Lemma 6 of [23] applied to function $u_{\varepsilon}-T\left(u_{\varepsilon}\right)$, we have that

$$
\begin{aligned}
\left\|u_{\varepsilon}-v\right\|_{L^{2}(\Omega)}^{2}= & \left\|\left(u_{\varepsilon}-T\left(u_{\varepsilon}\right)\right)+\left(T\left(u_{\varepsilon}\right)-v\right)\right\|_{L^{2}(\Omega)}^{2} \\
\leq & 2\left(\left\|u_{\varepsilon}-T\left(u_{\varepsilon}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|T\left(u_{\varepsilon}\right)-v\right\|_{L^{2}(\Omega)}^{2}\right) \\
\leq & C\left(\left\|u_{\varepsilon}-T\left(u_{\varepsilon}\right)\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}^{2}+\varepsilon \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}-T\left(u_{\varepsilon}\right)\right]^{2} \mathrm{~d} \sigma\right. \\
& \left.\quad+\varepsilon^{2}\left\|\nabla u_{\varepsilon}-\nabla T\left(u_{\varepsilon}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|T\left(u_{\varepsilon}\right)-v\right\|_{L^{2}(\Omega)}^{2}\right) \\
\leq & C\left(\varepsilon^{1+\alpha} \frac{1}{\varepsilon^{\alpha}} \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right]^{2} \mathrm{~d} \sigma+\varepsilon^{2}\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}\right. \\
& \left.\quad+\varepsilon^{2}\left\|\nabla T\left(u_{\varepsilon}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|T\left(u_{\varepsilon}\right)-v\right\|_{L^{2}(\Omega)}^{2}\right) \rightarrow 0
\end{aligned}
$$

where we have taken into account again that $\alpha+1>0$. It remains to prove that $v=u$, but this is a direct consequence of the fact that $T\left(u_{\varepsilon}\right)=u_{\varepsilon}$ in Ω_{2}^{ε}, indeed taking a test function $\phi\left(x, \frac{x}{\varepsilon}\right)=\phi_{1}(x) \phi_{2}\left(\frac{x}{\varepsilon}\right)$, with $\phi_{1} \in \mathcal{C}_{c}^{0}(\Omega)$ and $\phi_{2} \in \mathcal{C}_{\#}^{0}(Y)$ with compact support in E_{2}, it follows

$$
\begin{aligned}
& \left(\int_{\Omega} u(x) \phi_{1}(x) \mathrm{d} x\right)\left(\int_{E_{2}} \phi_{2}(y) \mathrm{d} y\right) \leftarrow \int_{\Omega} u_{\varepsilon}(x) \phi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x \\
& \quad=\int_{\Omega} T\left(u_{\varepsilon}\right)(x) \phi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x \rightarrow\left(\int_{\Omega} v(x) \phi_{1}(x) \mathrm{d} x\right)\left(\int_{E_{2}} \phi_{2}(y) \mathrm{d} y\right) .
\end{aligned}
$$

Therefore, $u_{\varepsilon} \rightarrow u$ strongly in $L^{2}(\Omega)$, i.e. (18) holds. In order to get the homogenous boundary condition (62), we proceed as in [9, Proof of Theorem 2.2]. Let $\Phi \in L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$ and let Ψ be the function associated to Φ on E_{2} by

Lemma 2.4. Integrating by parts and passing to the two-scale limit, we have

$$
\begin{array}{r}
\int_{\Omega} \int_{E_{2}}\left(\nabla u(x)+\nabla_{y} u_{1}(x, y)\right) \Psi(x, y) \mathrm{d} y \mathrm{~d} x \leftarrow \int_{\Omega_{2}^{\varepsilon}} \nabla u_{\varepsilon}(x) \cdot \Psi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x \\
=-\int_{\Omega_{2}^{\varepsilon}} u_{\varepsilon}(x) \operatorname{div}_{x} \Psi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x \rightarrow-\int_{\Omega} \int_{E_{2}} u(x) \operatorname{div}_{x} \Psi(x, y) \mathrm{d} y \mathrm{~d} x \\
=-\int_{\Omega} u(x) \operatorname{div} \Phi(x) \mathrm{d} x . \tag{69}
\end{array}
$$

Moreover, by (2) there holds

$$
\begin{equation*}
\int_{E_{2}} \nabla_{y} u_{1}(x, y) \Psi(x, y) \mathrm{d} y=-\int_{\Gamma} u_{1}(x, y) \Psi \cdot \nu \mathrm{d} \sigma-\int_{E_{2}} u_{1}(x, y) \operatorname{div}_{y} \Psi(x, y) \mathrm{d} y=0 . \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \Phi(x) \mathrm{d} x=\int_{\Omega} \nabla u(x)\left(\int_{E_{2}} \Psi(x, y) \mathrm{d} y\right) \mathrm{d} x=-\int_{\Omega} u(x) \operatorname{div} \Phi(x) \mathrm{d} x \tag{71}
\end{equation*}
$$

and hence $u=0$ on $\partial \Omega$. Then, we can repeat the argument in the proof of Theorem 4.1 in order to obtain (22) and

$$
\begin{equation*}
I_{\varepsilon} \rightarrow \int_{\Omega} \frac{f}{u^{\theta}} \varphi \chi_{\{u>0\}} \mathrm{d} x, \quad J_{\varepsilon} \rightarrow 0, \quad \text { for } \varepsilon \rightarrow 0 \tag{72}
\end{equation*}
$$

Moreover, using the strong maximum principle as in Theorem 4.1, we obtain $u>0$ a.e. in Ω, so that we can drop the characteristic function $\chi_{\{u>0\}}$ in (72). Finally, taking first $\varphi=0$ and then $\Phi=0$, we deduce the strong formulation (57)-(62).
Remark 4.9. Notice that, when we are in the connected/disconnected case, as already pointed out in Subsection 2.4, we can refer to the more classical extension theorem in [15, 28], where the extension is found directly in $H_{0}^{1}(\Omega)$. Thus the proof of Theorem 4.7 can be achieved in a simpler way, avoiding steps (69)-(71).

4.4. The case $\alpha=-1$

In this subsection we will assume to be in the connected/connected geometry. Moreover, we stipulate that the source $f \in L^{\frac{2}{1+\theta}}(\Omega)$ is strictly positive
a.e. in Ω. We will see that the homogenized problem will take into account the physical properties of the bulk regions (i.e., λ_{1}, λ_{2}) as well as the physical properties of the interfaces (i.e. β).

Theorem 4.10. For $\varepsilon>0$, let $u_{\varepsilon} \in V_{0}^{\varepsilon}(\Omega)$ be the weak solution of the problem (10). Then, there exist $u=\left(u^{(1)}, u^{(2)}\right) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ and $u_{1}=\left(u_{1}^{(1)}, u_{1}^{(2)}\right) \in L^{2}\left(\Omega ; V_{\#}(Y)\right)$ with $\int_{E_{1}} u_{1}^{(1)} \mathrm{d} y=0=\int_{E_{2}} u_{1}^{(2)} \mathrm{d} y$, such that

$$
\begin{array}{ll}
\chi_{\Omega_{1}^{\varepsilon}} u_{\varepsilon}^{(1)} \xrightarrow{2-s c} \chi_{E_{1}} u^{(1)}, \quad \chi_{\Omega_{2}^{\varepsilon}} u_{\varepsilon}^{(2)} \xrightarrow{2-s c} \chi_{E_{2}} u^{(2)}, & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega_{1}^{\varepsilon}} \nabla u_{\varepsilon}^{(1)} \xrightarrow{2-s c} \chi_{E_{1}}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right), & \text { in } L^{2}(\Omega \times Y) ; \\
\chi_{\Omega_{2}^{\varepsilon}} \nabla u_{\varepsilon}^{(2)} \xrightarrow{2-s c} \chi_{E_{2}}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right), & \text { in } L^{2}(\Omega \times Y) ; \\
{\left[u_{\varepsilon}\right] \xrightarrow{2-s c}[u],} & \text { in } L^{2}\left(\Omega ; L^{2}(\Gamma)\right) . \tag{76}
\end{array}
$$

Moreover,

$$
\begin{equation*}
\left|\int_{\Omega} \frac{f}{\left(u^{(i)}\right)^{\theta}} \varphi \mathrm{d} x\right|<+\infty, \quad \forall \varphi \in H_{0}^{1}(\Omega), \quad i=1,2 \tag{77}
\end{equation*}
$$

and the pair $\left(u, u_{1}\right)$ solve

$$
\begin{align*}
& -\operatorname{div}\left(\lambda_{1}\left|E_{1}\right| \nabla u^{(1)}+\int_{E_{1}} \lambda_{1} \nabla_{y} u_{1}^{(1)} \mathrm{d} y\right)=\left|E_{1}\right| \frac{f}{\left(u^{(1)}\right)^{\theta}}+|\Gamma| \beta[u], \text { in } \Omega ; \\
& -\operatorname{div}\left(\lambda_{2}\left|E_{2}\right| \nabla u^{(2)}+\int_{E_{2}} \lambda_{2} \nabla_{y} u_{1}^{(2)} \mathrm{d} y\right)=\left|E_{2}\right| \frac{f}{\left(u^{(2)}\right)^{\theta}}-|\Gamma| \beta[u], \text { in } \Omega ; \tag{78}\\
& -\operatorname{div}_{y}\left(\lambda\left(\nabla u+\nabla_{y} u_{1}\right)\right)=0, \text { in } E_{1} \cup E_{2} ; \tag{80}\\
& \lambda_{1}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right) \cdot \nu=0, \text { on } \Omega \times \Gamma ; \tag{81}\\
& \lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nu=0, \text { on } \Omega \times \Gamma ; \tag{82}\\
& u^{(1)}, u^{(2)}>0, \text { in } \Omega, \tag{83}\\
& u^{(1)}=u^{(2)}=0, \text { on } \partial \Omega, \tag{84}
\end{align*}
$$

${ }_{346}$ where, with a slight abuse of notation, we set $[u]=u^{(2)}-u^{(1)}$.

Remark 4.11. Following the same ideas as in Remark 4.3, we obtain that problem (78) admits at most one pair of solutions $\left(u, u_{1}\right)$. Moreover, we can factorize u_{1} as

$$
\begin{equation*}
u_{1}^{(1)}(x, y)=\chi^{(1)}(y) \nabla u^{(1)}(x), \quad u_{1}^{(2)}(x, y)=\chi^{(2)}(y) \nabla u^{(2)}(x), \tag{85}
\end{equation*}
$$

where $\chi^{(k)}=\left(\chi_{1}^{(k)}, \ldots, \chi_{N}^{(k)}\right)$, for $k=1,2, \int_{E_{1}} \chi_{j}^{(1)} \mathrm{d} y=0=\int_{E_{2}} \chi_{j}^{(2)} \mathrm{d} y$, for each $j \in\{1, \ldots, N\}$, and, recalling the usual notation, we set $\chi=$ $\left(\chi^{(1)}, \chi^{(2)}\right) \in\left(V_{\#}(Y)\right)^{N}$. Then by (78) we obtain that, for each $j \in\{1, \ldots, N\}$, χ_{j} satisfies (63) and $u^{(1)}, u^{(2)}$ solve the following system

$$
\begin{array}{ll}
-\operatorname{div}\left(A_{h o m}^{(1)} \nabla u^{(1)}\right)=\left|E_{1}\right| \frac{f}{\left(u^{(1)}\right)^{\theta}}+|\Gamma| \beta\left(u^{(2)}-u^{(1)}\right), & \text { in } \Omega ; \\
-\operatorname{div}\left(A_{h o m}^{(2)} \nabla u^{(2)}\right)=\left|E_{2}\right| \frac{f}{\left(u^{(2)}\right)^{\theta}}-|\Gamma| \beta\left(u^{(2)}-u^{(1)}\right), & \text { in } \Omega ; \tag{86}\\
u^{(1)}=u^{(2)}=0, & \text { on } \partial \Omega,
\end{array}
$$

where, for $k=1,2$, the matrix $A_{\text {hom }}^{(k)}$ is defined as

$$
A_{h o m}^{(k)}=\lambda_{k}\left|E_{k}\right| I+\lambda_{k} \int_{E_{k}}\left(\nabla_{y} \chi^{(k)}\right)^{T} \mathrm{~d} y .
$$

Since

$$
\left(\int_{E_{k}}\left(\nabla \chi^{(k)}\right)^{T} \mathrm{~d} y\right)_{i j}=\int_{E_{k}} \frac{\partial \chi_{j}^{(k)}}{\partial y_{i}} \mathrm{~d} y=-(-1)^{k} \int_{\Gamma} \chi_{j}^{(k)} \nu_{i} \mathrm{~d} y,
$$

354 we also have

$$
\begin{equation*}
A_{\text {hom }}^{(k)}=\lambda_{k}\left|E_{k}\right| I-(-1)^{k} \lambda_{k} \int_{\Gamma} \nu \otimes \chi^{(k)} \mathrm{d} \sigma . \tag{87}
\end{equation*}
$$

Following the same ideas as in [12, Remark 2.6], it is not difficult to prove that the matrices $A_{h o m}^{(k)}$ are symmetric and positive definite. Therefore, the solution $u=\left(u^{(1)}, u^{(2)}\right)$ of (86) is unique. In fact, if $\hat{u}=\left(\hat{u}^{(1)}, \hat{u}^{(2)}\right)$ and $\bar{u}=\left(\bar{u}^{(1)}, \bar{u}^{(2)}\right)$ are two different solutions, then for $\varphi \in H_{0}^{1}(\Omega)$ and $k=1,2$, we have

$$
\begin{align*}
& \int_{\Omega} A_{h o m}^{(k)} \nabla \hat{u}^{(k)} \cdot \nabla \varphi \mathrm{d} x=\left|E_{k}\right| \int_{\Omega} \frac{f}{\left(\hat{u}^{(k)}\right)^{\theta}} \varphi \mathrm{d} x-(-1)^{k}|\Gamma| \beta \int_{\Omega}[\hat{u}] \varphi \mathrm{d} x, \tag{88}\\
& \int_{\Omega} A_{h o m}^{(k)} \nabla \bar{u}^{(k)} \cdot \nabla \varphi \mathrm{d} x=\left|E_{k}\right| \int_{\Omega} \frac{f}{\left(\bar{u}^{(k)}\right)^{\theta}} \varphi \mathrm{d} x-(-1)^{k}|\Gamma| \beta \int_{\Omega}[\bar{u}] \varphi \mathrm{d} x . \tag{89}
\end{align*}
$$

Subtracting (89) from (88) and taking $\varphi=\hat{u}^{(k)}-\bar{u}^{(k)}$, separately for $k=1,2$, we have

$$
\begin{align*}
& \quad \int_{\Omega} A_{h o m}^{(k)} \nabla\left(\hat{u}^{(k)}-\bar{u}^{(k)}\right) \cdot \nabla\left(\hat{u}^{(k)}-\bar{u}^{(k)}\right) \mathrm{d} x \\
& =\left|E_{k}\right| \int_{\Omega}\left(\frac{f}{\left(\hat{u}^{(k)}\right)^{\theta}}-\frac{f}{\left(\bar{u}^{(k)}\right)^{\theta}}\right)\left(\hat{u}^{(k)}-\bar{u}^{(k)}\right) \mathrm{d} x-|\Gamma| \beta \int_{\Omega}\left(\hat{u}^{(k)}-\bar{u}^{(k)}\right)^{2} \mathrm{~d} x \\
& \quad+|\Gamma| \beta \int_{\Omega}\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right)\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right) \mathrm{d} x . \tag{90}
\end{align*}
$$

${ }_{357}$ Summing (90) for $k=1,2$, we get

$$
\begin{align*}
& \int_{\Omega} A_{h o m}^{(1)} \nabla\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right) \cdot \nabla\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right) \mathrm{d} x \tag{91}\\
+ & \int_{\Omega} A_{h o m}^{(2)} \nabla\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right) \cdot \nabla\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right) \mathrm{d} x \\
= & \left|E_{1}\right| \int_{\Omega}\left(\frac{f}{\left(\hat{u}^{(1)}\right)^{\theta}}-\frac{f}{\left(\bar{u}^{(1)}\right)^{\theta}}\right)\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right) \mathrm{d} x \\
+ & \left|E_{2}\right| \int_{\Omega}\left(\frac{f}{\left(\hat{u}^{(2)}\right)^{\theta}}-\frac{f}{\left(\bar{u}^{(2)}\right)^{\theta}}\right)\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right) \mathrm{d} x \\
- & |\Gamma| \beta \int_{\Omega}\left(\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right)-\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right)\right)^{2} \mathrm{~d} x .
\end{align*}
$$

Recalling that $A_{\text {hom }}^{(1)}$ and $A_{\text {hom }}^{(2)}$ are positive definite and taking into account that the function $s \mapsto \frac{1}{s^{\theta}}$ is decreasing, by (91) we infer

$$
\int_{\Omega}\left|\nabla\left(\hat{u}^{(1)}-\bar{u}^{(1)}\right)\right|^{2}+\int_{\Omega}\left|\nabla\left(\hat{u}^{(2)}-\bar{u}^{(2)}\right)\right|^{2} \leq 0
$$

${ }_{358}$ which implies $\hat{u}^{(1)}=\bar{u}^{(1)}$ and $\hat{u}^{(2)}=\bar{u}^{(2)}$.
${ }_{359}$ Proof. First we note that (73)-(76) follow by Proposition 3.1 and Theorem 2.12. In order to proceed with the homogenization, we choose $\psi=$ $\left(\psi^{(1)}, \psi^{(2)}\right), \psi^{(i)}(x)=\varphi_{i}(x)+\varepsilon \Phi_{i}\left(x, \frac{x}{\varepsilon}\right)$ in $\Omega_{i}^{\varepsilon} \times E_{i}$, with $\varphi_{i} \in \mathcal{C}_{c}^{1}(\Omega)$ and $\Phi_{i} \in \mathcal{C}_{c}^{1}\left(\Omega ; \mathfrak{L}_{\#}(Y)\right)$, for $i=1,2$, as test function in (12), with $\alpha=-1$. We

$$
\begin{align*}
& \int_{\Omega_{1}^{\varepsilon}} \lambda_{1} \nabla u_{\varepsilon} \cdot \nabla \varphi_{1} \mathrm{~d} x+\int_{\Omega_{2}^{\varepsilon}} \lambda_{2} \nabla u_{\varepsilon} \cdot \nabla \varphi_{2} \mathrm{~d} x+\varepsilon \int_{\Omega_{1}^{\varepsilon}} \lambda_{1} \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi_{1} \mathrm{~d} x \\
+ & \varepsilon \int_{\Omega_{2}^{\varepsilon}} \lambda_{2} \nabla u_{\varepsilon} \cdot \nabla_{x} \Phi_{2} \mathrm{~d} x+\int_{\Omega_{1}^{\varepsilon}} \lambda_{1} \nabla u_{\varepsilon} \nabla_{y} \Phi_{1} \mathrm{~d} x+\int_{\Omega_{2}^{\varepsilon}} \lambda_{2} \nabla u_{\varepsilon} \nabla_{y} \Phi_{2} \mathrm{~d} x \\
+ & \beta \varepsilon \int_{\Gamma^{\varepsilon}}\left[u_{\varepsilon}\right][\psi] \mathrm{d} \sigma \\
= & \int_{\Omega_{1}^{\varepsilon}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{1} \mathrm{~d} x+\int_{\Omega_{2}^{\varepsilon}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{2} \mathrm{~d} x+\varepsilon \int_{\Omega_{1}^{\varepsilon}} \frac{f}{u_{\varepsilon}^{\theta}} \Phi_{1} \mathrm{~d} x+\varepsilon \int_{\Omega_{2}^{\varepsilon}} \frac{f}{u_{\varepsilon}^{\theta}} \Phi_{2} \mathrm{~d} x \\
= & I_{\varepsilon}^{1}+I_{\varepsilon}^{2}+J_{\varepsilon}^{1}+J_{\varepsilon}^{2} . \tag{92}
\end{align*}
$$

Hence, taking into account (73)-(76), as $\varepsilon \rightarrow 0$, the left-hand side converges to

$$
\begin{array}{r}
\quad \int_{\Omega \times E_{1}} \lambda_{1}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right) \cdot \nabla \varphi_{1} \mathrm{~d} x \mathrm{~d} y+\int_{\Omega \times E_{2}} \lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nabla \varphi_{2} \mathrm{~d} x \mathrm{~d} y \\
+\int_{\Omega \times E_{1}} \lambda_{1}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right) \cdot \nabla_{y} \Phi_{1} \mathrm{~d} x \mathrm{~d} y+\int_{\Omega \times E_{2}} \lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nabla_{y} \Phi_{2} \mathrm{~d} x \mathrm{~d} y \\
+\beta \int_{\Omega \times \Gamma}[u][\varphi] \mathrm{d} x \mathrm{~d} \sigma(y) \tag{93}
\end{array}
$$

In order to treat the right-hand side of (92), we will need to making use of the extension operator introduced in Subsection 2.4. More precisely, we consider the extensions of $u_{\varepsilon}^{(1)}$ and $u_{\varepsilon}^{(2)}$, which can be obtained applying Theorem 2.13 both in Ω_{1}^{ε} and Ω_{2}^{ε}. In the sequel, for the sake of simplicity, we set $T\left(u_{\varepsilon}^{(i)}\right)=T_{\varepsilon}^{i} u_{\varepsilon}^{(i)}, i=1,2$. We recall that $u_{\varepsilon}^{(1)}$ and $u_{\varepsilon}^{(2)}$ are positive and, without loss of generality, we can assume that also $T\left(u_{\varepsilon}^{(1)}\right)$ and $T\left(u_{\varepsilon}^{(2)}\right)$ are positive (in fact, if the extension given by Theorem 2.13 would not be positive, we could replace it with its positive part). Moreover, by Theorem 2.13 and (73) we get

$$
\begin{array}{ll}
T\left(u_{\varepsilon}^{(1)}\right) \chi_{\Omega_{1}^{\varepsilon}}=u_{\varepsilon}^{(1)} \chi_{\Omega_{1}^{\varepsilon}}, & T\left(u_{\varepsilon}^{(2)}\right) \chi_{\Omega_{2}^{\varepsilon}}=u_{\varepsilon}^{(2)} \chi_{\Omega_{2}^{\varepsilon}} \\
u_{\varepsilon}^{(1)} \chi_{\Omega_{1}^{\varepsilon}} \xrightarrow{2-s c} u^{(1)} \chi_{E_{1}}, & u_{\varepsilon}^{(2)} \chi_{\Omega_{2}^{\varepsilon}} \xrightarrow{2-s c} u^{(2)} \chi_{E_{2}} \tag{95}
\end{array}
$$

and, by $(8),(9),(13)$ and (14), it follows that there exist v_{1}, v_{2} such that

$$
\begin{equation*}
T\left(u_{\varepsilon}^{(1)}\right) \rightarrow v_{1}, \quad T\left(u_{\varepsilon}^{(2)}\right) \rightarrow v_{2} \quad \text { strongly in } L^{2}(\Omega) \tag{96}
\end{equation*}
$$

Finally, we obtain

$$
\begin{equation*}
v_{1}(x)=u^{(1)}(x), \quad v_{2}(x)=u^{(2)}(x), \quad \text { for a.e. } x \in \Omega . \tag{97}
\end{equation*}
$$

In fact, for $i=1,2$, we have that $T\left(u_{\varepsilon}^{(i)}\right) \chi_{\Omega_{i}^{\varepsilon}} \xrightarrow{2-s c} v_{i} \chi_{E_{i}}$, since $T\left(u_{\varepsilon}^{(i)}\right) \rightarrow v_{k}$ strongly in $L^{2}(\Omega)$ on compact sets contained in Ω. Hence, by (95), it follows

$$
\int_{\Omega} u^{(i)}\left|E_{i}\right| \varphi \mathrm{d} x \leftarrow \int_{\Omega} u_{\varepsilon}^{(i)} \chi_{\Omega_{i}^{\varepsilon}} \varphi \mathrm{d} x=\int_{\Omega} T\left(u_{\varepsilon}^{(i)}\right) \chi_{\Omega_{i}^{\varepsilon}} \varphi \mathrm{d} x \rightarrow \int_{\Omega} v^{(i)}\left|E_{i}\right| \varphi \mathrm{d} x,
$$

for every $\varphi \in \mathcal{C}_{c}^{1}(\Omega)$. Therefore, we have proved that

$$
\begin{equation*}
T\left(u_{\varepsilon}^{(1)}\right) \rightarrow u^{(1)}, \quad T\left(u_{\varepsilon}^{(2)}\right) \rightarrow u^{(2)} \quad \text { strongly in } L^{2}(\Omega) . \tag{98}
\end{equation*}
$$

We remark also that, arguing as in (69)-(71), both for $u^{(1)}$ and $u^{(2)}$, we get $u^{(1)}=u^{(2)}=0$ on $\partial \Omega$.

We are now ready to deal with the right hand side of (92). Taking into account that the integrands in J_{ε}^{1} and J_{ε}^{2} can be assumed positive, we can estimate from above each $J_{\varepsilon}^{i}, i=1,2$, with the integral over the whole Ω. Therefore, reasoning as in (37), we obtain that, as $\varepsilon \rightarrow 0$,

$$
J_{\varepsilon}^{1} \rightarrow 0 \quad \text { and } \quad J_{\varepsilon}^{2} \rightarrow 0
$$

On the other hand, we rewrite $I_{\varepsilon}^{i}, i=1,2$, in the following way

$$
I_{\varepsilon}^{i}=\int_{\Omega_{i}^{\varepsilon} \cap\left\{0 \leq u_{\varepsilon}<\delta\right\}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{i} \mathrm{~d} x+\int_{\Omega_{i}^{\varepsilon} \cap\left\{u_{\varepsilon} \geq \delta\right\}} \frac{f}{u_{\varepsilon}^{\theta}} \varphi_{i} \mathrm{~d} x:=I_{\varepsilon, \delta}^{i, 1}+I_{\varepsilon, \delta}^{i, 2} .
$$

We can adapt the same argument used for the term $I_{\varepsilon, \delta}^{i, 1}$ in the case $\alpha=1$. In particular, as in the proof of Theorem 4.1, we take $Z_{\delta}\left(u_{\varepsilon}\right) \varphi_{i}$ as test function in (12) with Z_{δ} defined in (40) and we assume $\varphi_{i} \geq 0$, obtaining

$$
\begin{align*}
I_{\varepsilon, \delta}^{i, 1} & \leq \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi_{i} Z_{\delta}\left(u_{\varepsilon}\right) \mathrm{d} x=\int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi_{i} Z_{\delta}\left(u_{\varepsilon}\right)\left(\chi_{\Omega_{1}^{\varepsilon}}+\chi_{\Omega_{2}^{\varepsilon}}\right) \mathrm{d} x \\
& =\sum_{k=1}^{2} \int_{\Omega} \lambda_{\varepsilon}^{k} \nabla u_{\varepsilon}^{(k)} \cdot \nabla \varphi_{i} Z_{\delta}\left(u_{\varepsilon}^{(k)}\right) \chi_{\Omega_{k}^{\varepsilon}} \mathrm{d} x \\
& =\sum_{k=1}^{2} \int_{\Omega} \lambda_{\varepsilon}^{k} \nabla T\left(u_{\varepsilon}^{(k)}\right) \cdot \nabla \varphi_{i} Z_{\delta}\left(T\left(u_{\varepsilon}^{(k)}\right)\right) \chi_{\Omega_{k}^{\varepsilon}} \mathrm{d} x \\
& =\sum_{k=1}^{2} \int_{\Omega} \lambda_{\varepsilon}^{k} \nabla T\left(u_{\varepsilon}^{(k)}\right) \cdot \nabla \varphi_{i}\left(Z_{\delta}\left(T\left(u_{\varepsilon}^{(k)}\right)\right)-Z_{\delta}\left(u^{(k)}\right)\right) \chi_{\Omega_{k}^{\varepsilon}} \mathrm{d} x \\
& +\sum_{k=1}^{2} \int_{\Omega} \lambda_{\varepsilon}^{k} \nabla T\left(u_{\varepsilon}^{(k)}\right) \cdot \nabla \varphi_{i} Z_{\delta}\left(u^{(k)}\right) \chi_{\Omega_{k}^{\varepsilon}} \mathrm{d} x . \tag{99}
\end{align*}
$$

${ }_{372}$ Recalling that $\lambda_{\varepsilon} \nabla T\left(u_{\varepsilon}^{(k)}\right) \chi_{\Omega_{k}^{\varepsilon}}$ is equi-bounded in $L^{2}(\Omega)$, using (98) in order ${ }_{373}$ to obtain that $Z_{\delta}\left(T\left(u_{\varepsilon}^{(k)}\right)\right) \rightarrow Z_{\delta}\left(u^{(k)}\right)$ strongly in $L^{2}(\Omega)$, we get

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega} \lambda_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \varphi_{i} Z_{\delta}\left(u_{\varepsilon}\right) \mathrm{d} x= \\
= & \sum_{k=1}^{2} \int_{\Omega \times E^{k}} \lambda^{k}\left(\nabla u^{(k)}+\nabla_{y} u_{1}^{(k)}\right) \nabla \varphi_{i} Z_{\delta}\left(u^{(k)}\right) \mathrm{d} x \mathrm{~d} y,
\end{aligned}
$$

374 where we have taken into account (74), (74) and (94). Hence,

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} I_{\varepsilon, \delta}^{i, 1} \leq \sum_{k=1}^{2} \int_{\left(\Omega \cap\left\{u^{(k)}=0\right\}\right) \times E^{k}}\left|\lambda^{k}\left(\nabla u^{(k)}+\nabla_{y} u_{1}^{(k)}\right)\right|\left|\nabla \varphi_{i}\right| . \tag{100}
\end{equation*}
$$

By Remark (4.11), for $k=1,2$, we may rewrite

$$
\begin{aligned}
& \int_{\left(\Omega \cap\left\{u^{(k)}=0\right\}\right) \times E^{k}}\left|\lambda^{k}\left(\nabla u^{(k)}+\nabla_{y} u_{1}^{(k)}\right)\right|\left|\nabla \varphi_{i}\right|= \\
= & \int_{\left(\Omega \cap\left\{u^{(k)}=0\right\}\right) \times E^{k}}\left|\lambda^{k}\left(I+\nabla_{y} \chi^{(k)}\right) \nabla u^{(k)}\right|\left|\nabla \varphi_{i}\right|=0,
\end{aligned}
$$

${ }_{376}$ because $\nabla u^{(k)}$ vanishes on $\left\{u^{(k)}=0\right\}$. Therefore, we conclude

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} I_{\varepsilon, \delta}^{i, 1}=0 \tag{101}
\end{equation*}
$$

${ }^{377}$ We now focus our attention on the term $I_{\varepsilon, \delta}^{i, 2}$. We have

$$
\begin{equation*}
I_{\varepsilon, \delta}^{i, 2}=\int_{\Omega_{i}^{\varepsilon} \cap\left\{u_{\varepsilon}^{(i)} \geq \delta\right\}} \frac{f}{\left(u_{\varepsilon}^{(i)}\right)^{\theta}} \varphi_{i} \mathrm{~d} x=\int_{\Omega} \frac{f}{\left(T\left(u_{\varepsilon}^{(i)}\right)\right)^{\theta}} \chi_{\Omega_{i}^{\varepsilon}} \chi_{\left\{T\left(u_{\varepsilon}^{(i)}\right) \geq \delta\right\}} \varphi_{i} \mathrm{~d} x . \tag{102}
\end{equation*}
$$

378

Since $0 \leq \frac{f}{\left(T\left(u_{\varepsilon}^{(i)}\right)\right)^{\theta}} \varphi_{i} \leq \frac{f}{\delta^{\theta}} \varphi_{i} \in L^{1}(\Omega)$ in the set $\left\{T\left(u_{\varepsilon}^{(i)}\right) \geq \delta\right\}$ and $\chi_{\Omega_{i}^{\varepsilon}} \rightharpoonup\left|E^{i}\right|$ weakly* in $L^{\infty}(\Omega)$, we can argue as in (39), once we have taken $\delta \notin \mathcal{C}=$ $\bigcup_{k=1}^{2}\left\{\delta>0:\left|\left\{u^{(k)}(x)=\delta\right\}\right|>0\right\}$, which is at most countable. Thus we obtain

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} I_{\varepsilon, \delta}^{i, 2}=\left|E_{i}\right| \int_{\Omega} \frac{f}{\left(u^{(i)}\right)^{\theta}} \chi_{\left\{u^{(i)}>\delta\right\}} \varphi_{i} \mathrm{~d} x . \tag{103}
\end{equation*}
$$

Finally, by (92), (93), (101) and (103), we arrive at

$$
\begin{align*}
& \int_{\Omega \times E_{1}} \lambda_{1}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right) \cdot \nabla \varphi_{1} \mathrm{~d} x \mathrm{~d} y \tag{104}\\
+ & \int_{\Omega \times E_{2}} \lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nabla \varphi_{2} \mathrm{~d} x \mathrm{~d} y \\
+ & \int_{\Omega \times E_{1}} \lambda_{1}\left(\nabla u^{(1)}+\nabla_{y} u_{1}^{(1)}\right) \cdot \nabla_{y} \Phi_{1} \mathrm{~d} x \mathrm{~d} y \\
+ & \int_{\Omega \times E_{2}} \lambda_{2}\left(\nabla u^{(2)}+\nabla_{y} u_{1}^{(2)}\right) \cdot \nabla_{y} \Phi_{2} \mathrm{~d} x \mathrm{~d} y+\beta \int_{\Omega \times \Gamma}[u][\varphi] \mathrm{d} x \mathrm{~d} \sigma(y) \\
= & \left|E_{1}\right| \int_{\Omega} \frac{f}{\left(u^{(1)}\right)^{\theta}} \chi_{\left\{u u^{(1)}>0\right\}} \varphi_{1} \mathrm{~d} x+\left|E_{2}\right| \int_{\Omega} \frac{f}{\left(u^{(2)}\right)^{\theta}} \chi_{\left\{u u^{(2)}>0\right\}} \varphi_{2} \mathrm{~d} x .
\end{align*}
$$

Choosing $\varphi_{1}, \varphi_{2}, \Phi_{1}, \Phi_{2}$ respectively equal to 0 in (104), we obtain (78)-(82) and (84) with $\frac{f}{\left(u^{(i)}\right)^{\theta}}$ replaced by $\frac{f}{\left(u^{(i)}\right)^{\theta}} \chi_{\left\{u^{(i)}>0\right\}}, i=1,2$. Moreover, using the factorization of $u_{1}^{(1)}$ and $u_{1}^{(2)}$ given in Remark 4.11, we obtain that $\left(u^{(1)}, u^{(2)}\right)$ solve the system (86), with the new sources $\frac{f}{\left(u^{(i)}\right)^{\theta}} \chi_{\left\{u^{(i)}>0\right\}}, i=1,2$. In order to conclude the proof, we have to show that (77) and (83) hold so that we can drop $\chi_{\left\{u^{(i)}>0\right\}}$ in (104)). These properties will be proved in Lemma 5.7 in Section 5.2.

5. Appendix

5.1. Existence and uniqueness for the ε-problem

We devote this subsection to prove the existence and uniqueness for problem (10), following the ideas in [13] as done in [18, Theorem 3.1]. The main difference in the present case is the underline geometrical setting, which requires different a-priori estimates. For this reason and for convenience of the reader, we will give a sketch of the proof.

Since here ε is fixed, we will omit it so that, similarly to Section 2, we rewrite $\Omega=\Omega_{1} \cup \Omega_{2} \cup \Gamma$ and

$$
V_{0}(\Omega)=\left\{u=\left(u^{(1)}, u^{(2)}\right), u^{(1)} \in H^{1}\left(\Omega_{1}\right), u^{(2)} \in H^{1}\left(\Omega_{2}\right), u=0 \text { on } \partial \Omega\right\},
$$

endowed with the norm defined by

$$
\|u\|_{V_{0}(\Omega)}:=\|\nabla u\|_{L^{2}\left(\Omega_{1} \cup \Omega_{2}\right)}+\|[u]\|_{L^{2}(\Gamma)} .
$$

Moreover, we denote by

$$
\mathfrak{L}_{0}(\Omega)=\left\{\varphi=\left(\varphi^{(1)}, \varphi^{(2)}\right): \varphi^{(1)} \in \operatorname{Lip}\left(\bar{\Omega}_{1}\right), \varphi^{(2)} \in \operatorname{Lip}\left(\bar{\Omega}_{2}\right), \varphi=0 \text { on } \partial \Omega\right\} .
$$

Finally, we set $\lambda(x)=\lambda_{1}$ a.e. in Ω_{1} and $\lambda(x)=\lambda_{2}$ a.e. in Ω_{2}.
Theorem 5.1. Assume that $f \in L^{\frac{2}{1+\theta}}(\Omega), \theta \in(0,1)$, and $f \geq 0$ a.e. in Ω, with f not identically zero in Ω_{1} nor in Ω_{2}. Then, the problem

$$
\begin{align*}
& \left|\int_{\Omega} \frac{f}{u^{\theta}} \psi \mathrm{d} x\right|<+\infty \\
& \int_{\Omega} \lambda \nabla u \cdot \nabla \psi \mathrm{~d} x+\beta \int_{\Gamma}[u][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f}{u^{\theta}} \psi \mathrm{d} x, \quad \forall \psi \in V_{0}(\Omega), \tag{105}
\end{align*}
$$

admits a unique solution $u \in V_{0}(\Omega)$, with $u>0$ a.e. in Ω.
In order to prove the previous result, we first need a preliminary existence result for a sequence of approximating problems. To this purpose, for $n \in \mathbb{N}$, we set

$$
\begin{equation*}
f_{n}(x)=\min \{f(x), n\} \tag{106}
\end{equation*}
$$

and we consider the problem to find $u_{n} \in V_{0}(\Omega)$ satisfying the system

$$
\begin{array}{rlrlr}
-\operatorname{div}\left(\lambda \nabla u_{n}\right) & =\frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}, & & \text { in } \Omega_{1} \cup \Omega_{2} ; \\
{\left[\lambda \nabla u_{n} \cdot \nu\right]} & & =0, & & \text { on } \Gamma ; \\
\beta\left[u_{n}\right] & =\lambda \nabla u_{n}^{(2)} \cdot \nu, & & \text { on } \Gamma ; \tag{107}\\
u_{n} & \geq 0, & & \text { in } \Omega ; \\
u_{n} & =0, & & \text { on } \partial \Omega,
\end{array}
$$

whose weak formulation is

$$
\begin{equation*}
\int_{\Omega} \lambda \nabla u_{n} \cdot \nabla \psi \mathrm{~d} x+\beta \int_{\Gamma}\left[u_{n}\right][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x, \quad \forall \psi \in V_{0}(\Omega) \tag{108}
\end{equation*}
$$

Theorem 5.2. The problem (107) admits a unique nonnegative solution $u_{n} \in$ $V_{0}(\Omega)$.
whose weak formulation is

$$
\begin{equation*}
\int_{\Omega} \lambda \nabla u_{n} \cdot \nabla \psi \mathrm{~d} x+\beta \int_{\Gamma}\left[u_{n}\right][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f_{n}}{\left(|w|+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x, \quad \forall \psi \in V_{0}(\Omega) \tag{110}
\end{equation*}
$$

Proof. Let $w \in L^{2}(\Omega)$ be fixed. For any $n \in \mathbb{N}$ we consider the following nonsingular linear problem

$$
\begin{align*}
-\operatorname{div}\left(\lambda \nabla u_{n}\right) & =\frac{f_{n}}{\left(|w|+\frac{1}{n}\right)^{\theta}}, & & \text { in } \Omega_{1} \cup \Omega_{2} ; \\
{\left[\lambda \nabla u_{n} \cdot \nu\right] } & & 0, & \tag{109}\\
\beta\left[u_{n}\right] & =\lambda_{2} \nabla u_{n}^{(2)} \cdot \nu, & & \text { on } \Gamma ; \\
u_{n} & =0, & & \text { on } \partial \Omega,
\end{align*}
$$

Since the datum $\left(|w|+\frac{1}{n}\right)^{-\theta} f_{n}$ is bounded by $n^{1+\theta}$, there exists a unique solution $u_{n} \in V_{0}(\Omega)$, as a consequence of the well-known Lax-Milgram Lemma. Moreover, by standard energy estimates and by Poincaré's inequality (2.2), there exists a positive constant C, depending on n but not on w, such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{2}(\Omega)} \leq C\left\|u_{n}\right\|_{V_{0}(\Omega)} \leq C . \tag{111}
\end{equation*}
$$

In order to prove the existence of a solution to problem (107), we will use Schauder's Theorem. To this purpose we introduce the map $F: L^{2}(\Omega) \rightarrow$ $L^{2}(\Omega)$ defined by $F(w)=u_{n}$, where u_{n} is the solution of (109). Let B be the ball in $L^{2}(\Omega)$ of radius C, where C is the constant appearing in (111). Clearly $F(B) \subseteq B$. In order to apply the Schauder's Theorem, we need to prove that F is continuous and compact on B. The compactness of F follows by the fact that the inclusion of V_{0} in $L^{2}(\Omega)$ is compact. In order to prove that F is continuous we proceed as follows. Let $\left\{w_{r}\right\} \subset B$ be a sequence in $L^{2}(\Omega)$ strongly converging to a function $w \in L^{2}(\Omega)$. We want to prove that $u_{n, r}:=F\left(w_{r}\right)$ strongly converges in $L^{2}(\Omega)$ to $u_{n}=F(w)$, for $r \rightarrow+\infty$. Since w_{r} is strongly convergent in $L^{2}(\Omega)$ to w, we have also that, up to a subsequence, $w_{r}(x) \rightarrow w(x)$ for a.e. $x \in \Omega$ and therefore also $\left(\left|w_{r}\right|+\frac{1}{n}\right)^{-\theta} f_{n}$ converges to $\left(|w|+\frac{1}{n}\right)^{-\theta} f_{n}$ a.e. in Ω, which implies the strong convergence in $L^{q}(\Omega)$ for every $q \geq 1$. By (111) with u_{n} replaced by $u_{n, r}$ and the compactness of the inclusion of V_{0} in $L^{2}(\Omega)$, it follows that there exists $u_{n} \in V_{0}$ such that, up to a subsequence,

$$
\begin{array}{ll}
u_{n, r} \rightarrow u_{n}, & \text { strongly in } L^{2}(\Omega), \\
\nabla u_{n, r} \rightharpoonup \nabla u_{n}, & \text { weakly in } L^{2}(\Omega), \\
{\left[u_{n, r}\right] \rightharpoonup\left[u_{n}\right],} & \text { weakly in } L^{2}(\Gamma) .
\end{array}
$$

Passing to the limit in (110) written for $u_{n, r}$ and w_{r}, it follows that $u_{n}=F(w)$ and by the uniqueness of the solution of problem (109)-(110) we have that the whole sequence $F\left(w_{n, r}\right)=u_{n, r} \rightarrow u_{n}=F(w)$, strongly in $L^{2}(\Omega)$, for $r \rightarrow+\infty$. Hence F is continuous and therefore there exists a fixed point u_{n} which is a solution of the problem

$$
\int_{\Omega} \lambda \nabla u_{n} \cdot \nabla \psi \mathrm{~d} x+\beta \int_{\Gamma}\left[u_{n}\right][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f_{n}}{\left(\left|u_{n}\right|+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x, \quad \forall \psi \in V_{0}(\Omega) .
$$

The proof that u_{n} is nonnegative can be obtained following the same computations at page 15 of [18, Proof of Theorem 3.1], as well as the proof that the solution u_{n} is unique follows by [18, Proof of Theorem 3.5].

Proof of Theorem 5.1. Taking u_{n} as test function in (108) and using the Poincaré inequality (1), we obtain

$$
\begin{aligned}
\int_{\Omega} u_{n}^{2} \mathrm{~d} x & \leq C\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x+\int_{\Gamma}\left[u_{n}\right]^{2} \mathrm{~d} \sigma\right) \leq C \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}} u_{n} \mathrm{~d} x \\
& \leq C| | f\left\|_{L^{\frac{2}{1+\theta}}(\Omega)}\right\| u_{n} \|_{L^{2}(\Omega)}^{1-\theta}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{2}(\Omega)} \leq C\left\|u_{n}\right\|_{V_{0}} \leq C\|f\|_{L^{1} \frac{1}{1+\theta}(\Omega)}^{\frac{1}{1+\theta}}, \tag{112}
\end{equation*}
$$

where C is independent of n. By (112) and the compactness of the inclusion of V_{0} in $L^{2}(\Omega)$, we infer that there exists $u \in V_{0}, u \geq 0$ a.e. in Ω, such that, up to a subsequence,

$$
\begin{array}{ll}
u_{n} \rightarrow u, & \text { strongly in } L^{2}(\Omega) ; \\
\nabla u_{n} \rightharpoonup \nabla u, & \text { weakly in } L^{2}(\Omega) ; \tag{113}\\
{\left[u_{n}\right] \rightharpoonup[u],} & \text { weakly in } L^{2}(\Gamma) .
\end{array}
$$

Moreover, by (108), with $\psi \in V_{0}(\Omega)$, and (112), we obtain

$$
\left|\int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x\right| \leq C
$$

so that, when $n \rightarrow+\infty$, by Fatou's Lemma it follows

$$
\begin{equation*}
\left|\int_{\Omega} \frac{f}{u^{\theta}} \psi \mathrm{d} x\right| \leq C \tag{114}
\end{equation*}
$$

which also implies that u is not identically zero in Ω (nor in Ω_{1} neither in Ω_{2}). Now, we can pass to the limit in the weak formulation (108). Clearly, the left-hand side converges to the left-hand side of (105). In order to pass to the limit in the right-hand side, we proceed again as in $[18$, Proof of Theorem 3.1], assuming that ψ is a nonnegative function belonging to $\mathfrak{L}_{0}(\Omega)$. As in (38), we can write

$$
\begin{equation*}
I_{n}=\int_{\Omega \cap\left\{0 \leq u_{n} \leq \delta\right\}} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x+\int_{\Omega \cap\left\{u_{n}>\delta\right\}} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\theta}} \psi \mathrm{d} x:=I_{n, \delta}^{1}+I_{n, \delta}^{2} \tag{115}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{n \rightarrow+\infty} I_{n, \delta}^{2}=\int_{\Omega \cap\{u>0\}} \frac{f}{u^{\theta}} \psi \mathrm{d} x \tag{116}
\end{equation*}
$$

Moreover, using as test function in (108) the function $Z_{\delta}\left(u_{n}\right) \psi$, with Z_{δ} defined in (40) and ψ as above, we arrive at

$$
\begin{equation*}
I_{n, \delta}^{1} \leq \int_{\Omega} \lambda \nabla u_{n} \cdot \nabla \psi Z_{\delta}\left(u_{n}\right) \mathrm{d} x+2 \beta \delta\left\|\psi^{(2)}+\psi^{(1)}\right\|_{L^{1}(\Gamma)} \tag{117}
\end{equation*}
$$

as in $[18$, Proposition 4.4]. Therefore,

$$
\lim _{n \rightarrow+\infty} I_{n, \delta}^{1} \leq \int_{\Omega} \lambda \nabla u \cdot \nabla \psi Z_{\delta}(u) \mathrm{d} x+2 \beta \delta\left\|\psi^{(2)}+\psi^{(1)}\right\|_{L^{1}(\Gamma)}
$$

where we have taken into account that $\nabla u_{n} \rightharpoonup \nabla u$ weakly in $L^{2}(\Omega)$ and $Z_{\delta}\left(u_{n}\right) \rightarrow Z_{\delta}(u)$ strongly in $L^{2}(\Omega)$, since $s \mapsto Z_{\delta}(s)$ is continuous and $u_{n} \rightarrow u$ strongly in $L^{2}(\Omega)$. Then, passing to the limit as $\delta \rightarrow 0$, we get

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \lim _{n \rightarrow+\infty} I_{n, \delta}^{1} \leq \int_{\Omega \cap\{u=0\}} \lambda \nabla u \cdot \nabla \psi \mathrm{~d} x=0 \tag{118}
\end{equation*}
$$

where we have taken into account that $\nabla u=0$ a.e. on the level set $\{u=0\}$. Clearly, as done before, we have paid attention to choose $\delta \notin \mathcal{C}=\{\delta>0$: $|\{u(x)=\delta\}|>0\}$, which is at most countable.

From $(115),(116),(118)$, the density of $\mathfrak{L}_{0}(\Omega)$ in $V_{0}(\Omega)$ and the standard decomposition of $\psi \in V_{0}(\Omega)$ as $\psi=\psi^{+}-\psi^{-}$, it follows that u satisfies

$$
\int_{\Omega} \lambda \nabla u \cdot \nabla \psi \mathrm{~d} x+\beta \int_{\Gamma}[u][\psi] \mathrm{d} \sigma=\int_{\Omega} \frac{f}{u^{\theta}} \chi_{\{u>0\}} \psi \mathrm{d} x
$$

for every $\psi \in V_{0}(\Omega)$. It remains to prove that $u>0$ a.e. in Ω, in order to replace $\frac{f}{u^{\theta}} \chi_{\{u>0\}}$ with $\frac{f}{u^{\theta}}$. This is a direct consequence of the maximum principle (see [21, Theorem 8.19] and also [20, Proposition 3.5]) applied to u in Ω_{1} and Ω_{2}, separately, recalling that (114) implies that u is not identically zero in Ω_{1} nor in Ω_{2}. Indeed, in the connected/connected geometry the maximum principle can be applied since $\inf u=0$ in each $\Omega_{i}, i=1,2$ (being $u=0$ in $\left.\partial \Omega \cap \partial \Omega_{i} \neq \emptyset, i=1,2\right)$. The same approach can be followed in the connected/disconnected geometry for the outer domain Ω_{2}, where we have $u=0$ on $\partial \Omega \cap \partial \Omega_{2} \neq \emptyset$. On the contrary in Ω_{1}, taking into account that u is nonnegative (being the strong L^{2}-limit of the sequence of positive function u_{n}) we should distinguish two different situations: or $\inf u>0$ in Ω_{1} and, therefore, there is nothing to prove, or $\inf u=0$ in Ω_{1} and in this case we can appeal again to the maximum principle.

5.2. Positivity of the bidomain homogenized solution

We devote this subsection to the proof of the strict positivity a.e. in Ω of the solution of the bidomain problem (78)-(84) obtained from the homogenization of the system (10) in the case $\alpha=-1$ (Lemma 5.7 below). Notice that this result can be obtained from (17), by using the so-called two-scale decomposition introduced in [29] and following the approach used in [30, Section 1]. However, due to the special factorized form of the integral in the left-hand side of (17), we prefer to give a direct proof based on the unfolding homogenization technique which, in this case, essentially corresponds to the two-scale decomposition. To this purpose, we recall the definition and those properties of the unfolding operator which are necessary in order to achieve our result (see $[16,17]$).

Let us set

$$
\Xi_{\varepsilon}=\left\{\xi \in \mathbb{Z}^{N}, \quad \varepsilon(\xi+Y) \subset \Omega\right\}, \quad \widehat{\Omega}_{\varepsilon}=\text { interior }\left\{\bigcup_{\xi \in \Xi_{\varepsilon}} \varepsilon(\xi+\bar{Y})\right\}
$$

Denoting by $[r]$ the integer part of $r \in \mathbb{R}$, we define for $x \in \mathbb{R}^{N}$

$$
\left[\frac{x}{\varepsilon}\right]_{Y}=\left(\left[\frac{x_{1}}{\varepsilon}\right], \ldots,\left[\frac{x_{N}}{\varepsilon}\right]\right), \quad \text { so that } \quad x=\varepsilon\left(\left[\frac{x}{\varepsilon}\right]_{Y}+\left\{\frac{x}{\varepsilon}\right\}_{Y}\right)
$$

Definition 5.3. For w Lebesgue-measurable on Ω the periodic unfolding operator $\mathcal{T}_{\varepsilon}$ is defined as

$$
\mathcal{T}_{\varepsilon}(w)(x, y)= \begin{cases}w\left(\varepsilon\left[\frac{x}{\varepsilon}\right]_{Y}+\varepsilon y\right), & (x, y) \in \widehat{\Omega}_{\varepsilon} \times Y, \\ 0, & \text { otherwise }\end{cases}
$$

Clearly, $\mathcal{T}_{\varepsilon}$ is linear and for w_{1}, w_{2} as in Definition 5.3

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}\left(w_{1} w_{2}\right)=\mathcal{T}_{\varepsilon}\left(w_{1}\right) \mathcal{T}_{\varepsilon}\left(w_{2}\right) \tag{119}
\end{equation*}
$$

Proposition 5.4. Let $w \in L^{1}(\Omega)$, then

$$
\begin{equation*}
\int_{\Omega \times Y}\left|\mathcal{T}_{\varepsilon}(w)\right| \mathrm{d} x \mathrm{~d} y \leq \int_{\Omega}|w| \mathrm{d} x \tag{120}
\end{equation*}
$$

Proposition 5.5. Let $\left\{w_{\varepsilon}\right\}$ be a sequence of functions in $L^{p}(\Omega), p>1$.
If $w_{\varepsilon} \rightarrow w$ strongly in $L^{p}(\Omega)$ as $\varepsilon \rightarrow 0$, then

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}\left(w_{\varepsilon}\right) \rightarrow w, \quad \text { strongly in } L^{p}(\Omega \times Y) . \tag{121}
\end{equation*}
$$

Proposition 5.6. Let $\phi: Y \rightarrow \mathbb{R}$ be a function extended by Y-periodicity to the whole of \mathbb{R}^{N} and define the sequence

$$
\begin{equation*}
\phi^{\varepsilon}(x)=\phi\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^{N} . \tag{122}
\end{equation*}
$$

If ϕ is measurable on Y, then

$$
\mathcal{T}_{\varepsilon}\left(\phi^{\varepsilon}\right)(x, y)= \begin{cases}\phi(y), & (x, y) \in \widehat{\Omega}_{\varepsilon} \times Y \tag{123}\\ 0, & \text { otherwise }\end{cases}
$$

Moreover, if $\phi \in L^{p}(Y), p>1$, as $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}\left(\phi^{\varepsilon}\right) \rightarrow \phi, \quad \text { strongly in } L^{p}(\Omega \times Y) \tag{124}
\end{equation*}
$$

Lemma 5.7. Under the assumption of Theorem 4.10,

$$
\begin{equation*}
\left|\int_{\Omega} \frac{f}{\left(u^{(i)}\right)^{\theta}} \varphi \mathrm{d} x\right|<+\infty, \quad \forall \varphi \in H_{0}^{1}(\Omega), \quad i=1,2, \tag{125}
\end{equation*}
$$

Proof. As in the proof of Theorem 4.10, let T denotes the extension operator. Recalling that, for a.e. $x \in \Omega, \chi_{\Omega_{1}^{\varepsilon}}(x)=\chi_{E_{1}}\left(\varepsilon^{-1} x\right)$ and $\chi_{\Omega_{2}^{\varepsilon}}(x)=\chi_{E_{2}}\left(\varepsilon^{-1} x\right)$, extended by periodicity from Y to the whole of \mathbb{R}^{N}, and taking into account (98) and the properties of the unfolding operator (119), (121) and (124), we have that

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}\left(u_{\varepsilon}\right)=\mathcal{T}_{\varepsilon}\left(u_{\varepsilon} \chi_{\Omega_{1}^{\varepsilon}}+u_{\varepsilon} \chi_{\Omega_{2}^{\varepsilon}}\right)=\mathcal{T}_{\varepsilon}\left(T\left(u_{\varepsilon}^{(1)}\right) \chi_{\Omega_{1}^{\varepsilon}}+T\left(u_{\varepsilon}^{(2)}\right) \chi_{\Omega_{2}^{\varepsilon}}\right) \\
& =\mathcal{T}_{\varepsilon}\left(T\left(u_{\varepsilon}^{(1)}\right)\right) \mathcal{T}_{\varepsilon}\left(\chi_{\Omega_{1}^{\varepsilon}}\right)+\mathcal{T}_{\varepsilon}\left(T\left(u_{\varepsilon}^{(2)}\right)\right) \mathcal{T}_{\varepsilon}\left(\chi_{\Omega_{2}^{\varepsilon}}\right) \\
& \longrightarrow u^{(1)} \chi_{E_{1}}+u^{(2)} \chi_{E_{2}}, \quad \text { strongly in } L^{1}(\Omega \times Y) .
\end{aligned}
$$

Therefore, there exists a set $\mathcal{N} \subset \Omega \times Y$, with $|\mathcal{N}|=0$, such that

$$
\mathcal{T}_{\varepsilon}\left(u_{\varepsilon}\right)(x, y) \rightarrow u^{(1)}(x) \chi_{E_{1}}(y)+u^{(2)}(x) \chi_{E_{2}}(y)
$$

for every $(x, y) \in(\Omega \times Y) \backslash \mathcal{N}$. Then, by (17) with $\psi \in \mathcal{C}_{c}^{1}(\Omega), \psi \geq 0$, (13) and applying Fatou's Lemma, we get

$$
\begin{gather*}
\int_{\Omega \times Y} \frac{f}{\left(u^{(1)} \chi_{E_{1}}+u^{(2)} \chi_{E_{2}}\right)^{\theta}} \psi \mathrm{d} x \mathrm{~d} y \leq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega \times Y} \frac{\mathcal{T}_{\varepsilon}(f)}{\mathcal{T}_{\varepsilon}\left(u_{\varepsilon}\right)^{\theta}} \mathcal{T}_{\varepsilon}(\psi) \mathrm{d} x \mathrm{~d} y \\
=\liminf _{\varepsilon \rightarrow 0} \int_{\Omega \times Y} \mathcal{T}_{\varepsilon}\left(\frac{f}{u_{\varepsilon}^{\theta}} \psi\right) \mathrm{d} x \mathrm{~d} y \leq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega} \frac{f}{u_{\varepsilon}^{\theta}} \psi \mathrm{d} x \leq C \tag{126}
\end{gather*}
$$

where we used also (120). Inequality (126) implies, in particular,

$$
\begin{equation*}
\left|E_{i}\right| \int_{\Omega} \frac{f}{\left(u^{(i)}\right)^{\theta}} \psi \mathrm{d} x=\int_{\Omega \times E_{i}} \frac{f}{\left(u^{(i)} \chi_{E_{i}}\right)^{\theta}} \psi \mathrm{d} x \mathrm{~d} y \leq C, \quad i=1,2 \tag{127}
\end{equation*}
$$

thus, (125) is proved and hence, taking into account that $f>0$ a.e. in Ω, (127) implies $u^{(i)}>0$ a.e. in $\Omega, i=1,2$.

References

[1] E. Acerbi, V. Chiadò Piat, G. Dal Maso, D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Analysis, Theory, Methods and Applications, (5)18 (1992), 481-496.
[2] G. Allaire, Homogenization and two-scale convergence, SIAM Journal of Mathematical Analysis, (6)23 (1992), 1482-1518.
[3] G. Allaire, M. Briane, Multi-scale convergence and reiterated homogenization, Proc. Roy. Soc. Edimburg, 126A (1996), 297-342.
[4] G. Allaire, A. Damlamian, U. Hornung, Two-scale convergence on periodic surfaces and applications, In Mathematical Modelling of Flow through Porous Media, Bourgeat AP, Carasso C, Luckhaus S, Mikelic A (eds). World Scientific (1995), 15-25.
[5] M. Amar, D. Andreucci, and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods and Applications, 153 (2917), 5677.
[6] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, Evolution and memory effects in the homogeneization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1261-1295.
[7] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787.
[8] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, (5) 9 (2010, 1131-1160.
[9] M. Amar, D. Andreucci, P. Bisegna, R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case, Differential and Integral Equations, (9-10)26 (2013), 885-912.
[10] M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete and Continuous Dynamical System - Series B, (4)23 (2018), 1739-1756.
[11] M. Amar, D. Andreucci, R. Gianni, and C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, (2018) submitted.
[12] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland, Amsterdam, 1978.
[13] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380.
[14] M. Briane, Poincaré-Wirtinger's inequality for the homogenization in perforated domains, (Italian summary), Boll. Un. Mat. Ital. B, (7)11 (1997) 53-82.
[15] D. Cioranescu, J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.
[16] D. Cioranescu, A. Damlamian, and G. riso, Periodic unfolding and homogenization, Comptes Rendus Mathematique, (1)335 (2002), 99104.
[17] D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis, (4) 40 (2008), 1585-1620.
[18] P. Donato, D. Giachetti, Existence and homogenization for a singular problem through rough surfaces, SIAM J. Math. Analysis, (6)48 (2016), 4047-4086.
[19] W. Fulks, J.S. Maybee, A singular nonlinear equation, Osaka J. Math. Soc., 28 (1991), 517-535
[20] D. Giachetti, P.J. Martínez-Aparicio, F. Murat A semilinear elliptic equation with a mild singularity at $u=0$: Existence and homogenization, J. Math. Pures Appl., 107 (2017), 41-77.
[21] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer Verlag, Berlin Heidelberg New York (1983).
[22] H.K. Hummel, Homogenization for eat transfer in polycrystals with interfacial resistance, Appl. Anal., 75 (2000), 403-424.
[23] F. Lene, D. Leguillon, Ètude de l'influence d'un glissement netre les constituants d'un matériau composite sur ses coefficients de comportement effectifs, Journal de Mécanique, 20 (1981), 509-536.
[24] R. Lipton, Heat conduction in fine mixtures with interfacial contact resistance, SIAM J. Appl. Math, (1)58 (1998), 55-72.
[25] M. Mabrouk, S. Hassan, Homogenization of a composite medium with a thermal barrier, Math. Met. Appl. Sci., 27 (2004), 405-425.
[26] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (3), 1989, 608-623
[27] G. Stampacchia, Le probleme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.
[28] L. Tartar, Problémes d'homogénéisation dans les équations aux dérivée partielles, Cours Peccot Collège de France, 1977, partiaellement rédigé dans: F. Murat, ed., H-convergence. Séminaire d'Analyse Fonctionelle et Numérique, 1977/78, Université d'Alger (polycopié)..
[29] A. Visintin, Towards a two-scale calculus, Esaim: COCV, 12 (2006), 371-397.
[30] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var., (2)29 (2007), 239-265.

