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Abstract. We investigate optimal reachability and grasping problems
for a planar soft manipulator, from both a theoretical and numerical
point of view. The underlying control model describes the evolution of
the symmetry axis of the device, which is subject to inextensibility and
curvature constraints, a bending moment and a curvature control. Opti-
mal control strategies are characterized with tools coming from the opti-
mal control theory of PDEs. We run some numerical tests in order to
validate the model and to synthetize optimal control strategies.
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1 Introduction

In this paper we investigate reachability and grasping problems for planar soft
manipulators in the framework of optimal control theory. The manipulator we
are modeling is a three-dimensional body with an axial symmetry, non-uniform
thickness and a fixed endpoint. The device is characterized by a structural resis-
tance to bending, the bending moment, and its soft material allows for elastic
distorsions only below a fixed threshold, modelled via a bending constraint. More-
over, the bending can be enforced by a pointwise bending control, an internal
angular force representing the control term of the system. Finally, we assume
an inextensiblity constraint on the manipulator: its structure does not allow for
longitudinal stretching. Using the key morphological assumption of axial sym-
metry, we restrict our investigation to the evolution of the symmetry axis of the
manipulator, modeled as a planar curve q(s, t) : [0, 1] × [0, T ] → R

2, where s is
an arclength coordinate and T > 0 is the final time. Physically, q is modelled as
an inextensible beam, whose mass represents the mass of the whole manipulator.
The evolution is determined by suitable reaction and friction forces, encompassed
in a nonlinear, fourth order system of evolutive, controlled PDEs, generalizing
the Euler-Bernoulli beam equation. In particular, the aforementioned bending
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constraints and controls of the manipulator on its symmetry axis are encoded
as curvature constraints and controls, enforced by angular reaction forces.

The optimal control problems that we address are formulated as a constrained
minimization of appropriate cost functionals, involving a quadratic cost on the
controls, see (7), (10) for the reachability problem and (14) for the grasping
problem.

The control model underlying our study and a first investigation of the related
optimal reachability strategies were originally developed in [1], then extended in
[2] to the case in which only a portion of the device is controlled. Here, beside
a deeper investigation of the model and of its connection with hyper-redundant
manipulators, we address the important problem of grasping a prescribed object.
In our investigation the grasping problem is studied (and numerically solved)
in a stationary setting. We point out that our approach, involving the theory
of optimal control of PDEs, allows in a quite natural way for an extension to
fully dynamic optimization: here we present the key, spatial component of the
numerical solution of this challenging problem, while postponing its evolutive
counterpart to future works.

It is almost impossible to give an exhaustive state of the art even on the
particular framework of our paper, i.e., the motion planning of highly articulated
and soft manipulators. Then we limit ourselves to refer to the papers that mostly
inspired our work: the seminal papers [3,4] were hyper-redundant manipulator
were originally introduced, the paper [5] for the kinematic aspects and [6,7] for a
discrete dynamical model. The parameter setting of our tests is motivated by the
number theoretical approach presented in [9–11]. Finally, we refer to the book
[14] for an introduction to our theoretical background, that is, optimal control
theory of PDEs.

The paper is organized as follows. Section 2 is devoted to an overview of the
model under exam, and Sect. 3 to static and dynamic optimal reachability prob-
lems. In Sect. 4 we investigate an optimal grasping problem for the stationary
case. Finally in Sect. 5 we draw our conclusions.

2 A Control Model for Planar Manipulators

We revise, from a robotic perspective, the main steps of the modeling procedure
in [1]. In particular, we provide an analytical description of the constraints as for-
mal limit of a discrete particle system, which in turn models an hyper-redundant
manipulator.

2.1 From a Discrete Hyper-redundant to a Soft Manipulator

Hyper-redundant manipulator are characterized by a very large, possibly infinite,
number of actuable degrees of freedom: their investigation in the framework of
soft robotics is motivated by the fact that they can be viewed as discretizations
of continuum robots. Following this idea, we consider here a device composed
by N links and N + 1 joints, whose position in the plane is given by the array
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(q0, . . . , qN ). We denote by mk the mass of the k-th joint, with k = 0, . . . , N ,
and we consider negligible the mass of the corresponding links. Moreover, given
vectors v1, v2 ∈ R

2, we assume standard notations for the Euclidean norm and
the dot product, respectively |v1| and v1 · v2, and we define v1 × v2 := v1 · v⊥

2 ,
where v⊥

2 denotes the clockwise orthogonal vector to v2. Finally, the positive
part function is denoted by (·)+.

The manipulator is endowed with the following physical features:

– Inextensibility Constraint. The links are rigid and their lengths are given
by �, so that the discrete counterpart of the inextensibility constraint is

|qk − qk−1| = � k = 1, . . . , N. (1)

This constraint is imposed exactly, by defining for k = 1, ..., N

Fk(q, σ) := σk

(|qk − qk−1|2 − �2
)
,

where σk is a Langrange multiplier.
– Curvature Constraint. We assume that two consecutive links, say the k-th

and the k +1-th, cannot form an angle larger than a fixed threshold αk. This
can be formalized by the following condition on the joints:

(qk+1 − qk) · (qk − qk−1) ≥ �2 cos(αk).

This constraint is imposed via penalty method. In particular, for k = 1, ..., N
we consider the elastic potential:

Gk(q) := νk

(
cos(αk) − 1

�2
(qk+1 − qk) · (qk − qk−1)

)2

+

,

where νk ≥ 0 is a penalty parameter playing the role of an elastic constant.
– Bending Moment. Modeling an intrinsic resistance to leave the position

at rest, corresponding to null relative angles, is described by the following
equality constraint:

(qk+1 − qk) × (qk − qk−1) = 0.

The related elastic potential with penalty parameter εk > 0 is

Bk(q) := εk

(
(qk+1 − qk) × (qk − qk−1)

)2

,

– Curvature Control. A curvature control in a discrete setting equals to
impose the exact angle between the joints qk−1, qk, qk+1, i.e., the following
equality constraint:

(qk+1 − qk) × (qk − qk−1) = �2 sin(αkuk),
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where uk ∈ [−1, 1] is the control term. Note that the control set [−1, 1] is
chosen in order to be consistent with the curvature constraint. Also in this
case we enforce the constraint by penalty method, by considering:

Hk(q) := μk

(
sin(αkuk) − 1

�2
(qk+1 − qk) × (qk − qk−1)

)2

,

where μk ≥ 0 is a penalty parameter. Note that to set μk = 0 corresponds to
deactivate the control of the k-th joint and let it evolve according the above
constraints only.

Note that the definition of Gk, Bk and Hk in the cases k = 0 and k = N is
made consistent by considering two ghost joints q−1 := q0 + �(0, 1) and qN+1 :=
qN + (qN − qN−1) at the endpoints.

We now are in position to build the Lagrangian associated to the hyper-
redundant manipulator, composed by a kinetic energy term and suitably rescaled
elastic potentials:

LN (q, q̇, σ) :=
N∑

k=0

1
2
mk|q̇k|2 − 1

2�
Fk(q, σ) − 1

�3
Gk(q) − 1

2�5
Bk(q) − 1

2�
Hk(q).

Assume now that the hyper-redundant manipulator is indeed a discretization
of our continuous manipulator, that is, there exist smooth functions ν, μ, ε, ρ, ω :
[0, 1] → R

+ and, for T > 0, smooth functions q : [0, 1] × [0, T ] → R
2, σ :

[0, 1]× [0, T ] → R and u : [0, 1]× [0, T ] → [−1, 1] such that, for all N , k = 1, ..., N
and t ∈ [0, T ]

νk = ν(k�), μk = μ(k�), εk = ε(k�),

ρk := mk/� = ρ(k�), ωk := αk/� = ω(k�),

qk(t) = q(k�, t), σk(t) = σ(k�, t), uk(t) = u(k�, t).

Fixing the total length of the manipulator equal to 1, so that � = 1/N ,
we define the Lagrangian associated to the soft, continuous manipulator by the
formal limit (see [1] for details)

lim
N→+∞

LN (q, q̇, σ) = L(q, q̇, σ).

where

L(q, σ) :=
∫ 1

0

(1
2
ρ|qt|2 − 1

2
σ(|qs|2 − 1) − 1

4
ν

(|qss|2 − ω2
)2
+

− 1
2
ε|qss|2

−1
2
μ (ωu − qs × qss)

2
)
ds

(2)

and qt, qs, qss denote partial derivatives in time and space respectively.
A comparison between discrete and continuous constraints and related poten-

tials is displayed in Table 1 and Table 2, respectively.
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Table 1. Exact constraint equations in both discrete and continuous settings.

Constraint Constraint equation

Discrete Continuous

Inextensibility |qk − qk−1| = � |qs| = 1

Curvature (qk+1 − qk) · (qk − qk−1) ≥ �2 cos(αk) |qss| ≤ ω

Bending moment (qk+1 − qk) × (qk − qk−1) = 0 |qss| = 0

Control (qk+1 − qk) × (qk − qk−1) = �2 sin(αkuk) qs × qss = ωu

Table 2. Potentials derived from penalty method in both discrete and continuous
settings. The functions ν and μ represent non-uniform elastic constants.

Constraint Penalization elastic potential

Discrete Continuous

Inextensibility None None

Curvature νk

(
cos(αk)− 1

�2
(qk+1 − qk) · (qk − qk−1)

)2

+
ν(|qss|2 − ω2)2+

Bending moment εk

(
(qk+1 − qk)× (qk − qk−1)

)2
ε|qss|2

Control μk

(
sin(αkuk)− 1

�2
(qk+1 − qk)× (qk − qk−1)

)2
μ (ωu − qs × qss)

2

2.2 Equations of Motion

Equations of motion for both the discrete and the continuous models can be
derived applying the least action principle to the corresponding Lagrangians.
Here we report only the continuous case, which is the building block for the
optimal control problems we address in the next sections. Taking into account
also some friction forces, we obtain the following system of nonlinear, evolutive,
fourth order PDEs – see [1] for details:

{
ρqtt =

(
σqs − Hq⊥

ss

)
s
− (

Gqss + Hq⊥
s

)
ss

− βqt − γqsssst.
|qs|2 = 1

(3)

for (s, t) ∈ (0, 1) × (0, T ). We remark that the map G := G[q, ν, ε, ω] =
ε + ν

(|qss|2 − ω2
)
+

encodes the bending moment and the curvature constraint,
while the map H := H[q, μ, u, ω] = μ (ωu − qs × qss) corresponds to the control
term. The term −βqt represents an environmental viscous friction proportional
to the velocity; the term −γqsssst an internal viscous friction, proportional to the
change in time of the curvature. The system is completed with suitable initial
data and with the following boundary conditions for t ∈ (0, T ):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(0, t) = (0, 0), (anchor point)
qs(0, t) = −(0, 1) (fixed tangent)
qss(1, t) = 0 (zero bending moment)
qsss(1, t) = 0 (zero shear stress)
σ(1, t) = 0 (zero tension).

(4)
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Note that the first two conditions are a modeling choice, whereas the free end-
point conditions emerge from the stationarity of the Lagrangian L.

For reader’s convenience, we summarize the model parameters in Table 3.

Table 3. A summary of the quantities and the functions involved in the soft manipu-
lator control equation (3).

Name Description Type

q Axis parametrization Unknown of the equation

σ Inextensibility constraint multiplier

u Curvature control Control

ρ Mass distribution Physical parameter

ω Maximal curvature

ε Bending elastic constant Penalty parameter

ν Curvature constraint elastic constant

μ Curvature control elastic constant

G G[q, ν, ε, ω] = ε + ν
(|qss|2 − ω2

)
+

Reaction force

H H[q, μ, u, ω] = μ (ωu − qs × qss) Control term

β Enviromental friction Friction coefficient

γ Internal friction

Remark 1 (Deactivated Controls). We recall that the control term in (3) is the
elastic force

F [q, μ, u, ω] := −(Hq⊥
ss)s − (Hq⊥

s )ss

where H = μ(ωu − qs × qss). Therefore, to neglect the penalty parameter μ
can be used to model the deactivation of the controls in a subregion of the
device. The scenarios we have in mind include mechanical breakdowns, voluntary
deactivation for design or energy saving purposes and, as we see below, modeling
applications to hyper-redundant systems. For instance, to choose μ ≡ 0 yields
the uncontrolled dynamics:

ρqtt = (σqs)s − (Gqss)ss. (5)

More generally, to set μ ≡ 0 in a closed set I ⊂ [0, 1] means that the portion
of q corresponding to I is uncontrolled and it evolves according to (5) – with
suitable (time dependent, controlled) boundary conditions.

We conclude this section by focusing on the tuning of the mass distribution
ρ and on the curvature constraint ω in order to encompass some morphological
properties of the original three dimensional model. Following [2], we consider
a three dimensional manipulator, endowed with axial symmetry and uniform
mass density ρv. In particular, axial symmetry implies that the cross section
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of the manipulator, at any point s ∈ [0, 1] of its symmetry axis, is a circle
Ω(s) of radius, say, d(s). Therefore, to set ρ(s) := πρvd2(s) corresponds to
concentrate the mass of Ω(s) on its barycenter. The curvature constraint ω(s)
can be chosen starting from the general consideration that a bending induces
a deformation of the elastic material composing the body of the manipulator,
for which assume an uniform yield point. In other words, in order to prevent
inelastic deformations, the pointwise elastic forces acting on the material must
be bounded by an uniform constant Fmax. In view of the axial symmetry, the
maximal angular elastic force F (s) in any cross-section Ω(s) is attained on its
boundary and it reads F (s) = e|qss|d(s), where e is the elastic constant of
the material. Therefore to impose F (s) ≤ Fmax is equivalent to the curvature
constraint |qss| ≤ ω(s) := Fmax/(ed(s)).

3 Optimal Reachability

In this section we focus on an optimal reachability problem in both stationary
and dynamic settings. The problem is to steer the end-effector (or tip) of the
device, parametrized by q(1, t), towards a target in the plane q∗, while optimizing
accuracy, steadiness and energy consumption. Our approach is based on optimal
control theory, that is, we recast the problem as a constrained minimization of
a cost functional.

3.1 Static Optimal Reachability

We begin by focusing on the optimal shape of the soft manipulator at the equi-
librium. Equilibria (q, σ) of the soft manipulator Eq. (3) where explicitly charac-
terized in [1], and generalized to the case of uncontrolled regions of the manipu-
lator in [2]. In particular, assuming the technical condition μ(1) = μs(1) = 0, the
shape of the manipulator is the solution q of the following second order ODE:

⎧
⎪⎪⎨

⎪⎪⎩

qss = ω̄uq⊥
s in (0, 1)

|qs|2 = 1 in (0, 1)
q(0) = (0, 0)
qs(0) = (0,−1).

(6)

where ω̄ := μω/(μ + ε).

Remark 2 (Equilibria with deactivated controls). If q is uncontrolled in I ⊂ [0, 1],
i.e., μ(s) = 0 for all s ∈ I, then (6) implies |qss| = 0 in I, that is the corresponding
portion of the device at the equilibrium is arranged in a straight line.

We consider a cost functional involving a quadratic cost on the controls,
modeling the energy required to force a prescribed curvature, and a tip-target
distance term:

J s :=
1
2

∫

[0,1]\I

u2ds +
1
2τ

|q(1) − q∗|2, (7)
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where I := {s ∈ (0, 1) | μ(s) = 0}. Note that the domain of the control u is in
general the whole interval [0, 1] and thus it is independent from the parameter
μ, which is deputed to quantify the (possibly null) dynamic effects of u. To cope
with this, the domain of integration of J s is restricted to the regions in which
the controls are really actuated. Note that, due to the quadratic dependence of
the cost in u, we may equivalently extend the domain of integration of J s to the
whole [0, 1] by setting by default u(s) ≡ 0 for s ∈ I. Also remark that, tuning
the penalization parameter τ allows to prioritize either the reachability task or
the energy saving. The stationary optimal control problem then reads

min J s, subject to (6) and to |u| ≤ 1. (8)

Following [2], we can restate (8) in terms of the Euler’s elastica type variational
problem

min

{
1
2

∫

(0,1)\I

1
ω̄2

|qss|2ds +
1
2τ

|q(1) − q∗|2
}

subject to

⎧
⎪⎪⎨

⎪⎪⎩

|qs|2 = 1 in (0, 1)
|qss| ≤ ω̄ in (0, 1)
q(0) = (0, 0)
qs(0) = (0,−1).

(9)

Indeed, by differentiating the constraint |qs| = 1 we obtain the relation qss·qs = 0
and, consequently, |qss · q⊥

s | = |qss| · |q⊥
s | = |qss|. Then, by dot multiplying q⊥ in

both sides of the first equation of (6), we deduce |qss| = ω̄|u| and, consequently,
u2 = 1

ω̄2 |qss|2 in (0, 1)\I.

Numerical Tests for Static Optimal Reachability. We consider numer-
ical solutions of the optimal problem (9) in the following scenarios: I = ∅,
i.e., the deviced is fully controlled, I = [0.35, 0.65], i.e., the device is uncon-
trolled in its median section, I = [0.25, 0.4] ∪ [0.6, 0.75] and, finally, I =
[0, 1]\{0, 0.25, 0.5, 0.75}. Slight variations (in terms of dicretization step) of the
first three tests were earlier discussed in [2], while the last test is completely
new.

Table 4. Control deactivation settings related to μI .

Test Control deactivation region

Test 1 I = ∅
Test 2 I = [0.35, 0.65]

Test 3 I = [0.25, 0.4] ∪ [0.6, 0.75]

Test 4 I = [0, 1]\{0, 0.25, 0.5, 0.75}
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q(s) κ(s)

Fig. 1. On the first, second and third row are reported the results of Test 1, 2 and 3,
respectively. In the first column are depicted the optimal solutions and, in the second
column, the related signed curvatures (bold line) and curvature constraints ±ω̄ (thin
lines).
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Table 5. Global parameter settings.

Parameter description Setting

Bending moment ε(s) = 10−1(1 − 0.9s)

Curvature control penalty μ(s) = (1 − s) exp(−0.1 s2

1−s2
)

Curvature constraint ω(s) = 4π(1 + s2)

Target point q∗ = (0.3563, −0.4423)

Target penalty τ = 10−4

Discretization step Δs = 0.02

q(s) κ(s)

(a) (b)

Fig. 2. In (a) the solution q(s) of Tests 4 and in (b) the related signed curvature κ(s).

In the numerical implementation, the constraints |qs| = 1 and |qss| ≤ ω̄ are
enforced via an augmented Lagrangian method, and the problem is discretized
using a finite difference scheme. This yields a discrete system of equations, whose
non-linear terms are treated via a quasi Newton’s method.

In what follows we depict the solution q(s) of the problem (9) and the asso-
ciated signed curvature κ(s) := qs(s) × qss(s) in the cases reported in Table 4.
Note that, due to the choice of arclenght coordinates, the (unsigned) curvature
of q is |κ| = |qss|.

We report the results of Test 1, Test 2 and Test 3 –see Table 5– in Fig. 1:
regions corresponding to in-actuated control are depicted in white.

Test 4 requires a few more words of discussion. In this case the manipula-
tor is completely uncontrolled, with the exception of four points. The aim is to
recover, from a merely static point of view, optimal configurations for a (hyper-
redundant) rigid manipulator from the soft manipulator model: the controlled
points represent indeed the joints of the manipulator. Using the fact that uncon-
trolled regions arrange in straight lines at the equilibrium, we obtain an optimal



26 S. Cacace et al.

configuration modeling at once the equilibrium of the soft manipulator as well
as the solution of an optimal inverse kinematic problem for a hyper-redudant
manipulator – see Fig. 2(a). Note that concentrating the actuation of controls
on singletons yields the support of the resulting optimal curvature to concen-
trate on the same isolated points – see Fig. 2(b). To cope with this expected
phenomenon, in Test 4 the curvature constraint is dropped.

We finally note that the particular choice of q∗ guarantees reachability in all
these four cases, but clearly, with different optimal solutions.

3.2 Dynamic Optimal Reachability

We now consider the dynamic version of the reachability problem discussed in
Sect. 3.1: given q∗ ∈ R

2 and T, τ > 0, we look for a time-varying optimal control
u∗ : [0, 1] × [0, T ] → [−1, 1] minimizing the functional

J (q, u) =
1
2τ

∫ T

0

|q(1, t) − q∗|2dt +
1
2

∫ T

0

∫ 1

0

u2ds dt

+
1
2

∫ 1

0

ρ(s)|qt(s, T )|2ds,

(10)

subject to the soft manipulator dynamics (3). The terms representing the tip-
target distance and the quadratic cost on the control are now declined in a
dynamic sense: they are minimized during the whole evolution of the system.
The third term of J is deputed to steadiness, it represents the kinetic energy
of the whole manipulator at final time. Our approach is based on the study of
first-order optimality conditions, i.e., on the solution of the so-called optimality
system. The unknowns are the stationary points (q, σ, u) of J (subject to (3)),
and the related multipliers (q̄, σ̄) which are called the adjoint states. Roughly
speaking, if a control u∗ is optimal, then the optimality system admits a solution
of the form (q, σ, u∗, q̄, σ̄). The optimality system is composed by two PDEs,
describing the evolution of the adjoint states, the equations of motion (3) and a
variational inequality for the control.

Following [1,2], the adjoint states equations are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρq̄tt =
(
σq̄s − Hq̄⊥

ss

)
s
− (

Gq̄ss + Hq̄⊥
s

)
ss

+
(
σ̄qs − H̄q⊥

ss

)
s
− (

Ḡqss + H̄q⊥
s

)
ss

+βq̄t + γq̄sssst

q̄s · qs = 0

(11)

for (s, t) ∈ (0, 1)×(0, T ). The maps G and H are defined in Sect. 2 and the maps
Ḡ and H̄ are their linearizations, respectively:

Ḡ[q, q̄, ν, ω] = g[q, ν, ω]qss · q̄ss,

H̄[q, q̄, μ] = μ (q̄s × qss + qs × q̄ss) ,
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where g[q, ν, ω] = 2ν1(|qss|2 − ω2) and 1(·) stands for the Heaviside function,
i.e. 1(x) = 1 for x ≥ 0 and 1(x) = 0 otherwise.

Optimality conditions also yield final and boundary conditions on (q̄, σ̄). As
a consequence of the fact that the optimization takes into account the whole
time interval (0, T ), initial conditions on q correspond to final conditions on its
adjoint state q̄:

q̄(s, T ) = −qt(s, T ), q̄t(s, T ) = 0 for s ∈ (0, 1).

Boundary conditions are reported in Table 6. Note that the zero, the first and
the second order conditions on q̄ display an essential symmetry with those on q
reported in (4). On the other hand, both the third order condition on q̄ and the
adjoint tension boundary condition on σ̄ show a dependence on the difference
vector between the tip and the target q∗: this phenomenon represents the fact
that the tip is forced towards q∗.

Table 6. Boundary conditions on (q̄, σ̄) for t ∈ (0, T ).

Fixed endpoint q̄(0, t) = 0

q̄s(0, t) = 0

Free endpoint q̄ss(1, t) = 0

q̄sss(1, t) = 1
τε

(
(q − q∗) · q⊥

s

)
q⊥

s (1, t)

σ̄(1, t) = − 1
τ
(q − q∗) · qs(1, t)

Finally, the variational inequality for the control is
∫ T

0

∫ 1

0

(
u + ωH̄[q, q̄]

)
(v − u)ds dt ≥ 0. (12)

for every v : [0, 1]×[0, T ] → [−1, 1], which provides, in a weak sense, the variation
of the functional J with respect to u, subject to the constraint |u| ≤ 1.

We remark that, due to friction forces, the system (3) is dissipative. This
implies that if we plug in (3) a constant in time control us, that we call static
optimal control, given by the solution of the stationary control problem (8),
then the system converges as T → +∞ to the optimal stationary equilibrium q
described in Sect. 3.1 - see (6).

Numerical Tests for Dynamic Optimal Reachability. In the following sim-
ulations optimal static controls are used as initial guess for the search of dynamic
optimal controls, as well as benchmarks for dynamic optimization. In particular,
the optimality system is discretized using a finite difference scheme in space, and
a velocity Verlet scheme in time. Then the optimal solution is computed itera-
tively, using an adjoint-based gradient descent method. More precisely, starting
from the optimal static control us as initial guess for the controls, we first solve
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(3) forward in time. The solution-control triplet (q, σ, u) is plugged into (11),
which in turn is solved backward in time. We obtain then the solution-control
vector (q, σ, u, q̄, σ̄) which is used in (12) to update the value of u. This routine
is iterated up to convergence in u.

Table 7. Dynamic parameter settings.

Parameter description Setting

Mass distribution ρ(s) = exp(−s)

Curvature constraint penalty ν(s) = 10−3(1 − 0.09s)

Environmental friction β(s) := 2 − s

Internal friction γ(s) := 10−6(2 − s)

Final time T = 2

Time discretization step Δt = 0.001

Jq∗ Ju Jv

Fig. 3. Time evolution of target, control and kinetic energy for the stationary (first
row) and dynamic (second row) optimal control.

We recall from [2] the investigation of the dynamic counterpart of Test 2, a
scenario in which the median section of the device is uncontrolled – see Sect. 3.1
and, in particular, Table 4. Parameters are set in Table 5 and, for the dynamic
aspects, in Table 7. In what follows, we compare the performances of static and
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dynamic optimal controls. In particular, we consider the dynamic optimal control
ud, i.e., the numerical solution of (10), and the static optimal control us, which
we recall is constant in time and it coincides with the solution of (9), see Fig. 1.
Given a solution q(s, t) of (3) associated with either the static or dynamic optimal
control, in Fig. 3 we plot the time evolution of the three components of the cost
functional J :

– Tip-target Distance: Jq∗(t) := |q(1, t) − q∗|2.
We prioritized the reaching of the target by assigning an high value to the
weight τ – see Table 5. As a consequence, in agreement with the theoretical
setting, this is the component displaying the most prominent gap between the
static and dynamic controls. We in particular see how, up to some oscillations,
the dynamic control steers and keeps close to the target the tip q(1, t) for most
of the time of the evolution.

– Control Energy: Ju(t) :=
∫ 1

0
u2(s, t)ds.

In the case of static controls, Jus(t) is constant by construction. The dynamic
optimal controls are subject to the greatest variations in the beginning of the
evolution and then stabilize around the static control energy, i.e., in agree-
ment with the dissipative nature of the system, they actually converge to
the optimal controls at the equilibrium. Finally note that dynamic controls
perform better than static controls in terms of energy cost. In other words,∫ T

0
Jud(t) is smaller than

∫ T

0
Jus(t).

– Kinetic Energy: Jv(t) := 1
2

∫ 1

0
ρ(s)|qt(s, t)|2ds. Note that the evolutions of

the Jv are comparable, but at final time T , dynamical optimal controls yield a
kinetic energy Jv(T ) slightly slower than the one associated to the stationary
optimal controls. This is consistent with the fact that the cost functional J
depends on the kinetic energy only at final time.

Remark 3. We remark that in our tests the mass distribution ρ has an expo-
nential decay, modeling a three-dimensional device with exponentially decaying
thickness, see Sect. 2. This choice is motivated by the fact that such structure can
be viewed as an interpolation of self-similar, discrete hyper-redundant manip-
ulators [12], that is, robots composed by identical, rescaled modules. Besides
the advantage in terms of design, self-similarity gives access to fractal geometry
techniques [8], allowing for a detailed investigation of inverse kinematics of the
self-similarity manipulator, see for instance [13].

4 Optimal Grasping

In this section we address a static optimal grasping problem, i.e., we look for
stationary solutions of (3) minimizing the distance from a target object and, at
the same time, an integral quadratic cost on the associated curvature controls.

More formally, let us denote by Ω0 an open subset of R
2 representing the

object to be grasped, and by dist(·, ∂Ω0) the distance function from its boundary
∂Ω0. Moreover, we denote by χΩ0(·) and χΩc

0
(·), respectively the characteristic
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functions of Ω0 and its complement Ωc
0 in R

2. We consider the optimal control
problem

min G, subject to (6) and to |u| ≤ 1. (13)

where

G(q, u) :=
1
2

∫

[0,1]\I

u2ds

+
1
2τ

∫ 1

0

dist2(q(s), ∂Ω0)
(
χΩ0(q(s)) + μ0(s)χΩc

0
(q(s))

)
ds

, (14)

is the cost functional for the grasping problem. The first integral term of G is a
quadratic cost on the controls, computed only on the controlled region [0, 1]\I,
see Sect. 3.1. The second term of G aims to minimize the distance from the
boundary of the target object without compenetration. More precisely, the first
contribution, given by χΩ0 , acts as an obstacle, forcing all the points of the
manipulator to move outside Ω0. The second term attracts points outside Ω0 on
its boundary, according to μ0, a non negative weight describing which parts of
the manipulator are preferred for grasping. In particular, if Ω0 is just a point
and μ0 is a Dirac delta concentrated at s = 1, we formally recover the tip-target
distance. On the other hand, different choices of μ0 allow one to obtain very
different behaviors, as shown in the following tests – see Table 8.

Numerical Tests for Static Optimal Grasping. We first consider the case
in which Ω0 is a circle of radius r0, and we set μ0(s) = χ[s0,1](s) for some
0 ≤ s0 ≤ 1. In this way, we expect the manipulator to surround the circle using
only its terminal part of length 1 − s0. Figure 4 shows the results for Test 5,
corresponding to the choice r0 = 0.1 and s0 = 0.55. Note that the length of the
active part is 1 − s0 = 0.45, namely less than the circumference 2πr0 � 0.62
of Ω0, hence the manipulator can not grasp the whole circle. Nevertheless, the
curvature of Ω0 is equal to 1

r0
= 10, which is below the upper bound ω̄ on the

curvature κ of the manipulator. This results in a good grasping, indeed we can
observe a plateau in the graph of κ right around the value 10.

Table 8. Settings for the target Ω0 and for the grasping weight, μ0, where s0 = 0.55
and r0 = 0.1. The barycenter of Ω0 is q∗ = (0.3563, −0.4423), that is the target point
for the tests in Sect. 3.1.

Test Ω0 μ0

Test 5 Circle of radius r0 χ[s0,1]

Test 6 Circle of radius r0 δs0 + δ1

Test 7 Square of side 2r0 χ[s0,1]

Test 8 Square of side 2r0 δs0 + δ s0+1
2

+ δ1
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)b()a(

Fig. 4. In (a) the solution q of Test 5, in (b) the related signed curvature κ(s).

In Test 6, we choose only two active points at the extrema of the interval
[s0, 1], namely we set μ0(s) = δs0(s)+δ1(s). In Fig. 5, we show the corresponding
solution. Note that the maximum of κ is now slightly larger than 10, while the
curvature energy is better optimized, since the arc between the active points no
longer needs to be attached to Ω0.

)b()a(

Fig. 5. In (a) the solution q of Test 6, in (b) the related signed curvature κ(s).

We now consider Test 7, that is the case in which Ω0 is a square of side 2r0,
and we set again μ0(s) = χ[s0,1](s) for s0 = 0.55 and r0 = 0.1. This example
is more challenging than the previous one, since a good grasping at the sharp
corners of the square implies the divergence of the curvature of the manipulator.
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)b()a(

Fig. 6. In (a) the solution q of Test 7, in (b) the related signed curvature κ(s).

That is why we neglect the curvature constraints, reporting the results in Fig. 6.
We clearly observe the presence of three spikes in the graph of κ, corresponding
to the contact points at three corners. Moreover, we recognize some nearly flat
parts of κ corresponding to the sides of the square.

Finally, in Test 8 we choose only three active equispaced points in the interval
[s0, 1], namely setting μ0(s) = δs0(s)+ δ s0+1

2
(s)+δ1(s). Moreover, we restore the

constraint on the maximal curvature of the manipulator. In Fig. 7, we observe
that the optimized configuration results from a non trivial balance between the
contact energy and the curvature energy.

)b()a(

Fig. 7. In (a) the solution q of Test 8, in (b) the related signed curvature κ(s).
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5 Conclusions

In this paper we investigated a control model for the symmetry axis of a pla-
nar soft manipulator. The key features of the model (inextensibility, bending
moment and curvature constraints and control) determine, together with inter-
nal and enviromental reaction forces, an evolution described by a system of
fourth order nonlinear, evolutive PDEs. In particular, the equations of motion
are derived as a formal limit of a discrete system, which in turn models a planar
hyper-redundant manipulator subject to analogous, discrete, constraints. The
comparison between the discrete (and rigid) and continuous (soft) model is a
novelty in the investigation of the model, earlier introduced in [1]. We then
addressed optimal reachability problems in both a static and dynamic setting:
we tested the model in the case of uncontrolled regions and we showed that the
model is also suitable for the investigation at the equilibrium of optimal inverse
kinematics for hyper-redundant manipulators. We then turned to optimal grasp-
ing problems, i.e., the problem of grasping an object (without compenetrating
it) while minimizing a quadratic cost on the curvature controls. Our setting is a
generalization of the earlier discussed reachability problem, and it allows for the
investigation of optimal grasping for a quite large variety of objects. Moreover,
the model allows to prioritize the preferred contact regions of the manipulator
with the grasped object: we presented several numerical tests to illustrate this
feature.

Future perspectives include stationary grasping problems for more complex
target objects, possibly characterized by concavities and irregular boundaries.
Our approach sets the ground for the search of optimal dynamic controls: we plan
to explore this in the future also with other optimization techniques, including
model predictive control and machine learning algorithms.
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