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This work discusses the advantages of micropolar theory in modeling anisotropic composite materials with microstruc-

ture. A homogenized constitutive model starting from a representative volume element is proposed in order to find an

equivalent continuum. Classical (e.g. Cauchy of Grade 1) continua are not always suitable to accurately approximate

the behavior of such composites because no size effects, nor lack of symmetries in strain and stress can be taken into

account. This study focuses on composites made of hexagonal rigid particles which interact among themselves through

elastic interfaces, so that the deformation energy of the material is concentrated only at the interfaces. Three particle

geometries are investigated such as orthotetragonal, auxetic and chiral. Novel results have been achieved by presenting

the behavior of panels with various material symmetries and subjected to concentrated loads.

KEY WORDS: multiscale, anisotropic materials, finite element method, Cosserat (micropolar), homoge-
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1

1. INTRODUCTION2

Composite materials can be studied by modeling interactions among their constituents or by homogenizing an equiv-3

alent continuum. The former approach generally requires higher computational cost because of the detailed modeling4

of particle/matrix interactions such as discrete element modeling (Baraldi et al. (2018); Reccia et al. (2018); Yang5

1543–1649/17/$35.00 © 2017 by Begell House, Inc. 1



2 N. Fantuzzi, P. Trovalusci, & R. Luciano

et al. (2010)). The latter, as any field theory, is more efficient but its effectiveness is strongly related to the continuum1

theory used and the homogenization method adopted to convert the physical particle/matrix system into an equivalent2

continuum (e.g. Budiansky (1965); Ehlers (2011); Nemat-Nasser et al. (2013)).3

In order to model complex spatial interaction effects or describe materials in which internal length scales are4

not negligible when compared to structural length scales, homogenization techniques of different kind, have also5

been extended to non–classical continua (see the review in Trovalusci (2014)). This latter circumstance becomes6

significant when dealing with complex constitutive behaviors dependent on the microstructure size, such as strain7

localization, and the field equations of the simple (Grade 1) classical continuum become ill–posed. To this regard,8

some models include extra parameters, such as internal length, aiming to take into account the material nonlocality at9

the constitutive level only without modifying the classical kinematics have been proposed by Alibert and Della Corte10

(2015); Civalek et al. (2010); Demir and Civalek (2013); Larsson and Zhang (2007). Non–local or higher order11

deformation gradient descriptions, specifically addressed to multiscale computational homogenization, have been also12

proposed by Bacigalupo and Gambarotta (2010); Kouznetsova et al. (2004, 2002); Leismann and Mahnken (2015);13

Massart et al. (2007); Peerlings and Fleck (2004); Sluys et al. (1993), as well as non–local explicit solutions obtained14

for specific cases of elastic composites Bacca et al. (2013); Drugan and Willis (1996); Luciano and Willis (2000);15

Smyshlyaev and Cherednichenko (2000). On the other hand, within the framework of ’implicit’ non-local theories16

concerning models with additional degrees of freedom Trovalusci (2014); Tuna et al. (2019); Tuna and Trovalusci17

(2019), micromorphic continua, in particular continua with rigid local structure (micropolar), have been satisfactorily18

applied to various composites Addessi and Sacco (2012); Bouyge et al. (2001); Forest et al. (1999, 2001); Forest and19

Sab (1998); Masiani and Trovalusci (1996); Onck (2002); Ostoja-Starzewski et al. (1999); Tekolu and Onck (2008);20

Trovalusci and Masiani (2003, 2005); Trovalusci and Sansalone (2007).21

All the above mentioned models can be defined as non–local as the field equations contain internal length pa-22

rameters revealing the presence of a hidden micro-structure which can affect the macroscopic behavior and there are23

dispersion properties in wave propagation Kunin (1968). Size effect on such non–local materials can be investigated24

as parametric simulations in order to better fit experimental evidences.25

Homogenization based techniques have been widely exploited to study material failure behavior. For instance26

Jain and Ghosh (2009) presented the damage evolution of composite materials via a Continuum Damage Mechanics27

Model, Altenbach and Sadowski (2014) worked on failure and damage analysis of advanced materials. Implemen-28

tation and computational aspects of multiscaled cracked problems have been proposed by Nguyen et al. (2012).29

Collapse of three-dimensional systems made of blocks using a nonlinear implementation has been presented by Yang30

Journal for Multiscale Computational Engineering



hexagonal anisotropic materials as micropolar continua 3

et al. (2000). Analogously, Greco et al. (2016, 2017, 2018) studied the effects of micro-fractures and contact simula-1

tions on the macroscopic response of elastic bodies in finite deformations and fiber reinforced materials.2

When classical kinematics is enriched with extra degrees of freedom homogenization procedures have been3

shown to provide more reliable models than in the case of classical local continua. As for instance in the study of4

wave propagation within the framework of generalized continuum formulations for composite microcracked bars as5

reported by Trovalusci et al. (2010) or also in the study of multiphysics problems such as thermo-elastic multifield6

materials in Favata et al. (2016). In particular, micropolar theory introduces as degree of freedom the microrotation,7

that is an additional kinematic feature of the material point, different from the local rigid rotation (the classical macro-8

rotation), the rotational feature of the infinitesimal neighborhood, and their effects have been widely investigated by9

Fantuzzi et al. (2019); Pau and Trovalusci (2012); Trovalusci and Masiani (2003, 2005); Trovalusci and Pau (2014)10

for masonry–like materials. Note that these rotations coincide in the couple–stress theory, as well as in the classical11

theory (see Masiani and Trovalusci (1996), Appendix). As it has been also recently analyzed by Fantuzzi et al. (2018),12

micro-polar effects become prominent when geometrical or load singularities are present in the reference problem,13

such as concentrated loads, voids or material inclusions and these effects have been also compared to those of other14

kind of non-local continuum descriptions Tuna et al. (2019); Tuna and Trovalusci (2019).15

The present work aims at presenting the mechanical micropolar behavior of hexagonal lattices (Rizzi et al. (2019);16

Trovalusci et al. (2017)) with elastic interfaces. Different selection of hexagonal geometries and interface orientations17

lead to a distinct material symmetry (Eremeyev and Pietraszkiewicz (2016)). In the present work three assemblies are18

considered such as regular, hourglass and asymmetric placement of the hexagonal particles which are all derived from19

a hexagonal pattern with sides of all the same lengths (equilateral). The first pattern regards regular hexagonal shapes20

having the orthotetragonal symmetry The second is obtained from regular hexagons but with re-entrant corners, this21

give an hourglass shape and auxetic properties to the material due to an equivalent negative Poisson ratio. Finally, the22

third, is an asymmetric pattern given by one re-entrant corner and one not re-entrant starting from the regular shape.23

The equivalent continuum in this case results to be chiral, by coupling the classical part of stress/strain with micro-24

polar couple stresses/curvatures. Novel results have been achieved by presenting the behavior of the aforementioned25

material configurations under concentrated loads.26

This paper is structured as follows. First, Cosserat continuum model is briefly presented in order to introduce cur-27

rent quantities and symbols. Second, a parametric hexagonal geometry based on four parameters is presented and the28

investigated patterns are shown and defined. Third, the present in–house finite element implementation is presented29

using linear finite elements with reduced integration. Finally, numerical applications are discussed by comparison30
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among the three considered geometries and physical deduction from the contour plots are given.1

2. MICROPOLAR CONTINUUM2

In micropolar theory, the continuum considers the microrotation of the material particles which is added to the Carte-3

sian displacements. The material particle of a micropolar continuum experiences displacements and rotations; in a4

3D framework there are three displacements and three rotations components, which become two displacements and5

one rotation component in the 2D case here considered so that the displacement vector {u}T = {u1 u2 ω} applies.6

In the present 2D linearized framework the strain displacement vector is represented as: as {ε}T = {{ε1} {ε2}},7

where {ε1} = {ε11 ε22 k1 k2} and {ε2} = {ε12 ε21} and where ε11, ε22, ε12, ε21 are the in-plane normal and shear8

strains and k1, k2 are the micropolar curvatures. Note that the strain components are not reciprocal , ε12 6= ε21, The9

kinematic compatibility relations can be written as: {ε1} = [D1]{u} and {ε2} = [D2]{u}10

[D1] =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x1

0 0 ∂
∂x2


, [D2] =

 ∂
∂x2

0 1

0 ∂
∂x1

−1

 (1)

Note that in general the microrotation, ω, in the micropolar model is different from the local rigid rotation (macro-11

rotation), θ, defined as the skew-symmetric part of the gradient of displacement θ = 1
2

(
∂u2
∂x1
− ∂u1

∂x2

)
and the dif-12

ference between the two rotations, θ − ω, defines the strain measure of the relative rotation that corresponds to13

the skew-symmetric part of the strain: θ = 1
2 (

∂u2
∂x1
− ∂u1

∂x2
). When the relative rotation equals zero, θ = ω and14

ε12 = ε21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
, as in the classical continuum, the micropolar continuum becomes a continuum with15

constrained rotations (Masiani and Trovalusci (1996); Sokolowski (1972)). In the following, we focus on θ −ω as16

peculiar strain measure of the micropolarity of the model under study.17

Analogously, the work-conjugated stress measures of the micropolar model are represented in the vector: {σ}T =18

{{σ1} {σ2}} with {σ1}T = {σ11 σ22 µ1 µ2} and {σ2}T = {σ12 σ21}, where σij for i, j = 1, 2 represent the classical19

normal and shear stress components, and µ1, µ2 are the microcouples. The stress components are not reciprocal,20

σ12 6= σ21, and the couple stress components, µ1, µ2, have to be introduced in order to satisfy the moment equilibrium21

of the micropolar body. From the virtual work principle without introducing the constitutive equations, described22
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below, equilibrium equations in terms of stresses and microcouples can be carried out as δU + δV = 0. So that:1

δU =

∫
V
{δε}T {σ}dV =

∫
V

(
{δε1}T {σ1}+ {δε2}T {σ2}

)
dV

= {δu}Th
∫
A

(
[D1]

T {σ1}+ [D2]
T {σ2}

)
dA

(2)

h being the thickness of the 2D domain which can be considered as unitary for plane strain case, and where the2

variation of potential of the external loads reads:3

δV = −
∫
V
{δu}T {f}dV −

∫
S
{δu}T {p}dS (3)

where {f} and {p} are the vectors of body forces and boundary tractions, respectively. Finally, balance domain4

equations are given by5

[D1]
T {σ1}+ [D2]

T {σ2} = {f} (4)

and boundary tractions as:6

{p} = {p̂} (5)

where {p̂} are stresses and microcouples applied at the boundary.7

The micropolar constitutive equations take the form:8

{σ1}

{σ2}

 =

C11 C12

C21 C22


{ε1}

{ε2}

 (6)

and9

C11 =



A1111 A1122 B111 B112

A1122 A2222 B221 B222

B111 B221 D11 D12

B112 B222 D12 D22


, C12 =



A1112 A1121

A2212 A2221

B121 B211

B122 B212


C21 =

A1112 A2212 B121 B122

A1121 A2221 B211 B212

 , C22 =

A1212 A1221

A1221 A2121


(7)
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FIG. 1: Irregular hexagonal pattern and single tile with geometric parameters α1 = 25◦, lr = 40, α2 = 45◦, α3 = 30◦.

Due to hyperelasticity the constitutive matrix is symmetrical: C12 = CT
21. Note that the symbols Aijkl, Bijk and1

Dij (for i, j, k, l = 1, 2) in definitions (7) can be collected in the matrices A, B and D as in Fantuzzi et al. (2019);2

Leonetti et al. (2019). The homogenization technique presented by Trovalusci and Masiani (1999) is used to identify3

the constitutive constants of Equation 6 from a given representative volume element (RVE) of elastically interacting4

rigid block assemblies.5

The virtual work principle allows to write the variational statement of the equilibrium for the present micropolar6

body δU + δV = 0, where the variation of the strain energy in terms of kinematic parameters reads:7

δU =

∫
V
{δε}T {σ}dV

=

∫
V

(
{δε1}TC11{ε1}+ {δε1}TC12{ε2}+ {δε2}TC21{ε1}+ {δε2}TC22{ε2}

)
dV

= {δu}T
[
h

∫
A

(
{D1}TC11{D1}+ {D1}TC12{D2}+ {D2}TC21{D1}+ {D2}TC22{D2}

)
dA
]
{u}

(8)

In the following, the finite element approximation will be applied directly to the variational principle so that to8

equations (3) and (8).9

3. HEXAGONAL PATTERN10

The irregular pattern of Figure 1 has been taken from the studies by Scherphuis (2019) which is given by convex11

hexagon tilings of type 1 (P6). The correspondent Representative Volume Element (RVE) is given in the same Figure12

1 which shows the centroids of the tiles and outward unit normal vectors at the block interfaces used for computing13

the constitutive matrix according to the procedure presented by Trovalusci and Masiani (1999).14

Given a list of input parameters: three angles α1, α2, α3, relative length, lr, and a tile scale, s, the single hexagon,15

tile, can be defined. Using simple geometric formulae the RVE can be defined by translations and mirroring of tiles.16

The single tile is defined by a parallelogram (skew rectangle) and 2 isosceles triangles with the base attached to17

the 2 shortest opposite sides of the parallelogram.18

With reference to Figure 1, the nodal coordinates of the single tile are given by: A ≡ (0, 0), B ≡ (l1, t),19

C ≡ (l1 + l5, t + l2/2), D ≡ (l1, t + l2), E ≡ (0, l2), F ≡ (−l4, l2/2) where l2 = s lr
100 , l1 = s − l2, t = l1 tanα1,20

l4 = l2
2 tanα2, l5 = l2

2 tanα3 and s is a scale parameter. relations among tile side lengths a to f can be easily carried21

out using classical geometric relationships.22
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hexagonal anisotropic materials as micropolar continua 7

FIG. 2: Hexagonal patterns given by geometric parameters α1 = 0◦, lr = 100
1/
√

3+1
: a) regular α2 = α3 = 30◦, auxetic α2 =

α3 = −20◦ and asymmetric −α2 = α3 = 30◦.

By changing the geometric parameters listed above several patterns can be obtained as the ones depicted in Figure1

2 which are termed for future reference: regular, hourglass and asymmetric, respectively. They have been obtained by2

setting a equilateral geometry (all the sides – a to f – have the same length) with α1 = 0◦, lr = 100
1/
√

3+1
∼= 63.39753

and by varying α2 and α3 angles as:4

1. Regular: α2 = α3 = 30◦5

2. Hourglass: α2 = α3 = −20◦6

3. Asymmetric: −α2 = α3 = 30◦7

For the three scales considered the tiles have the following side lengths:8

• s = 1 → l1 = 0.36609

• s = 0.5 → l1 = 0.183010

• s = 0.25 → l1 = 0.091511

so smaller scales lead to smaller tile sizes and vice versa.12

4. FINITE ELEMENT IMPLEMENTATION13

The present finite element framework is based on the previous studies by the authors Fantuzzi et al. (2019); Leonetti14

et al. (2019). However, the present implementation has been performed with an in-house MATLAB code as an exten-15

sion of the classical 2D plane strain Cauchy continuum, as presented by Ferreira (2008).16

As it is well-known the classical finite element method enforces an approximation through nodal kinematic17

parameters as {u} = N{de}. In this work finite elements with four nodes (Q4) are considered, so that the vector of18

nodal parameters reads {de}T = {u1
1 . . . u

4
1 u1

2 . . . u
4
2 ω

1 . . .ω4}, thus each finite element has 12 degrees of freedom19

(DOF). Linear shape functions are considered for the present implementation with reduced integration for the micro-20

rotationω due to the fact that un-symmetric strains ε12 and ε21 will not be given by the same order of quantities. The21
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matrix of the shape functions (of size 3× 12) takes the form1

N =


{N} {0} {0}

{0} {N} {0}

{0} {0} {N}

 (9)

where {N} is the vector of the Lagrangian linear shape functions. Some implementations consider different shape2

functions among displacements and micro-rotations (Fantuzzi et al. (2018); Leonetti et al. (2019)) in order to avoid el-3

ement locking due to shear strains that have derivative of the planar strains summed with micro-rotation. By inserting4

the finite element approximation {u} = N{de} in the strain energy definition (8) as:5

δU = {δde}Th
∫
A

(
{B1}TC11{B1}+ {B1}TC12{B2}+ {B2}TC21{B1}+ {B2}TC22{B2}

)
dA {de} (10)

where {B1} = {D2}N and {B2} = {D2}N. Thus the element stiffness matrix is:6

[Ke] = [Ke
1 ] + [Ke

2 ] (11)

where:7

[Ke
1 ] = h

∫
A

(
{B1}TC11{B1}+ {B1}TC12{B2}+ {B2}TC21{B1}

)
dA (12)

8

[Ke
2 ] = h

∫
A

(
{B2}TC22{B2}

)
dA (13)

Full integration (2× 2 Gauss integration) is performed on [Ke
1 ], whereas shear strain terms [Ke

2 ] are integrated using9

single point reduced integration.10

Finally, potential energy (3) becomes:11

δV = −δ{de}T h

∫
A
NT {f} dV − δ{de}T

∫
S
NT {p} dS = −δ{de}T ({F e}+ {P e}) (14)

where {F e} and {P e} are volume and surface force vectors, respectively. In the present work, only surface tractions12

are applied so that {F e} = {0}.13
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hexagonal anisotropic materials as micropolar continua 9

FIG. 3: Current mesh used 16 × 32 Q4 elements.

4.1 Post-computation1

Since the present formulation is based on displacements, in order to carry out strain and stress values at discretization2

nodes post-computation must be performed. It is well-established that derived quantities should be post-computed at3

integration points (Reddy (2004, 2017)). For Q4 elements the integration points used are a 2 × 2 Gauss-Legendre4

grid.5

Strain and stresses are recovered from the kinematic compatibility and constitutive equations, respectively. The6

relative rotation, θ−ω, is used, as in previous papers (Fantuzzi et al. (2018, 2019); Leonetti et al. (2019); Trovalusci7

and Masiani (1999)), for underlining the micropolar effects with respect to the classical continuum. Relative relation8

θ−ω =

{
−1

2
∂

∂x2

1
2

∂

∂x1
− 1
}
N {de} (15)

However, field variables are more commonly defined at grid nodes. Thus, extrapolation of each field value is carried9

out for Q4 elements using the following formula:10



w1

w2

w3

w4


=



1 + 0.5
√

3 −0.5 1− 0.5
√

3 −0.5

−0.5 1 + 0.5
√

3 −0.5 1− 0.5
√

3

1− 0.5
√

3 −0.5 1 + 0.5
√

3 −0.5

−0.5 1− 0.5
√

3 −0.5 1 + 0.5
√

3





ŵ1

ŵ2

ŵ3

ŵ4


(16)

where ŵi for i = 1, . . . , 4 are the extrapolated nodal values whereas wi for i = 1, . . . , 4 are the correspondent internal11

field values.12

Finally, inter-element averaging is applied with equal weights in order to have single values at each nodal point.13

This final procedure allows us to have an array of values one for each mesh grid point without intersections.14

5. NUMERICAL RESULTS15

A square panel of side L = 4 is considered subjected to a top pressure on a limited area a = L/4 with a resulting16

equivalent concentrated force of P = 103 pointing downward. The panel is clamped at the bottom. A regular squared17

FE mesh of 16× 32 elements (by taking advantage of problem symmetry) is considered and depicted in Figure 3.18

In this section the numerical results for the three cited geometries are presented. In particular, the contour plots of19
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FIG. 4: Regular hexagonal pattern RVE with geometric parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 = 30◦ at different scale

s = 1, 0.5, 0.25 from left to right respectively.

displacements, u1 (horizontal) and u2 (vertical), stresses, σ11 (horizontal), σ22 (vertical), and relative rotation θ−ω1

are shown for each geometry.2

The homogenization procedure follows the approach described by Trovalusci and Masiani (1999), where the3

adopted spring stiffness at the elastic joint interfaces are:4

KT =

785 0

0 780

 , KR = 0 (17)

where KT and KR are the stiffnesses of translational and rotational springs. Energetic equivalence is used to5

carry out rotational stiffnesses as:6

kn = KT (1,1)
d

2
, kr = kn

d2

2
= KT (1,1)

d3

4
(18)

where d is the current interface length between two rigid particles for which the interactive stiffness is computed.7

For all three different scales, stiffness data (KT and KR, and consequently kn and kr) remain unchanged. The8

ratios between tile length and panel width l1/L are: 10.93, 21.86, 43.72 by decreasing scale, respectively. The consti-9

tutive matrices are presented below in compact and extended matrix form:10

C =

 A B

BT D

 =



A1111 A1122 A1112 A1121 B111 B112

A2222 A2212 A2221 B221 B222

A1212 A1221 B121 B122

A2121 B211 B212

D11 D12

sym D22


(19)

5.1 Orthotetragonal hexagons11

The aforementioned regular hexagons can be carried out from P6 geometry Scherphuis (2019) by setting: lr =12

63.3975, α1 = 0◦, α2 = α3 = 30◦. The results for the three scales s = 1, 0.5, 0.25 are depicted in Figure 4, where13

tile centers and link orientations are shown for calculation purposes (Trovalusci and Masiani (1999)).14
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hexagonal anisotropic materials as micropolar continua 11

The correspondent constitutive matrices appear to be orthotetragonal (symmetric with respect to a 90◦ rotation)1

as:2

C(s=1)
ortho =



496.8776 0.7925 0 0 0 0

0.7925 496.8776 0 0 0 0

0 0 495.2927 0.7925 0 0

0 0 0.7925 495.2927 0 0

0 0 0 0 33.3376 0

0 0 0 0 0 33.3376


(20)

C(s=0.5)
ortho =



248.4388 0.3962 0 0 0 0

0.3962 248.4388 0 0 0 0

0 0 247.6463 0.3962 0 0

0 0 0.3962 247.6463 0 0

0 0 0 0 4.1672 0

0 0 0 0 0 4.1672


(21)

C(s=0.25)
ortho =



124.2194 0.1981 0 0 0 0

0.1981 124.2194 0 0 0 0

0 0 123.8232 0.1981 0 0

0 0 0.1981 123.8232 0 0

0 0 0 0 0.5209 0

0 0 0 0 0 0.5209


(22)

It can be noted that in such ortothetragonal assemblies A1111 = A2222 and A1212 = A2121 as well as D11 = D22,3

moreover there is no coupling between normal and shear stresses and at the same time between microcouples (D12 =4

0) and B = 0 thus no elastic coefficients relating stresses and strains and coefficients relating microcouples and5

curvatures is expected. A very small Poisson effect is also shown. The ratios between elastic coefficients relating6

stresses and strains between different scales is 2, whereas between coefficients relating microcouples and curvatures7

is 8 (A(s=1) = 2A(s=0.5) = 4A(s=0.25) and D(s=1) = 8D(s=0.5) = 64D(s=0.25)).8

The numerical results obtained are shown in Figures 5-9 for the three mentioned scales. We can observe that9

in such a case of localized load the micropolar model is able to better distribute the load depending on the material10

Volume x, Issue x, 2017
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FIG. 5: Q4 formulation. Horizontal displacement u1 for regular hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

α2 = α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 6: Q4 formulation. Vertical displacement u2 for regular hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

α2 = α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

internal length related to the tile size. In particular, the vertical displacement, u2, tends to concentrate on the central1

part of the wall for smaller scales with more remarked values with respect to larger scales (Figure 6). Due to vertical2

pressure the body also tends to move horizontally, u1. Figure 5 displays such effect which is more evident for smaller3

scales.4

Horizontal pressures, σ11, (Figure 7) are almost negligible for larger scales. For small scales these stresses con-5

centrate in the area below the applied load. The same effect is more clear for the vertical stress, σ22, where a distinct6

flux of stress is clearly visible for smaller scales (Figure 8).7

Finally, the relative rotation, θ − ω, plot (Figure 9) shows a very small micropolar effect as expected since8

orthotetragonal materials are known to be very close to Cauchy continua, as already discussed in (Trovalusci and9

Masiani, 1999).10

5.2 Hourglass hexagons11

By keeping the symmetry of the single tile and equilateral tile segments, the inner angles α2 = α3 = −20◦ are set to12

a negative value. Graphical representation of the three cells with different scale is given in Figure 10.13

This leads to an auxetic behavior of the homogenized material, with negative Poisson coefficient (A1122 < 0), for14

all three cases considered as it is shown by the constitutive matrices given below:15

C(s=1)
aux =



209.2 −0.5 0 0 0 0

−0.5 1059.7 0 0 0 0

0 0 1056.8 −0.5 0 0

0 0 −0.5 208.2 0 0

0 0 0 0 11.9 0

0 0 0 0 0 67.7


(23)

FIG. 7: Q4 formulation. Horizontal stress σ11 for regular hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 =

30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.
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FIG. 8: Q4 formulation. Vertical stress σ22 for regular hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 = 30◦

and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 9: Q4 formulation. Relative rotation θ − ω for regular hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 =

α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

C(s=0.5)
aux =



104.6165 −0.2710 0 0 0 0

−0.2710 529.8742 0 0 0 0

0 0 528.3768 −0.2710 0 0

0 0 −0.2710 104.1057 0 0

0 0 0 0 1.4892 0

0 0 0 0 0 8.4671


(24)

C(s=0.25)
aux =



52.3083 −0.1355 0 0 0 0

−0.1355 264.9371 0 0 0 0

0 0 264.1884 −0.1355 0 0

0 0 −0.1355 52.0529 0 0

0 0 0 0 0.1861 0

0 0 0 0 0 1.0584


(25)

The ratio between elastic coefficients relating stresses and strains and coefficients relating microcouples and1

curvatures results as in the previous case (A(s=1) = 2A(s=0.5) = 4A(s=0.25); D(s=1) = 8D(s=0.5) = 64D(s=0.25)). In2

addition, A1111 ∼= A2121, A2222 ∼= A1212 where the former are circa 5 times the latter and 5.69D11 ∼= D22.3

Numerical results are given in Figures 11-15. The auxetic effect can be clearly seen in the horizontal displace-4

ments u1 plot (Figure 11) where the particles move on the right – towards the panel central area – this effect is quite5

small for larger particles and increases rapidly for smaller scales.6

Vertical displacements, u2, (Figure 12), stresses, σ11, σ22 (Figures 13, 14), have comparable behavior with respect7

to the correspondent orthotetragonal cases but they have smaller intensity. It is remarked that the vertical stress is8

better diffused within the panel more in the case of larger size , in fact remarkable stress values are shown in Figure9

14 which are higher than the ones of the correspondent orthotetragonal case 8.10

FIG. 10: Regular hexagonal pattern RVE with geometric parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 = −20◦ at different scale

s = 1, 0.5, 0.25 from left to right respectively.
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FIG. 11: Q4 formulation. Horizontal displacement u1 for auxetic hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

α2 = α3 = −20◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 12: Q4 formulation. Vertical displacement u2 for auxetic hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

α2 = α3 = −20◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

Relative rotation, θ − ω (Figure 15), shows a clear micropolar effect which increases when the scale s is de-1

creased, this means that such a micropolar effect is stronger for smaller particles.2

5.3 Chiral hexagons3

The present geometry is obtained considering equilateral hexagons with inner angles −α2 = α3 = 30◦. Graphical4

representation of the three cells with different scale is given in Figure 16.5

The present geometrical selection leads to the following homogenized materials for the three given scales6

C(s=1)
chi =



331.2517 0 0 0 0 0

0 745.3164 0 0 0 45.5400

0 0 742.9390 0 0 0

0 0 0 330.1951 0 0

0 0 0 0 22.2250 0

0 45.5400 0 0 0 50.0064


(26)

C(s=0.5)
chi =



165.6259 0 0 0 0 0

0 372.6582 0 0 0 11.3850

0 0 371.4695 0 0 0

0 0 0 165.0976 0 0

0 0 0 0 2.7781 0

0 11.3850 0 0 0 6.2508


(27)

FIG. 13: Q4 formulation. Vertical stress σ11 for auxetic hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 =

−20◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

Journal for Multiscale Computational Engineering



hexagonal anisotropic materials as micropolar continua 15

FIG. 14: Q4 formulation. Vertical stress σ22 for auxetic hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, α2 = α3 =

−20◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 15: Q4 formulation. Relative rotation θ − ω for auxetic hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

α2 = α3 = −20◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

C(s=0.25)
chi =



82.8129 0 0 0 0 0

0 186.3291 0 0 0 2.8462

0 0 185.7347 0 0 0

0 0 0 82.5488 0 0

0 0 0 0 0.3473 0

0 2.8462 0 0 0 0.7813


(28)

Note that in this case a coupling between elastic coefficients relating stresses and strains and coefficients relating1

microcouples and curvatures occurs, implying coupling between normal stress σ22 and curvature k2 and microcouple2

µ2 and normal strain ε2. No other coupling takes place (also no Poisson effect is observed). Such behavior is due3

to the selection of equal and opposite angles −α2 = α3 = 30◦ which break material symmetry and neutralize4

lateral contraction/expansion. The ratio between coefficients relating stresses and strains and coefficients relating5

microcouples and curvatures is the same as in the previous micro-structures (A(s=1) = 2A(s=0.5) = 4A(s=0.25)6

and D(s=1) = 8D(s=0.5) = 64D(s=0.25). In addition, since B 6= 0, B(s=1) = 4B(s=0.5) = 16B(s=0.25)). Similarly7

to the auxetic configuration, A1111 ∼= A2121, A2222 ∼= A1212, where the former are circa 2.25 times the latter and8

2.27D11 ∼= D22.9

The numerical results are given in Figures 17-21.10

Since no Poisson effect is given in the constitutive equations negligible horizontal displacement u1 (Figure 17)11

and stress σ11 (Figure 19) are observed. Vertical displacement u2 (Figure 18) and stresse σ22 (Figure 20) have a12

similar trend with respect to the other cases but closer to the auxetic one. The coupling in the present microstructure13

with B222 6= 0 gives a lower relative rotation effect than the one in the auxetic material but its variation is not uniform14

close to the symmetry axis, because the vertical pressure σ22 is coupled with the vertical curvature k2. This effect can15

be clearly observed for any scale s in Figure 21.16

FIG. 16: Regular hexagonal pattern RVE with geometric parameters α1 = 0◦, lr = 100
1/
√

3+1
, −α2 = α3 = 30◦ at different scale

s = 1, 0.5, 0.25 from left to right respectively.
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FIG. 17: Q4 formulation. Horizontal displacement u1 for asymmetric hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

−α2 = α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 18: Q4 formulation. Vertical displacement u2 for asymmetric hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

−α2 = α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

6. CONCLUSIONS1

The present work investigates the static behavior of materials with three types of hexagonal microstructures described2

as equivalent micropolar media. Such micro-structures are typical of polycrystals with thin interfaces such as Alumina3

(Al2O3), Zirconia (ZrO2), Zinc Ozide (ZnO) or Tungsten-Carbide (WC) just to cite a few. The three selected patterns4

provides orthotetragonal, auxetic and chiral material symmetries and each one showed some peculiarities and some5

interesting outcomes related to the micropolar behavior. Assemblies of regular hexagons have an orthotetragonal6

behavior and it has been shown that their homogenized behavior is close to the behavior of classical elastic bodies7

Masiani and Trovalusci (1996); Trovalusci and Masiani (2005). On the contrary, the other configurations showed8

strong nonlocal effects, related to the internal material size, which brought a larger stress diffusion within the body9

and reduced displacements. All these aspects could be underlined mostly because a micropolar continuum has extra10

rotational degrees of freedom with respect to classical continuum. If the coupling effect among classical and micro-11

polar quantities wanted to be observed elastic interfaces among particles have to be as less symmetric as possible.12

Other geometries and interfaces configurations will be considered in future works in order to better understand the13

prediction of micropolar effects in microstructured materials.14
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FIG. 19: Q4 formulation. Vertical stress σ11 for asymmetric hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, −α2 =

α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.
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FIG. 20: Q4 formulation. Vertical stress σ22 for asymmetric hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
, −α2 =

α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.

FIG. 21: Q4 formulation. Relative rotation θ − ω for asymmetric hexagonal patterns with parameters α1 = 0◦, lr = 100
1/
√

3+1
,

−α2 = α3 = 30◦ and scales s = 1, 0.5, 0.25 from left to right respectively.
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