Differentiability properties of the symbol of a generalized Riesz potential with homogeneous characteristic

Flavia Lanzara * Vladimir Maz'ya ${ }^{\dagger \ddagger}$

Dedicated to Nina Uraltseva

Abstract

Let f be a positive homogeneous function of degree 0 defined on the sphere Σ of the space \mathbb{R}^{n} and let Φ_{α} be the symbol of the integral operator $$
\int_{\mathbb{R}^{n}} \frac{f((\mathbf{x}-\mathbf{y}) /|\mathbf{x}-\mathbf{y}|)}{|\mathbf{x}-\mathbf{y}|^{n-\alpha}} u(\mathbf{y}) d \mathbf{y}, \quad u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$ with $0<\alpha<n$. We study differentiability properties of the restriction of Φ_{α} to the unit sphere Σ in the spaces $H_{p}^{l}(\Sigma)$ for $p \in(1, \infty)$. Here $H_{p}^{l}(\Sigma)$ denotes the space of Bessel potentials with the norm $\|f\|_{H_{p}^{l}(\Sigma)}=\left\|(\delta+I)^{l / 2} f\right\|_{L_{p}(\Sigma)}$, δ being the Beltrami operator on the sphere. We prove that, if $f \in L_{p}(\Sigma)$ then $\left.\Phi_{\alpha}\right|_{\Sigma} \in H_{p}^{\ell}(\Sigma)$ for any $\ell \leq n / 2-\alpha-\left|p^{-1}-2^{-1}\right|(n-2)$. Conversely, if $\Phi_{\alpha} \mid \Sigma \in H_{p}^{\ell}(\Sigma)$, with $\ell \geq n / 2-\alpha+\left|p^{-1}-2^{-1}\right|(n-2)$, then $f \in L_{p}(\Sigma)$. The results are sharp.

1 Introduction

Let Σ be the unit sphere in the space \mathbb{R}^{n} centered at the origin and let f be a positive homogeneous function of degree zero defined through the space $\mathbb{R}^{n} \backslash 0$ and suppose that $f \in L_{p}(\Sigma)$ with $p>1$. Let us consider the integral operator

$$
\begin{equation*}
\mathcal{K}_{\alpha} u(\mathbf{x})=\int_{\mathbb{R}^{n}} K_{\alpha}(\mathbf{x}-\mathbf{y}) u(\mathbf{y}) d \mathbf{y}, \quad u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

[^0]where the kernel has the form
$$
K_{\alpha}(\mathbf{x})=\frac{f(\vartheta)}{|\mathbf{x}|^{n-\alpha}}, \quad \mathbf{x} \in \mathbb{R}^{n} \backslash 0, \quad \vartheta=\frac{\mathbf{x}}{|\mathbf{x}|}
$$
with $0<\alpha<n, \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ are points in \mathbb{R}^{n}. The integral (1.1) is called a generalized Riesz potential. The function $f(\vartheta)$ is the characteristic of the n - dimensional integral operator (1.1) with kernel $K_{\alpha}(\mathbf{x})$. If $\alpha=0$ then (1.1) is a singular integral ([16]) and the function K_{0} exists as a generalized function if ([9, p.310])
\[

$$
\begin{equation*}
\int_{\Sigma} f(\vartheta) d \sigma_{\vartheta}=0 \tag{1.2}
\end{equation*}
$$

\]

We denote by \mathcal{F} the Fourier transform of functions given on \mathbb{R}^{n}

$$
\widehat{f}(\mathbf{x})=(\mathcal{F} f)(\mathbf{x})=\int_{\mathbb{R}^{n}} f(\mathbf{y}) \mathrm{e}^{i \mathbf{x} \cdot \mathbf{y}} d \mathbf{y}, \quad \mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

The Fourier transform of the kernel $K_{\alpha}(\mathbf{x})$, understood in the sense of generalized functions ([9], cf. also [12]), is called the symbol of the integral operator. We denote the symbol by $\Phi_{\alpha}(\mathbf{y})=\mathcal{F}_{\mathbf{x} \rightarrow \mathbf{y}} K_{\alpha}=\left(A_{\alpha} f\right)(\mathbf{y})$. Since the kernel $K_{\alpha}(\mathbf{x})$ is a positive homogeneous (generalized) function of degree $-n+\alpha$, then the symbol is a homogeneous function of degree $-\alpha$. We remark that, when $\alpha=n / 2$ and $K_{n / 2}(\mathbf{x})=f(\vartheta)|\mathbf{x}|^{-n / 2}$ is an eigenfunction of the Fourier transform with eigenvalue λ, then

$$
A_{n / 2} f(\omega)=\lambda f(\omega), \quad \lambda^{4}=(2 \pi)^{2 n}
$$

Eigenfunctions of the Fourier transform in the sense of generalized functions are studied in $[12,13]$.

If $\alpha=0$ the following integral representation for the symbol Φ_{0} by its characteristic f was obtained by Calderón and Zygmund ([16, p.249])

$$
\Phi_{0}(\omega)=A_{0} f(\omega)=\int_{\Sigma} f(\vartheta)\left(\log \frac{1}{|\cos \gamma|}-\frac{i \pi}{2} \operatorname{sign}(\cos \gamma)\right) d \sigma_{\vartheta}, \omega \in \Sigma
$$

γ denoting the angle between the vectors ϑ and ω. The symbol Φ_{0}, as well as the characteristic f, is a homogeneous function of degree 0 with zero mean on Σ. The singular kernel $|\mathbf{x}|^{-n} f(\vartheta)$, which is homogeneous of degree $-n$, can be uniquely recovered by its Fourier transform Φ_{0} ([17, Theorem 2.16 , p.116]).

We denote by $H_{p}^{l}(\Sigma)$ the space of Bessel potentials on the sphere (cf., e.g., [1]). If $1<p<\infty$ and $-\infty<l<\infty$ the space $H_{p}^{l}(\Sigma)$ consists of functions f defined on Σ such that $(\delta+I)^{l / 2} f \in L_{p}(\Sigma)$, with the norm

$$
\|f\|_{H_{p}^{l}(\Sigma)}=\left\|(\delta+I)^{l / 2} f\right\|_{L_{p}(\Sigma)}
$$

([14, Proposition 2.3.2]). Here δ denotes the Beltrami operator on the sphere (the spherical part of the Laplace operator), I the identity operator and $\|\cdot\|_{L_{p}(\Sigma)}$ is the norm in $L_{p}(\Sigma)$. The space $C^{\infty}(\Sigma)$ is dense in $H_{p}^{l}(\Sigma)$.

The differentiability properties of the symbol Φ_{0} of the singular integral

$$
\int_{\mathbb{R}^{n}} \frac{f((\mathbf{x}-\mathbf{y}) /(|\mathbf{x}-\mathbf{y}|))}{|\mathbf{x}-\mathbf{y}|^{n}} u(\mathbf{y}) d \mathbf{y}
$$

in the space $W_{2}^{l}(\Sigma)=H_{2}^{l}(\Sigma), l>0$, were studied by Mikhlin [16], Agranovich [3] and Mikhailova-Gubenko [15] and are expressed in the following theorem.

Theorem 1.1. ([16, Theorem 7.1, p. 266]) The symbol of a singular integral satisfies the relation $\Phi_{0} \in H_{2}^{n / 2}(\Sigma)$ if and only if the characteristics $f \in$ $L_{2}(\Sigma)$.

Gadzjiev in $[7,8]$ described the smoothness of $\Phi_{0}=A_{0} f$ with $f \in L_{p}(\Sigma)$ in terms of the space $H_{p}^{l}(\Sigma)$ with $p \in(1, \infty)$. Gadjiev's results can be formulated as follows.

Theorem 1.2. ([7, 8]) Let $1<p<\infty$ and $\ell_{0}=(n-2)\left|p^{-1}-2^{-1}\right|$. Then

$$
\begin{gather*}
f \in L_{p}(\Sigma) \Rightarrow \Phi_{0} \in H_{p}^{n / 2-\ell_{0}}(\Sigma) \tag{1.3}\\
\Phi_{0} \in H_{p}^{n / 2+\ell_{0}}(\Sigma) \Rightarrow f \in L_{p}(\Sigma) \tag{1.4}
\end{gather*}
$$

The implication given are sharp.
The imbedding (1.3) means that if the characteristic f belongs to $L_{p}(\Sigma)$ and is orthogonal to 1 on Σ, then the corresponding symbol Φ_{0} belongs to $H_{p}^{n / 2-\ell_{0}}(\Sigma)$ and

$$
\left\|\Phi_{0}\right\|_{H_{p}^{n / 2-\ell_{0}(\Sigma)}} \leq C\|f\|_{L_{p}(\Sigma)}
$$

where the constant C does not depend on f. The optimality of (1.3) means that there exists a function $f \in L_{p}(\Sigma)$ such that the corresponding symbol Φ_{0} does not belong to $H_{p}^{\ell}(\Sigma)$ for any $\ell>n / 2-\ell_{0}$.

The imbedding (1.4) means that if Φ_{0} belongs to $H_{p}^{n / 2+\ell_{0}}(\Sigma)$ then there exists a function $f \in L_{p}(\Sigma)$ with zero mean value on the sphere such that $\Phi_{0}=A_{0} f$ and

$$
\|f\|_{L_{p}(\Sigma)} \leq C\left\|\Phi_{0}\right\|_{H_{p}^{n / 2+\ell_{0}}(\Sigma)} .
$$

Moreover, for any $\ell<n / 2+\ell_{0}$ there exists a symbol $\Phi_{0} \in H_{p}^{\ell}(\Sigma)$ such that the corresponding characteristic f does not belong to $L_{p}(\Sigma)$.

Kryuchkov in [10, 11] extended the description of $A_{0} L_{p}(\Sigma)$ given by Gadjiev by including spaces $H_{q}^{l}(\Sigma)$ for $q \neq p$.

Questions about the connection between the smoothness of the characteristic f and of the symbol Φ_{α} have been studied by Samko ([19]) in the space $C^{\lambda}(\Sigma)$ and by Plamenevskii and Judovin ([18]) in the space $H_{2}^{l}(\Sigma)$.

The aim of this paper is to study the differentiability properties of the restriction of the symbol Φ_{α} to the unit sphere, with $0<\alpha<n$, in terms of the spaces $H_{p}^{l}(\Sigma)$ with $1<p<\infty$. This problem consists in finding conditions on the indices ℓ and s such that

$$
f \in L_{p}(\Sigma) \Rightarrow \Phi_{\alpha} \in H_{p}^{\ell}(\Sigma), \quad \Phi_{\alpha} \in L_{p}(\Sigma) \Rightarrow f \in H_{p}^{s}(\Sigma)
$$

The main tool for obtaining our results is the use of the multipliers on the sphere.

The article is organized as follows. In Section 2 we introduce an integral representation over the sphere of the symbol Φ_{α} by means of the characteristic f and a representation in the form of a series of spherical functions. The last representation is employed to study the differentiability properties of the symbol Φ_{α}. In Section 3 we prove that, if $f \in L_{p}(\Sigma)$ then $\Phi_{\alpha} \in H_{p}^{\ell}(\Sigma)$ with $\ell \leq n / 2-\alpha-\left|p^{-1}-2^{-1}\right|(n-2)$, while $\Phi_{\alpha} \notin H_{p}^{\ell}(\Sigma)$ for any $\ell>n / 2-\alpha-\left|p^{-1}-2^{-1}\right|(n-2)$. In Section 4 we prove that if $\Phi_{\alpha} \in H_{p}^{l}(\Sigma)$ with $\ell \geq n / 2-\alpha+\left|p^{-1}-2^{-1}\right|(n-2)$ then there exists $f \in L_{p}(\Sigma)$ such that $A_{\alpha} f=\Phi_{\alpha}$, while the assertion fails for any $\ell<n / 2-\alpha+\left|p^{-1}-2^{-1}\right|(n-2)$.

2 Analysis of the symbol Φ_{α}

The symbol Φ_{α} is homogeneous of degree $-\alpha$ (i.e. $\Phi_{\alpha}(t x)=t^{-\alpha} \Phi(x), t>0$) and can be viewed as an operator applied to the characteristic. Indeed, we have

$$
\begin{aligned}
\Phi_{\alpha}(\mathbf{y}) & =\int_{\mathbb{R}^{n}} \frac{f\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)}{|\mathbf{x}|^{n-\alpha}} \mathrm{e}^{i \mathbf{x} \cdot \mathbf{y}} d \mathbf{x}=\int_{\Sigma} f(\vartheta) d \sigma_{\vartheta} \int_{0}^{\infty} R^{\alpha-1} \mathrm{e}^{i R \rho \omega \cdot \vartheta} d R \\
& =|\mathbf{y}|^{-\alpha} \int_{\Sigma} f(\vartheta) d \sigma_{\vartheta} \int_{0}^{\infty} R^{\alpha-1} \mathrm{e}^{i R \omega \cdot \vartheta} d R .
\end{aligned}
$$

Here ω, ϑ are unit vectors, $\rho=|\mathbf{y}|, R=|\mathbf{x}|, \mathbf{x}=(R, \vartheta), \mathbf{y}=(\rho, \omega), \omega \cdot \vartheta=$ $\omega_{1} \vartheta_{1}+\ldots+\omega_{n} \vartheta_{n}$. For all $0<\alpha<n([9$, p.171] $)$

$$
\int_{0}^{\infty} R^{\alpha-1} \mathrm{e}^{i R \sigma} d R=\mathrm{e}^{i \alpha \frac{\pi}{2}} \Gamma(\alpha)(\sigma+i 0)^{-\alpha}
$$

Then, for $\omega \in \Sigma$,

$$
\Phi_{\alpha}(\omega)=\mathrm{e}^{i \alpha \frac{\pi}{2}} \Gamma(\alpha) \int_{\Sigma}(\omega \cdot \vartheta+i 0)^{-\alpha} f(\vartheta) d \sigma_{\vartheta}, \quad 0<\alpha<n .
$$

The expression $(x+i 0)^{-\alpha}$ with a real variable x and a complex exponent α is understood in the distributional sense ($[9, \mathrm{p} .60]$), namely

$$
\begin{aligned}
(x+i 0)^{-\alpha} & =x_{+}^{-\alpha}+\mathrm{e}^{-i \alpha \pi} x_{-}^{-\alpha}, & & \alpha \neq 1,2, \ldots \\
(x+i 0)^{-m} & =x^{-m}-i \pi \frac{(-1)^{m-1}}{(m-1)!} \delta^{(m-1)}(x), & & m=1,2, \ldots
\end{aligned}
$$

Here we used the standard notation

$$
x_{+}^{\alpha}=\left\{\begin{array}{cc}
x^{\alpha} & x>0 \\
0 & x<0
\end{array} \quad x_{-}^{\alpha}=\left\{\begin{array}{cc}
0 & x>0 \\
|x|^{\alpha} & x<0
\end{array}\right.\right.
$$

with δ being the Dirac distribution. $(x+i 0)^{\alpha}$ is an entire function in the parameter α.

We denote the operator taking the characteristic into the symbol by A_{α} that is $\left.\Phi_{\alpha}\right|_{\Sigma}=A_{\alpha} f$. Summarizing, the operator A_{α} can be expressed in terms of f by the formula

$$
\begin{aligned}
\left(A_{0} f\right)(\omega)= & \int_{\Sigma}\left(\log \frac{1}{|\cos (\omega \cdot \vartheta)|}-\frac{i \pi}{2} \operatorname{sign}(\cos (\omega \cdot \vartheta))\right) f(\vartheta) d \sigma_{\vartheta} \\
\left(A_{\alpha} f\right)(\omega)= & \mathrm{e}^{i \alpha \frac{\pi}{2}} \Gamma(\alpha) \int_{\Sigma}\left((\omega \cdot \vartheta)_{+}^{-\alpha}+\mathrm{e}^{-i \alpha \pi}(\omega \cdot \vartheta)_{-}^{-\alpha}\right) f(\vartheta) d \sigma_{\vartheta} \\
& \alpha \neq 0,1,2,3, \ldots \\
\left(A_{m} f\right)(\omega)= & i^{m}(m-1)!\int_{\Sigma}\left((\omega \cdot \vartheta)^{-m}-\frac{i \pi(-1)^{m-1}}{(m-1)!} \delta^{(m-1)}(\omega \cdot \vartheta)\right) f(\vartheta) d \sigma_{\vartheta} \\
& m=1,2,3, \ldots
\end{aligned}
$$

We denote by $Y_{m, n}^{(k)}(\omega)$ the spherical functions of order m in the n dimensional space, ω is a point of the unit sphere Σ. The upper index k
numbers the linearly independent spherical functions of the same order m and it varies between the bounds

$$
1 \leq k \leq k_{m, n}=(2 m+n-2) \frac{(m+n-3)!}{(n-2)!m!} .
$$

The functions $Y_{m, n}^{(k)}(\omega)$ are supposed to be orthonormal in $L_{2}(\Sigma)$. The spherical functions are eigenfunctions of the Beltrami operator δ and the corresponding eigenvalues are $\lambda_{m, n}=m(m+n-2)([16, \mathrm{p} .215])$.

We expand the characteristic f in a series of spherical functions (Fourier - Laplace series)

$$
\begin{equation*}
f(\theta)=\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}} f_{m}^{(k)} Y_{m, n}^{(k)}(\theta), \quad \theta \in \Sigma \tag{2.5}
\end{equation*}
$$

where

$$
f_{m}^{(k)}=\int_{\Sigma} f(\vartheta) Y_{m, n}^{(k)}(\vartheta) d \sigma_{\vartheta} .
$$

If $\alpha=0$, by the assumption (1.2) f is ortogonal to 1 on Σ, then $f_{0}^{(1)}=0$ and the series (2.5) starts from $m=1$. For $f \in L^{p}(\Sigma), 1 \leq p \leq \infty$, the convergence of (2.5) can be understood in generalized sense ([6, p.42]). If $f \in C^{\infty}(\Sigma)$, then (2.5) converges absolutely and uniformly.

Definition 2.1. Any operator acting on functions f in (2.5) by the formula

$$
T f=\sum_{m=0}^{\infty} t_{m} \sum_{k=1}^{k_{m, n}} f_{m}^{(k)} Y_{m, n}^{(k)}(\theta)
$$

is called an operator with multipliers $\left\{t_{m}\right\}$. The numbers $\left\{t_{m}\right\}$ are called (p, q)-multipliers on the sphere Σ if

$$
\|T f\|_{L_{q}(\Sigma)} \leq C\|f\|_{L_{p}(\Sigma)}
$$

An operator acting boundedly from $L_{p}(\Sigma)$ to $L_{q}(\Sigma)$ is called an operator of strong type (p, q). We henceforth denote this as follows: $\left\{t_{m}\right\} \in M_{p q}$ or $\left\{t_{m}\right\} \in M_{p}$ if $p=q$.

With the notations $\omega=\mathbf{y} /|\mathbf{y}|$ and $\vartheta=\mathbf{x} /|\mathbf{x}|$, as a consequence of the Bochner formula ([5, p.807]), we have

$$
\int_{\mathbb{R}^{n}} \frac{Y_{m, n}^{(k)}(\vartheta)}{|\mathbf{x}|^{n-\alpha}} \mathrm{e}^{i \mathbf{y} \cdot \mathbf{x}} d \mathbf{x}=\mu_{m}(\alpha) \frac{Y_{m, n}^{(k)}(\omega)}{|\mathbf{y}|^{\alpha}}
$$

with

$$
\mu_{m}(\alpha)=i^{m} \pi^{n / 2} 2^{\alpha} \frac{\Gamma\left(\frac{m+\alpha}{2}\right)}{\Gamma\left(\frac{m+n-\alpha}{2}\right)}
$$

It follows that, for $\omega \in \Sigma$,

$$
A_{\alpha} Y_{m, n}^{(k)}(\omega)=\mathcal{F}_{\mathbf{x} \rightarrow \mathbf{y}}\left(\frac{Y_{m, n}^{(k)}(\vartheta)}{|\mathbf{x}|^{n-\alpha}}\right)(\omega)=\int_{\mathbb{R}^{n}} \frac{Y_{m, n}^{(k)}(\vartheta)}{|\mathbf{x}|^{n-\alpha}} \mathrm{e}^{i \omega \cdot \mathbf{x}} d \mathbf{x}=\mu_{m}(\alpha) Y_{m, n}^{(k)}(\omega)
$$

For functions f given in (2.5), the restriction of the symbol Φ_{α} on the sphere is defined by the series ([18, p.210])

$$
\begin{equation*}
\Phi_{\alpha}(\omega)=\sum_{m=0}^{\infty} \mu_{m}(\alpha) \sum_{k=1}^{k_{m, n}} f_{m}^{(k)} Y_{m, n}^{(k)}(\omega) \tag{2.6}
\end{equation*}
$$

and, according to Definition 2.1, the symbol Φ_{α} is an operator with the multipliers $\left\{\mu_{m}(\alpha)\right\}$.
Since the symbol Φ_{α} is the Fourier transform of the kernel $f(\vartheta)|\mathbf{x}|^{-n+\alpha}$, by applying the inverse Fourier transform (understood in the sense of generalized functions) we get

$$
f(\vartheta)=|\mathbf{x}|^{n-\alpha}\left(\mathcal{F}_{\mathbf{y} \rightarrow \mathbf{x}}^{-1} \Phi_{\alpha}\right), \quad \vartheta=\frac{\mathbf{x}}{|\mathbf{x}|}, \quad \omega=\frac{\mathbf{y}}{|\mathbf{y}|}
$$

Hence the function f defines an operator whose symbol on the sphere coincides with Φ_{α} and we denote $f=A_{\alpha}^{-1} \Phi_{\alpha}$. The multipliers on the sphere associated to the operator A_{α}^{-1} are $\left\{\left(\mu_{m}(\alpha)\right)^{-1}\right\}$.

Theorem 1.1 is based on the following theorem, proved by Mikhlin ([16]) for integer values of l and improved indipendently by Agranovich ([3]) and Mikhailova-Gubenko ([15]).

Theorem 2.1. Let l be a real number. Assume that a function f admits the expansion (2.5). Then $f \in H_{2}^{l}(\Sigma)$ if and only if

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}} m^{2 l}\left|f_{m}^{(k)}\right|^{2}<\infty \tag{2.7}
\end{equation*}
$$

For the integral operator (1.1) and $p=2$ the following result, based on Theorem 2.1, holds.

Theorem 2.2. Let $0<\alpha<n$. Then $f \in L_{2}(\Sigma)$ if and only if $\left.\Phi_{\alpha}\right|_{\Sigma} \in$ $H_{2}^{\frac{n}{2}-\alpha}(\Sigma)$.

Proof. By Stirling's formula [2, 6.1.39]

$$
\Gamma(p / 2) \approx \sqrt{2 \pi} \mathrm{e}^{-p / 2}(p / 2)^{(p-1) / 2} \quad p \rightarrow \infty
$$

we obtain

$$
\begin{equation*}
\mu_{m}(\alpha) \approx(2 \pi)^{n / 2} m^{\alpha-n / 2} \quad m \rightarrow \infty \tag{2.8}
\end{equation*}
$$

Let $f \in L_{2}(\Sigma)$. Therefore, since by Theorem 2.1 the series (2.7) converges, we deduce that

$$
\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}} m^{n-2 \alpha}\left(\mu_{m}(\alpha)\right)^{2}\left|f_{m}^{(k)}\right|^{2}<+\infty
$$

Keeping in mind (2.6) and Theorem 2.1 we conclude that $\left.\Phi_{\alpha}\right|_{\Sigma} \in H_{2}^{\frac{n}{2}-\alpha}(\Sigma)$.
Conversely, let $\left.\Phi_{\alpha}\right|_{\Sigma} \in H_{2}^{\frac{n}{2}-\alpha}(\Sigma)$. Then $g=\left.(\delta+I)^{\frac{n}{2}-\alpha} \Phi_{\alpha}\right|_{\Sigma} \in L_{2}(\Sigma)$ and $\|g\|_{L_{2}(\Sigma)}=\left\|\Phi_{\alpha}\right\|_{H_{2}{ }^{\frac{n}{2}-\alpha}(\Sigma)}$. Without loss of generality we assume that $\Phi_{\alpha} \in C^{\infty}(\Sigma)$, it follows that $g \in C^{\infty}(\Sigma)$ and, denoting by

$$
g(\omega)=\sum_{m=0}^{\infty} \sum_{k=0}^{k_{m, n}} g_{m}^{(k)} Y_{m, n}^{(k)}(\omega), \quad \omega \in \Sigma
$$

the Fourier decomposition of g, we have

$$
\Phi_{\alpha}=(\delta+I)^{\alpha-\frac{n}{2}} g=\sum_{m=0}^{\infty} \sum_{k=0}^{k_{m, n}}(1+m(m+n-2))^{\alpha-\frac{n}{2}} g_{m}^{(k)} Y_{m, n}^{(k)}
$$

Since $\Phi_{\alpha} \in H_{2}^{\frac{n}{2}-\alpha}(\Sigma)$, from Theorem 2.1 we have

$$
\sum_{m=0}^{\infty} m^{n-2 \alpha}(1+m(m+n-2))^{2 \alpha-n} \sum_{k=0}^{k_{m, n}}\left|g_{m}^{(k)}\right|^{2}<\infty
$$

and, for (2.8), also

$$
\sum_{m=0}^{\infty}\left(\mu_{m}(\alpha)\right)^{-2}(1+m(m+n-2))^{2 \alpha-n} \sum_{k=0}^{k_{m, n}}\left|g_{m}^{(k)}\right|^{2}<\infty
$$

We infer that

$$
A_{\alpha}^{-1} \Phi_{\alpha}(\omega)=\sum_{m=0}^{\infty}\left(\mu_{m}(\alpha)\right)^{-1}(1+m(m+n-2))^{\alpha-\frac{n}{2}} \sum_{k=0}^{k_{m, n}} g_{m}^{(k)} Y_{m, n}^{(k)}(\omega)
$$

belongs to $L_{2}(\Sigma)$.

Remark 2.1. Theorem 2.2 states that, if the domain of definition of the operator A_{α} is $L_{2}(\Sigma)$, then the range is $H_{2}^{n / 2-\alpha}(\Sigma)$ that is

$$
A_{\alpha} L_{2}(\Sigma)=H_{2}^{n / 2-\alpha}(\Sigma) .
$$

In the particular case $\alpha=n / 2$ it is clear that $A_{n / 2} L_{2}(\Sigma)=L_{2}(\Sigma)$.
The case $p \neq 2$ will be considered in the following sections.

3 Differentiability properties of the symbol Φ_{α}

A sufficient condition for an operator on the sphere to be bounded in $L_{p}(\Sigma)$ is contained in the next theorem by Strichartz.

Theorem 3.1. ([20]) Let $t(x)$ be a function of a single variable such that for some constant C

$$
\left|x^{k} t^{(k)}(x)\right| \leq C, \quad k=0,1, \ldots, s
$$

If $t_{m}=t(m), m=0,1, \ldots$ then $\left\{t_{m}\right\} \in M_{p}$ for all $p \in(1, \infty)$ satisfying the condition $\left|p^{-1}-2^{-1}\right|<s(n-1)^{-1}$.
Remark 3.1. If $s=[n / 2]$ is the integer part of $n / 2$ then $\left\{t_{m}\right\} \in M_{p}$ for all $p \in(1, \infty)$. Indeed, suppose that $n=2 r$. Then, for any $1<p<2$ we have

$$
\frac{1}{2}<\frac{1}{p}<1<1+\frac{1}{2 n-2}=\frac{1}{2}+\frac{n / 2}{n-1} \Rightarrow 0<\frac{1}{p}-\frac{1}{2}<\frac{n / 2}{n-1}=\frac{s}{n-1} ;
$$

for any $p \geq 2$ we have

$$
\frac{1}{2} \geq \frac{1}{p}>0>\frac{1}{2}-\frac{n / 2}{n-1} \Rightarrow 0 \leq \frac{1}{2}-\frac{1}{p}<\frac{n / 2}{n-1}=\frac{s}{n-1}
$$

If $n=2 r+1$ and $s=[n / 2]=r$ then the condition

$$
\left|p^{-1}-2^{-1}\right|<\frac{s}{n-1}=\frac{1}{2} \Leftrightarrow 0<\frac{1}{p}<1
$$

is satisfied for any $p>1$.
We use Theorem 3.1 to study the multipliers

$$
\begin{equation*}
\tau_{m}=\tau_{m}(\alpha)=\frac{\Gamma\left(\frac{m+\alpha}{2}\right)}{\Gamma\left(\frac{m+n-\alpha}{2}\right)} m^{n / 2-\alpha}, \quad m=1,2, \ldots, \quad \tau_{0}=1 \tag{3.9}
\end{equation*}
$$

The following Lemma can be proved by induction.

Lemma 3.1. ([11, Lemma 7, p. 173]) Let $g(x)$ be solution of the equation $g^{\prime}(x)=a(x) g(x)$ in $\left(x_{0}, \infty\right), x_{0}>0$, where $a(x) \in C^{\infty}\left(\left(x_{0}, \infty\right)\right)$. Then

$$
g^{(k)}(x)=g(x) \sum A_{j_{0}, j_{1}, \ldots, j_{k-1}}(a(x))^{j_{0}}\left(a^{(1)}(x)\right)^{j_{1}} \ldots\left(a^{(k-1)}(x)\right)^{j_{k-1}}
$$

where the $A_{j_{0}, j_{1}, \ldots, j_{k-1}}$ are constants, and the summation is over nonnegative j_{0}, \ldots, j_{k-1} such that $j_{0}+2 j_{1}+\ldots+k j_{k-1}=k$.

Theorem 3.2. Let $0<\alpha<n$. Consider the sequence $\left\{\tau_{m}(\alpha)\right\}$ defined in (3.9). Then $\left\{\tau_{m}(\alpha)\right\}$ and $\left\{\left(\tau_{m}(\alpha)\right)^{-1}\right\}$ belong to M_{p} for any $p \in(1, \infty)$.

Proof. If $\alpha=n / 2$ then $\tau_{m}(\alpha)=1$, for any $m \geq 1$. Suppose that $\alpha \neq n / 2$. The functions

$$
g_{1}(x)=\frac{\Gamma\left(\frac{x+\alpha}{2}\right)}{\Gamma\left(\frac{x+n-\alpha}{2}\right)} x^{n / 2-\alpha}, \quad g_{2}(x)=\frac{\Gamma\left(\frac{x+n-\alpha}{2}\right)}{\Gamma\left(\frac{x+\alpha}{2}\right)} \frac{1}{x^{n / 2-\alpha}}
$$

satisfy, respectively, the equations

$$
g_{1}^{\prime}(x)=a_{\alpha}(x) g_{1}(x), \quad g_{2}^{\prime}(x)=-a_{\alpha}(x) g_{2}(x)
$$

for $x \geq x_{0}>0$, where

$$
a_{\alpha}(x)=\frac{1}{2} b_{\alpha}(x)+\left(\frac{n}{2}-\alpha\right) \frac{1}{x}, \quad b_{\alpha}(x)=\psi\left(\frac{x+\alpha}{2}\right)-\psi\left(\frac{x+n-\alpha}{2}\right) .
$$

Here ψ denotes the Digamma function $[2,6.3 .1]$

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} .
$$

We denote by $[\alpha]$ the greatest integer less than or equal to α and denote by $\beta=\alpha-[\alpha]$. It is clear that $0 \leq \beta<1$.

For all $\alpha: n-\alpha>\alpha$ we have

$$
\begin{align*}
b_{\alpha}(x)= & \sum_{s=0}^{n-2[\alpha]-1}\left(\psi\left(\frac{x+\alpha+s}{2}\right)-\psi\left(\frac{x+\alpha+s+1}{2}\right)\right) \\
& +\psi\left(\frac{x+n-\alpha}{2}+\beta\right)-\psi\left(\frac{x+n-\alpha}{2}\right) \tag{3.10}
\end{align*}
$$

and, for $\alpha: n-\alpha<\alpha$ we have

$$
\begin{array}{r}
b_{\alpha}(x)=\sum_{s=0}^{2[\alpha]-n+1}\left(\psi\left(\frac{x+n-\alpha+s+1}{2}\right)-\psi\left(\frac{x+n-\alpha+s}{2}\right)\right) \\
+\psi\left(\frac{x+\alpha}{2}\right)-\psi\left(\frac{x+\alpha}{2}+1-\beta\right) \tag{3.11}
\end{array}
$$

We prove that

$$
y|(\psi(y)-\psi(y+\xi))| \leq C_{0} \quad y \geq y_{0}>0, \quad 0<\xi \leq 1
$$

and, more generally, for $k \geq 0$,

$$
\begin{equation*}
y^{k+1}\left|\psi_{k}(y)-\psi_{k}(y+\xi)\right| \leq C_{k} \quad y \geq y_{0}>0, \quad 0<\xi \leq 1 \tag{3.12}
\end{equation*}
$$

where

$$
\psi_{k}(y)=\frac{d^{k}}{d y^{k}} \psi(y), \quad \psi_{0}(y)=\psi(y)
$$

We use the asymptotic formula $[2,6.3 .16]$

$$
\psi_{0}(1+y)=-\gamma+\sum_{p=1}^{\infty}\left(\frac{1}{p}-\frac{1}{y+p}\right), \quad y \neq-1,-2, \ldots
$$

and, for $k \geq 1[2,6.4 .10]$

$$
\psi_{k}(y)=(-1)^{k+1} k!\sum_{p=0}^{\infty} \frac{1}{(y+p)^{k+1}}, \quad y \neq 0,-1,-2, \ldots
$$

Hence,

$$
\psi_{0}(y+\xi)-\psi_{0}(y)=\sum_{p=0}^{\infty}\left(\frac{1}{y+p}-\frac{1}{y+p+\xi}\right)
$$

and, keeping in mind that $0<\xi \leq 1$, we have

$$
0<\psi_{0}(y+\xi)-\psi_{0}(y) \leq \psi_{0}(y+1)-\psi_{0}(y)
$$

We have

$$
\psi_{k}(y+\xi)-\psi_{k}(y)=(-1)^{k+1} k!\sum_{p=0}^{\infty}\left(\frac{1}{(y+p+\xi)^{k+1}}-\frac{1}{(y+p)^{k+1}}\right)
$$

If k is even,

$$
\begin{aligned}
0 \leq \psi_{k}(y & +\xi)-\psi_{k}(y)=k!\sum_{p=0}^{\infty}\left(\frac{1}{(y+p)^{k+1}}-\frac{1}{(y+p+\xi)^{k+1}}\right) \\
& \leq k!\sum_{p=0}^{\infty}\left(\frac{1}{(y+p)^{k+1}}-\frac{1}{(y+p+1)^{k+1}}\right)=\psi_{k}(y+1)-\psi_{k}(y)
\end{aligned}
$$

Similarly, if k is odd,

$$
\begin{aligned}
0 \leq \psi_{k}(y) & -\psi_{k}(y+\xi)=k!\sum_{p=0}^{\infty}\left(\frac{1}{(y+p)^{k+1}}-\frac{1}{(y+p+\xi)^{k+1}}\right) \\
& \leq k!\sum_{p=0}^{\infty}\left(\frac{1}{(y+p)^{k+1}}-\frac{1}{(y+p+1)^{k+1}}\right)=\psi_{k}(y)-\psi_{k}(y+1)
\end{aligned}
$$

Hence, by using the recurrence formula $[2,6.4 .6]$

$$
\psi_{k}(y+1)=\psi_{k}(y)+(-1)^{k} k!y^{-k-1}
$$

we get (3.12). From (3.12), (3.10) and (3.11) it follows that

$$
x^{k+1}\left|a_{\alpha}^{(k)}(x)\right| \leq C_{k}, \quad k \geq 0, \quad x \geq x_{0}>0 .
$$

Hence, applying Lemma 3.1, we obtain

$$
\left|x^{k} g_{1}^{(k)}(x)\right| \leq c_{1}, \quad\left|x^{k} g_{2}^{(k)}(x)\right| \leq c_{2} \quad k=0,1,2 \ldots
$$

It follows from Theorem 3.1 that the multipliers $\tau_{m}=g_{1}(m)$ and $\tau_{m}^{-1}=$ $g_{2}(m)$ belong to M_{p} for any $p \in(1, \infty)$.

We make use of the following theorem of Askey and Wainger regarding p-multipliers on the sphere.

Theorem 3.3. ([4, Theorem 4]) Let $\ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2)$ and

$$
a_{m}(\beta)=i^{m} m^{-\beta}, \quad m=1,2, \ldots, \quad a_{0}(\beta)=0 .
$$

Then

$$
a_{m}(\beta) \in M_{p} \quad \text { if } \quad \beta>\ell_{0}
$$

and

$$
a_{m}(\beta) \notin M_{p} \quad \text { if } \quad \beta<\ell_{0} .
$$

A refinement of Theorem 3.3 is obtained by Gadjiev.
Theorem 3.4. ([8, Theorem 2]) Let $\ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2)$ and $a_{m}\left(\ell_{0}\right)=$ $i^{m} m^{-\ell_{0}}$. Then $a_{m}\left(\ell_{0}\right)$ is a (p, p)-multiplier for any $p \in(1, \infty)$.

The following assertion will be used to obtain the main result of the section.

Lemma 3.2. ([10, Lemma 9, p. 178]) If $w_{m}=z_{m} t_{m}$ and $\left\{t_{m}\right\},\left\{t_{m}^{-1}\right\} \in M_{p}$, $p \in(1, \infty)$, then $\left\{w_{m}\right\} \in M_{p, q}$ if and only if $\left\{z_{m}\right\} \in M_{p, q}$.

We are in a position to prove the main theorem.
Theorem 3.5. Let $1<p<\infty, 0<\alpha<n$ and $\ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2)$. Then the operator A_{α} is bounded from $L_{p}(\Sigma)$ to $H_{p}^{\ell}(\Sigma)$ for $\ell \leq n / 2-\alpha-\ell_{0}$. The result is sharp.

Proof. We show that $(I+\delta)^{\ell / 2} A_{\alpha}$ is an operator of strong type (p, p) for $\ell \leq n / 2-\alpha-\ell_{0}$ and is not such an operator for $\ell>n / 2-\alpha-\ell_{0}$.
We recall that to the operator $(I+\delta)^{\ell / 2}$ there corresponds the multipliers $\left\{(1+m(m+n-2))^{\ell / 2}\right\}([16$, p.262] $)$. Then, we have

$$
(I+\delta)^{\ell / 2} A_{\alpha} f=\pi^{n / 2} 2^{\alpha} \sum_{m=0}^{\infty} a_{m}(\ell, \alpha) \sum_{k=1}^{k_{m, n}} f_{m}^{(k)} Y_{m, n}^{(k)}
$$

where $\left\{a_{m}(\ell, \alpha)\right\}$ are the multipliers corresponding to the operator $(I+$ $\delta)^{\ell / 2} A_{\alpha}$. They have the form

$$
a_{m}(\ell, \alpha)=\mu_{m}(\alpha)(1+m(m+n-2))^{\ell / 2}=i^{m} \frac{\Gamma\left(\frac{m+\alpha}{2}\right)}{\Gamma\left(\frac{m+n-\alpha}{2}\right)}(1+m(m+n-2))^{\ell / 2}
$$

We represent $a_{m}(\ell, \alpha)=t_{m} z_{m}$ where

$$
\begin{gathered}
z_{m}=i^{m} m^{-(n / 2-\ell-\alpha)} \\
t_{m}=\tau_{m}(\alpha)(1+m(m+n-2))^{\ell / 2} m^{-\ell}
\end{gathered}
$$

and $\left\{\tau_{m}(\alpha)\right\}$ is defined in (3.9).
We have $(1+m(m+n-2))^{\ell / 2} m^{-\ell} \in M_{p}$ for any ℓ. Indeed, we can write

$$
(1+m(m+n-2))^{\ell / 2} m^{-\ell}=\left(\frac{m+a}{m}\right)^{\ell / 2}\left(\frac{m+b}{m}\right)^{\ell / 2}, \quad a, b \in \mathbb{R}
$$

and, applying Theorem 3.1, we prove that each factor belongs to M_{p} for any ℓ. Keeping in mind Theorem 3.9 and Lemma 3.2 we get that $t_{m} \in M_{p}$, for any $p \in(1, \infty)$. Theorem 3.3 ensures that

$$
\begin{align*}
& a_{m}(\ell, \alpha) \in M_{p} \quad \text { if } \quad \ell<n / 2-\alpha-\left|p^{-1}-2^{-1}\right|(n-2) \tag{3.13}\\
& a_{m}(\ell, \alpha) \notin M_{p} \quad \text { if } \quad \ell>n / 2-\alpha-\left|p^{-1}-2^{-1}\right|(n-2) .
\end{align*}
$$

If we apply Theorem 3.4 we can insert the equality sign in (3.13).
We can reformulate Theorem 3.5 as follows.
Theorem 3.6. Let $1<p<\infty, 0<\alpha<n$ and $\ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2)$. There are continuous embeddings

$$
\begin{equation*}
A_{\alpha} L_{p}(\Sigma) \subset H_{p}^{\ell}(\Sigma) \tag{3.14}
\end{equation*}
$$

for $\ell \leq n / 2-\alpha-\ell_{0}$. The embeddings (3.14) are the best possible.

4 Differentiability properties of the characteristic

In this section we prove a theorem characterizing the influence of the symbol Φ_{α} on the properties of the corresponding characteristic. Namely, we are looking for the values of the index ℓ such that the condition $\Phi_{\alpha} \in H_{p}^{\ell}(\Sigma)$ ensures that $f \in L_{p}(\Sigma)$.

Theorem 4.1. Let $1<p<\infty$ and $\ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2)$. Let $\Phi_{\alpha} \in H_{p}^{\ell}(\Sigma)$ with $\ell \geq n / 2-\alpha+\ell_{0}$. Then there exists a function $f \in L_{p}(\Sigma)$ such that $\Phi_{\alpha}=A_{\alpha} f$ and

$$
\|f\|_{L_{p}(\Sigma)} \leq C\left\|\Phi_{\alpha}\right\|_{H_{p}^{\ell}(\Sigma)} .
$$

Equivalently, if $\ell \geq n / 2-\alpha+\ell_{0}$ then

$$
H_{p}^{\ell}(\Sigma) \subset A_{\alpha} L_{p}(\Sigma)
$$

These embeddings are optimal.
Proof. Let $\Phi_{\alpha} \in H_{p}^{\ell}(\Sigma)$. Suppose that $\Phi_{\alpha} \in C^{\infty}(\Sigma)$ and let

$$
\Phi_{\alpha}(\omega)=\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}} \phi_{m}^{(k)} Y_{m}^{(k)}(\omega), \quad \omega \in \Sigma .
$$

Then

$$
A_{\alpha}^{-1} \Phi_{\alpha}(\omega)=\sum_{m=0}^{\infty}\left(\mu_{m}(\alpha)\right)^{-1} \sum_{k=1}^{k_{m, n}} \phi_{m}^{(k)} Y_{m}^{(k)}(\omega)
$$

By definition of the space $H_{p}^{\ell}(\Sigma)$ we have $g:=(I+\delta)^{\ell / 2} \Phi_{\alpha} \in L_{p}(\Sigma)$ and $\left\|\Phi_{\alpha}\right\|_{H_{p}^{\ell}}=\|g\|_{L_{p}}$. Since $\Phi_{\alpha} \in C^{\infty}(\Sigma)$ then $g \in C^{\infty}(\Sigma)$. Let

$$
g(\omega)=\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}} g_{m}^{(k)} Y_{m}^{(k)}(\omega) \Rightarrow g_{1}(\omega)=g(-\omega)=\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m, n}}(-1)^{m} g_{m}^{(k)} Y_{m}^{(k)}(\omega)
$$

We deduce that

$$
A_{\alpha}^{-1} \Phi_{\alpha}(\omega)=A_{\alpha}^{-1}(I+\delta)^{-\ell / 2} g(\omega)=\sum_{m=0}^{\infty} b_{m}(\ell, \alpha) \sum_{k=1}^{k_{m, n}}(-1)^{m} g_{m}^{(k)} Y_{m, n}^{(k)}(\omega)
$$

where the multipliers $\left\{b_{m}(\ell, \alpha)\right\}$ have the form

$$
b_{m}(\ell, \alpha)=i^{m} \pi^{-n / 2} 2^{-\alpha} \frac{\Gamma\left(\frac{m+n-\alpha}{2}\right)}{\Gamma\left(\frac{m+\alpha}{2}\right)}(1+m(m+n-2))^{-\ell / 2}
$$

Let us represent the multiplier $b_{m}(\ell, \alpha)$ in the form $b_{m}(\ell, \alpha)=t_{m} z_{m}$, with $z_{m}=i^{m} m^{n / 2-\ell-\alpha}$,

$$
t_{m}=\pi^{-n / 2} 2^{\alpha}\left(\tau_{m}(\alpha)\right)^{-1}(1+m(m+n-2))^{-\ell / 2} m^{\ell}
$$

and $\tau_{m}(\alpha)$ given in (3.9). It was shown in Theorem 3.2 that $\left(\tau_{m}(\alpha)\right)^{-1} \in M_{p}$ for any $p \in(1, \infty)$. If we apply Theorems 3.3 and 3.4 to the multipliers $\left\{z_{m}\right\}$ we get $\left\{z_{m}\right\} \in M_{p}$ if $\ell \geq n / 2-\alpha+\ell_{0}$ and $\left\{z_{m}\right\} \notin M_{p}$ if $\ell<n / 2-\alpha+\ell_{0}$. Hence $\left\{b_{m}(\ell, \alpha)\right\} \in M_{p}$ if $\ell \geq n / 2-\alpha+\ell_{0}$, and

$$
\left\|A_{\alpha}^{-1} \Phi_{\alpha}\right\|_{L_{p}(\Sigma)} \leq C\left\|g_{1}\right\|_{L_{p}(\Sigma)}=C\left\|\Phi_{\alpha}\right\|_{H_{p}^{\ell}(\Sigma)}
$$

and $\left\{b_{m}(\ell, \alpha)\right\} \notin M_{p}$ if $\ell<n / 2-\alpha+\ell_{0}$.
It follows from Theorems 3.5 and 4.1 that the range $R\left(A_{\alpha}\right)$ of the operator A_{α}, defined on $L_{p}(\Sigma)$, satisfies the relations

$$
\begin{equation*}
H_{p}^{n / 2-\alpha+\ell_{0}}(\Sigma) \subset R\left(A_{\alpha}\right) \subset H_{p}^{n / 2-\alpha-\ell_{0}}(\Sigma), \quad \ell_{0}=\left|p^{-1}-2^{-1}\right|(n-2) \tag{4.15}
\end{equation*}
$$

and the embeddings (4.15) are best possible.

Acknowledgement

The second author was supported by the RUDN University Program 5-100.

References

[1] D.R. Adams, L.I. Hedberg, Function spaces and potential theory, Springer 1996.
[2] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Publ., New York, 1968.
[3] M. S. Agranovich, Elliptic singular integro-differential operators, Russian Math. Survey 20 (1965).
[4] R. Askey, S. Wainger, On the behavior of special classes of ultraspherical expansions II, J. Analyse Math. 15 (1965) 221-244.
[5] S. Bochner, Theta relations with spherical harmonics. Proc. N.A.S. 37 (1951) 804-808.
[6] F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Series and Monograph 2013.
[7] A. D. Gadzjiev, On differentiability properties of the symbol of a multidimensional singular integral operator. Math. USSR Sbornik 42 (1982) 427-450.
[8] A. D. Gadzjiev, Multipliers of Fourier series in Spherical functions and properties of the symbol of a multidimensional singular operator, Soviet. Math. Dokl. 26 (1982) 304-305.
[9] I.M. Gel'fand, G.E. Shilov, Generalized functions, vol.1, Academic Press 1964.
[10] V.S. Kryuchkov, On the smoothness of the symbol of a CalderonZygmund singular integral operator, Soviet. Math. Dokl. 26 (1982) 644-648.
[11] V.S. Kryuchkov, Calderon-Zygmund singular integral operator, Theory and Applications of Differentiable functions of several variables. X, Proc. Steklov Institute of Mathematics 170 (1987) 170-183.
[12] F. Lanzara, V. Maz'ya, Note on a non standard eigenfunction of the planar Fourier transform, J. Math. Sci. 224 (2017) 694-698 .
[13] F. Lanzara, V. Maz'ya, On the eigenfunctions of the Fourier transform, J. Math. Sci. 235 (2018) 182-198.
[14] C. Lemoine, Fourier transforms of homogeneous distribution. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 26 (1972) 117-149.
[15] N.M. Mikhailova - Gubenko, Singular integral equations in Lipchitz spaces II, Vestnik Leningrad Univ. (1966) 45-67.
[16] S.G. Mikhlin, S. Prössdorf, Singular Integral operator, Springer-Verlag Berlin Heidelberg New York Tokyo, 1986.
[17] S. Mizhoata, Theory of Partial Differential equations, Cambridge University press 1973.
[18] B.A. Plamenevski, M.E. Judovin, The first boundary value problem for convolution operators in cones, Math. USSR Sb. 6 (1968) 205-232.
[19] S.Samko, Generalized Riesz potentials and hypersingular integrals with homogeneous characteristics, their symbols and inversion, Proc. Steklov Inst. Math. 156 (1983) 173-243.
[20] R.S. Strichartz, Multipliers of spherical harmonic expansions, Trans. Amer. Math. Soc. 167 (1972) 115-124.

[^0]: *Department of Mathematics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy. email: lanzara@mat.uniroma1.it
 ${ }^{\dagger}$ Department of Mathematics, University of Linköping, 58183 Linköping, Sweden.
 ${ }^{\ddagger}$ RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russia. email: vlmaz@mai.liu.se

