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Abstract

We consider the classic problem of fairly allocating
indivisible goods among agents with additive valu-
ation functions and explore the connection between
two prominent fairness notions: maximum Nash
welfare (MNW) and envy-freeness up to any good
(EFX). We establish that an MNW allocation is al-
ways EFX as long as there are at most two possible
values for the goods, whereas this implication is no
longer true for three or more distinct values. As a
notable consequence, this proves the existence of
EFX allocations for these restricted valuation func-
tions. While the efficient computation of an MNW
allocation for two possible values remains an open
problem, we present a novel algorithm for directly
constructing EFX allocations in this setting. Fi-
nally, we study the question of whether an MNW
allocation implies any EFX guarantee for general
additive valuation functions under a natural new in-
terpretation of approximate EFX allocations.

1 Introduction
Fair division refers to the general problem of allocating a set
of resources to a set of agents in a way satisfying a desired
fairness criterion. A well-known example of such a criterion
is envy-freeness [Gamow and Stern, 1958], where each agent
perceives the share she receives to be no worse than what any
other agent receives. Since the problem was formally intro-
duced by Banach, Knaster and Steinhaus [1948], fair division
has attracted the attention of various scientific disciplines, in-
cluding mathematics, economics, and political science. Dur-
ing the last two decades, the algorithmic aspects of fair divi-
sion have been the focus of a particularly active line of work
within the computer science community, e.g., see [Procaccia,
2016; Bouveret et al., 2016] and references therein.

We consider the classic setting where the resources are in-
divisible goods that need to be fully allocated and the agents
have additive valuation functions. One of the main challenges

in this setting is that classic fairness notions such as equi-
tability, envy-freeness and proportionality—introduced sev-
eral decades ago having divisible resources in mind—are im-
possible to satisfy. To see this for envy-freeness, it suffices to
consider two agents and one good of value; one agent is going
to be envious. This has led to the recent emergence of several
weaker fairness notions (see Related work). As a result, there
is a plethora of open questions about the existence, the com-
putation and the interrelationships of such notions. In this
work we focus on two of the most prominent: envy-freeness
up to any good (EFX) and maximum Nash welfare (MNW).

EFX, introduced recently by Caragiannis et al. [2019b], is
an additive relaxation of envy-freeness. Here an agent may
envy another agent but only by the value of the least desirable
good in the other agent’s bundle. While this added flexibility
of EFX takes care of extreme pathological cases like the one
mentioned above (2 agents, 1 good), this notion is not well
understood yet. Despite the active interest in it, it is unknown
whether EFX allocations always exist, even for 4 agents with
additive valuation functions.1 We consider the problem of
showing the existence of EFX allocations to be one of the
most intriguing currently open questions in fair division.

The Nash social welfare (or, simply, Nash welfare) is the
geometric mean of the agents’ utilities. By considering max-
imum Nash welfare (MNW) allocations, i.e., allocations that
maximize the product of the utilities, we achieve some kind
of balance between the efficiency of the maximum utilitarian
social welfare—the sum of the utilities—and the individual
fairness of the maximum egalitarian social welfare—the min-
imum utility. Although not a fairness concept per se, MNW
has strong ties to fairness. In the setting where the goods
are divisible, each (possibly fractional) MNW allocation cor-
responds to a competitive equilibrium of equal incomes, a
market equilibrium (under the assumption that all agents are
endowed with the same budget) that is known to guarantee
envy-freeness and Pareto optimality [Varian, 1974]. Even in
our setting, Caragiannis et al. [2019b] showed that integral

1Existence of EFX allocations for 3 agents was very recently
shown by Chaudhury et al. [2020a].
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MNW allocations, besides being Pareto optimal, are envy-free
up to one good (EF1) and satisfy maximin share fairness up
to a Θ(1/

√
n) factor, where n is the number of agents. Both

these guarantees are significantly weaker than EFX.
In general, MNW does not imply EFX. One of our goals

is to identify the cases where it does, in terms of the allowed
number of distinct values for the goods. For such cases, we
want to obtain efficient algorithms for computing EFX alloca-
tions, either through maximizing the Nash welfare or directly.
Since, in general, MNW does not even imply a non-trivial ap-
proximation of EFX, we further introduce a less stringent, yet
natural, new interpretation of approximate EFX and investi-
gate how it is related to MNW.

1.1 Contribution
There are two variants of EFX used in the related literature,
depending on whether only the positively valued goods are
considered or not; for the latter case we adopt the name EFX0

suggested by Kyropoulou et al. [2019]. We start by establish-
ing a strong algorithmic connection between the two variants
(Proposition 2.1). Then we explore the relationship between
maximizing the Nash welfare and achieving EFX or EFX0 al-
locations. In doing so, we also obtain some interesting results
for the individual notions. In particular:

• In case there are at most two possible values for the
goods (2-value instances), we show that any allocation
that maximizes the Nash welfare is EFX0 (Theorem
3.1). This has the following two consequences:
(a) For any 2-value instance, there exists an EFX0 al-
location. Note that this is the first such existence result
for non-identical valuations that holds for any number of
agents and goods;
(b) For the special case of binary valuations, by adapting
an algorithm of Barman et al. [2018c], we can efficiently
construct an allocation that is both MNW and EFX0.

The implication MNW ⇒ EFX0 is no longer true for
three or more distinct values.

• For 2-value instances, the efficient computation of an
MNW allocation remains an open problem. Neverthe-
less, we propose a polynomial-time algorithm for pro-
ducing EFX0 allocations in this case (Theorem 5.1).
This algorithm, which we call MATCH&FREEZE, is
based on repeatedly computing maximum matchings
and “freezing” certain agents whenever they acquire too
much value compared to their peers. We believe these
novel ideas might be a stepping stone for proving the
existence of EFX allocations in more general settings.

• For general additive valuations, we show that an MNW
allocation does not guarantee any non-trivial approxima-
tion of EFX. However, we argue that the current defini-
tion of approximate EFX allocations is not always mean-
ingful. Instead, we explore a different natural defini-
tion based on the idea of (hypothetically) augmenting an
agent’s bundle until an EFX-like condition is satisfied.
For this new benchmark, which we call EFX-value, we
show that any MNW allocation is a 1/2-approximation
of EFX (Theorem 6.2).

1.2 Related Work
As there is a vast literature on fair division, here we focus
on the indivisible items setting and on related fairness no-
tions. The concept of envy-freeness up to one good (EF1)
was implicitly suggested by Lipton et al. [2004] and formally
defined by Budish [2011]. Budish [2011] also introduced the
notion of maximin share (MMS), which has been studied ex-
tensively [Kurokawa et al., 2018; Amanatidis et al., 2017;
Barman and Krishnamurthy, 2017; Garg et al., 2019; Gh-
odsi et al., 2018; Garg and Taki, 2019] and has yielded sev-
eral very interesting variants like pairwise MMS [Caragiannis
et al., 2019b], groupwise MMS [Barman et al., 2018a], and
MMS for groups of agents [Suksompong, 2018].

As already mentioned, EFX was introduced by Caragiannis
et al. [2019b]. Plaut and Roughgarden [2018] defined what an
α-approximate EFX (or α-EFX) allocation is and studied ex-
act and approximate EFX allocations with both additive and
general valuations. Most of their results, including the exis-
tence of EFX allocations for identical valuations, hold under
the similar but stricter notion of EFX0 which is implicitly in-
troduced therein. The currently best 0.618-approximation of
either EFX or EFX0 for the additive case is due to Amana-
tidis et al. [2019]. For binary additive valuations, Aleksan-
drov and Walsh [2019] recently proposed an algorithm that
produces EFX—but not necessarily EFX0—allocations. In-
dependently and at the same time with our work, Babaioff et
al. [2020] designed an algorithm that computes an EFX0 al-
location which maximizes the Nash welfare for submodular
dichotomous valuations, a class that includes binary, but does
not include general 2-value additive valuations.

Besides [Caragiannis et al., 2019b], there are several re-
cent papers which relate allocations that maximize (exactly or
approximately) the Nash welfare with other fairness notions.
Caragiannis et al. [2019a] showed that there exist incomplete
allocations that are EFX and in which each agent receives at
least half of the value they get in a MNW allocation; Chaud-
hury et al. [2020b] achieved the same with only a few unal-
located goods. Garg and McGlaughlin [2019] showed how
to get an allocation that 2-approximates the Nash welfare of
an MNW allocation that is also proportional up to one good,
satisfies a weak MMS guarantee and is Pareto optimal.

Since computing MNW allocations is an APX-hard prob-
lem [Lee, 2017], there is an active interest on special cases
like binary valuations [Barman et al., 2018c] or on approx-
imation algorithms for additive [Cole and Gkatzelis, 2018;
Cole et al., 2017; Barman et al., 2018b] or even more general
valuation functions [Garg et al., 2020].

2 Preliminaries and Notation
We consider fair division instances I = (N,M, (vi)i∈N ) in
which there is a set N of n agents and a set M of m indivis-
ible goods. Each agent i ∈ N has a valuation function vi :
M → R≥0 assigning a non-negative value vi(g) to each good
g ∈ M . We assume vi is additive, i.e., vi(A) =

∑
g∈A vi(g)

for every set (or bundle) of goods A ⊆M .
We pay particular attention to the following subclasses of

additive valuation functions: (1) Binary: vi(g) ∈ {0, 1} for
every i ∈ N and g ∈ M , and (2) k-value: there is a set V
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consisting of |V | = k distinct, non-negative real values such
that vi(g) ∈ V for every i ∈ N and g ∈ M . Of course, any
binary instance is a 2-value instance with V = {0, 1} but we
distinguish between these cases for technical reasons that will
become apparent later on.

A complete allocation (or just allocation) A = (Ai)i∈N
is a vector listing the bundle Ai of goods that each agent i
receives, such that Ai ∩ Aj = ∅ for every i, j ∈ N , and
∪i∈NAi = M . Our goal is to come up with allocations that
are considered to be fair by all agents. We begin by defining
envy-freeness and its additive relaxations.

Definition 2.1. An allocation A = (Ai)i∈N is

• envy-free (EF) if vi(Ai) ≥ vi(Aj) for every i, j ∈ N ;

• envy-free up to one good (EF1) if for every i, j ∈ N
with Aj 6= ∅ there exists a good g ∈ Aj , such that
vi(Ai) ≥ vi(Aj \ {g});

• envy-free up to any (positively-valued) good (EFX) if
for every i, j ∈ N and every good g ∈ Aj for which
vi(g) > 0, we have vi(Ai) ≥ vi(Aj \ {g});

• envy-free up to any good (EFX0) if for every i, j ∈ N
and every good g ∈ Aj , we have vi(Ai) ≥ vi(Aj \{g}).

By definition, we have EF ⇒ EFX0 ⇒ EFX ⇒ EF1, but
no implication works in the opposite direction. For brevity,
we say that agent i is E towards agent j when the criterion of
E ∈ {EF,EF1,EFX,EFX0} is true for the ordered pair (i, j).

Definition 2.2. The Nash welfare of an allocation A =
(Ai)i∈N is the product2 of the values of the agents for their
bundles: NW(A) =

∏
i∈N vi(Ai).

We will usually denote by A∗ one of the allocations that
maximize the Nash welfare (MNW). Among all such alloca-
tions, we will sometimes select A∗ so that some additional
properties are satisfied; e.g., see the discussion in Section 3.
Caragiannis et al. [2019b] showed that MNW ⇒ EF1, but
the exact connection between MNW and the variants of EFX
is not well-understood.

Before we dive into our main technical results, we show
a somewhat surprising connection between EFX and EFX0.
In particular, assuming agents with k-value valuation func-
tions, for any k ∈ N, the question of finding an EFX0 allo-
cation reduces to finding an EFX allocation for an instance
with only slightly perturbed valuation functions. An immedi-
ate corollary is that the existence (resp. the efficient compu-
tation) of EFX allocations for additive agents implies the ex-
istence (resp. the efficient computation) of EFX0 allocations;
the converse statements are obvious.

Proposition 2.1. Let k ∈ N. The problem of computing
EFX0 allocations for k-value instances reduces to the prob-
lem of computing EFX allocations for k-value instances.
When all values are rational numbers, this reduction requires
only polynomial time.

2As mentioned in the Introduction, the Nash welfare is usually
defined as the geometric mean of the values rather than their product.
As the allocations (exactly) maximizing the Nash welfare are the
same under both definitions, we use the product for simplicity.

3 When Does MNW Imply EFX?
In this section we focus on allocations that maximize the
Nash welfare. We first identify the subclasses of valuation
functions for which the MNW allocations are always EFX0,
and then consider computational complexity questions. Our
main result here is that for all 2-value instances (including
binary) any MNW allocation is also EFX0. Moreover, this
result is tight: there exist 3-value instances for which this im-
plication is no longer true.

Throughout this section, we assume that for every good g,
there exists at least one agent i with vi(g) > 0, but our results
hold without this assumption.

When we talk about MNW allocations, the standard inter-
pretation would be to include all complete allocations which
achieve the maximum Nash welfare for an instance. When it
is possible to achieve positive Nash welfare this is indeed true.
However, for the extreme case of instances where all alloca-
tions have zero Nash welfare we are going to need a refine-
ment. Following the work of Caragiannis et al. [2019b], for
instances with maximum Nash welfare equal to zero, we call
an allocation an MNW allocation if it (1) maximizes the num-
ber of agents with positive value, and then (2) maximizes the
product of the values of such agents. This restriction is nec-
essary because when all allocations have zero Nash welfare,
the idea of maximizing it clearly fails to distinguish “good”
allocations in any sense. To illustrate this, consider the next
instance:

g1 g2 g3
agent 1 1 0 0
agent 2 1 0 0
agent 3 0 1 1

Since the first two agents only like g1, the Nash welfare of
any allocation is 0. However, not all allocations are EFX0.
The allocation {∅,∅, {g1, g2, g3}} is clearly not EFX0 since
the first two agents envy agent 3 even after the removal of ei-
ther g2 or g3. Even an allocation such as {{g1, g2},∅, {g3}},
which maximizes the number of agents with positive value, is
not EFX0 since agent 2 envies agent 1 even after the removal
of g2. On the other hand, the allocation {{g1},∅, {g2, g3}},
which maximizes the number of agents with positive value as
well as the product of their values, is indeed EFX0: the envy
of agent 2 towards agent 1 is eliminated by the removal of g1.

It should be noted that both (1) and (2) are by default true
for MNW allocations in instances with positive Nash welfare.
We next show that maximizing the Nash welfare subject to (1)
and (2) yields an EFX0 allocation for any 2-value instance.

Theorem 3.1. Each MNW allocation is an EFX0 allocation,
for any 2-value instance.

Proof. Due to space constraints, we prove the statement for
two values {a, b} such that a > b > 0. Then EFX0 coin-
cides with EFX. The proof for when b = 0 (essentially the
binary case) is of similar flavor, albeit simpler, despite having
to consider instances with zero Nash welfare.

Let i and j be any two agents who are given the sets of
goods Ai and Aj in an MNW allocation A∗. We say that
a good is of type Txy if i and j have values vi(g) = x and
vj(g) = y for good g, respectively; so there are four different
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types of goods: Taa, Tab, Tba and Tbb. If ming∈Aj vi(g) = a
or maxg∈Aj vi(g) = b, then i is EFX towards j since i
is EF1 towards j [Caragiannis et al., 2019b] and the two
notions coincide in this case for the pair (i, j). Therefore,
from now on, we will assume that ming∈Aj vi(g) = b and
maxg∈Aj vi(g) = a, which implies that |Aj | ≥ 2 and Aj
includes at least one good of type Tba or Tbb.
Case I: There is at least one good of type Tbb in Aj .
Subcase (a): Aj does not include any good of type Tab. As-
sume, towards a contradiction, that i is not EFX towards j:
vi(Ai) < vi(Aj)− b. Since vj(g) ≥ vi(g) for all g ∈ Aj , we
have that vj(Aj) ≥ vi(Aj). We now define a new allocation
by moving a good h ∈ Aj of type Tbb from j to i. In this new
allocation, the product of the values of i and j is

(vi(Ai) + b)(vj(Aj)− b)
= vi(Ai)vj(Aj) + b(vj(Aj)− vi(Ai)− b)
≥ vi(Ai)vj(Aj) + b(vi(Aj)− vi(Ai)− b)
> vi(Ai)vj(Aj).

Since the allocation of all other agents has not been changed,
the new allocation achieves a strictly larger Nash welfare than
A∗, yielding a contradiction.
Subcase (b): Aj includes at least one good g of type Tab. We
will argue about the structure of set Ai. If Ai includes any
good x of type Taa, Tba or Tbb, then by exchanging g with
x, we obtain an allocation with strictly higher Nash welfare,
contradicting the choice of A∗. For example, if x is of type
Taa, then in the new allocation (after swapping x and g) agent
i has exactly the same value, but agent j’s value has strictly
increased by an amount a − b > 0. One can verify that the
same holds for the other two types. Hence, Ai must include
only goods of type Tab, which implies that vi(Ai) = |Ai|a.

Towards a contradiction, assume that i is not EFX towards
j. If |Aj | ≤ |Ai| + 1, since Aj includes some good h for
which vi(h) = b, we have that

vi(Aj) ≤ (|Aj | − 1)a+ b ≤ |Ai|a+ b = vi(Ai) + b,

i.e., agent i is EFX towards j. So, it must be |Aj | ≥ |Ai|+ 2.
We create a new allocation by moving a good g ∈ Tab from j
to i. The product of the values of i and j then becomes

(vi(Ai) + a)(vj(Aj)− b)
= vi(Ai)vj(Aj) + avj(Aj)− bvi(Ai)− ab.

Since vj(Aj) ≥ |Aj |b ≥ (|Ai|+ 2)b and vi(Ai) = |Ai|a, we
have that

avj(Aj)− bvi(Ai)− ab
≥ (|Ai|+ 2)ab− |Ai|ab− ab = ab > 0.

Since the bundles of the other agents have not been changed,
we have that the new allocation has strictly larger Nash wel-
fare than A∗, contradicting its choice.
Case II: There are no goods of type Tbb in Aj .
ThenAj includes at least one good of type Tba. IfAj includes
at least one good of type Tab, then, as we argued in Case
I(b) above, in order for A∗ to be an MNW allocation, Ai
cannot include any goods of type Taa, Tba or Tbb. As a result,

Ai includes only goods of type Tab and by reproducing the
analysis used in Case I(b) it follows that A∗ is EFX.

So, we may assume that Aj includes goods of type Tba
and Taa only. This implies that vj(Aj) = |Aj |a. Assume
towards a contradiction that i is not EFX towards j: vi(Ai) <
vi(Aj)− b. Since Aj contains at least one good that i values
as b, we also have that vi(Aj) ≤ (|Aj | − 1)a+ b. Combining
the last two expressions, we obtain that

vi(Ai) + a < |Aj |a = vj(Aj).

Now, consider the allocation that is obtained from A∗ by
moving a good of type Taa from j to i. We know that such
an item exists since maxg∈Aj

vi(g) = a. By using the last
inequality, the product of the values of i and j in the new
allocation is

(vi(Ai) + a)(vj(Aj)− a)

= vi(Ai)vj(Aj) + a(vj(Aj)− vi(Ai)− a)

> vi(Ai)vj(Aj),

which combined with the fact that the bundles of the other
agents have not been changed, contradicts the choice of A∗.
In any case, we conclude that A∗ must be EFX.

Caragiannis et al. [2019b] presented a 3-value instance in
which no MNW allocation is EFX. For completeness, we
include here a simpler such instance. Let ε be a small positive
constant and consider an instance with two agents and three
goods with values as shown in the table:

g1 g2 g3
agent 1 1− ε 1 1 + ε
agent 2 1 1− ε 1 + ε

This is a 3-value instance with values {1 − ε, 1, 1 + ε}. It is
easy to verify that there are exactly two allocations achieving
the maximum Nash welfare of 2 + ε: A1 = ({g2}, {g1, g3})
and A2 = ({g2, g3}, {g1}). The Nash welfare of any other
allocation is either 2(1−ε) or 2+ε−ε2. Now, for ` ∈ {1, 2},
observe that in A` agent ` is not EFX towards the other agent
since she envies her even after the removal of g`.

3.1 Complexity of Maximizing the Nash Welfare
We now turn our attention to the complexity of computing a
maximum Nash welfare allocation. This problem is already
known to be hard for many domain restrictions, and easy for
only a few special cases. Nevertheless, its complexity for k-
value instances with k ∈ {2, 3, 4} has been open. Here we
make significant progress towards settling these cases.

For binary instances, Barman et al. [2018c] gave the greedy
algorithm ALG-BINARY that outputs an allocation maximiz-
ing the Nash welfare. If the Nash welfare is positive, then the
outputted allocation is also EFX0 by Theorem 3.1. However,
if the Nash welfare is zero, ALG-BINARY might not output
an MNW allocation in our sense, i.e., an allocation that max-
imizes the number of agents with positive values and their
product (in that order). To circumvent this, we define a bi-
partite graph consisting of nodes corresponding to the agents
on the left and nodes corresponding to the goods on the right,
while an edge between an agent and a good exists if and only
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if the agent has value 1 for the good. By computing a max-
imum bipartite matching on this graph, it is guaranteed that
the number of agents with positive value is maximized. Then,
we run ALG-BINARY on the restricted instance where the set
of agents includes only the ones that participate in the maxi-
mum matching, so that the product of their values (which now
is going to be positive) is also maximized. This leads to the
following statement.
Theorem 3.2. For binary instances, computing an MNW al-
location (and thus an EFX0 allocation) can be done in poly-
nomial time.

For general 2-value instances we were unable to resolve the
complexity of computing an MNW allocation, but we show
that the problem is NP-hard for 3-value instances. This ex-
tends the hardness aspect (but not the inapproximability) of
the result of Lee [2017] for 5-value instances.
Theorem 3.3. Computing an MNW allocation is NP-hard,
even for 3-value instances.

4 EFX Allocations for 2-Value Instances
Even though we showed that any MNW allocation is also
EFX0 for agents with 2-value valuation functions, it remains
an open question whether there exists a polynomial-time al-
gorithm for computing such allocations beyond the binary
case. In this section, we try to circumvent this and aim to
design an efficient algorithm for computing EFX0 allocations
(which might not maximize the Nash welfare) for 2-value in-
stances. We assume values {a, b}, such that a > b ≥ 0.

Our algorithm, which we call MATCH&FREEZE, proceeds
in rounds and maintains a set of active agents L, initially con-
taining everyone. In each round, every active agent is given
exactly one of the remaining goods, with the possible excep-
tion of the last round in which there might not be enough
goods left for all agents. The algorithm terminates when all
goods have been allocated.

To determine which good each active agent gets during a
round, we create a bipartite graphG = (L∪R,E) with nodes
corresponding to the active agents L on one side and to the
remaining goods R on the other. An edge between an active
agent i and a good g exists if and only if vi(g) = a. We
first compute a maximum matching on this graph. Then each
agent gets the good to which she is matched. If there are
agents who are not matched to any good and there are still
available goods, the unmatched agents receive one arbitrary
available good each (subject to availability).

There are two possible reasons why an agent i is not
matched to any good in a round: (1) she does not have value
a for any good (only b), or (2) the maximum matching is
such that all goods for which her value is a are given to other
agents. Case (1) does not affect whether the final allocation
will be EFX0, but case (2) is crucial. This is because agent i
might now have much smaller value for her own bundle com-
pared to her value for the bundles of some agents that just
received one good each that i values as a. Let Z be the set
of these agents. To make up the distance, agent i should pos-
sibly receive multiple goods of value b while all agents in Z
must freeze for a number of subsequent rounds depending on
the ratio a/b.

Algorithm 1 MATCH&FREEZE(N,M, (vi)i∈N )

1: Input: a 2-value instance using the values a, b (a > b ≥ 0)
2: L← N . set of active agents
3: R←M . set of unallocated goods
4: ` = (1, 2, . . . , n) . ordered list of agents
5: while R 6= ∅ do . every iteration is a round
6: Construct the bipartite graph G = (L ∪R,E).
7: Compute a maximum matching on G.
8: for each matched pair (i, g) do
9: Allocate good g to agent i.

10: Remove g from R.
11: for each unmatched active agent i w.r.t. ` do
12: Allocate one arbitrary unallocated good g to i.
13: Remove g from R.
14: Construct the set F of agents that need to freeze.
15: Remove agents of F from L for the next ba/b− 1c rounds.
16: Put agents of F to the end of `.
17: return the resulting allocation A.

We define the set F of agents that need to freeze at the
end of round r to consist of all those agents who must be-
come inactive because they have obtained too much value
from the perspective of other agents (similarly to Case (2)
above). Formally, for every active agent i, let gi be the good
she gets in round r. We begin by setting F = {i ∈ L |
∃j ∈ L : vj(gi) = a, vj(gj) = b}. Then, iteratively, as long
as there is an agent i ∈ L\F such that there exists j ∈ F with
vj(gi) = a, we also add i to F . Each agent in F will remain
frozen for the next ba/b − 1c rounds. In the case b = 0, we
use the interpretation ba/b− 1c = +∞ in which case agents
in F remain frozen forever. Exploiting the properties of the
maximum matchings used to allocate goods we can prove that
no agent in F will become envious while frozen, and that F
is always a strict subset of L. The latter means that there is at
least one (non-frozen) active agent at any time, and thus the
algorithm will terminate after at most m rounds.

Theorem 4.1. MATCH&FREEZE computes an EFX0 alloca-
tion in polynomial time, for any 2-value instance.

Proof sketch. For any i ∈ N , let ri be the round in which
the last goods of value a for agent i were allocated. Since the
goods in every round are allocated by computing a maximum
matching, we can show that for each agent i ∈ N :

• She received a good for which she has value a in each of
the rounds 1, 2, . . . , ri − 1.

• She can freeze only at the end of round ri, and only if
during ri she received a good for which she has value a.

• She can freeze at most once. After freezing, she has
value b for each of the remaining goods.

First, let us see why the algorithm terminates in polynomial
time. If no agent ever becomes frozen, then the algorithm
terminates after at most dm/ne rounds. Otherwise, let r be
the first round at the end of which an agent becomes frozen,
i.e., there exists some agent j with vj(gj) = b and some agent
i with vj(gi) = a. By the definition of rj and the above
observations, r = rj . Since agent j did not become frozen in
round r = rj (because vj(gj) = b), this means that she will
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never freeze. Since agent j gets a good in every round, the
algorithm terminates after at most m rounds.

Now, it remains to show that the final allocation is EFX0.
This follows by a careful case analysis and the following ob-
servation: If at the beginning of some round r > ri, an ac-
tive agent i is envy-free towards agent j, then agent i will be
EFX0 towards agent j at the end of the algorithm. Due to
space constraints, we omit the details.

5 MNW and the EFX-Value
As we saw in Section 3, maximizing the Nash welfare does
not yield an EFX allocation in general. Here we take a differ-
ent route and instead of considering exact EFX allocations,
we focus on approximation. We start by showcasing that
maximizing the Nash welfare does not guarantee any mean-
ingful approximation of EFX according to the current defini-
tion of approximation used in the literature [Plaut and Rough-
garden, 2018; Chan et al., 2019; Amanatidis et al., 2019].
Definition 5.1 (α-EFX allocation). For α ∈ (0, 1], an alloca-
tion A is α-EFX if for every pair i, j ∈ N and every good g ∈
Aj such that vi(g) > 0, it holds that vi(Ai) ≥ αvi(Aj \{g}).
Let w > 1 and ε < 1

2w . Consider the following very simple
instance with two agents, three goods, and values:

g1 g2 g3
agent 1 w 0 1/2
agent 2 w 1 ε

We first claim that the allocation A∗ = (A1 = {g1, g3},
A2 = {g2}) is the only one that achieves the maximum Nash
welfare ofw+1/2. Indeed, the Nash welfare of any allocation
that gives g2 to agent 1 can only increase by moving g2 to
agent 2, while any allocation other than A∗ that gives g2 to
agent 2 has Nash welfare either (w + 1)/2 or w + εw <
w+1/2. Notice, however, that A∗ is not EFX since v2(A2) =
1 < w = v2(A1 \ {g3}). Instead, it is only 1/w-EFX, an
approximation factor that can be arbitrarily close to zero as w
becomes large.

Nevertheless, A∗ is not that far away from being an EFX
allocation! To see this, consider the allocation B = (B1 =
{g1}, B2 = {g2, g3}) that is obtained from A∗ by only mov-
ing g3 from agent 1 to agent 2. Clearly, agent 2 is EFX to-
wards agent 1, as the latter gets only one good. Moreover, the
value agent 2 has now is v2(B2) = 1 + ε, which is extremely
close to the value v2(A2) = 1 that agent 2 has in A∗. So, even
though A∗ is 1/w-EFX because v2(A2) is very low compared
to v2(A1 \ {g3}), v2(A2) is actually very close to the value
she would have in a nearby EFX allocation. Consequently, if
we accept that agent 2 considers the EFX allocation B as fair,
then she should also consider A∗ as being almost fair.

We say that the value v2(B2) = 1+ε is the EFX-value that
agent 2 can achieve by augmenting her bundle with a subset
of goods from agent 1 in order to create the closest-to-A∗
(in terms of value) allocation B which she considers as EFX.
Then, since v2(A2) = 1

1+εv2(B2), agent 2 achieves an ap-
proximation of 1

1+ε of her EFX-value. Let us now formalize
these notions for any number of agents.
Definition 5.2 (EFX-value). Let A = (A1, . . . , An) be an
allocation. For every pair of agents i, j ∈ N , letXij ⊆ Aj be

a set of goods such that vi(Ai ∪Xij) ≥ vi(Aj \ (Xij ∪{g}))
for every g ∈ Aj \Xij and vi(Ai∪Xij) is minimized. Then,
the EFX-value of agent i is

χi(A) = max
j∈N\{i}

vi(Ai ∪Xij).

Definition 5.3 (α-vEFX allocation). For α ∈ (0, 1], an allo-
cation A is α-vEFX if vi(Ai) ≥ αχi(A) for every i ∈ N .

We remark that using EFX0 instead of EFX in the above defi-
nitions does not make any difference since adding zeros does
not affect the EFX-value. Furthermore, observe that a 1-
vEFX allocation is an EFX allocation but not necessarily an
EFX0 allocation.

Our first result in this section illustrates the connection be-
tween approximate EFX and vEFX allocations.

Theorem 5.1. An α-EFX allocation is also an α
1+α -vEFX

allocation and this guarantee is tight. On the other hand, an
α-vEFX allocation is not guaranteed to be β-EFX, for any
α, β ∈ (0, 1).

Even though maximizing the Nash welfare may not yield a
β-EFX for any β ∈ (0, 1) as we showed above, it is guaran-
teed to produce a 1/2-vEFX allocation!

Theorem 5.2. Any maximum Nash welfare allocation A∗ is
a 1/2-vEFX allocation and this factor is tight.

6 Directions for Future Work
We studied the connection between two celebrated notions,
that of maximum Nash welfare and envy-freeness up to
any good. The first question that our work leaves open is
whether it is possible to compute in polynomial time an al-
location that maximizes the Nash welfare for 2-value in-
stances. Another direction is to investigate whether the al-
gorithmic ideas presented in Section 5 for 2-value instances
can be extended to computing EFX0 allocations for k-value
instances, for any k ≥ 3. Finally, going beyond exact MNW
or EFX allocations, a natural question is whether one can
design polynomial-time algorithms with constant approxima-
tion guarantees for both the EFX-value and the Nash welfare.
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