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Abstract. We study the following system of equations known as Schrödinger-Poisson problem
−ε2∆v + v + φv = f(v) in RN

−∆φ = aNv
2 in RN

φ→ 0 as |x| → +∞
where ε > 0 is a small parameter, f : R → R is given, N ≥ 3, aN is the surface measure of the

unit sphere in RN and the unknowns are v, φ : RN → R.
We construct non-radial sign-changing multi-peak solutions in the semiclassical limit. The

peaks are displaced in suitable symmetric configurations and collapse to the same point as ε→ 0.

The proof is based on the Lyapunov-Schmidt reduction.

1. Introduction

In this paper we are concerned with the existence of sign-changing solutions to the following
nonlinear Schrödinger-Poisson problem

(SP)

 −ε
2∆v + v + φv = f(v) in RN

−∆φ = aNv
2 in RN

φ(x)→ 0 as |x| → +∞
where ε is a small and positive parameter, f : R→ R is given, N ≥ 3, aN is the surface measure

of the unit sphere in RN and the unknown is (v, φ) : RN × RN → R.

Systems like (SP) have been object of many investigations in the last years because of their
strong physical meaning. Indeed they appear in quantum mechanics models (see e.g. [7, 8, 18])
and also in semiconductor theory [5, 6, 19, 20]. In [5, 6], for instance, they have been introduced
as models describing solitary waves for nonlinear stationary equations of Schrödinger type inter-
acting with an electrostatic field, and are usually known as Schrödinger-Poisson systems. In this
context the nonlinear term f simulates, as usual, the interaction between many particles, while
the solution φ of the Poisson equation plays the role of a potential determined by the charge of the
wave function itself. From another point of view, the interest on this problem stems also from the
Slater approximation of the exchange term in the Hartree-Fock model, see [23]. In this framework
f(u) = up with p = 5/3, however, other nonlinearities have been used in different approximations.

In the following we look for bound states to (SP) in the semiclassical case, namely as ε→ 0.
While there are many results about existence, multiplicity and behavior of positive solutions to
(SP) (see [1, 4, 9, 10, 12, 13, 17, 21, 22] and references therein), little is known about the existence
of solutions (v, φ) such that v is sign-changing.
In [16] the existence of solutions with v nodal is established in the case ε = 1, the solutions found
are radial and v has any fixed number of nodal domains. As far as we know, nothing is known
about the existence of non-radial sign-changing v.
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In this paper we give an improvement in this direction. Indeed we construct, for ε small, non-
radial solutions to (SP) such that v is nodal, moreover v is multi-peak shaped and its peaks collapse
all at a certain point (which we may assume to be 0 by the invariance by translation) as ε → 0
(cluster nodal solutions).

We recall that D’Aprile and Wei in [12] proved the existence of positive cluster solutions to (SP)
as ε goes to zero, hence this paper completes the picture about the existence of cluster solutions
to (SP).

Before stating the main results we fix the assumptions on f that we will use in the sequel and we
recall some known facts.

(f1) f ∈ C1+σ
loc (R) with σ ∈ (0, 1), f(0) = f ′(0) = 0 and f(t) = −f(−t).

(f2) the problem

(1.1)


∆w − w + f(w) = 0 in RN
w > 0 in RN
lim|x|→+∞ w(x) = 0
w(0) = maxRN w(x)

has a unique solution w which is non degenerate, i.e. denoting by L : H2(RN ) → L2(RN ) the
linearized operator in w,

L[u] := ∆u− u+ f ′(w)u,

then

Kernel(L) = span

{
∂w

∂x1
, . . . ,

∂w

∂xN

}
.

We recall that w is a critical point of the following energy functional

I[w] :=
1

2

∫
RN

(|∇w|2 + w2)dx−
∫
RN

F (w)dx

where F (t) =
∫ t

0
f(s)ds.

By the well-know result of Gidas, Ni and Nirenberg ([15]), w is radially symmetric and strictly
decreasing in r = |x|. Moreover, by classical regularity results, the following asymptotic behaviors
hold:

(1.2) w(r), w′′(r) = ANr
−N−1

2 e−r
(

1 +O

(
1

r

))
,

(1.3) w′(r) = −ANr−
N−1

2 e−r
(

1 +O

(
1

r

))
,

where AN > 0 is a suitable positive constant.
The class of nonlinearities f satisfying (f1)-(f2) includes, and it’s not restricted to, the homoge-

neous nonlinearity f(v) = |v|p−1v with p ∈ (1, N+2
N−2 ).

In this paper the dimension N is chosen in the interval [3, 6]. Under this assumption it is well
known that the system (SP) can be reduced into a single equation. Indeed a simple application
of the Lax-Milgram theorem ensures the existence of a unique solution of the second equation of
(SP), namely the following result holds:

Lemma 1.1. Let N ∈ [3, 6]. For every f ∈ L
2N
N+2 (RN ) there exists a unique solution φ[f ] in

D1,2(RN ) of the equation −∆φ = aNf . Moreover the following representation formula holds:

φ[f ](x) :=

∫
RN

f

|x− y|N−2
dy.
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Furthermore the functional G : H1(RN )→ R

G(u) :=

∫
RN

φ[u2]u2dx

is C1 and G′(u)[v] = 4
∫
RN φ[u2]uvdx.

By Lemma 1.1 we reduce to study the following nonlinear scalar equation in H1(RN )

(1.4) −ε2∆v + v + vφ[v2] = f(v) in RN .

We also recall that the solutions of (1.4) are critical points of the C2-functional Jε : H1(RN )→ R
defined as

Jε[v] =
1

2

∫
RN

(
ε2|∇v|2 + v2

)
dx−

∫
RN

F (v)dx+
1

4

∫
RN

φ[v2](x)v2(x)dx.

We can now state our results. Our first theorem is about the existence of nodal solutions whose
form consists of one positive peak centered in 0 surrounded by k negative peaks located near the
vertices of a regular polygon, with the number k sufficiently large (see figure 1).

Figure 1. A configuration with 1 positive peaks at the origin surrounded by 7
negative peaks.

Theorem 1.2. Let (f1)and (f2) hold and let N ∈ [3, 6].
Fix k ≥ 7 and let Q1, . . . , Qk ∈ R2 be the vertices of a two-dimensional convex regular polygon
centered at 0. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), there is rε > 0 and a sign-
changing solution vε ∈ H1(RN ) to (1.4) of the form

vε(x) = w
(x
ε

)
−

k∑
i=1

w

(
x− Piε

ε

)
+ h.o.t., as ε→ 0

uniformly for x ∈ RN .
Here Piε := (rεQi,0) ∈ RN , i = 1, . . . , k and rε → 0 as ε→ 0. Moreover

lim
ε→0

rε

ε log 1
ε2

= C

for some C > 0.

More in general we can prove the following result:

Theorem 1.3. Let Q1, . . . , Qk ∈ Rh (2 ≤ h ≤ N) be the vertices of a convex regular polytope in
Rh centered at 0 and having radius 1 and side s.
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Assume s ≤ 1, h > 2 or s < 1, h = 2. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0),
there is a sign-changing solution vε to (1.4) with one positive peak centered in 0 and k negative
peaks centered at points Piε := (rεQi,0) ∈ RN , i = 1, . . . , k, such that rε → 0 as ε→ 0. Moreover

lim
ε→0

rε

ε log 1
ε2

= C

for some C > 0.

The proof of our results is based on the well known Lyapunov-Schmidt reduction procedure (see
[2]). In particular, in order to deal with nodal clustered solutions, we perform the reduction in
suitable symmetric settings in the spirit of [11].

We outline here the main ideas.
First our approximate solutions are constructed as the sum (with sign) of suitably rescaled w
centered at distinct points Pi ∈ RN such that Pi → 0 as ε→ 0.

This choice is the most natural. In fact if v is a solution of (1.4) and P ∈ RN then vε(x) :=
v(εx+P ) solves the equation −∆u+u+ ε2φ[u2]u = f(u) which, since ε→ 0, can be approximated
by problem (1.1). Hence it’s quite natural to take v ∼ ±w(x−Pε ) as a solution of (1.4) for ε small.

Moreover, if we take several different fixed points Pi ∈ RN , then v ∼
∑
i±w(x−Piε ) is still a

good approximation of a solution v of (1.4) for ε small enough, in spite of the presence of nonlinear
terms in the equation. The reason is that, thanks to the exponential decay of w, the interactions
among peaks centered at different fixed points becomes negligible when ε→ 0.

In our case however we are looking for clustered solutions, namely the points Pi → 0 as ε→ 0.
This means that the interactions among peaks play a role.

Anyway by locating the peaks in suitable symmetric configurations, still we will be able to find
a solution of the desired form.

Indeed we recall that the Lyapunov-Schmidt reduction method reduces the problem to find a
critical point for a functional defined on a finite-dimensional space (reduced functional). In our
case the reduced functional, up to a positive constant, has the form

Mε[(P1, ..., P`)] = ε2
∑
i 6=j

1

|Pi−Pjε |N−2
−

∑
i6=j,λi=λj

w

(
Pi − Pj

ε

)

+
∑

i 6=j,λi=−λj

w

(
Pi − Pj

ε

)
+ h.o.t.,

where λi = ±1 according to the sign of each peak and the unknowns Pi determine the location of
the peaks. We notice that it consists of three main terms: the first term depends on the Poisson
potential effect, the second term is due to the interplay between the peaks of the same sign and
has a repulsive effect, the third term is due to the interaction between peaks of opposite sign and
has an attractive effect.
Observe that the first term ε2

∑
i 6=j

1

|
Pi−Pj
ε |N−2

increases when the points Pi are close to zero, while

using the exponential decay of w, the interaction term −
∑
i 6=j,λi=λj w

(
Pi−Pj
ε

)
increases when

the mutual distance between the points Pi is big. Hence, if we restrict the functional to suitable
symmetric configurations in which the peaks having opposite sign are kept away from each other,

then the mutual interaction between opposite peaks, i.e. the third term +
∑
i 6=j,λi=−λj w

(
Pi−Pj
ε

)
,

becomes negligible and so we can easily conclude that the equilibrium is achieved for a suitable
(symmetric) configuration of the points Pi, which is a local maximum for the functional Mε, namely
we have produced a sign-changing cluster solution for the problem (SP).

We remark that one can find solutions with analogous symmetric configurations as in all the
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previous results, also in the case of the scalar Schrödinger equation

−ε2∆v + V (|x|)v = |v|p−1v x ∈ RN

in presence of a radially symmetric potential V with a local maximum in 0 (see also [11]).

Notations

Before going on we establish some notations.
Let us denote by H1(RN ) the usual Sobolev space endowed with scalar product and norm

(u, v)ε =

∫
RN

(
ε2∇u∇v + uv

)
dx; ‖u‖2 :=

∫
RN

(
ε2|∇u|2 + u2

)
dx

and by D1,2(RN ) the completition of the space C∞c (RN ) with respect to the norm

‖u‖D1,2 :=

(∫
RN

ε2|∇u|2 dx
)1/2

.

Moreover let Lp(RN ) the usual Lebesgue space endowed with the norm

|u|p :=

(∫
RN
|u|p dx

) 1
p

p ∈ [1,∞) ‖u‖∞ = sup
x∈RN

|u(x)|.

In particular, let us denote by 〈·, ·〉 the usual scalar product in L2(RN ), namely

〈u, v〉 :=

∫
RN

uv dx.

2. General setting

The Lyapunov-Schmidt reduction will be made around an appropriate set of approximating
solutions. Precisely, for any ` ∈ N we define

(2.5) Γε :=

{
P = (P1, . . . , P`) ∈ RN` : β2ε log

1

ε2
< |Pi − Pj | < ε

(
log

1

ε2

)2

for i 6= j

}
where β ∈ (σ, 1) is sufficiently close to 1. Let P ∈ Γ̄ε and set wPi(x) = w(x−Piε ), i = 1, . . . , `. We
look for solutions of (1.4) of the form

(2.6) vε(x) := wP(x) + ψε(x)

where ψε will be a remainder term belonging into a suitable space and the approximating solution
wP is of the form

wP(x) =
∑̀
i=1

λiwPi(x)

with λi = ±1 according to the sign of each peak.

In particular we will reduce ourselves to symmetric configurations, finding solutions vε with some
symmetric properties. Here we show that φ[v2

ε ] preserves the same symmetry property. Indeed, let
G be a group of symmetries of RN and let g ∈ G. For u : RN → R we set

(2.7) (Tgu)(x) = u(gx).

Let

X :=
{
u ∈ H1(RN ) : Tgu = u, g ∈ G

}
and

Y :=
{
φ ∈ D1,2(RN ) : Tgφ = φ, g ∈ G

}
.
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We remark that X,Y are the subspace of H1 and D1,2 respectively invariant under the action
(2.7).

Lemma 2.1. If u ∈ X then φ[u2] ∈ Y .

Proof. Let u ∈ X. To prove that φ[u2] ∈ Y we have to show that φ[u2] is invariant under the
action (2.7). To this aim let us evaluate

−∆(Tgφ[u2]) = Tg(−∆φ[u2]) = Tg(aNu
2) = aNu

2(gx) = aNu
2(x) = −∆φ[u2]

and then, by the uniqueness of the solution, it follows that Tgφ[u2] = φ[u2]. �

Since we look for a solution near wP, a key step is to evaluate S(wP) where

S(v) := ε2∆v − v + f(v)− φ[v2]v.

What we can prove is the following result (for the proof see for instance [12]):

Lemma 2.2. Let β ∈ (σ, 1). There exists a constant C > 0 such that for every ε > 0 and
P = (P1, . . . , Pl) ∈ RN` with |Pi − Pj | ≥ 2β2ε log 1

ε , for i 6= j :

|Sε[wP]| ≤ Cεβ
2(β2+σ)

l∑
i=1

w1−β2

Pi
.

3. Energy estimates

Let us fix ` ∈ N and P = (P1, . . . , P`) ∈ RN`. In this section we derive the following key result
about the interaction among ` signed bumps displaced in P.

Proposition 3.1. The following energy estimates hold as

∣∣∣∣Pi − Pjε

∣∣∣∣→ +∞:

(3.8)

∫
RN

(
1

2

(
ε2|∇wP|2 + w2

P

)
− F (wP)

)
dx = εN`I[w]− εN (γ0 + o(1))

∑
i 6=j

λiλjw

(
Pi − Pj

ε

)
,

(3.9)
1

4

∫
RN

∫
RN

w2
P(x)w2

P(y)

|x− y|N−2
dxdy = εN+2C1 + εN+2(C2 + o(1))

∑
i6=j

1

|Pi−Pjε |N−2

where γ0 := 1
2

∫
RN f(w)ex1dx and C1, C2 are positive constants.

In order to prove Proposition 3.1 we will need some useful lemmas that we briefly recall here.
From [12, Lemma 3.1] one has

Lemma 3.2. For i 6= j ∫
RN

f(wPi)wPj = εNw

(
Pi − Pj

ε

)
(2γ0 + o(1))

where γ0 is the same constant defined in Proposition 3.1.

Moreover in [11, pg. 23] it has been proved that

Lemma 3.3. Let

H(P) :=

∫
RN

[F (
∑̀
i=1

λiwPi)−
∑̀
i=1

F (wPi)−
∑
i 6=j

λiλjf(wPi)wPj ] dx,

then

|H(P)| = εNo(1)
∑
i 6=j

w

(
Pi − Pj

ε

)
.

The following result can be found in [12]:
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Lemma 3.4. For every β ∈ {1, . . . , N − 1} and g : RN → R such that (1 + |y|β+1)g ∈ L1 ∩L∞ set

Ψβ [g](x) :=

∫
RN

1

|x− y|β
g(y)dy.

Then there exist two positive constants C(β, g), C ′(β, g) such that∣∣∣∣Ψβ [g](x)− C(β, g)

|x|β

∣∣∣∣ ≤ C ′(β, g)

|x|β+1
.

Finally in order to estimate the energy term coming from the Poisson equation, we will also
need the following:

Lemma 3.5. There exists a constant C > 0 such that for every Pi, Pj ∈ RN and every x ∈ RN

(3.10) φ[wPiwPj ](x) ≤ ε2C.

(3.11) φ[wPi ](x) ≤ ε2C.

Proof. We prove (3.10), the proof of (3.11) is similar. If i = j one has

φ[w2
Pi ](x) =

∫
RN

w2
Pi

(y)

|x− y|N−2
dy = ε2

∫
RN

w2(y)

|x−Piε − y|N−2
dy = ε2φ[w2]

(
x− Pi
ε

)
where x 7→ φ[w2](x) is bounded by Strauss Lemma since it belongs to C2 ∩D1,2

r .
When i 6= j then

φ[wPiwPj ](x) =

∫
RN

wPi(y)wPj (y)

|x− y|N−2
dy

≤ w
(

1

2

|Pi − Pj |
ε

)(∫
{|y−Pj |≥ 1

2 |Pi−Pj |}

wPi(y)

|x− y|N−2
dy +

∫
{|y−Pi|≥ 1

2 |Pi−Pj |}

wPj (y)

|x− y|N−2
dy

)

≤ ε2w
(

1

2

|Pi − Pj |
ε

)(∫
w(y)

|x−Piε − y|N−2
dy +

∫
w(y)

|x−Pjε − y|N−2
dy

)

= ε2w

(
1

2

|Pi − Pj |
ε

)(
φ[w]

(
x− Pi
ε

)
+ φ[w]

(
x− Pj
ε

))
,

and x 7→ w(x), φ[w](x) are bounded (φ[w] ∈ C2 ∩D1,2
r )). �

Proof of Proposition 3.1. We first prove (3.8).
Easy computations show that∫

RN
|∇wP|2 dx+

∫
RN

w2
P dx =

∫
RN
|
∑̀
i=1

λi∇wPi |2 dx+

∫
RN

(
∑̀
i=1

λiwPi)
2 dx

= εN−2`

∫
RN
|∇w|2 dx+

∑
i6=j

λiλj

∫
∇wPi∇wPj dx,+εN`

∫
RN

w2 dx+
∑
i6=j

λiλj

∫
RN

wPiwPj dx,

∫
RN

F (wP) dx =

∫
RN

F (
∑̀
i=1

λiwPi) dx = εN`

∫
RN

F (w) dx+
∑
i 6=j

λiλj

∫
RN

f(wPi)wPj dx+H(P).

Hence, combining the previous estimates and using Lemma 3.3 we obtain (3.8), and the conclusion
follows applying Lemma 3.2.
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Next we prove (3.9). An easy computation shows that∫
RN

∫
RN

w2
P(x)w2

P(y)

|x− y|N−2
dx dy =

∑̀
i=1

∫
RN

∫
RN

wPi(x)2wPi(y)2

|x− y|N−2
dx dy

+
∑̀
i 6=j

∫
RN

∫
RN

wPi(x)2wPj (y)2

|x− y|N−2
dx dy

+ 2
∑̀
i 6=j,h

λiλj

∫
RN

∫
RN

wPi(x)wPj (x)wPh(y)2

|x− y|N−2
dx dy

+
∑̀

i 6=j,h 6=k

λiλjλhλk

∫
RN

∫
RN

wPi(x)wPj (x)wPh(y)wPk(y)

|x− y|N−2
dx dy.

We evaluate each term in the RHS. Indeed∫
RN

∫
RN

wPi(x)2wPi(y)2

|x− y|N−2
dx dy = εN+2

∫
RN

∫
RN

w(x)2w(y)2

|x− y|N−2
dx dy.

For i 6= j, by using Lemma 3.4 twice we estimate∫
RN

∫
RN

wPi(x)2wPj (y)2

|x− y|N−2
dx dy = ε2

∫
RN

wPi(x)2ΨN−2[w2]

(
x− Pj
ε

)
dx

= ε2C

∫
RN

wPi(x)2 1∣∣∣x−Pjε ∣∣∣N−2
dx+ ε2O(1)

∫
RN

wPi(x)2 1∣∣∣x−Pjε ∣∣∣N−1
dx

= εN+2CΨN−2[w2]

(
Pj − Pi

ε

)
+ εN+2O(1)ΨN−1[w2]

(
Pj − Pi

ε

)
= εN+2C2(1 + o(1))

1

|Pj−Piε |N−2

where C = C(N − 2, w2) is the positive constant in Lemma 3.4.
Finally for i 6= j and h, k ∈ {1, . . . , `}, by using (3.10) in Lemma 3.5 and the exponential decay of
w we have∫

RN

∫
RN

wPi(x)wPj (x)wPh(y)wPk(y)

|x− y|N−2
dx dy =

∫
RN

wPi(x)wPj (x)φ[wPhwPk ](x) dx

≤ ε2C
∫
RN

wPi(x)wPj (x) dx

≤ ε2Cw
(

1

2

|Pi − Pj |
ε

)(∫
{|x−Pj |≥ 1

2 |Pi−Pj |}
wPi(x) dx+

∫
{|x−Pi|≥ 1

2 |Pi−Pj |}
wPj (x) dx

)

≤ εN+2Cw

(
1

2

|Pi − Pj |
ε

)∫
RN

w(x) dx ≤ εN+2Cw

(
1

2

|Pi − Pj |
ε

)
= εN+2o(1)

1

|Pi−Pjε |N−2

Estimate (3.9) is obtained as a combination of all the previous estimates. �

4. The linearized problem

First we need the following result based on PDE estimates.
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Lemma 4.1. Let ε > 0, P ∈ Γε and v ∈ C2(RN ). There exists µ0 (independent on ε,P and v)
such that if µ ∈ (0, µ0) and

(4.12)

∣∣ε2∆v − (1 + φ[wP
2])v

∣∣ ≤ c0e−µmini=1,...,`
|x−Pi|
ε , ∀ x ∈ RN ,

v(x)→ 0 as |x| → +∞
for some c0 > 0, then

|v(x)| ≤ 2c0(`− 1 + e2)e−µmini=1,...,`
|x−Pi|
ε , ∀ x ∈ RN .

Proof. We use a comparison principle. Take a χ(t) a smooth cut-off function such that

χ(t) = 1, for |t| ≤ 1, χ(t) = 0 for |t| ≥ 2, 0 ≤ χ ≤ 1.

Now consider the following auxiliary function:

ξ(x) = 2c0
∑̀
i=1

[
e−µ

|x−Pi|
ε + (1− e−µ

|x−Pi|
ε )χ

(
µ
|x− Pi|

ε

)]
.

We have that

∆ξ = 2c0
∑
i

[
µ2

ε2
e−µ

|x−Pi|
ε +

(N − 1)µ

ε2
ε

|x− Pi|
e−µ

|x−Pi|
ε +

µ2

ε2
(1− e−µ

|x−Pi|
ε )χ′′

(
µ
|x− Pi|

ε

)
+

(N − 1)µ

ε2
ε

|x− Pi|
(1− e−µ

|x−Pi|
ε )χ′

(
µ
|x− Pi|

ε

)
+

2µ2

ε2
e−µ

|x−Pi|
ε χ′(µ

|x− Pi|
ε

)

+
(N − 1)µ

ε2
ε

|x− Pi|
e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)
− µ2

ε2
e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)]
Hence

ε2∆ξ = 2c0
∑
i

[
µ2e−µ

|x−Pi|
ε + (N − 1)µ

ε

|x− Pi|
e−µ

|x−Pi|
ε + µ2(1− e−µ

|x−Pi|
ε )χ′′

(
µ
|x− Pi|

ε

)
+(N − 1)µ

ε

|x− Pi|
(1− e−µ

|x−Pi|
ε )χ′

(
µ
|x− Pi|

ε

)
+ 2µ2e−µ

|x−Pi|
ε χ′(µ

|x− Pi|
ε

)

+(N − 1)µ
ε

|x− Pi|
e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)
− µ2e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)]
Fixed x ∈ RN . We distinguish three cases:

1. There exists i ∈ {1, . . . , `} such that µ |x−Pi|ε ≤ 1. Then

ξ(x) = 2c0 + 2c0
∑
j 6=i

e−µ
|x−Pj |

ε

= 2c0e
−µ |x−Pi|ε eµ

|x−Pi|
ε + 2c0

∑
j 6=i

e−µ
|x−Pj |

ε

≤ 2c0(e+ `− 1)e−µ
|x−Pi|
ε

and, since,

(4.13) ε2∆e−µ|x−Pi| =

(
µ2 − (N − 1)µε

|x− Pi|

)
e−µ

|x−Pi|
ε

for x 6= Pi we have

ε2∆ξ − (1 + φ[wP
2]ξ ≤ 2c0

∑
j 6=i

(µ2 − 1)e−µ
|x−Pj |

ε − 2c0

≤ −c0e−µ
|x−Pi|
ε

provided µ is sufficiently small.
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2. For all i = 1, . . . , `, µ |x−Pi|ε ≥ 2. Then

ξ(x) = 2c0
∑
i

e−µ
|x−Pi|
ε ≤ 2c0`e

−µmini=1,...,`
|x−Pi|
ε

and by (4.13)

ε2∆ξ − (1 + φ[wP
2])ξ ≤ 2c0

∑
i

(µ2 − 1)e−µ
|x−Pi|
ε

≤ −c0
∑
θ

e−µ
|x−Pi|
ε ≤ −c0e−µmini=1,...`

|x−Pi|
ε

provided µ is sufficiently small.

3. There exists i ∈ {1, . . . , `} such that 1 < µ |x−Pi|ε < 2. Then

ξ(x) = 2c0

e−µ |x−Pi|ε + (1− e−µ
|x−Pi|
ε )χ

(
µ
|x− Pi|

ε

)
+
∑
j 6=i

e−µ
|x−Pj |

ε


≤ 2c0

[
1 + (`− 1)e−µ

|x−Pi|
ε

]
= 2c0(eµ

|x−Pi|
ε + `− 1)e−µ

|x−Pi|
ε

≤ 2c0(e2 + `− 1)e−µ
|x−Pi|
ε

and, since

ε2∆

[
(1− e−µ

|x−Pi|
ε )χ

(
µ
|x− Pi|

ε

)]
= µ2(1− e−µ

|x−Pi|
ε )χ′′

(
µ
|x− Pi|

ε

)
+

(N − 1)µε

|x− Pi|
(1− e−µ

|x−Pi|
ε )χ′

(
µ
|x− Pi|

ε

)
+ 2µ2e−µ

|x−Pi|
ε χ′

(
µ
|x− Pi|

ε

)
+

(N − 1)µε

|x− Pi|
e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)
− µ2e−µ

|x−Pi|
ε χ

(
µ
|x− Pi|

ε

)
= O(µ2)e−µ

|x−Pi|
ε

we have, by (4.13),

ε2∆ξ − (1 + φ[w2
P])ξ ≤ O(µ2)e−µ

|x−Pi|
ε − ξ

≤ (O(µ2)− 2c0)e−µ
|x−Pi|
ε

≤ −c0e−µ
|x−Pi|
ε

for µ sufficiently small.

Hence, in any case, we have

(4.14) ξ(x) ≤ 2c0(e2 + `− 1)e−µmini=1,...,`
|x−Pi|
ε

(4.15) ε2∆ξ − (1 + φwP
)ξ ≤ −c0e−µmini=1,...,`

|x−Pi|
ε

for any x ∈ RN .
By (4.12)

(4.16) −ε2∆v + (1 + φ[wP
2])v ≤ |ε2∆v − (1 + φ[wP

2])v| ≤ c0e−µmini=1,...,`
|x−Pi|
ε

for all x ∈ RN . Then, by (4.15) and (4.16) we get

ε2∆(ξ − v)− (1 + φ[w2
P])(ξ − v) ≤ 0

for all x ∈ RN .
We claim that ξ − v ≥ 0 in RN .
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Indeed, if we suppose by contradiction that the minimum point x̄ of ξ−v is such that (ξ−v)(x̄) < 0,
since ∆(ξ − v)(x̄) ≥ 0 then

ε2∆(ξ − v)(x̄)− (1 + φ[w2
P])(ξ − v)(x̄) > 0.

Analogously we can prove that v + ξ ≥ 0. Thus |v| ≤ ξ and, using (4.14) we can conclude. �

Let P ∈ Γε. Let us introduce the following functions

ZPi,j = f ′(wPi)
∂wPi
∂xj

, i ∈ {1, . . . , `}, j ∈ {1, . . . , N}.

Since

ZPi,j = −ε2∆
∂wPi
∂xj

+
∂wPi
∂xj

after an integration by parts it is immediate to prove that

(4.17)

(
v,
∂wPi
∂xj

)
ε

= 〈v, ZPi,j〉 ∀ v ∈ H1(RN ).

Then orthogonality to the functions
∂wPi
∂xj

in H1(RN ) is equivalent to orthogonality to ZPi,j in

L2(RN ). Then we easily get

(4.18) 〈ZPi,j ,
∂wPm
∂xn

〉 =

(
∂wPi
∂xj

,
∂wPm
∂xn

)
ε

=

 εN−2
∥∥∥ ∂w∂x1

∥∥∥2

H1(RN )
for (i, j) = (m,n)

o(εN−2) for (i, j) 6= (m,n)

as ε→ 0.
Let µ > 0 a sufficiently small number. We introduce the following weighted norm:

‖v‖∗,P := sup
x∈RN

eµmini=1,...,`
|x−Pi|
ε |v(x)|,

and the spaces

C∗,P = {v ∈ C(RN ) : ‖v‖∗,P <∞}, H2
∗,P = H2(RN ) ∩ C∗,P.

We consider the following linear problem :
Taken P ∈ Γε and given h ∈ C∗,P find a function v and constants ci,j satisfying

(4.19)


LP[v] = h+

∑
i,j ci,jZPi,j

v ∈ H2
∗,P, 〈v, ZPi,j〉 = 0, i = 1, . . . , `, j = 1, . . . , N.

where

LP[v] := ε2∆v − v + f ′(wP)v − φ[w2
P]v − 2φ[wPv]wP.

Lemma 4.2. There exists C > 0 such that, provided ε is sufficiently small, if P ∈ Γ̄ε and (v, ci,j , h)
satisfies (4.19) the following holds

‖v‖∗,P ≤ C‖h‖∗,P.

Proof. By contradiction, we assume the existence of a sequence εn → 0,

(v̄n, c̄
n
i,j) ∈ H2

∗,Pn × R, h̄n ∈ C∗,Pn

satisfying (4.19) such that

‖v̄n‖∗,Pn > n‖h̄n‖∗,Pn .
Set

vn =
v̄n

‖v̄n‖∗,Pn
, cni,j =

c̄ni,j
‖v̄n‖∗,Pn

, hn =
h̄n

‖v̄n‖∗,Pn
.

We obtain that (vn, c
n
i,j , hn) satisfies (4.19) and

‖vn‖∗,Pn = 1, ‖hn‖∗,Pn = o(1).
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Choose (h′,m) ∈ {1, . . . , `} × {1, . . . , N} be such that, up to a subsequence, |cnh′,m| ≥ |cni,j | for all

(i, j) and n. By multiplying the equation in (4.19) by
∂wPn

h′
∂xm

and integrating on RN , we get∑
i,j

cni,j〈ZPni ,j ,
∂wPn

h′

∂xm
〉︸ ︷︷ ︸

(A)

= −〈hn,
∂wPn

h′

∂xm
〉︸ ︷︷ ︸

(B)

+ 〈LPn [vn],
∂wPn

h′

∂xm
〉︸ ︷︷ ︸

(C)

.

First let us examine the term (A). By (4.18)

(A) = εN−2
n cnh′,m

(∥∥∥∥ ∂w∂x1

∥∥∥∥2

+ o(1)

)
.

The term (B) can be estimated as

|(B)| =
∣∣∣∣∫

R3

hn
∂wPn

h′

∂xm
dx

∣∣∣∣ ≤ ‖hn‖∗,Pn ∫
R3

|∇wPn
h′
| dx ≤ εN−1

n ‖hn‖∗,Pn .

Then, as regards the last term (C) we find

|(C)| =

∣∣∣∣∫
RN
LPn [vn]

∂wPn
h′

∂xm
dx

∣∣∣∣
=

∣∣∣∣∫
RN

[
ε2n∆vn − vn + f ′(wPn)vn − φ[w2

Pn ]vn − 2φ[wPnvn]wPn
] ∂wPn

h′

∂xm
dx

∣∣∣∣
≤ C‖vn‖∗,Pn

∫
RN

∣∣∣f ′(wPn)− f ′(wPn
h′

)
∣∣∣ ∣∣∣∣∂wPnh′∂xm

∣∣∣∣ dx+ CεN−1
n ‖vn‖∗,Pn

≤ Cε−1
n ‖vn‖∗,Pn

∑
i6=j

∫
RN

wσPni wP
n
j
dx+ CεN−1

n ‖vn‖∗,Pn

≤ C‖vn‖∗,Pn
(
εN−1+2β2σ
n + εN−1

)
.

Putting together (A), (B) and (C) we get

cni,j = o(ε) ∀ (i, j)

by which

‖hn +
∑
i,j

cni,jZPni ,j‖∗,Pn = o(1).

This implies

(4.20) ‖LPn [vn]‖∗,Pn = o(1).

Fix R > 0. We claim
‖vn‖L∞(∪`i=1BRεn (Pni )) = o(1).

Otherwise, we may assume that

‖vn‖L∞(BRεn (Pn1 )) ≥ c > 0

for some R > 0. By multiplying the equation in (4.19) by vn and integrating by parts we get that
the sequence vn(εnx+ Pn1 ) is bounded in H1(RN ). Therefore, possibly passing to a subsequence,
vn(εnx+ Pn1 )→ v0 weakly in H1(RN ) and a. e. in RN and v0 satisfies

∆v0 − v0 + f ′(w)v0 = 0, |v0(x)| ≤ e−µ|x|.
According to elliptic regularity theory we may assume vn(εnx + Pn1 ) → v0 uniformly on compact
sets. Then ‖v0‖∞ ≥ c. By the non-degeneracy of w (assumption (f2)) it follows

v0 =

N∑
j=1

aj
∂w

∂xj
.
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On the other hand, for j ∈ {1, . . . , N}

0 =

∫
RN

vn(εnx+ Pn1 )ZPn1 ,m(εnx+ Pn1 ) dx =

(
vn(εx+ Pn1 ),

∂wPn1
∂xm

(εnx+ Pn1 )

)
ε

→
(
v0,

∂w

∂xm

)
1

= am

∥∥∥∥ ∂w∂x1

∥∥∥∥2

.

from which it follows am = 0 and hence, in particular, v0 = 0, a contradiction. Then the claim
follows. We immediately obtain

‖f ′(wPn)vn‖∗,Pn = o(1)

and by (4.20)
‖ε2n∆vn − (1 + φ[w2

Pn ])vn‖∗,Pn = o(1)

By the Lemma 4.1 we get

vn(x) = o(1)e−µmini=1,...,`
|x−Pni |
εn

which is a contradiction since ‖vn‖∗,Pn = 1. �

Lemma 4.3. For ε > 0 sufficiently small, for P ∈ Γ̄ε and h ∈ C∗,P there exists a unique pair
(v, ci,j) ∈ H2

∗,P × RN` solving (4.19). Furthermore by Lemma (4.2)

‖v‖∗,P ≤ C‖h‖∗,P.

Proof. The existence follows from the Fredholm alternative. To this aim, for every P ∈ Γ̄ε, let us
consider

W :=

{
v ∈ H1(RN ) :

(
v,
∂wPi
∂xj

)
ε

= 0, i = 1, . . . , ` j = 1, . . . , N

}
.

It is easy to see that W is a closed subset of H1(RN ). By (4.17) v ∈ W solves the equation in
(4.19) if and only if

〈LP[v], z〉 = 〈h, z〉 ∀ z ∈W.
Indeed, once we know v, we can determine the unique ci,j from the linear system of equations

(4.21) 〈LP[v],
∂wPi
∂xj
〉 = 〈h, ∂wPi

∂xj
〉+

∑
m,n

cm,n〈ZPm,n,
∂wPi
∂xj
〉.

with j = 1, . . . , N and i = 1, . . . , `.
The system (4.21) is equivalent to

−
∫
RN

f ′(wP)
∂wPi
∂xj

v dx+

∫
RN

(
φ[w2

P] + 2φ[wPv]
) ∂wPi
∂xj

v dx =

= −
∫
RN

h
∂wPi
∂xj

dx−
∑
m,n

cm,n

∫
RN

ZPm,n
∂wPi
∂xj

dx(4.22)

According to (4.18), the coefficient matrix is nonsingular since it is dominated by its diagonal. By
standard elliptic regularity, v ∈ L∞(RN ) ∩H2(RN ). Furthermore, using the C1,σ regularity of f
and the exponential decay of w

‖f ′(wP)v − 2φ[wPv]wP − h−
∑
i,j

ci,jZPi,j‖∗,P <∞

hence Lemma 4.1 implies ‖v‖∗,P <∞, consequently (v, ci,j) solves (4.19).
Thus it remains to solve (4.21). According to Riesz’s representation theorem, take KP(v), h̄ ∈ W
such that

(KP(v), ψ)ε = −〈f ′(wP)v, ψ〉+ 〈φ[w2
P]v + 2φ[wPv]wP, ψ〉 ∀ ψ ∈W.

(h̄, ψ)ε = −〈h, ψ〉 ∀ ψ ∈W.
Then the problem (4.21) consists in finding v ∈W such that

(4.23) v +KP(v) = h̄.
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It is easy to prove that KP is a linear compact operator from W to W .
Using Fredholm’s alternatives, (4.23) has a unique solution for each h̄, if and only if (4.23) has a
unique solution for h̄ = 0. Let v ∈ W be a solution of v + KP(v) = 0 then v solves the system
(4.19) with h = 0 for some ci,j ∈ R. Lemma 4.2 implies v ≡ 0. �

5. Finite dimensional reduction

This section is devoted to solve the following nonlinear system with the unknowns (ψ, ci,j) ∈
H2
∗,P × RN`:

(5.24)

{
Sε[wP + ψ] =

∑
i,j ci,jZPi,j ,

ψ ∈ H2
∗,P, 〈ψ,ZPi,j〉 = 0, i = 1, . . . , `, j = 1, . . . , N.

where P ∈ Γ̄ε and

Sε[v] = ε2∆v − v + f(v)− φ[v2]v.

We prove the following result.

Lemma 5.1. Fix τ = β4(1 + σ). Provided ε > 0 sufficiently small, for every P ∈ Γ̄ε there is a
unique pair (ψP, ci,j(P)) ∈ H2

∗,P × RN` which solve (5.24). Moreover

(5.25) ‖ψP‖∗,P < ετ ; (ψP, ψP)ε ≤ εN+2τ

and the maps P ∈ Γ̄ε 7−→ ψP ∈ H1(RN ) and P 7−→ ci,j(P) ∈ R are continuous.

Proof. We note that

Sε[wP + ψ] = Sε[wP] + LP[ψ] +R[ψ]

with

R[ψ] = [f(wP + ψ)− f ′(wP)ψ − f(wP)]−
[
φ[ψ2]wP + φ[ψ2]ψ + 2φ[wPψ]ψ

]
Hence (5.24) can be written as

(5.26)


LP[ψ] =

∑
i,j ci,jZPi,j − Sε[wP]−R[ψ],

ψ ∈ H2
∗,P, 〈ψ,ZPi,j〉 = 0, i = 1, . . . , `, j = 1, . . . , N.

that is (4.19) with

h = −Sε[wP]−R[ψ].

Let us consider the metric space

B =
{
ψ ∈ C(RN ) : ‖ψ‖∗,P ≤ ετ

}
endowed with the norm ‖ · ‖∗,P. For all ψ1, ψ2 ∈ B

‖R[ψ1]−R[ψ2]‖∗,P ≤ Cεστ‖ψ1 − ψ2‖∗,P
and for all ψ ∈ B

(5.27) ‖R[ψ]‖∗,P ≤ Cετ‖ψ‖∗,P ≤ ε(1+σ)τ .

Moreover, by Lemma 2.2 we have that

(5.28) ‖Sε[ψ]‖∗,P ≤ εβ
2(β2+σ).

Thus, for all ψ ∈ B, let (A(ψ), ci,j) the unique solution of (4.19) with

h = −S[wP]−R[ψ]

Then we claim that A maps B into B and A is a contraction. By lemma 4.3 and the choice of τ

‖A(ψ)‖∗,P ≤ C‖ − Sε[wP]−R(ψ)‖∗,P ≤ C
(
εβ

2(β2+σ) + ε(1+σ)τ
)
≤ Cετ
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for ε sufficiently small and so A(ψ) ∈ B. Moreover A(ψ1)−A(ψ2) solves (4.19) with h = −R[ψ1] +
R[ψ2]. Then by Lemma 4.3

‖A(ψ1)−A(ψ2)‖∗,P ≤ C‖R[ψ1]−R[ψ2]‖∗,P ≤ ετ‖ψ1 − ψ2‖∗,P.

and so, for ε small, A is a contraction. Thus, by applying the contraction mapping theorem we
conclude. It remains to prove the H1− norm estimate of ψ. By multiplying (5.26) by ψP and
integrating by parts we obtain

(ψP, ψP)ε =

∫
RN

f ′(wP)ψ2
P dx−

∫
RN

φ[w2
P]ψ2

P dx− 2

∫
RN

φ[wPψP]wPψP dx+

+〈Sε[wP], ψP〉+ 〈R[ψP], ψP〉(5.29)

By using the fact that ψP ∈ B, the estimates (5.28) and (5.29) and by making a change of variable
we immediately get

(ψP, ψP)ε ≤ CεN+2τ .

Then the family
{
ψP : P ∈ Γ̄ε

}
is bounded in H1. Now fix ε > 0 and consider {Pn} ⊂ Γ̄ε such

that Pn → P̄ ∈ Γ̄ε. Up to a subsequence, ψPn ⇀ ψ̄ weakly in H1; on the other hand, choosing
(m, q) such that, up to a subsequence |cm,q(Pn)| ≥ |ci,j(Pn)| for every (i, j) and n, by using (4.18)
we have(

ψPn ,
∂wPnm

∂xq

)
ε

=

∫
RN

f ′(wPn)ψPn

∂wPnm

∂xq
dx−

∫
RN

φ[w2
Pn ]ψPn

∂wPnm

∂xq
dx

−2

∫
RN

φ

[
wPn

∂wPnm

∂xq

]
wPn

∂wPnm

∂xq
dx+ 〈Sε[wPn ],

∂wPnm

∂xq
〉

+〈R[ψPn ],
∂wPnm

∂xq
〉 − cm,q(Pn)

(
εN−2

∥∥∥∥ ∂w∂x1

∥∥∥∥2

+ o
(
εN−2

))
by which we deduce that the sequence {ci,j(Pn)} is bounded too for every (i, j). Assume, without
loss of generality ci,j(Pn)→ c̄i,j . Then (ψ̄, c̄i,j) solves the equation

LP̄(ψ̄) = −Sε[wP̄]−R[ψ̄] +
∑
i,j

c̄i,jZP̄i,j , 〈ψ̄, ZP̄i,j〉 = 0, ‖ψ̄‖∗,P ≤ ετ .

Hence, from uniqueness, it follows ψ̄ = ψP̄ and c̄i,j = ci,j(P̄), By (5.29) we get

‖ψPn‖2 →
∫
RN

f ′(wP̄)ψ2
P̄ dx−

∫
RN

φ[w2
P̄]ψ2

P̄ dx− 2

∫
RN

φ[wP̄ψP̄]wP̄ψP̄ dx+

+〈Sε[wP̄], ψP̄〉+ 〈R[ψP̄], ψP̄〉 = ‖ψ̄‖2,

hence we deduce ψPn → ψP̄ in H1. �

Lemma 5.2. For ε > 0 sufficiently small the map P ∈ Γ̄ε 7−→ ψP ∈ H1 constructed in Lemma
5.1 is C1.

Proof. To prove that the map P ∈ Γε → ψP ∈ H1 is C1 consider the following map T : Γε ×
H1(RN )× RN` → H1(RN )× RN` :

(5.30) T (P, ψP, ci,j) =


(ε2∆− 1)−1

(
Sε[wP + ψP] +

∑
i,j ci,j

∂wPi
∂xj

)
(
ψP,

∂wPi
∂xj

)
ε


where v = (ε2∆ − 1)−1(h) is defined as the unique solution u ∈ H1 of ε2∆v − v = h. Since

−ε2∆
∂wPi
∂xj
− ∂wPi

∂xj
= −ZPi,j it is immediate that (ψ, ci,j) solves the system (5.24) if and only if

T (P, ψ, ci,j) = 0. The thesis will follow by applying the Implicit Function Theorem (see [12]). �
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6. Reduced energy functional

For ε > 0 sufficiently small we define the reduced functional Mε : Γ̄ε → R

(6.31) Mε[P] := ε−NJε[wP + ψP]− `I[w]− ε2C1,

where ψP has been constructed in Lemma 5.1 and C1 is given by Proposition 3.1.

Next proposition contains the key expansion of Mε

Proposition 6.1. For ε > 0 sufficiently small the following holds:

Mε[P] = −(γ0 + o(1))
∑
i 6=j

λiλjw

(
Pi − Pj

ε

)
+ ε2(C2 + o(1))

∑
i 6=j

1

|Pi−Pjε |N−2
+ O(ε2τ ),

uniformly for P ∈ Γ̄ε, where τ = β4(1 + σ) is given by Lemma 5.1 and γ0, C2 are the constants in
Proposition 3.1.

Proof. An easy computation gives

Jε(wP + ψP) = Jε(wP)−
∫
RN

Sε[wP]ψP dx+
1

2
(ψP, ψP)ε −

∫
RN

(F (wP + ψP)− F (wP)− f(wP)ψP) dx

+

∫
RN

ψ2
P

(
1

4
φ[ψ2

P] +
1

2
φ[w2

P](x) + φ[wPψP]

)
dx+

∫
RN

∫
RN

wP(x)ψP(x)wP(y)ψP(y)

|x− y|N−2
dx dy

+

∫
RN

∫
RN

w2
P(x)wP(y)ψP(y)

|x− y|N−2
dx dy.

By Lemma 2.2 we have∣∣∣∣∫
RN

Sε[wP]ψP dx

∣∣∣∣ ≤ Cεβ2(β2+σ)‖ψP‖∞
∑̀
i=1

∫
RN

w1−β2

Pi
dx ≤ Cετ‖ψP‖∞

∑̀
i=1

∫
RN

w1−β2

Pi
dx = C̃εN+τ‖ψP‖∞.

Moreover, since |F (wP + ψP)− F (wP)− f(wP)ψP| ≤ C|ψP|2, one can estimate∣∣∣∣∫
RN

(F (wP + ψP)− F (wP)− f(wP)ψP|) dx
∣∣∣∣ ≤ C‖ψP‖2.

It’s also easy to see that∫
RN

ψ2
P

(
1

4
φ[ψ2

P] +
1

2
φ[w2

P](x) + φ[wPψP]

)
dx+

∫
RN

∫
RN

wP(x)ψP(x)wP(y)ψP(y)

|x− y|N−2
dx dy ≤ C‖ψP‖2.

Last, similarly as in the proof of (3.9) (using now (3.11) instead of (3.10)), one has

∫
RN

∫
RN

w2
P(x)wP(y)ψP(y)

|x− y|N−2
dx dy ≤ ‖ψP‖∞

∫
RN

∫
RN

w2
P(x)wP(y)

|x− y|N−2
dx dy ≤ Cε2+N‖ψP‖∞

∑
i6=j

1

|Pj−Piε |N−2

≤ Cε2+N‖ψP‖∞
∑
i 6=j

1

log ( 1
ε2β2 )

N−2
≤ Cε2+N‖ψP‖∞.

Hence by Lemma 5.1 (observe that by our assumptions 2 + τ > 2τ) one obtains

Jε(wP + ψP) = Jε(wP) +O(εN+2τ ),

and the thesis easily follows from Proposition 3.1. �

We recall the following result (whose proof can be found for instance in [12]) that will be useful in
the next sections in order to find a critical point (a maximum) of Mε under symmetry assumptions
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Lemma 6.2. Fix a positive constant C > 0 and consider the function

αε,C(ρ) := −γ0w(ρ) + Cε2
1

ρN−2
, ρ ≥ β2 log

1

ε2
,

where γ0 is the positive constants introduced in Proposition 3.1. Then for ε > 0 small enough, αε,C
has a unique maximum point ρε. Moreover we have

ρε = log
1

ε2
+
N − 1

2
log log

1

ε2
+ o

(
log log

1

ε2

)
and

αε,C(ρε) = Cε2
1(

log 1
ε2

)N−2
(1 + o(1)).

7. Proof of Theorem 1.2

For every x ∈ RN we set x = (x1, . . . , xN ) = (x1, x2, x
′) = (z, x′), where z ∈ C.

In this section we prove the existence of a cluster solution to (1.4) having a positive bump in 0
and k negative bumps at the vertices of a regular polygon centered in 0.

Precisely in this case ` = k + 1 and and we look for a solution of the form (2.6) making the
following ansatz

(7.32) v = wP + ψε

where

wP = w0 −
k∑
i=1

wPi

and Pi := rQi ∈ RN , Qi := (e2π
√
−1(i−1)/k,0) =

(
cos 2π(i−1)

k , sin 2π(i−1)
k ,0

)
∈ RN , i = 1, . . . , k,

0 = Pk+1 = (0, 0,0) and r ∈ Rε :=
{
r > 0 : β2

βk
ε log 1

ε2 < r < 1
2ε
(
log 1

ε2

)2}
, for βk := 2 sin π

k .

Observe that with this choice of r the point Pr := (P1, . . . , Pk, Pk+1) ∈ Γε(⊂ R(k+1)N ), where
Γε is the configurations set introduced in (2.5). Indeed, by the definition of Γε, Pr ∈ Γε if and only
if {

β2ε log 1
ε2 < r < ε

(
log 1

ε2

)2
β2ε log 1

ε2 < r|Qi −Qj | < ε
(
log 1

ε2

)2
, i 6= j

and by the assumption k ≥ 7, it follows that βk < 1 and moreover it is not difficult to see that
βk ≤ |Qi − Qj | ≤ 2 for i 6= j. As a consequence we are in the good framework to obtain all the
results in Sects. 4 and 5.

In addition here we look for a solution v satisfying also the following symmetry properties

v(x1, x2, x
′) = v(z, |x′|) = v(ze2π

√
−1/k, |x′|)

v(x1, x2, x
′) = v(x1,−x2, x

′).

This translates into restricting to work into the following Sobolev space of symmetric functions

X := {v ∈ H1(RN ) : v(x1, x2, x
′) = v(z, |x′|) = v(ze2π

√
−1/k, |x′|), v(x1, x2, x

′) = v(x1,−x2, x
′)}.

Hence, for every r ∈ Rε, we set

(7.33) H2
∗,r,s := H2

∗,Pr ∩X, C∗,r,s := C∗,Pr ∩X,

and proceeding as in Sects. 4 and 5, we find for ε small enough a unique solution (ψPr , cij(Pr)) ∈
H2
∗,r,s × RN` to problem (5.24) (see Lemma 5.1).
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Following [14] it is possible to show that, restricting to work on X and with the symmetric choice
of the point Pr that we have done, the unknowns (ci,j) i=1,...,`

j=1,...,N
∈ R in problem (5.24) reduces only

to one unknown c1,1, precisely we prove the following result

Lemma 7.1. Fix τ = β4(1 + σ). Provided ε > 0 is sufficiently small, for every r ∈ Rε there is a
unique pair (ψPr , c1,1(Pr)) ∈ H2

∗,r,s × R which solve

(7.34)

{
Sε[wPr + ψ] = c1,1

∑
i=1,··· ,k

[
cos
(

2π
k (i− 1)

)
ZPi,1 + sin

(
2π
k (i− 1)

)
ZPi,2

]
,

ψ ∈ H2
∗,r,s, 〈ψ,ZPi,j〉 = 0, i = 1, . . . , `, j = 1, . . . , N.

.

Moreover
‖ψPr‖∗,Pr < ετ ; (ψPr , ψPr)ε ≤ εN+2τ

the map r ∈ R̄ε 7−→ ψPr ∈ H1(RN ) is C1 and the map r 7−→ c1,1(Pr) ∈ R is continuous.

Proof. We postpone the proof of this result to the Appendix. �

Let us set, for ε > 0 sufficiently small, the one-variable function M̃ε : R̄ε → R

M̃ε[r] := Mε[Pr],

where Mε is the reduced functional defined in (6.31).

To conclude the proof it is sufficient to find for ε small, a critical point r of the function M̃ε.
Indeed the following holds

Lemma 7.2. Let r̄ ∈ Rε be an interior maximum point for M̃ε. Then, for ε > 0 sufficiently small,
the corresponding function vε := wPr̄ + ψPr̄ is a critical point of Jε, namely a solution to (1.4).

Proof. The proof consists in showing that if r̄ ∈ Rε is an interior maximum point for M̃ε, then

(7.35) c1,1(Pr̄) = 0.

Indeed it is clear from (8.43) that for a point P solving (7.35), the corresponding function v =
wP + ψP is a critical point of Jε on X.
Hence, if we denote by G the group of the rotation matrix in RN−2, and for every i ∈ N and g ∈ G
we define

Ti,g : RN → R, Ti,g(x) = Ti,g(z, x
′) := (ze2πi

√
−1/k, gx′),

T̃2,g : RN → R, T̃2,g(x) = T̃2,g(x1, x2, x
′) := (x1,−x2, gx

′),

then, by Lemma 2.1 the functional Jε is invariant under the action of the group {Ti,g, T̃2,g : i ∈
N, g ∈ G}. Moreover X = {u ∈ H1(RN ) : u(Ti,g(x)) = u(x), u(T̃2,g(x)) = u(x)}. So the principle
of symmetric criticability ensures that v is also a critical point of Jε and, consequently, a solution
of (1.4).

In the following we show that (7.35) holds. Since r̄ ∈ Rε is an interior maximum point for

M̃ε, then in particular

(7.36)
∂

∂r
M̃ε(r)

∣∣
r=r̄

= 0.

Using the C1 regularity of the map r 7→ ψPr , (7.36) may be rewritten as∫
RN

Sε[wPr̄ + ψPr̄ ]
∂

∂r
(wPr + ψPr )

∣∣
r=r̄

dx = 0,

which is equivalent by (8.43) to

(7.37) c1,1

∫
RN

k∑
i=1

[
cos

(
2π

k
(i− 1)

)
ZPi,1 + sin

(
2π

k
(i− 1)

)
ZPi,2

]
∂

∂r
(wPr + ψPr )

∣∣
r=r̄

dx = 0.
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Now

∂

∂r
wPr =

∂

∂r

(
k+1∑
i=1

wpi

)
= −

k∑
i=1

(
Qi1

∂wPi
∂x1

+Qi2
∂wPi
∂x2

)

= −
k∑
i=1

[(
cos

2π

k
(i− 1)

)
∂wPi
∂x1

+

(
sin

2π

k
(i− 1)

)
∂wPi
∂x2

]
(7.38)

Moreover, since 〈ψPr , ZPi,j〉 = 0, then
(7.39)∫

RN
ZPi,j

∂ψPr

∂r
dx = −

∫
RN

∂ZPi,j
∂r

ψPr = −
(
Qi1

∫
RN

∂ZPi,j
∂x1

ψPrdx + Qi2

∫
RN

∂ZPi,j
∂x2

ψPrdx

)
,

and for m = 1, 2, by Hölder inequality∫
RN

∂ZPi,j
∂xm

ψPrdx =

∫
RN

(
ε2∇

(
∂2wPi
∂xm∂xj

)
∇ψPr +

∂2wPi
∂xm∂xj

ψPr

)
dx ≤

∥∥∥∥ ∂2wPi
∂xm∂xj

∥∥∥∥ ‖ψPr‖.

By a change of variable it is easy to see that∥∥∥∥ ∂2wPi
∂xm∂xj

∥∥∥∥ =

∫
RN

(
ε2
∣∣∣∣∇ ∂2wPi
∂xm∂xj

∣∣∣∣2 +

(
∂2wPi
∂xm∂xj

)2
)
dx = εN−4

∥∥∥∥ ∂2w

∂xm∂xj

∥∥∥∥
H1(RN )

ad also by Lemma 7.1

‖ψPr‖ ≤ ε
N+2τ

2

hence substituting into (7.39) we get

(7.40)

∫
RN

ZPi,j
∂ψPr

∂r
dx = O(ε

3N
2 +τ−4)

Hence substituting (7.38) and (7.40) into (7.37), and also using (4.18), we get

c1,1

[
k

∥∥∥∥ ∂w∂x1

∥∥∥∥2

+ o(1) +O(ε
N
2 +τ−2)

]
= 0

from which c1,1 = 0. �

The remaining part of the section is then devoted to find an interior maximum point of the

reduced functional M̃ε.
Let us observe that, thanks to Proposition 6.1 and to the assumption k ≥ 7, it reduces to the

following

Proposition 7.3. For ε > 0 sufficiently small

(7.41) M̃ε[r] = (2k + o(1))αε,Ck

(r
ε
βk

)
+O(ε2τ )

uniformly for r > 0 such that r ∈ R̄ε, where βk := 2 sin π
k , Ck is a positive constant and αε,Ck is

the function defined in Lemma 6.2.
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Proof. For r ∈ R̄ε the point Pr ∈ Γ̄ε, and the reduced functional becomes

M̃ε[r] = −(γ0 + o(1))

−2kw
(r
ε

)
+
∑
i 6=j

w
(r
ε
|Qi −Qj |

)
+ε2(C2 + o(1))

1∣∣ r
ε

∣∣N−2

2k +
∑
i 6=j

1

|Qi −Qj |N−2

+O(ε2τ )

= −k(γ0 + o(1))

(
−2w

(r
ε

)
+

k∑
i=2

w
(r
ε
|Q1 −Qi|

))

+ε2k(C2 + o(1))
1∣∣ r

ε

∣∣N−2

(
2 +

k∑
i=2

1

|Q1 −Qi|N−2

)
+O(ε2τ )

= −k(γ0 + o(1))

(
−2w

(r
ε

)
+ 2w(

r

ε
βk) +

k−1∑
i=3

w
(r
ε
βik

))

+ε2k(C2 + o(1))
1∣∣ r

ε

∣∣N−2

(
2 + 2

1

βN−2
k

+

k−1∑
i=3

1

(βik)N−2

)
+O(ε2τ ).

where we set

βk := |Q2 −Q1| = |Qk −Q1| = 2 sin
π

k

and

βik := |Qi −Q1| =
√

2

√
1− cos

2π(i− 1)

k
, i = 3, ..., k − 1.

Observe that by our choice

βk < βik, i = 3, . . . , k − 1

hence, from (1.2), it follows that

w
(r
ε
βik

)
= o

(
w
(r
ε
βk

))
, i = 3, . . . , k − 1, as

r

ε
→ +∞.

Moreover βk < 1 because k ≥ 7, hence we also have

w
(r
ε

)
= o

(
w
(r
ε
βk

))
, as

r

ε
→ +∞.

As a consequence the reduced functional becomes

M̃ε[r] = −(2kγ0 + o(1))w
(r
ε
βk

)
+ ε2 (2kCk + o(1))

1∣∣ r
εβk
∣∣N−2

+O(ε2τ ),

where Ck := C2

(
1 + βN−2

k + 1
2

∑k−1
i=3

βN−2
k

(βik)N−2

)
. �

Finally next result gives an interior maximum point r for M̃ε

Proposition 7.4. For ε > 0 sufficiently small, the following maximization problem

max{M̃ε[r] : r ∈ R̄ε}

has a solution rε ∈ Rε. Furthermore

lim
ε→0

rεβk

ε log 1
ε2

= 1.
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Proof. Since M̃ε is continuous in r, there exists rε ∈ R̄ε such that

M̃ε[rε] = max
r∈R̄ε

M̃ε[r].

We claim that rε ∈ Rε. We prove this by energy comparison. We first obtain a lower bound for

M̃ε[rε]. Let us choose sε := ερε
βk
, where ρε > 0 is given in Lemma 6.2. It is easy to see that sε

belongs to Rε. Indeed, by Lemma, 6.2 ρε > β2 log 1
ε2 and, for ε small, ρε <

1
2βk

(
log 1

ε2

)2
. Then by

using again Lemma 6.2 and (7.41)

(7.42) M̃ε[rε] ≥ M̃ε[sε] = (2k + o(1))αε,Ck(ρε) +O(ε2τ ) = ε2(2kCk + o(1))
1(

log 1
ε2

)N−2
.

We are going to prove that rεβk
ε log 1

ε2
→ 1 as ε → 0. By contradiction assume that there exists a

sequence εn → 0 such that
rεnβk

εn log 1
ε2n

> 1 + c. Using once more (7.41)

M̃εn [rεn ] ≤ ε2n(2kCk + o(1))
1∣∣∣ rεnεn βk∣∣∣N−2

+O(ε2τn ) ≤ ε2n(2kCk + o(1))
1

(1 + c)N−2

1∣∣∣log 1
ε2n

∣∣∣N−2

which contradicts the (7.42). Now assume the existence of a sequence εn → 0 such that rεβk
ε log 1

ε2
<

1− c. Then by the decay of w (observe that the function x 7→ ex

x
N−3

2

is nondecreasing for x large)

M̃εn [rεn ] = (2k + o(1))

−γ0w

(
rεn
εn
βk

)
+ Ckε

2
n

1∣∣∣ rεnεn βk∣∣∣N−2

+O(ε2τn )

= (2k + o(1))

−γ0AN
e−(

rεn
εn

βk)∣∣∣ rεnεn βk∣∣∣N−1
2

+ Ckε
2
n

1∣∣∣ rεnεn βk∣∣∣N−2

+O(ε2τn )

≤ (2k + o(1))

−γ0AN
e−(

rεn
εn

βk)∣∣∣ rεnεn βk∣∣∣N−2
+ Ckε

2
n

1∣∣∣ rεnεn βk∣∣∣N−2

+O(ε2τn )

= ε2n(2kCk + o(1))

−γ0AN
ε2nCk

e−(
rεn
εn

βk)∣∣∣ rεnεn βk∣∣∣N−2
+

1∣∣∣ rεnεn βk∣∣∣N−2

+O(ε2τn )

≤ ε2n(2kCk + o(1))
1∣∣∣log 1
ε2n

∣∣∣N−2

(
−γ0AN

Ck

ε−2c
n

|(1− c)|N−2
+

1

|β2|N−2

)

which is in contradiction with (7.42) since
(
−γ0AN

Ck

ε−2c
n

|(1−c)|N−2 + 1
|β2|N−2

)
< 1 for n big. �

8. Proof of Theorem 1.3

For every x ∈ RN and h ∈ [2, N ] we set x = (x1, . . . , xN ) = (z, x′), where z := (x1, . . . , xh) ∈ Rh
and x′ := (xh+1, . . . , xN ) ∈ RN−h.

In this section we prove the existence of a cluster solution to (1.4) having a positive bump in
0 and k negative bumps at the vertices of a regular polytope P centered in 0.
The proof is similar to the one of Theorem 1.2 (which is actually a special case of Theorem 1.3



22 ISABELLA IANNI AND GIUSI VAIRA

with h = 2). For this reason we will only sketch it briefly, emphasizing the main differences.

Let Qi := (zi,0), i = 1, . . . , k be the vertices of a convex regular polytope P in Rh centered
in the origin and having radius 1 and side s, with s ≤ 1 when h > 2, s < 1 when h = 2, we make
now the following ansatz

v = w0 −
k∑
i=1

wPi + ψε,

where Pi := rQi ∈ RN , and r ∈ Rε, where

Rε :=

{
r > 0 :

β2

s
ε log

1

ε2
< r <

1

2
ε

(
log

1

ε2

)2
}
.

Observe that with this choice of r the point Pr := (0, P1, . . . , Pk) ∈ Γε(⊂ R(k+1)N ), where Γε is
the configuration set introduced in (2.5). Indeed, by the definition of Γε, Pr ∈ Γε if and only if{

β2ε log 1
ε2 < r < ε

(
log 1

ε2

)2
β2ε log 1

ε2 < r|Qi −Qj | < ε
(
log 1

ε2

)2
i 6= j.

and by construction s ≤ |Qi −Qj | ≤ 2 for i 6= j, and by assumption s ≤ 1.

Generalizing what we have done in the previous section, we may assume that P is invariant
by reflection with respect to the hyperplanes x1xi2 . . . xih−1

, where im ∈ {2, . . . , h}. The Sobolev
space of symmetric functions in which to work is now

X := {v ∈ H1(RN ) : v(z, x′) = v(z, |x′|) = v(gz, |x′|) ∀g ∈ G},
where G is the Coxeter group of Rh associated to P, namely the symmetry group that leaves
invariant P (and which contains all the reflections with respect to the hyperplanes x1xi2 . . . xih−1

,

for im ∈ {2, . . . , h}). Observe that X = {u ∈ H1(RN ) : u(Tg,h(x)) = u(x), for all g ∈ G, h ∈ R},
where

Tg,h : RN → R, Tg,h(y) = Tg,h(z, y′) = (gz, hy′),

and R is the group of the rotation matrix in RN−h. Moreover, by Lemma 2.1 the functional Jε
is invariant under the action of the group {Tg,h : g ∈ G, h ∈ R}, namely Jε(u(Tg,h(x))) = Jε(u(x)).

The analogous of Lemma 7.1 is now the following (we omit the proof)

Lemma 8.1. Fix τ = β4(1 + σ). Provided ε > 0 is sufficiently small, for every r ∈ Rε there is a
unique pair (ψPr , c1,1(Pr)) ∈ H2

∗,r,s × R which solve

(8.43)

{
Sε[wPr + ψ] = c1,1

∑
i=1,...,k
j=1,...,h

αi,jZPi,j ,

ψ ∈ H2
∗,r,s, 〈ψ,ZPi,j〉 = 0, i = 1, . . . , `, j = 1, . . . , N.

,

where αi,j are known numbers. Moreover

‖ψPr‖∗,Pr < ετ ; (ψPr , ψPr)ε ≤ εN+2τ

the map r ∈ R̄ε 7−→ ψPr ∈ H1(RN ) is C1 and the map r 7−→ c1,1(Pr) ∈ R is continuous.

We set, for ε > 0 sufficiently small, the one variable function

M̃ε[r] := Mε[Pr]

where Mε is the reduced functional defined in (6.31), and, similarly as in Section 1.2 we can prove
Lemma 7.2. Hence in order to conclude the proof we need to find a critical point for the reduced
functional.

The reduced functional reduces to the following
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Proposition 8.2. For ε > 0 sufficiently small, if s < 1

(8.44) M̃ε[r] = (qk + o(1))αε,CP

(r
ε
s
)

+O(ε2τ ),

if s = 1 and q 6= 2,

(8.45) M̃ε[r] = ((q − 2)k + o(1))αε,C′P

(r
ε

)
+O(ε2τ ),

uniformly for r > 0 such that Pr ∈ Γ̄ε, where q denotes the number of vertices Qi which are one
side away from Q1, CP , C

′
P are positive constants and αε,CP is the function defined in Lemma 6.2.

Remark 8.3. Under the assumptions of Theorem 1.3 q 6= 2 when s = 1, indeed q ≥ h > 2.

Proof. For r such that Pr ∈ Γ̄ε the reduced functional becomes

M̃ε[r] = −(γ0 + o(1))

−2kw
(r
ε

)
+
∑
i 6=j

w
(r
ε
|Qi −Qj |

)
+ε2(C2 + o(1))

1∣∣ r
ε

∣∣N−2

2k +
∑
i 6=j

1

|Qi −Qj |N−2

+O(ε2τ )

= −k(γ0 + o(1))

(
−2w

(r
ε

)
+

k∑
i=2

w
(r
ε
|Q1 −Qi|

))

+ε2k(C2 + o(1))
1∣∣ r

ε

∣∣N−2

(
2 +

k∑
i=2

1

|Q1 −Qi|N−2

)
+O(ε2τ )

= −k(γ0 + o(1))

−2w
(r
ε

)
+ qw

(r
ε
s
)

+
∑
{i:si>s}

w
(r
ε
si

)
+ε2k(C2 + o(1))

1∣∣ r
ε

∣∣N−2

2 + q
1

sN−2
+

∑
{i:si>s}

1

sN−2
i

+O(ε2τ )

where we set
si := |Qi −Q1|.

From the exponential decay of w it follows that for si > s

w
(r
ε
si

)
= o

(
w
(r
ε
s
))

, as
r

ε
→ +∞,

hence

M̃ε[r] = −k(γ0+o(1))
(
−2w

(r
ε

)
+ qw

(r
ε
s
))

+ε2k(C2+o(1))
1∣∣ r

ε

∣∣N−2

2 + q
1

sN−2
+

∑
{i:si>s}

1

sN−2
i

+O(ε2τ ).

If s < 1 we have

w
(r
ε

)
= o

(
w
(r
ε
s
))

, as
r

ε
→ +∞.

As a consequence the reduced functional becomes

M̃ε[r] = −(qkγ0 + o(1))w
(r
ε
s
)

+ ε2 (qkCP + o(1))
1∣∣ r

ε s
∣∣N−2

+O(ε2τ ),

where CP := C2

(
1 + 2

q s
N−2 + 1

q

∑
{i:si>s}

sN−2

sN−2
i

)
.

While if s = 1 then

M̃ε[r] = −((q − 2)kγ0 + o(1))w
(r
ε

)
+ ε2 (qkCP + o(1))

1∣∣ r
ε

∣∣N−2
+O(ε2τ ).
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The following result (which can be proved similarly as Proposition 7.4) concludes the proof

Proposition 8.4. Assume s ≤ 1, h > 2 or s < 1 h = 2. For ε > 0 sufficiently small, the following
maximization problem

max{M̃ε[r] : r ∈ R̄ε}
has a solution rε ∈ Rε. Furthermore

lim
ε→0

rεs

ε log 1
ε2

= 1.

Appendix

Proof of Lemma 7.1. Let P = Pr be as in (7.32) and H2
∗,r,s be the space of symmetric functions

defined in (7.33).
Then proceeding as in Sects. 4 and 5, we obtain the analogous of see Lemma 5.1 in the symmetric
case, namely for ε small enough we find a unique solution (ψPr , cij(Pr)) ∈ H2

∗,r,s × RN(k+1) to
problem

(8.46)

{
Sε[wP + ψ] =

∑
i,j ci,jZPi,j ,

ψ ∈ H2
∗,P, 〈ψ,ZPi,j〉 = 0, i = 1, . . . , k + 1, j = 1, . . . , N.

Following [14] we show that the right hand side in (8.46) reduces because of the symmetries of ψP

and the symmetries in the choice of P.

Let us first analyze these symmetries. Observe that wP, ψP are even with respect to xh, h =
2, . . . , N , namely

(8.47) wP(. . . , xh, . . . ) = wP(. . . ,−xh, . . . ), ψP(. . . , xh, . . . ) = ψP(. . . ,−xh, . . . ), h = 2, . . . , N.

Moreover wP, ψP are invariant by the following rotation:

(8.48) wP(z, x′) = wP(ze2π
√
−1/k, x′), ψP(z, x′) = ψP(ze2π

√
−1/k, x′)

Moreover each wPi , i = 1, . . . , k + 1 is even with respect to xh, h = 3, . . . , N , hence an easy
computation shows that

(8.49)

 for h = 3, . . . , N, i = 1, . . . , k + 1

ZPi,j(. . . , xh, . . . ) =

{
−ZPi,j(. . . ,−xh, . . . ) if j = h
ZPi,j(. . . ,−xh, . . . ) if j = 1 . . . , N ; j 6= h

,

while, for h = 2, only wP1
and wPk+1

are even with respect to x2, and so

(8.50)

 i ∈ {1, k + 1}

ZPi,j(x1, x2, x
′) =

{
−ZPi,j(x1,−x2, x

′) if j = 2
ZPi,j(x1,−x2, x

′) if j = 1 . . . , N ; j 6= 2
.

While, for i = 2, . . . , k, clearly wPi is not even with respect to x2, anyway, by the choice of the
configuration P, the point Pk+2−i turns out to be the symmetric of Pi through the reflection with
respect to the x1-axis, and so it is not difficult to see that

(8.51)

 i = 2, . . . , k

ZPi,j(x1, x2, x
′) =

{
−ZPk+2−i,j(x1,−x2, x

′) if j = 2
ZPk+2−i,j(x1,−x2, x

′) if j = 1 . . . , N ; j 6= 2

About the rotation, let us observe that, because of the symmetry in the choice of P:

(8.52)
ZPi,1(ze2π

√
−1/k, x′) = cos 2π

k ZPi−1,1(z, x′)− sin 2π
k ZPi−1,2(z, x′)

ZPi,2(ze2π
√
−1/k, x′) = sin 2π

k ZPi−1,1(z, x′) + cos 2π
k ZPi−1,2(z, x′)

for i = 1, . . . , k
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with the convention that P0 = Pk, while

(8.53)
ZPk+1,1(ze2π

√
−1/k, x′) = cos 2π

k ZPk+1,1(z, x′)− sin 2π
k ZPk+1,2(z, x′)

ZPk+1,2(ze2π
√
−1/k, x′) = sin 2π

k ZPk+1,1(z, x′) + cos 2π
k ZPk+1,2(z, x′)

.

We are now ready to prove the result. By (8.46), (8.47) and (8.49) it follows that, for h = 3, . . . , N∑
i=1,...,k+1
j=1,...,N

ci,jZPi,j(. . . , xh, . . . )
(8.46),(8.47)

=
∑

i=1,...,k+1
j=1,...,N

ci,jZPi,j(. . . ,−xh, . . . )

(8.49)
=

∑
i=1,...,k+1
j=1,...,N
j 6=h

ci,jZPi,j(. . . , xh, . . . )−
∑

i=1,...,k+1

ci,hZPi,h(. . . , xh, . . . ),

namely ∑
i=1,...,k+1

ci,hZPi,h = 0, for h = 3, . . . , N.

Multiplying by
∂wPm
∂xh

, m = 1, . . . , k+ 1, h = 3, . . . , N , integrating and using (4.18) we then obtain
that

ci,h = 0, for i = 1, . . . , k + 1; h = 3, . . . , N.

So the right hand side in (8.46) reduces to

(8.54) Sε[wP + ψ] =
∑

i=1,...,k+1
j=1,...,N

ci,jZPi,j =
∑

i=1,...,k+1

(ci,1ZPi,1 + ci,2ZPi,2) .

By (8.54), (8.48) and (8.52), (8.53) we then have (recall that by our convention P0 = Pk)∑
i=1,...,k+1

(ci,1ZPi,1(z, x′) + ci,2ZPi,2(z, x′))

(8.54),(8.48)
=

∑
i=1,...,k+1

(
ci,1ZPi,1(ze2π

√
−1/k, x′) + ci,2ZPi,2(ze2π

√
−1/k, x′)

)
(8.52),(8.53)

=
∑

i=1,...,k

(
ci,1 cos

2π

k
+ ci,2 sin

2π

k

)
ZPi−1,1 +

(
−ci,1 sin

2π

k
+ ci,2 cos

2π

k

)
ZPi−1,2

+

(
ck+1,1 cos

2π

k
+ ck+1,2 sin

2π

k

)
ZPk+1,1 +

(
−ck+1,1 sin

2π

k
+ ck+1,2 cos

2π

k

)
ZPk+1,2.

Namely∑
i=1,...,k

[
ci−1,1 −

(
ci,1 cos

2π

k
+ ci,2 sin

2π

k

)]
ZPi−1,1 +

[
ci−1,2 −

(
−ci,1 sin

2π

k
+ ci,2 cos

2π

k

)]
ZPi−1,2

+

[
ck+1,1 −

(
ck+1,1 cos

2π

k
+ ck+1,2 sin

2π

k

)]
ZPk+1,1

+

[
ck+1,2 −

(
−ck+1,1 sin

2π

k
+ ck+1,2 cos

2π

k

)]
ZPk+1,2

= 0.

Multiplying by
∂wPm
∂xh

, m = 1, . . . , k+ 1, h = 1, 2, integrating and using (4.18) we then obtain that{
ci−1,1 = ci,1 cos 2π

k + ci,2 sin 2π
k

ci−1,2 = −ci,1 sin 2π
k + ci,2 cos 2π

k

, i = 1, . . . , k
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and {
ck+1,1 = ck+1,1 cos 2π

k + ck+1,2 sin 2π
k

ck+1,2 = −ck+1,1 sin 2π
k + ck+1,2 cos 2π

k

From this it follows easily that{
ci,1 = c1,1 cos 2π(i−1)

k − c1,2 sin 2π(i−1)
k

ci,2 = c1,1 sin 2π(i−1)
k + c1,2 cos 2π(i−1)

k

, i = 1, . . . , k

and {
ck+1,1 = 0
ck+1,2 = 0

So, from (8.54), the right hand side in (8.46) reduces again to
(8.55)

Sε[wP+ψ] =
∑

i=1,...,k

[(
c1,1 cos

2π(i− 1)

k
− c1,2 sin

2π(i− 1)

k

)
ZPi,1 +

(
c1,1 sin

2π(i− 1)

k
+ c1,2 cos

2π(i− 1)

k

)
ZPi,2

]
.

Last we use the symmetry with respect to the x2-variable. By (8.55), (8.50) and (8.51)

Sε[wP(x1,−x2, x
′) + ψ(x1,−x2, x

′)] = c1,1ZP1,1(x1, x2, x
′)− c1,2ZP1,2(x1, x2, x

′)

+
∑

i=2,...,k

[(
c1,1 cos

2π(i− 1)

k
− c1,2 sin

2π(i− 1)

k

)
ZPk+2−i,1(x1, x2, x

′) +

−
(
c1,1 sin

2π(i− 1)

k
+ c1,2 cos

2π(i− 1)

k

)
ZPk+2−i,2(x1, x2, x

′)

]
= c1,1ZP1,1(x1, x2, x

′)− c1,2ZP1,2(x1, x2, x
′)

+
∑

i=2,...,k

[(
c1,1 cos

2π(k + 1− i)
k

− c1,2 sin
2π(k + 1− i)

k

)
ZPi,1(x1, x2, x

′) +

−
(
c1,1 sin

2π(k + 1− i)
k

+ c1,2 cos
2π(k + 1− i)

k

)
ZPi,2(x1, x2, x

′)

]
=

∑
i=1,...,k

[(
c1,1 cos

2π(i− 1)

k
+ c1,2 sin

2π(i− 1)

k

)
ZPi,1(x1, x2, x

′) +

−
(
−c1,1 sin

2π(i− 1)

k
+ c1,2 cos

2π(i− 1)

k

)
ZPi,2(x1, x2, x

′)

]
where in the last equality we used that the angles − 2π(i−1)

k = 2π(k+1−i)
k . And so, by the symmetry

with respect to the x2-variable:

Sε[wP(x1, x2, x
′) + ψ(x1, x2, x

′)] = Sε[wP(x1,−x2, x
′) + ψ(x1,−x2, x

′)],

namely ∑
i=1,...,k

[
c1,2 sin

2π(i− 1)

k
ZPi,1(x1, x2, x

′) − c1,2 cos
2π(i− 1)

k
ZPi,2(x1, x2, x

′)

]
= 0

From which, multiplying by
∂wP1

∂x2
, integrating and using (4.18) we get

c1,2 = 0.

As a consequence from (8.55), the right hand side in (8.46) reduces again, and we obtain

(8.56) Sε[wP + ψ] = c1,1
∑

i=1,...,k

(
cos

2π(i− 1)

k
ZPi,1 + sin

2π(i− 1)

k
ZPi,2

)
.

�
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Verlag, 2005.

[3] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Comm. Contemp.

Math. 10 (2008), 391–404.
[4] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J.

Math. Anal. Appl. 345 (2008), 90–108.

[5] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Non-
linear Anal. 11(2) (1998), 283–293.

[6] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell

equations, Rev. Math. Phys. 14(4) (2002), 409–420.
[7] R. Benguria, H. Brezis and E.H. Lieb, The Thomas-Fermi-von Weizscker theory of atoms and molecules,

Comm. Math. Phys. 79 (1981) 167–180.
[8] I. Catto and P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type

theories. Part 1: A necessary and sufficient condition for the stability of general molecular system, Comm.

Partial Differential Equations 17 (1992) 1051–1110.
[9] T. D’Aprile and D. Mugnai, Non-Existence results for the coupled Klein-Gordon-Maxwell equations, Adv.

Nonlinear Stud. 4 (2004), 307–322.

[10] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell
equations, Proc. Roy. Soc. Edinburgh Sect. 134A (2004), 893–906.

[11] T. D’Aprile and A. Pistoia, On the number of sign-changing solutions of a semiclassical nonlinear Schrödinger

equation, Adv. Differential Equations 12 (2007), no. 7, 737–758.
[12] T. D’Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equation and an optimal configuration

problem, Calc. Var. 25 (2005), 105–137.

[13] T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM
J. Math. Anal. 37 (2005), 321–342.

[14] M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in
domains with symmetries, Bull. London Math. Soc. 35 (2003), 513–521.

[15] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm.

Math. Phys. 68 (1979), no. 3, 209–243.
[16] I. Ianni, Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem, TMNA 41 (no. 2) (2013),

365–38.

[17] H. Kikuchi, On the existence of solutions for elliptic system related to the Maxwell-Schrödinger equations,
Nonlinear. Anal. 67 (2007), 1445–1456.

[18] E.H. Lieb, Thomas-Fermi and related theories and molecules, Rev. Modern Phys. 53 (1981) 603–641.

[19] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1984) 33–97.
[20] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.

[21] D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, M3AS

15 (2005), 141–164.
[22] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237

(2006), 655–674.
[23] J.C. Slater, A simplification of the Hartree-Fock method, Phys. Review 81 (1951), 385–390.

Isabella Ianni, Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, viale
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