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Abstract
We consider the problem of describing the traces of functions in H2(�) on the bound-
ary of a Lipschitz domain� ofR

N , N ≥ 2. We provide a definition of those spaces, in

particular of H
3
2 (∂�), by means of Fourier series associated with the eigenfunctions

of new multi-parameter biharmonic Steklov problems which we introduce with this
specific purpose. These definitions coincide with the classical ones when the domain
is smooth. Our spaces allow to represent in series the solutions to the biharmonic
Dirichlet problem. Moreover, a few spectral properties of the multi-parameter bihar-
monic Steklov problems are considered, as well as explicit examples. Our approach is
similar to that developed by G. Auchmuty for the space H1(�), based on the classical
second order Steklov problem.
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1 Introduction

We consider the trace spaces of functions in H2(�) when � is a bounded Lipschitz
domain in R

N , briefly � is of class C0,1, for N ≥ 2. It is well known that there exists
a linear and continuous operator � called the total trace, from H2(�) to L2(∂�) ×
L2(∂�) defined by �(u) = (γ0(u), γ1(u)), where γ0(u) is the trace of u on ∂� and
γ1(u) is the normal derivative of u. In particular, for u ∈ C2(�), γ0(u) = u|∂�

and
γ1(u) = ∂u

∂ν
= ∇u|∂�

· ν, where ν denotes the outer unit normal to ∂�.
A relevant problem in the theory of Sobolev Spaces consists in describing the trace

spaces γ0(H2(�)), γ1(H2(�)), and the total trace space �(H2(�)). This problem
has important implications in the study of solutions to fourth order elliptic partial
differential equations.

From a historical point of view, this issue finds its origins in [23] where J. Hadamard
proposed his famous counterexample pointing out the importance to understand which
conditions on the datum g guarantee that the solution v to the Dirichlet problem

{
�v = 0, in �,

v = g, on ∂�,

has square summable gradient. In modern terms, this problem can be reformulated as
the problem of finding necessary and sufficient conditions on g such that g = γ0(u)

for some u ∈ H1(�).
If the domain � is of class C2,1, then it is known that γ0(H2(�)) = H

3
2 (∂�),

γ1(H2(�)) = H
1
2 (∂�), and �(H2(�)) = H

3
2 (∂�) × H

1
2 (∂�), where H

3
2 (∂�) and

H
1
2 (∂�) are the classical Sobolev spaces of fractional order (see e.g., [22,31] for their

definitions). However, if � is an arbitrary bounded domain of class C0,1 there is no
such a simple description and not many results are available in the literature.

We note that a complete description of the traces of all derivatives up to the order
m − 1 of a function u ∈ Hm(�) is due to O. Besov who provided an explicit but quite
technical representation theorem, see [6,7], see also [8]. Simpler descriptions are not
available with the exception of a few special cases. For example, when � is a polygon
in R

2 the trace spaces are described by using the classical trace theorem applied to
each side of the polygon, complemented with suitable compatibility conditions at the
vertexes, see [22] also for higher dimensional polyhedra. For more general planar
domains another simple description is given in [20].

Our list of references cannot be exhaustive and we refer to the recent monograph
[30] which treats the trace problem in presence of corner or conical singularities inR

3,
as well as further results on N -dimensional polyhedra. We also quote the fundamental
paper [24] by V. Kondrat’ev for a pioneering work in this type of problems. Interested
readers can find more information in our recent survey paper [26].

Thus, the definition of the space H
3
2 (∂�) turns out to be problematic and for

this reason sometimes the space H
3
2 (∂�) is simply defined by setting H

3
2 (∂�) :=

γ0(H2(�))without providing an explicit representation. Note that standard definitions
of Hs(∂�) when s ∈ (1, 2] require that � is of class at least C2.
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On the explicit representation of the trace space…

In the present paper we provide decompositions of the space H2(�) of the form
H2(�) = H2

μ,D(�) + H2
0,N (�) and H2(�) = H2

λ,N (�) + H2
0,D(�). The spaces

H2
0,N (�) and H2

0,D(�) are the subspaces of H2(�) of those functions u such that

γ1(u) = 0 and γ0(u) = 0, respectively. The spaces H2
μ,D(�) and H2

λ,N (�) are associ-
ated with suitable Steklov problems of biharmonic type (namely, problems (BSμ) and
(BSλ) described here below), depending on real parameters μ, λ, and admit Fourier
bases of Steklov eigenfunctions, see (3.5) and (3.15). Under the sole assumptions that
� is of class C0,1, we use those bases to define in a natural way two spaces at the

boundary which we denote by S 3
2 (∂�) and S 1

2 (∂�) and we prove that

γ0(H
2(�)) = γ0(H

2
λ,N (�)) = S 3

2 (∂�)

and
γ1(H

2(�)) = γ1(H
2
μ,D(�)) = S 1

2 (∂�),

see Theorem 4.1. Thus, if one would like to define the space H
3
2 (∂�) as γ0(H2(�)),

our result gives an explicit description of H
3
2 (∂�).

It turns out that the analysis of problems (BSμ)-(BSλ) provides further informa-
tion on the total trace �(H2(�)). In particular, we prove the inclusion �(H2(�)) ⊆
S 3

2 (∂�) × S 1
2 (∂�) and show that in general this inclusion is strict if � is assumed to

be only of classC0,1. Moreover, we show that any couple ( f , g) ∈ S 3
2 (∂�)×S 1

2 (∂�)

belongs to �(H2(�)) if and only if it satisfies a certain compatibility condition, see
Theorem 4.4.

If� is of classC2,1,we recover the classical result, namely�(H2(�)) = S 3
2 (∂�)×

S 1
2 (∂�), which implies that S 3

2 (∂�) = H
3
2 (∂�) and S 1

2 (∂�) = H
1
2 (∂�).

The two families of problems which we are going to introduce depend on a param-
eter σ ∈ ( − 1

N−1 , 1
)
, which in applications to linear elasticity represents the Poisson

coefficient of the elastic material of the underlying system for N = 2.
The first family of BSμ - ‘Biharmonic Steklov μ’ problems is defined as follows:⎧⎪⎨

⎪⎩
�2v = 0, in �,

(1 − σ) ∂2v
∂ν2

+ σ�v = λ(μ)∂v
∂ν

, on ∂�,

−(1 − σ)div∂�(D2v · ν)∂� − ∂�v
∂ν

= μv, on ∂�,

(BSμ)

in the unknowns v, λ(μ), whereμ ∈ R is fixed. Here D2u denotes the Hessian matrix
of u, div∂�F := divF − (∇F · ν)ν denotes the tangential divergence of a vector field
F and F∂� := F − (F · ν)ν denotes the tangential component of F .

The second family of BSλ - ‘Biharmonic Steklov λ’ problems is defined as follows:
⎧⎪⎨
⎪⎩

�2u = 0, in �,

(1 − σ)∂2u
∂ν2

+ σ�u = λ∂u
∂ν

, on ∂�,

−(1 − σ)div∂�(D2u · ν)∂� − ∂�u
∂ν

= μ(λ)u, on ∂�,

(BSλ)

in the unknowns u, μ(λ), where λ ∈ R is fixed.
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Note that since� is assumed to be of classC0,1, problems (BSμ) and (BSλ) have to
be considered in the weak sense, see (3.4) and (3.14) for the appropriate formulations.

Up to our knowledge, the Steklov problems (BSμ) and (BSλ) are new in the liter-
ature. Other Steklov-type problems for the biharmonic operator have been discussed
in the literature. We mention the DBS - ‘Dirichlet Biharmonic Steklov’ problem

⎧⎪⎨
⎪⎩

�2v = 0, in �,

(1 − σ) ∂2v
∂ν2

+ σ�v = η ∂v
∂ν

, on ∂�,

v = 0, on ∂�,

(DBS)

in the unknowns v, η, and the NBS - ‘Neumann Biharmonic Steklov’ problem

⎧⎪⎨
⎪⎩

�2u = 0, in �,
∂u
∂ν

= 0, on ∂�,

−(1 − σ)div∂�(D2u · ν)∂� − ∂�u
∂ν

= ξu, on ∂�,

(NBS)

in the unknowns u, ξ . Problem (DBS) for σ = 1 has been studied by many authors
(see e.g., [3,9,16–18,25,29]); for the case σ �= 1 we refer to [10], see also [4,17] for
σ = 0. Problem (NBS) has been discussed in [25,28,29] for σ = 1. We point out that
problem (BSλ) with σ = λ = 0 has been introduced in [12] as the natural fourth order
generalization of the classical Steklov problem for the Laplacian (see also [11]). As
we shall see, problem (BSλ) shares much more analogies with the classical Steklov
problem than those already presented in [12], in particular it plays a role in describing
the space γ0(H2(�)) similar to that played by the Steklov problem for the Laplacian
in describing γ0(H1(�)) (cf. [2]).

If μ < 0, problem (BSμ) has a discrete spectrum which consists of a divergent
sequence

{
λ j (μ)

}∞
j=1 of non-negative eigenvalues of finite multiplicity. Similarly, if

λ < η1, where η1 > 0 is the first eigenvalue of (DBS), problem (BSλ) has a discrete
spectrum which consists of a divergent sequence

{
μ j (λ)

}∞
j=1 of eigenvalues of finite

multiplicity and bounded from below. (For other values of μ and λ the description of
the spectra of (BSμ) and (BSλ) is more involved, see Appendix C.)

The eigenfunctions associated with the eigenvalues λ j (μ) define a Hilbert basis of
the above mentioned space H2

μ,D(�) which is the orthogonal complement in H2(�)

ofH2
0,N (�)with respect to a suitable scalar product. Moreover, the normal derivatives

of those eigenfunctions allow to define the above mentioned space S 1
2 (∂�), see (4.2).

Similarly, the eigenfunctions associated with the eigenvalues μ j (λ) define a Hilbert
basis of the space H2

λ,N (�)which is the orthogonal complement in H2(�) ofH2
0,D(�)

with respect to a suitable scalar product. Moreover, the traces of those eigenfunctions

allow to define the space S 3
2 (∂�), see (4.1).

The definitions in (4.1) and (4.2) are given by means of Fourier series and the
coefficients in such expansions need to satisfy certain summability conditions, which
are strictly related to the asymptotic behavior of the eigenvalues of (BSλ) and (BSμ).
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Note that

μ j (λ) ∼ CN

(
j

|∂�|
) 3

N−1

and λ j (μ) ∼ C ′
N

(
j

|∂�|
) 1

N−1

, as j → +∞, (1.1)

where CN ,C ′
N depend only on N , see Appendix B. In view of (1.1) and (4.1)–(4.2),

we can identify the space S 3
2 (∂�) with the space of sequences

{
(s j )

∞
j=1 ∈ R

∞ : ( j
3

2(N−1) s j )
∞
j=1 ∈ l2

}
(1.2)

and the space S 1
2 (∂�) with the space

{
(s j )

∞
j=1 ∈ R

∞ : ( j
1

2(N−1) s j )
∞
j=1 ∈ l2

}
. (1.3)

Observe the natural appearance of the exponents 3
2 and 1

2 in (1.2) and (1.3). It is
remarkable that, in essence, a summability condition analogous to that in (1.3) is
already present in [23, Formula (3)] for the case of the unit disk D of the plane and

the space H
1
2 (∂D) = γ0(H1(D)).

Using the representations (4.1) and (4.2) we are able to provide necessary and
sufficient conditions for the solvability in H2(�) of the Dirichlet problem

⎧⎪⎨
⎪⎩

�2u = 0 , in �,

u = f , on ∂�,
∂u
∂ν

= g , on ∂�,

(1.4)

under the sole assumption that � is of class C0,1, and to represent in Fourier series the
solutions. We note that different necessary and sufficient conditions for the solvability
of problem (1.4) in the larger space H(�,�) = {

u ∈ H1(�) : �u ∈ L2(�)
}
have

been found in [4] byusing the (DBS) problemwithσ = 1 and the classicalDirichlet-to-
Neumann map. We also refer to [5,15,34,35] for a different approach to the solvability
of higher order problems on Lipschitz domains. Note that in [5,15,34,35] the authors
consider notions of weak solutions which differ substantially from the standard vari-
ational one used in this paper, and the solutions to problem (1.4) are allowed to have
infinite Dirichlet energy. For instance, in [15, Thm. 3.1] the boundary data f , g belong
to L2

1(∂�), L2(∂�) respectively, and are assumed by the solution u as non-tangential
limits; accordingly, u is not expected to belong to H2(�) but just to H3/2(�), see [15,
p. 110].

Since we have not been able to find problems (BSμ) and (BSλ) in the literature, we
believe that it is worth including in the present paper also some information on their
spectral behavior, which may have a certain interest on its own. In particular, we prove
Lipschitz continuity results for the functions μ �→ λ j (μ) and λ �→ μ j (λ) and we
show that problems (DBS) and (NBS) can be seen as limiting problems for (BSμ) and
(BSλ) as μ → −∞ and λ → −∞, respectively. We also perform a complete study
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of the eigenvalues in the unit ball in R
N for σ = 0, and we discuss the asymptotic

behavior of λ j (μ) and μ j (λ) on smooth domains when j → +∞. Finally, we briefly
discuss problems (BSμ) and (BSλ) also when μ > 0 and λ > η1.

Our approach is similar to that developed by G. Auchmuty in [2] for the trace space
of H1(�), based on the classical second order Steklov problem

{
�u = 0 , in �,
∂u
∂ν

= λu , on ∂�.

We also refer to [32] for related results.
This paper is organized as follows. In Section 2 we introduce some notation and

discuss a few preliminary results. In Section 3 we discuss problems (BSμ) and (BSλ)

when μ < 0 and λ < η1. In Section 4 we define the spaces S 3
2 (∂�) and S 1

2 (∂�)

and the representation theorems for the trace spaces of H2(�). In Subsect. 4.1 we
prove a representation result for the solutions of the biharmonic Dirichlet problem.
In Appendix A we provide a complete description of problems (BSμ) and (BSλ) on
the unit ball for σ = 0. In Appendix B we briefly discuss asymptotic laws for the
eigenvalues. In Appendix C we discuss problems (BSμ) and (BSλ) when μ > 0 and
λ > η1.

2 Preliminaries and notation

For a bounded domain (i.e., a bounded open connected set) � in R
N , we denote

by H1(�) the standard Sobolev space of functions in L2(�) with all weak deriva-
tives of the first order in L2(�) endowed with its standard norm ‖u‖H1(�) :=(
‖∇u‖2

L2(�)
+ ‖u‖2

L2(�)

) 1
2
for all u ∈ H1(�). Note that in this paper we consider

L2(�) as a space of real-valued functions and we always assume N ≥ 2.
By H2(�) we denote the standard Sobolev space of functions in L2(�) with all

weak derivatives of the first and second order in L2(�) endowed with the norm

‖u‖H2(�) :=
(
‖D2u‖2

L2(�)
+ ‖u‖2

L2(�)

) 1
2
for all u ∈ H2(�). We denote by H1

0 (�)

the closure of C∞
c (�) in H1(�) and by H2

0 (�) the closure of C∞
c (�) in H2(�). The

space C∞
c (�) is the space of all functions in C∞(�) with compact support in �. If

the boundary is sufficiently regular (e.g., if � is of class C0,1), the norm defined by∑
|α|≤2 ‖Dαu‖L2(�) is a norm on H2(�) equivalent to the standard one.

By definition, a domain of class C0,1 is such that locally around each point of its
boundary it can be described as the sub-graph of a Lipschitz continuous function.
Also, we shall say that � is of class C2,1 if locally around each point of its boundary
the domain can be described as the sub-graph of a function of class C2,1.

By (·, ·)∂� we denote the standard scalar product of L2(∂�), namely

(u, v)∂� :=
∫

∂�

uvdσ , ∀u, v ∈ L2(∂�).
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We denote by γ0(u) ∈ L2(∂�) the trace of u and by γ1(u) ∈ L2(∂�) the normal
derivative of u, that is, γ1(u) = ∇u · ν. By � we denote the total trace operator from
H2(�) to L2(∂�) × L2(∂�) defined by

�2(u) = (γ0(u), γ1(u)) ,

for all u ∈ H2(�). The operator � is compact. If � is of class C2,1 then � is a

linear and continuous operator from H2(�) onto H
3
2 (∂�) × H

1
2 (∂�) admitting a

right continuous inverse. We refer to e.g., [31] for more details.

Here H
3
2 (∂�), H

1
2 (∂�) denote the standard Sobolev spaces of fractional order (see

e.g., [22,31] for more details). For any σ ∈ ( − 1
N−1 , 1

)
, μ, λ ∈ R and u, v ∈ H2(�)

we set

Qσ (u, v) = (1 − σ)

∫
�

D2u : D2vdx + σ

∫
�

�u�vdx,

Qμ,D(u, v) = Qσ (u, v) − μ(γ0(u), γ0(v))∂�,

and Qλ,N (u, v) = Qσ (u, v) − λ(γ1(u), γ1(v))∂�,

where D2u : D2v = ∑N
i, j=1

∂2u
∂xi ∂x j

∂2v
∂xi ∂x j

denotes the Frobenius product of the Hes-

sians matrices. Note that if σ ∈ ( − 1
N−1 , 1

)
, then the quadratic form Qσ is coercive

in H2(�) and the norm
(
Qσ (u, u) + ‖u‖2

L2(�)

) 1
2
is equivalent to the standard norm

of H2(�), see e.g., [14].
It is easy to see that if � is a bounded domain of class C0,1 then the space H2(�)

can be endowed with the equivalent norm

(
‖D2u‖2L2(�)

+ ‖γ0(u)‖2L2(∂�)

) 1
2
.

We set
H2

0,D(�) =
{
u ∈ H2(�) : γ0(u) = 0

}

and
H2

0,N (�) =
{
u ∈ H2(�) : γ1(u) = 0

}
.

The spaces H2
0,D(�) and H2

0,N (�) are closed subspaces of H2(�) and H2
0,N (�) ∩

H2
0,D(�) = H2

0 (�). We also note that H2
0,D = H2(�) ∩ H1

0 (�).
It is useful to recall the so-called biharmonic Green formula

∫
�

D2ψ : D2ϕdx =
∫

�

(�2ψ)ϕdx +
∫

∂�

∂2ψ

∂ν2

∂ϕ

∂ν
dσ

−
∫

∂�

(
div∂�(D2ψ · ν)∂� + ∂�ψ

∂ν

)
ϕdσ, (2.1)

valid for all sufficiently smooth ψ, ϕ, see [1].
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The biharmonic functions in H2(�) are defined as those functions u ∈ H2(�) such
that

∫
�
D2u : D2ϕdx = 0 for all ϕ ∈ H2

0 (�), or equivalently, thanks to (2.1), those
functions u ∈ H2(�) such that

∫
�

�u�ϕdx = 0 for all ϕ ∈ H2
0 (�) . We denote

by BN (�) the space of biharmonic functions with zero normal derivative, that is the
orthogonal complement of H2

0 (�) inH2
0,N (�) with respect to Qσ :

BN (�) :=
{
u ∈ H2

0,N (�) : Qσ (u, ϕ) = 0 ,∀ϕ ∈ H2
0 (�)

}
. (2.2)

By formula (2.1) and a standard approximation we deduce that

BN (�) :=
{
u ∈ H2

0,N (�) :
∫

�

�u�ϕdx = 0 ,∀ϕ ∈ H2
0 (�)

}
. (2.3)

We note that BN (�) is the space of the biharmonic functions inH2
0,N (�). Thus

H2
0,N (�) = H2

0 (�) ⊕ BN (�).

Analogously, we denote by BD the space of biharmonic functions with zero boundary
trace, that is the orthogonal complement of H2

0 (�) inH2
0,D(�) with respect to Qσ :

BD(�) :=
{
u ∈ H2

0,D(�) : Qσ (u, ϕ) = 0 ,∀ϕ ∈ H2
0 (�)

}
. (2.4)

By formula (2.1) and standard approximation we deduce that

BD(�) :=
{
u ∈ H2

0,D(�) :
∫

�

�u�ϕdx = 0 ,∀ϕ ∈ H2
0 (�)

}
. (2.5)

We note that BD(�) is the space of biharmonic functions inH2
0,D(�). Thus

H2
0,D(�) = H2

0 (�) ⊕ BD(�).

Finally, by N we denote the set of positive natural numbers and by N0 the set
N ∪ {0}.

3 Multi-parameter Steklov problems

In this section we provide the appropriate weak formulations of problems (BSμ) and
(BSλ). In particular we prove that both problems have discrete spectrum provided
μ < 0 and λ < η1, respectively. Here η1 is the first eigenvalue of problem (3.1) below,
which is the weak formulation of (DBS). We remark that η1 > 0 and that ξ1 = 0 is
the first eigenvalue of problem (NBS), hence the condition μ < 0 reads μ < ξ1. We
also provide a variational characterization of the eigenvalues.

Through all this section � will be a bounded domain of class C0,1 and σ ∈ ( −
1

N−1 , 1
)
will be fixed.
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3.1 The (DBS) and (NBS) problems

Before analyzing problems (BSμ) and (BSλ) we need to recall a few facts about
problems (DBS) and (NBS).

Problem (DBS) is understood in the weak sense as follows:

∫
�

(1 − σ)D2v : D2ϕ + σ�v�ϕdx = η

∫
∂�

∂v

∂ν

∂ϕ

∂ν
dσ , ∀ϕ ∈ H2

0,D(�), (3.1)

in the unknowns v ∈ H2
0,D(�), η ∈ R. Note that formulation (3.1) is justified by

formula (2.1). Indeed, by applying formula (2.1), one can easily see that if v is a
smooth solution to problem (3.1), then v is a solution to the classical problem (DBS)
(the same considerations can be done for all other problems discussed in this paper).

We have the following theorem.

Theorem 3.1 Let� be a bounded domain inR
N of class C0,1 and let σ ∈ (− 1

N−1 , 1
)
.

The eigenvalues of problem (3.1) have finite multiplicity and are given by a non-
decreasing sequence of positive real numbers η j defined by

η j = min
V⊂H2

0,D(�)

dimV= j

max
v∈V
u �=0

Qσ (v, v)∫
∂�

(
∂v
∂ν

)2
dσ

, (3.2)

where each eigenvalue is repeated according to its multiplicity. Moreover, there exists
aHilbert basis

{
v j

}∞
j=1 ofBD(�) of eigenfunctions v j associated with the eigenvalues

η j . Finally, by normalizing the eigenfunctions v j with respect to Qσ for all j ≥ 1,
the functions v̂ j := √

η jγ1(v j ) define a Hilbert basis of L2(∂�) with respect to its
standard scalar product.

Problem (NBS) is understood in the weak sense as follows:

∫
�

(1 − σ)D2u : D2ϕ + σ�u�ϕdx = ξ

∫
∂�

uϕdσ , ∀ϕ ∈ H2
0,N (�), (3.3)

in the unknowns u ∈ H2
0,N (�), ξ ∈ R. We have the following theorem.

Theorem 3.2 Let� be a bounded domain inR
N of class C0,1 and let σ ∈ (− 1

N−1 , 1
)
.

The eigenvalues of problem (3.3) have finite multiplicity and are given by a non-
decreasing sequence of non-negative real numbers ξ j defined by

ξ j = min
U⊂H2

0,N (�)

dimU= j

max
u∈U
u �=0

Qσ (u, u)∫
∂�

u2dσ
,

where each eigenvalue is repeated according to its multiplicity. The first eigenvalue
ξ1 = 0 has multiplicity one and the corresponding eigenfunctions are the constant
functions on�. Moreover, there exists a Hilbert basis

{
u j

}∞
j=1 ofBN (�) of eigenfunc-

tions u j associated with the eigenvalues ξ j . Finally, by normalizing the eigenfunctions
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u j with respect to Qσ for all j ≥ 2, the functions û j := √
ξ jγ0(u j ), j ≥ 2, and

û1 = |∂�|−1/2 define a Hilbert basis of L2(∂�) with respect to its standard scalar
product.

The proofs of Theorems 3.1 and 3.2 can be carried out exactly as those of Theorems
3.3 and 3.10 presented in Subsects. 3.2 and 3.3.Note that the conditionσ ∈ (− 1

N−1 , 1
)

is used to guarantee the coercivity of the form Qσ discussed in the previous section.

3.2 The BS� eigenvalue problem

For any μ ∈ R, the weak formulation of problem (BSμ) reads

∫
�

(1 − σ)D2v : D2ϕ + σ�v�ϕdx − μ

∫
∂�

vϕdσ

= λ(μ)

∫
∂�

∂v

∂ν

∂ϕ

∂ν
dσ , ∀ϕ ∈ H2(�), (3.4)

in the unknowns v ∈ H2(�), λ(μ) ∈ R, and can be re-written as

Qμ,D(v, ϕ) = λ(μ) (γ1(v), γ1(ϕ))∂� , ∀ϕ ∈ H2(�).

We prove that for all μ < 0, problem (BSμ) admits an increasing sequence of eigen-
values of finite multiplicity diverging to +∞ and the corresponding eigenfunctions
form a basis of H2

μ,D(�), where H2
μ,D(�) denotes the orthogonal complement of

H2
0,N (�) in H2(�) with respect to the scalar product Qμ,D , namely

H2
μ,D(�) =

{
v ∈ H2(�) : Qμ,D(v, ϕ) = 0 , ∀ϕ ∈ H2

0,N (�)
}

. (3.5)

To do so, we recast problem (3.4) in the form of an eigenvalue problem for a compact
self-adjoint operator acting on a Hilbert space. We consider on H2(�) the equivalent
norm

‖v‖2μ,D = Qμ,D(v, v)

which is associated with the scalar product defined by

〈v, ϕ〉μ,D = Qμ,D(v, ϕ),

for all v, ϕ ∈ H2(�). Then we define the operator Bμ,D from H2(�) to its dual
(H2(�))′ by setting

Bμ,D(v)[ϕ] = 〈v, ϕ〉μ,D , ∀v, ϕ ∈ H2(�).
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By the Riesz Theorem it follows that Bμ,D is a surjective isometry. Then we consider
the operator J1 from H2(�) to (H2(�))′ defined by

J1(v)[ϕ] = (γ1(v), γ1(ϕ))∂� , ∀v, ϕ ∈ H2(�). (3.6)

The operator J1 is compact since γ1 is a compact operator from H2(�) to L2(∂�).
Finally, we set

Tμ,D = B(−1)
μ,D ◦ J1. (3.7)

From the compactness of J1 and the boundedness of Bμ,D it follows that Tμ,D is a com-
pact operator from H2(�) to itself. Moreover, 〈Tμ,D(v), ϕ〉μ,D = (γ1(v), γ1(ϕ))∂�,
for all u, ϕ ∈ H2(�), hence Tμ,D is self-adjoint. Note that Ker Tμ,D = Ker J1 =
H2

0,N (�) and the non-zero eigenvalues of Tμ,D coincide with the reciprocals of the
eigenvalues of (3.4), the eigenfunctions being the same.

We are now ready to prove the following theorem.

Theorem 3.3 Let� be a bounded domain inR
N of class C0,1 and let σ ∈ (− 1

N−1 , 1
)
.

Let μ < 0. Then the eigenvalues of (3.4) have finite multiplicity and are given by a
non-decreasing sequence of positive real numbers

{
λ j (μ)

}∞
j=1 defined by

λ j (μ) = min
V⊂H2(�)
dimV= j

max
v∈V
∂v
∂ν

�=0

Qμ,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

, (3.8)

where each eigenvalue is repeated according to its multiplicity.
Moreover there exists a basis

{
v j,μ

}∞
j=1 of H

2
μ,D(�) of eigenfunctions v j,μ asso-

ciated with the eigenvalues λ j (μ).
By normalizing the eigenfunctions v j,μ with respect toQμ,D, the functions defined

by
{
v̂ j,μ

}∞
j=1 := {√

λ j (μ)γ1(v j,μ)
}∞
j=1 form a Hilbert basis of L2(∂�) with respect

to its standard scalar product.

Proof Since Ker Tμ,D = H2
0,N , by the Hilbert-Schmidt Theorem applied to the com-

pact self-adjoint operator Tμ,D it follows that Tμ,D admits an increasing sequence
of positive eigenvalues

{
q j

}∞
j=1 bounded from above, converging to zero and a cor-

responding Hilbert basis
{
v j,μ

}∞
j=1 of eigenfunctions of H2

μ,D(�). Since q �= 0 is

an eigenvalue of Tμ,D if and only if λ = 1
q is an eigenvalue of (3.4) with the same

eigenfunctions, we deduce the validity of the first part of the statement. In particular,
formula (3.8) follows from the standard min-max formula for the eigenvalues of com-
pact self-adjoint operators. Note that λ1(μ) > 0, since Qμ,D(v, v) = 0 if and only if
v = 0.

To prove the final part of the theorem, we recast problem (3.4) into an eigenvalue
problem for the compact self-adjoint operator T ′

μ,D = γ1 ◦ B(−1)
μ,D ◦ J ′

1, where J ′
1

denotes the map from L2(∂�) to the dual of H2(�) defined by

J ′
1(v)[ϕ] = (v, γ1(ϕ))∂� , ∀v ∈ L2(∂�), ϕ ∈ H2(�).
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We apply again the Hilbert-Schmidt Theorem and observe that Tμ,D and T ′
μ,D admit

the same non-zero eigenvalues and that the eigenfunctions of T ′
μ,D are exactly the

normal derivatives of the eigenfunctions of Tμ,D . From (3.4) we deduce that if the
eigenfunctions v j,μ of Tμ,D are normalized by Qμ,D(v j,μ, vk,μ) = δ jk , where δ jk is
the Kronecker symbol, then the normalization of the traces of their normal derivatives
in L2(∂�) are obtained bymultiplying γ1(v j,μ) by

√
λ j (μ). This concludes the proof.

��
We present now a few results on the behavior of the eigenvalues of (3.4) for μ ∈

(−∞, 0), in particular we prove a Lipschitz continuity result for the eigenvalues λ j (μ)

with respect to μ and find their limits as μ → −∞.

Theorem 3.4 For any j ∈ N and δ > 0, the function λ j : (−∞,−δ] → (0,+∞)

which takes μ ∈ (−∞,−δ] to λ j (μ) ∈ (0,+∞) is Lipschitz continuous on
(−∞,−δ].
Proof Without loss of generality we assume that μ1, μ2 ∈ (−∞,−δ] and that μ1 <

μ2. Let v ∈ H2(�). Then

0 ≤ Qμ1,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

− Qμ2,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

= (μ2 − μ1)

∫
∂�

v2dσ∫
∂�

(
∂v
∂ν

)2
dσ

≤ − (μ2 − μ1)

μ1

Qμ1,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

.

Hence Qμ1,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

≥ Qμ2,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

(3.9)

and Qμ2,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

≥ Qμ1,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

(
1 + (μ2 − μ1)

μ1

)
(3.10)

By taking the infimum and the supremum over j dimensional subspaces of H2(�)

into (3.9) and (3.10), and by (3.8), we get

|λ j (μ1) − λ j (μ2)| ≤ λ j (μ1)

|μ1| |μ2 − μ1| ≤ λ j (μ1)
|μ2 − μ1|

δ
.

This concludes the proof. ��
We now investigate the behavior of the eigenvalues λ j (μ) as μ → −∞. First,

we need to recall a few facts about the convergence of operators defined on variable
spaces. As customary, we consider families of spaces and operators depending on a
small parameter ε ≥ 0 with ε → 0. This will be applied later with ε = − 1

μ
and

μ → −∞.
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Let us denote by Hε a family of Hilbert spaces for all ε ∈ [0, ε0) and assume that
there exists a corresponding family of linear operators Eε : H0 → Hε such that, for
any u ∈ H0

‖Eε(u)‖Hε
→ ‖u‖H0 , as ε → 0.

We recall the definition of compact convergence of operators in the sense of [33].

Definition 3.5 We say that a family {Kε}ε∈[0,ε0) of compact operators Kε ∈ L(Hε)

converges compactly to K0 if

i) for any {uε}ε∈(0,ε0) with ‖uε − Eε(u)‖Hε
→ 0 as ε → 0, then ‖Kε(uε) −

Eε(K0(u))‖Hε
→ 0 as ε → 0;

ii) for any {uε}ε∈(0,ε0) with uε ∈ Hε, ‖uε‖Hε
= 1, then {Kε(uε)}ε∈(0,ε0) is pre-

compact in the sense that for all sequences εn → 0 there exist a sub-sequence
εnk → 0 and w ∈ H0 such that ‖Kεnk

(uεnk
) − Eεnk

(w)‖Hεnk
→ 0 as k → +∞.

We also recall the following theorem, where by spectral convergence of a family of
operators we mean the convergence of the eigenvalues and the convergence of the
eigenfunctions in the sense of [33], see also [17, §2].

Theorem 3.6 Let {Kε}ε∈[0,ε0) be non-negative, compact self-adjoint operators in the
Hilbert spaces Hε. Assume that their eigenvalues are given by

{
σ j (ε)

}∞
j=1. If Kε

compactly converge to K0, then there is spectral convergence of Kε to K0 as ε → 0.
In particular, for every j ∈ N σ j (ε) → σ j (0) , as ε → 0.

Let TD : H2
0,D(�) → H2

0,D(�) be defined by TD = B(−1)
D ◦ J1, where BD is the

operator from H2
0,D(�) to its dual (H2

0,D(�))′ given by

BD(v)[ϕ] = Qσ (v, ϕ) , ∀v, ϕ ∈ H2
0,D(�),

and J1 is defined in (3.6). By the Riesz Theorem it follows that BD is a surjective
isometry. The operator TD is the resolvent operator associated with problem (3.1) and
plays the same role of Tμ,D defined in (3.7). In fact, as in the proof of Theorem 3.3
it is possible to show that TD admits an increasing sequence of non-zero eigenvalues{
q j

}∞
j=1 bounded from above and converging to 0. Moreover, a number q �= 0 is

an eigenvalue of TD if and only if η = 1
q is an eigenvalue of (3.1), with the same

eigenfunctions.
We have now a family of compact self-adjoint operators Tμ,D each defined on the

Hilbert space H2(�) endowed with the scalar product Qμ,D , and the compact self-
adjoint operator TD defined onH2

0,D(�) endowed with the scalar productQσ . We are
ready to state and prove the following theorem.

Theorem 3.7 The family of operators
{
Tμ,D

}
μ∈(−∞,0) compactly converges to TD as

μ → −∞. In particular,
lim

μ→−∞ λ j (μ) = η j , (3.11)

for all j ∈ N, where η j are the eigenvalues of (3.1).
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Proof For each μ ∈ (−∞, 0) we define the map Eμ ≡ E : H2
0,D(�) → H2(�)

simply by setting E(u) = u, for all u ∈ H2
0,D(�).

In view of Definition 3.5, we have to prove that

i) if
{
uμ

}
μ<0 ⊂ H2(�) and u ∈ H2

0,D(�) are such thatQμ,D(uμ−u, uμ−u) → 0
as μ → −∞, then

Qμ,D(Tμ,D(uμ) − TD(u), Tμ,D(uμ) − TD(u)) → 0 , as μ → −∞;

ii) if
{
uμ

}
μ<0 ⊂ H2(�) is such thatQμ,D(uμ, uμ) = 1 for allμ < 0, then for every

sequence μn → −∞ there exists a sub-sequence μnk → −∞ and v ∈ H2
0,D(�)

such that

Qμnk ,D(Tμnk ,D(uμnk
) − v, Tμnk ,D(uμnk

) − v) → 0 , as k → +∞. (3.12)

We start by proving i). By the assumptions in i), it follows that uμ is uniformly
bounded in H2(�) for μ in a neighborhood of −∞. Indeed, by definition

Qμ,D(Tμ,D(uμ), ϕ) =
∫

∂�

∂uμ

∂ν

∂ϕ

∂ν
dσ , ∀ϕ ∈ H2(�), (3.13)

hence, by choosing ϕ = Tμ,D(uμ), we find that the family
{
Tμ,D(uμ)

}
μ<0 is bounded

in H2(�). Thus, possibly passing to a sub-sequence, Tμ,D(uμ)⇀v in H2(�), and
γ0(Tμ,D(uμ)) → γ0(v) in L2(∂�), as μ → −∞, which implies that γ0(v) = 0 since
the term −μ

∫
∂�

Tμ,D(uμ)2dσ is bounded in μ. Thus v ∈ H2
0,D(�).

Choosing ϕ ∈ H2
0,D(�) and passing to the limit in (3.13) we have that

Qσ (v, ϕ) =
∫

∂�

∂u

∂ν

∂ϕ

∂ν
dσ , ∀ϕ ∈ H2

0,D(�),

hence v = TD(u). Thus Tμ,D(uμ)⇀TD(u) in H2(�). Moreover, the convergence is
stronger because

lim
μ→−∞Qμ,D(Tμ,D(uμ) − TD(u), Tμ,D(uμ) − TD(u))

= lim
μ→−∞

(Qμ,D(Tμ,D(uμ), Tμ,D(uμ))

−2Qμ,D(Tμ,D(uμ), TD(u)) + Qμ,D(TD(u), TD(u))
)

= Qσ (TD(u), TD(u)) − 2Qσ (TD(u), TD(u)) + Qσ (TD(u), TD(u)) = 0,

which proves point i).
Note that the equality limμ→−∞ Qμ,D(Tμ,D(uμ), Tμ,D(uμ)) = Qσ (TD(u), TD(u))

is a consequence of
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lim
μ→−∞Qμ,D(Tμ,D(uμ), Tμ,D(uμ)) = lim

μ→−∞

∫
∂�

∂uμ

∂ν

∂Tμ,D(uμ)

∂ν
dσ

=
∫

∂�

∂u

∂ν

∂TD(u)

∂ν
dσ = Qσ (TD(u), TD(u)).

The proof of point ii) is similar. If Qμ,D(uμ, uμ) = 1, up to sub-sequences
uμ⇀u ∈ H2(�), γ0(uμ) → γ0(u), and γ1(uμ) → γ1(u) as μ → −∞. More-
over, ‖γ0(uμ)‖2

L2(∂�)
≤ − 1

μ
, hence ‖γ0(uμ)‖2

L2(∂�)
→ 0 as μ → −∞. This implies

that γ0(u) = 0 and that u ∈ H2
0,D(�). Then it is possible to repeat the same arguments

above to conclude the validity of (3.12) with v = TD(u).
Thus Tμ,D compactly converges to TD and (3.11) follows by Theorem 3.6. ��

Remark 3.8 We also note that each eigenvalue λ j (μ) is non-increasing with respect to
μ, for μ ∈ (−∞, 0). In fact from the Min-Max Principle (3.8) it immediately follows
that for all j ∈ N, λ j (μ1) ≤ λ j (μ2) if μ1 > μ2.

Now we consider the behavior of the first eigenvalue as μ → 0−.

Lemma 3.9 We have
lim

μ→0− λ1(μ) = 0

Proof Let p ∈ R
N be fixed. From (3.8) we get

0 < λ1(μ) = min
v∈H2(�)

v �=0

Qμ,D(v, v)∫
∂�

(
∂v
∂ν

)2
dσ

≤ Qμ,D(p · x, p · x)∫
∂�

(p · ν)2dσ
= −μ

∫
∂�

(p · x)2dσ∫
∂�

(p · ν)2dσ
,

for all μ ∈ (−∞, 0). By letting μ → 0− we obtain the result. ��

3.3 The BS� eigenvalue problem

The weak formulation of problem (BSλ) reads

∫
�

(1 − σ)D2u : D2ϕ + σ�u�ϕdx − λ

∫
∂�

∂u

∂ν

∂ϕ

∂ν
dσ

= μ(λ)

∫
∂�

uϕdσ , ∀ϕ ∈ H2(�), (3.14)

in the unknowns u ∈ H2(�), μ(λ) ∈ R, and can be re-written as

Qλ,N (u, ϕ) = μ(λ) (γ0(u), γ0(ϕ))∂� , ∀ϕ ∈ H2(�).

We prove that for all λ < η1, where η1 is the first eigenvalue of (DBS), problem
(BSλ) admits an increasing sequence of eigenvalues of finite multiplicity diverging to
+∞ and the corresponding eigenfunctions form a basis of H2

λ,N (�), where H2
λ,N (�)
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denotes the orthogonal complement ofH2
0,D(�) in H2(�) with respect toQλ,N , that

is
H2

λ,N (�) =
{
u ∈ H2(�) : Qλ,N (u, ϕ) = 0 , ∀ϕ ∈ H2

0,D(�)
}

. (3.15)

Since in general Qλ,N is not a scalar product, we find it convenient to consider on
H2(�) the norm

‖u‖2λ,N = Qλ,N (u, u) + b‖γ0(u)‖2L2(�)
, (3.16)

where b > 0 is a fixed number which is chosen as follows. If λ < 0, no restrictions are
required on b > 0, since the norm ‖·‖λ,N is equivalent to the standard norm of H2(�)

for all b > 0. Assume now that 0 ≤ λ < η1. From Theorem 3.7 and Lemma 3.9 we
have that (0, η1) ⊆ λ1((−∞, 0)), hence there existsμ ∈ (−∞, 0) and ε ∈ (0, 1) such
that λ1(μ) = λ+ε

1−ε
< η1. Then

Qλ,N (u, u) = εQ−1,N (u, u) + (1 − ε)Qλ1(μ),N (u, u)

≥ εQ−1,N (u, u) + (1 − ε)μ‖γ0(u)‖2L2(∂�)
. (3.17)

Thus, by choosing any b satisfying

b > −(1 − ε)μ, (3.18)

it follows by (3.17) and (3.18) that ‖ · ‖λ,N is a norm equivalent to the standard norm
of H2(�).

The norm ‖ · ‖λ,N is associated with the scalar product defined by

〈u, ϕ〉λ,N = Qλ,N (u, ϕ) + b(γ0(u), γ0(ϕ))∂�, (3.19)

for all u, ϕ ∈ H2(�).
We now recast problem (3.14) in the form of an eigenvalue problem for a compact

self-adjoint operator acting on a Hilbert space. To do so, we define the operator Bλ,N

from H2(�) to its dual (H2(�))′ by setting

Bλ,N (u)[ϕ] = 〈u, ϕ〉λ,N , ∀u, ϕ ∈ H2(�).

By the Riesz Theorem it follows that Bλ,N is a surjective isometry. Then we consider
the operator J0 from H2(�) to (H2(�))′ defined by

J0(u)[ϕ] = (γ0(u), γ0(ϕ))∂� , ∀u, ϕ ∈ H2(�). (3.20)

The operator J0 is compact since γ0 is a compact operator from H2(�) to L2(∂�).
Finally, we set

Tλ,N = B(−1)
λ,N ◦ J0. (3.21)

From the compactness of J0 and the boundedness of Bλ,N it follows that Tλ,N is a com-
pact operator from H2(�) to itself. Moreover, 〈Bλ,N (u), ϕ〉λ,N = (γ0(u), γ0(ϕ))∂�,
for all u, ϕ ∈ H2(�), hence Tλ,N is self-adjoint.
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Note that Ker Tλ,N = Ker J0 = H2
0,D(�) and the non-zero eigenvalues of Tλ,N

coincide with the reciprocals of the eigenvalues of (3.14) shifted by b, the eigenfunc-
tions being the same.

We are now ready to prove the following theorem.

Theorem 3.10 Let � be a bounded domain in R
N of class C0,1, σ ∈ ( − 1

N−1 , 1
)
,

and λ < η1. Then the eigenvalues of (3.14) have finite multiplicity and are given by a
non-decreasing sequence of real numbers

{
μ j (λ)

}∞
j=1 defined by

μ j (λ) = min
U⊂H2(�)
dimU= j

max
u∈U

γ0(u) �=0

Qλ,N (u, u)∫
∂�

u2dσ
, (3.22)

where each eigenvalue is repeated according to its multiplicity. Moreover, there exists
a Hilbert basis

{
u j,λ

}∞
j=1 of H2

λ,N (�) (endowed with the scalar product (3.19)) of
eigenfunctions u j,λ associated with the eigenvalues μ j (λ) and the following state-
ments hold:

i) If λ < 0 then μ1(λ) = 0 is an eigenvalue of multiplicity one and the cor-
responding eigenfunctions are the constant functions. Moreover, if ũ j,λ denote
the normalizations of u j,λ with respect to Qλ,N for all j ≥ 2, the functions
û j,λ := √

μ j (λ)γ0(ũ j,λ), j ≥ 2, and û1,λ := |∂�|−1/2 define a Hilbert basis of
L2(∂�) with respect to its standard scalar product.

ii) If 0 ≤ λ < η1, then μ(λ) = 0 is an eigenvalue. Moreover, if μ j0(λ) is the first
positive eigenvalue, and ũ j,λ denote the normalizations of u j,λ with respect to

Qλ,N for all j ≥ j0, and
{
û j,λ

} j0−1
j=1 denotes a orthonormal basis with respect to

the L2(∂�) scalar product of the eigenspace associated to μ1(λ), ..., μ j0−1(λ)

restricted to ∂�, then the functions û j,λ := √
μ j (λ)γ0(ũ j,λ), j ≥ j0, and{

û j,0
} j0−1
j=1 , define a Hilbert basis of L2(∂�) with respect to its standard scalar

product. Finally, if λ = 0, then j0 = N + 2 and the eigenspace corresponding
to μ1(0) = · · · = μN+1(0) = 0 is generated by {1, x1, ..., xN }; if λ > 0, then
μ1(λ) < 0.

Proof Since Ker J0 = H2
0,D(�), by the Hilbert-Schmidt Theorem applied to Tλ,N it

follows that Tλ,N admits a non-increasing sequence of positive eigenvalues
{
p j

}∞
j=1

bounded from above, converging to zero and a corresponding Hilbert basis
{
u j,λ

}
of

eigenfunctions of H2
λ,N (�). We note that p �= 0 is an eigenvalue of Tλ,N if and only

if μ = 1
p − b is an eigenvalue of (3.14), the eigenfunction being the same.

Formula (3.22) follows from the standard min-max formula for the eigenvalues of
compact self-adjoint operators.

Ifλ < 0, thenμ1(λ) = 0 and a corresponding eigenfunction u1,λ satisfies D2u1,λ =
0 in �, hence it is a linear function; moreover, since ∂u1,λ

∂ν
= 0 on ∂�, u1,λ has to be

constant.
If λ = 0, then μ = 0 is an eigenvalue and a corresponding eigenfunction is a

linear function. Hence μ1(0) = · · · = μN+1(0) = 0 and the associated eigenspace is
spanned by {1, x1, ..., xN }.
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If 0 < λ < η1, then by (3.11) and Lemma 3.9, there exists μ < 0 such that
λ1(μ) = λ, hence μ is an eigenvalue of (3.14). Moreover, by definition we have that
for all u ∈ H2(�) with γ0(u) �= 0

Qλ,N (u, u)∫
∂�

u2dσ
= Qλ1(μ),N (u, u)∫

∂�
u2dσ

≥ μ,

hence μ1(λ) = μ < 0.
To prove the final part of the theorem, we recast problem (3.14) into an eigenvalue

problem for the compact self-adjoint operator T ′
λ,N = γ0◦B(−1)

λ,N ◦ J ′
0, where J

′
0 denotes

the map from L2(∂�) to the dual of H2(�) defined by

J ′
0(u)[ϕ] = (u, γ0(ϕ))∂� , ∀u ∈ L2(∂�), ϕ ∈ H2(�).

We apply again the Hilbert-Schmidt Theorem and observe that Tλ,N and T ′
λ,N admit

the same non-zero eigenvalues and that the eigenfunctions of T ′
λ,N are exactly the

traces of the eigenfunctions of Tλ,N . From (3.14) we deduce that if we normalize the
eigenfunction u j,λ of Tλ,N associated with positive eigenvalues and we denote them
by ũ j,λ, then the normalization of their traces in L2(∂�) are obtained by multiplying
γ0(ũ j,λ) by

√
μ j (λ). The rest of the proof easily follows. ��

As we have done for problem (3.4), we present now a few results on the behavior
of the eigenvalues of (3.14) for λ ∈ (−∞, η1). We have the following theorem on the
Lipschitz continuity of eigenvalues, the proof of which is similar to that of Theorem
3.4 and is accordingly omitted.

Theorem 3.11 For any j ∈ N and δ > 0, the functionsμ j : (−∞, η1−δ] → [0,+∞)

which takesλ ∈ (−∞, η1−δ] toμ j (λ) ∈ R are Lipschitz continuous on (−∞, η1−δ].

We now investigate the behavior of the eigenvalues μ j (λ) as λ → −∞. In order
state the analogue of Theorem 3.7, we consider the operator TN : H2

0,N (�) →
H2

0,N (�) defined by TN = B(−1)
N ◦ J0, where BN is the operator from H2

0,N (�)

to its dual (H2
0,N (�))′ given by

BN (v)[ϕ] = Qσ (v, ϕ) + b(γ0(v), γ0(ϕ))∂� , ∀v, ϕ ∈ H2
0,N (�), (3.23)

and b has the same value as in the definition of the operator Tλ,N , see (3.18), and J0
is defined in (3.20). Note that the constant b can be chosen to be independent of λ for
λ < 0. By the Riesz Theorem it follows that BN is a surjective isometry. The operator
TN is the resolvent operator associated with problem (3.3) and plays the same role of
Tλ,N defined in (3.21). In fact, as in the proof of Theorem 3.10 it is possible to show
that TN admits an increasing sequence of non-zero eigenvalues

{
p j

}∞
j=1 bounded from

above and converging to 0. Moreover, a number p �= 0 is an eigenvalue of TN if and
only if ξ = 1

p − b is an eigenvalue of (3.3), with the same eigenfunctions.
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We have now a family of compact self-adjoint operators Tλ,N each defined on the
Hilbert space H2(�) endowed with the scalar product (3.19), and the compact self-
adjoint operator TN defined onH2

0,N (�) endowed with the scalar product defined by
the right-hand side of (3.23). We have the following theorem, the proof of which is
similar to that of Theorem 3.7 and is accordingly omitted.

Theorem 3.12 The family of operators {Tλ,N }λ∈(−∞,η1) compactly converges to TN
as λ → −∞. In particular,

lim
λ→−∞ μ j (λ) = ξ j , (3.24)

for all j ∈ N, where ξ j are the eigenvalues of (3.3).

Remark 3.13 We also note that each eigenvalue μ j (λ) is non-increasing with respect
to λ, for λ ∈ (−∞, η1). In fact from the Min-Max Principle (3.22) it immediately
follows that for all j ∈ N, μ j (λ1) ≤ μ j (λ2) if λ1 > λ2.

4 Characterization of trace spaces of H2(Ä) via biharmonic Steklov
eigenvalues

In this section we shall use the Hilbert basis of eigenfunctions v j,μ and v̂ j,μ given by
Theorem 3.3 and the Hilbert basis of eigenfunctions u j,λ, û j,λ given by Theorem 3.10,
for allμ ∈ (−∞, 0) and λ ∈ (−∞, η1).We recall that by definition, the functions v j,μ

and u j,λ are normalized with respect to Qμ,D(·, ·) and Qλ,N (·, ·) + b(γ0(·), γ0(·))∂�

respectively, while v̂ j,μ and û j,λ are normalized with respect to the standard scalar
product of L2(∂�).

We will also denote by l2 the space of sequences s = (s j )∞j=1 of real numbers

satisfying ‖s‖2
l2

= ∑∞
j=1 s

2
j < ∞.

We define the spaces

S 3
2 (∂�) = S

3
2
λ (∂�) :=

⎧⎨
⎩ f ∈ L2(∂�) : f =

∞∑
j=1

â j û j,λ with
(√

|μ j (λ)|â j

)∞
j=1

∈ l2

⎫⎬
⎭ ,

(4.1)
and

S 1
2 (∂�) = S

1
2
μ (∂�) :=

⎧⎨
⎩ f ∈ L2(∂�) : f =

∞∑
j=1

b̂ j v̂ j,μ with
(√

λ j (μ)b̂ j

)∞
j=1

∈ l2

⎫⎬
⎭ . (4.2)

These spaces are endowed with the natural norms defined by

‖ f ‖2
S

3
2
λ (∂�)

=
j0−1∑
j=1

â2j +
∞∑
j= j0

μ j (λ)â2j ,
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where j0 is as in Theorem 3.10, and

‖ f ‖2
S

1
2
μ (∂�)

=
∞∑
j=1

λ j (μ)b̂2j .

Recall that if λ = 0, j0 = N + 2 and if λ < 0, then j0 = 2.

These spaces allow to describe the trace spaces for H2(�). In particular, S
3
2
λ (∂�)

and S
1
2
μ (∂�) turn out to be independent of λ and μ. Namely, we have the following.

Theorem 4.1 Let � be a bounded domain in R
N of class C0,1. Then

γ0(H
2(�)) = γ0(H

2
λ,N (�)) = S 3

2 (∂�) (= S
3
2
λ (∂�)) (4.3)

and

γ1(H
2(�)) = γ1(H

2
μ,D(�)) = S 1

2 (∂�) (= S
1
2
μ (∂�)). (4.4)

In particular, the spaces S
3
2
λ (∂�) and S

1
2
μ (∂�) do not depend on λ ∈ (−∞, η1) and

μ ∈ (−∞, 0).
Moreover, if � is of class C2,1 then

�(H2(�)) = S 3
2 (∂�) × S 1

2 (∂�),

hence
S 3

2 (∂�) = H
3
2 (∂�)

and
S 1

2 (∂�) = H
1
2 (∂�).

Proof Let us begin by proving (4.3). By the definition of H2
λ,N (�) given in (3.15) and

by Theorem 3.10 we have that any u ∈ H2(�) can be written as

u = uλ + vD

where vD ∈ H2
0,D(�) and

uλ =
∞∑
j=1

a ju j,λ

for some coefficients a j satisfying
∑∞

j=1 a
2
j < ∞. Here

{
u j,λ

}∞
j=1 is a orthonormal

basis of H2
λ,N (�) with respect to the scalar product (3.19) with b satisfying (3.18).

Let j0 be as in Theorem 3.10. Hence we can write
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uλ =
j0−1∑
j=1

a ju j,λ +
∞∑
j= j0

a ju j,λ

=
j0−1∑
j=1

a ju j,λ +
∞∑
j= j0

(
a j

√
Qλ,N (u j,λ, u j,λ)

)
· u j,λ√Qλ,N (u j,λ, u j,λ)

=
j0−1∑
j=1

a ju j,λ +
∞∑
j= j0

ã j ũ j,λ,

where ũ j,λ = u j,λ√Qλ,N (u j,λ,u j,λ)
are the eigenfunctions normalized with respect toQλ,N

and ã j still satisfy
∑∞

j= j0+1 ã
2
j < ∞ (in fact 0 < Qλ,N (u j,λ, u j,λ) ≤ 1 for all j ≥ j0).

Clearly γ0(u) = γ0(uλ), hence by the continuity of the trace operator we have that

γ0(uλ) =
j0−1∑
j=1

a jγ0(u j,λ) +
∞∑
j= j0

ã jγ0(ũ j,λ)

=
j0−1∑
j=1

a j√
μ j (λ) + b

·
(√

μ j (λ) + b · γ0(u j,λ)
)

+
∞∑
j= j0

ã j√
μ j (λ)

· γ0

(√
μ j (λ)ũ j,λ

)

=
j0−1∑
j=1

â j û j,λ +
∞∑
j= j0

â j û j,λ =
∞∑
j=1

â j û j,λ,

where we have set

â j = a j√
μ j (λ) + b

, û j,λ =
√

μ j (λ) + b · γ0(u j,λ)

for j = 1, ..., j0 − 1 and

â j = ã j√
μ j (λ)

, û j,λ =
√

μ j (λ) · γ0(ũ j,λ)

for j ≥ j0. This proves that γ0(H2
λ,N (�)) ⊆ S

3
2
λ (∂�).

We prove now the opposite inclusion. Let f ∈ S
3
2
λ (∂�). Then f = ∑∞

j=1 â j û j,λ

with
∑∞

j=1 |μ j (λ)|â2j < ∞. Let u := ∑∞
j=1 a ju j,λ where

a j =
√

μ j (λ) + b · â j (4.5)
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By definition, u ∈ H2(�) since
∑∞

j=1 a
2
j < ∞. Moreover, we note that

f =
∞∑
j=1

â j û j,λ =
∞∑
j=1

â j

√
μ j (λ) + b · û j,λ√

μ j (λ) + b
=

∞∑
j=1

â j

√
μ j (λ) + b ·γ0(u j,λ),

(4.6)
hence f = γ0(u) ∈ γ0(H2(�)).

The proof of (4.4) follows the same lines as that of (4.3) and is accordingly omitted.

We deduce then that the spaces S
3
2
λ (∂�) and S

1
2
μ (∂�) do not depend on the partic-

ular choice of λ ∈ (−∞, η1) and μ ∈ (−∞, 0). In particular, we have proved that

�(H2(�)) ⊆ S
3
2
λ (∂�) × S

1
2
μ (∂�).

Assumenow that� is of classC2,1.Weprove thatS
3
2
λ (∂�)×S

1
2
μ (∂�) ⊆ �(H2(�)).

This will imply �(H2(�)) = S
3
2
λ (∂�) × S

1
2
μ (∂�).

Let ( f , g) ∈ S
3
2
λ (∂�) × S

1
2
μ (∂�). This means that f = γ0(uλ), g = γ1(vμ) for

some uλ ∈ H2
λ,N (�), vμ ∈ H2

μ,D(�). We claim that there exist vD ∈ H2
0,D(�) and

uN ∈ H2
0,N (�) such that uλ + vD = vμ + uN . To do so, it suffices to prove the

existence of vD ∈ H2
0,D(�) and uN ∈ H2

0,N (�) such that uλ − vμ = uN − vD . We
claim that

H2(�) = H2
0,D(�) + H2

0,N (�). (4.7)

Indeed, given u ∈ H2(�), one can find by the classical Total Trace Theorem a function
u1 ∈ H2(�) such that γ0(u1) = 0 and γ1(u1) = γ1(u). Thus u = u1 + (u − u1) with
γ1(u − u1) = 0 and the claim is proved. Thus the existence of functions vD and uN

follows by (4.7) and the function u = uλ + vD = vμ + uN is such that f = γ0(u)

and g = γ1(u). ��
Remark 4.2 Theorem 4.1 gives an explicit spectral characterization of the space
γ0(H2(�)) of traces of functions in H2(�) when � is a bounded domain of class

C0,1 in R
N . This space corresponds to H

3
2 (∂�) when � is of class C2,1. In this case

explicit descriptions of the space H
3
2 (∂�) are available in the literature and typically

are given by means local charts and explicit representation of derivatives, see e.g.,
[22,31].

For domains of class C0,1, it is not clear what is the appropriate definition of

H
3
2 (∂�). Sometimes H

3
2 (∂�) is defined just by setting

H
3
2 (∂�) := γ0(H

2(�)).

According to this definition, Theorem 4.1 implies that H
3
2 (∂�) = S 3

2 (∂�) also for
domains of class C0,1.

From Theorem 4.1 it follows that if � is a domain of class C0,1, then

�(H2(�)) ⊆ S 3
2 (∂�) × S 1

2 (∂�), (4.8)
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and equality holds if� is of classC2,1.We observe that if� is not of classC2,1, then in
general equality does not hold in (4.8). Indeed, we have the following counterexample.

Counterexample 4.3 Let � = (0, 1) × (0, 1) be unit square in R
2. We prove that

�(H2(�)) � S 3
2 (∂�) × S 1

2 (∂�).

To do so, we consider the real-valued function ϕ defined in � by ϕ(x1, x2) = x1 for

all (x1, x2) ∈ � and we prove that the couple (γ0(ϕ), 0) ∈ (S 3
2 (∂�) × S 1

2 (∂�)) \
�(H2(�)). It is obvious that γ0(ϕ) ∈ S 3

2 (∂�) since ϕ ∈ H2(�). Assume now by
contradiction that (γ0(ϕ), 0) ∈ �(H2(�)), that is, there exists u ∈ H2(�) such that
γ0(u) = γ0(ϕ) and γ1(u) = 0. Clearly, since γ0(u) = γ0(ϕ), there exists vD ∈ H2

0,D
such that

u = ϕ + vD

and hence

γ1(vD) = γ1(u) − γ1(ϕ) = −∇x1 · ν|∂�
= −ν1.

It follows that vD is a function in H2(�) such that γ0(vD) = 0 and γ1(vD) = −ν1, but
this opposes a well-known necessary (and sufficient) condition for a couple ( f , g) ∈
H1(∂�) × L2(∂�) to belong to �(H2(�)), namely

∂ f

∂τ
τ + gν ∈ H

1
2 (∂�), (4.9)

where τ is the unit tangent vector (positively oriented with respect to the outer unit ν
to �), see [21,22]. Indeed, the couple (0,−ν1) does not satisfy condition (4.9).

In order to characterize those couples ( f , g) ∈ S 3
2 (∂�) × S 1

2 (∂�) which belong

to �(H2(�)) when � is of class C0,1, we need the spaces S
3
2 (∂�) and S

1
2 (∂�)

defined by

S
3
2 (∂�) := γ0(H2

0,N ) = γ0(BN (�))

and

S
1
2 (∂�) := γ1(H2

0,D) = γ1(BD(�)).

The spaces S
3
2 (∂�) and S

1
2 (∂�) have explicit descriptions similar to those of

S
3
2
λ (∂�) and S

1
2
μ (∂�), namely

S
3
2 (∂�) =

{
f ∈ L2(∂�) : f =

∞∑
j=1

ĉ j û j with (
√

ξ j ĉ j )
∞
j=1 ∈ l2

}
. (4.10)
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and

S
1
2 (∂�) =

{
g ∈ L2(∂�) : g =

∞∑
j=1

d̂ j v̂ j with (
√

η j d̂ j )
∞
j=1 ∈ l2

}
. (4.11)

Here û j = √
ξ jγ0(u j ), j ≥ 2, where

{
u j

}∞
j=1 is a Hilbert basis of eigenfunctions of

problem (3.3), normalized with respect to Qσ , with the understanding that u1 and û1
equal the constant |∂�|−1/2, and v̂ j = √

η jγ1(v j ), where
{
v j

}∞
j=1 is a Hilbert basis

of eigenfunctions of problem (3.1) normalized with respect to Qσ .
Note that

S
3
2 (∂�) × S

1
2 (∂�) = �(H2

0,N (�) + H2
0,D(�)) ⊆ �(H2(�)).

One can see by similar arguments as in Counterexample 4.3 that in generalS
3
2 (∂�)×

S
1
2 (∂�) � �(H2(�)) if � is not of class C2,1, while equality occurs if � is of class

C2,1 by (4.7).
We are now ready to characterize the trace space �(H2(�)) for domains� of class

C0,1.

Theorem 4.4 Let� be a bounded domain inR
N of class C0,1. Let ( f , g) ∈ S 3

2 (∂�)×
S 1

2 (∂�) = S
3
2
λ (∂�) × S

1
2
μ (∂�) be given by

f =
∞∑
j=1

â j û j,λ , g =
∞∑
j=1

b̂ j v̂ j,μ (4.12)

for some λ ∈ (−∞, η1), μ ∈ (−∞, 0), with
(√|μ j (λ)|â j

)∞
j=1 ,

(√
λ j (μ)b̂ j

)∞
j=1

∈
l2. Then ( f , g) belongs to �(H2(�)) if and only if

∞∑
j=1

a jγ1(u j,λ) − g ∈ S
1
2 (∂�), (4.13)

where a j are given by (4.5).
Equivalently, ( f , g) belongs to �(H2(�)) if and only if

∞∑
j=1

b jγ0(v j,μ) − f ∈ S
3
2 (∂�), (4.14)

where b j = √
λ j (μ)b̂ j .

Proof Assume that ( f , g) ∈ �(H2(�)). Then f = γ0(uλ+vD)where vD ∈ H2
0,D(�)

and uλ = ∑∞
j=1 a ju j,λ with the coefficients a j given by (4.5).Moreover, g = γ1(uλ+

vD) by the continuity of the trace operator. We deduce that
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γ1(uλ) − g = −γ1(vD) ∈ S
1
2 (∂�).

This proves (4.13). Vice versa, assume that (4.13) holds. Then there exist vD ∈
H2

0,D(�) such that γ1(vD) = ∑∞
j=1 a jγ1(u j,λ) − g. Thus

γ1

⎛
⎝ ∞∑

j=1

a ju j,λ − vD

⎞
⎠ = g

and

γ0

⎛
⎝ ∞∑

j=1

a ju j,λ − vD

⎞
⎠ = f

by (4.6). The proof of the second part of the statement follows the same lines as that
of the first part and is accordingly omitted. ��

4.1 Representation of the solutions to the Dirichlet problem

Using the Steklov expansions in (4.1) and (4.2) and the characterization of the total
trace space �(H2(�)) given by Theorem 4.4 we are able to describe the solutions to
the Dirichlet problem (1.4).

Corollary 4.5 Let � be a bounded domain in R
N of class C0,1, ( f , g) ∈ L2(∂�) ×

L2(∂�). Then, there exists a solution u ∈ H2(�) to problem (1.4) if and only if

the couple ( f , g) belongs to S 3
2 (∂�) × S 1

2 (∂�) and satisfies condition (4.13) or,
equivalently, condition (4.14). In this case, if f , g are represented as in (4.12), then
the solution u can be represented in each of the following two forms:

i) if uλ := ∑∞
j=1 a ju j,λ where a j are given by (4.5) and g − γ1(uλ) is represented

by
∑∞

j=1 d̂ j v̂ j ∈ S
1
2 (∂�), then

u = uλ + vD

with uλ ∈ H2
λ,N (�) and vD = ∑∞

j=1 d jv j ∈ BD(�), d j = √
η j d̂ j for all j ∈ N.

ii) if vμ := ∑∞
j=1 b jv j,μ where b j = √

λ j (μ)b̂ j and f − γ0(vμ) is represented by∑∞
j=1 ĉ j û j ∈ S

3
2 (∂�), then

u = vμ + uN

with vμ ∈ H2
μ,D(�) and uN = ∑∞

j=1 c j u j ∈ BN (�), c j = √
ξ j ĉ j for all j ∈ N,

j ≥ 2, c1 = ĉ1.

Moreover the solution u is unique
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Proof The first part of the statement is an immediate consequence of Theorem 4.4.
Indeed, if there exists a solution u ∈ H2(�) then ( f , g) belongs to �(H2(�)), hence
it satisfies (4.13) and (4.14).

Vice versa, if ( f , g) satisfies (4.13), then uλ ∈ H2
λ,N (�), vD ∈ BD(�) are well-

defined and u = uλ + vD is a biharmonic function in H2(�) such that γ0(u) =
γ0(uλ) = f and γ1(vD) = g − γ1(uλ), hence γ1(u) = γ1(uλ + vD) = g.

Similarly, if ( f , g) satisfies (4.14), then vμ ∈ H2
μ,D(�), uN ∈ BN (�) are well-

defined and u = vμ + uN is a biharmonic function in H2(�) such that γ1(u) =
γ1(vμ) = g and γ0(uN ) = f − γ0(vμ), hence γ0(u) = γ0(vμ + uN ) = f .

The uniqueness of the solution in H2(�) follows from the fact that a solution u in
H2(�) of (1.4) with f = g = 0 must belong to H2

0 (�) and, since it is biharmonic, it
must also belong to the orthogonal of H2

0 (�), hence u = 0. ��
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Appendix A. Eigenvalues and eigenfunctions on the ball

In this section we compute the eigenvalues and the eigenfunctions of (BSμ) and (BSλ)
when � = B is the unit ball in R

N centered at the origin and σ = 0. It is convenient
to use spherical coordinates (r , θ), where θ = (θ1, ..., θN−1). The corresponding
transformation of coordinates is

x1 = r cos(θ1),

x2 = r sin(θ1) cos(θ2),
...

xN−1 = r sin(θ1) sin(θ2) · · · sin(θN−2) cos(θN−1),

xN = r sin(θ1) sin(θ2) · · · sin(θN−2) sin(θN−1),

with θ1, ..., θN−2 ∈ [0, π ], θN−1 ∈ [0, 2π) (here it is understood that θ1 ∈ [0, 2π) if
N = 2).

The boundary conditions for fixed parameters λ,μ ∈ R

{
∂2u
∂ν2

= λ∂u
∂ν

, on ∂B,

−div∂�(D2u · ν)∂� − ∂�u
∂ν

= μu, on ∂B,
(A.1)
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are written in spherical coordinates as

⎧⎨
⎩

∂2u
∂r2 |r=1

= λ∂u
∂r |r=1

,

− 1
r2

�S

(
∂u
∂r − u

r

)
− ∂�u

∂r |r=1
= μu|r=1 ,

(A.2)

where �S is the Laplace-Beltrami operator on the unit sphere. It is well known that
the eigenfunctions can be written as a product of a radial part and an angular part
(see e.g., [13] for details). In particular, the radial part is given in terms of power-type
functions, while the angular part is written in terms of spherical harmonics. We have
the following theorem.

Theorem A.1 Let � = B be the unit ball in R
N and (λ, μ) ∈ R

2. Then there exists a
non-trivial solution to problem �2u = 0 on B with boundary conditions (A.1) if and
only if there exists l ∈ N0 such that detMl(λ, μ) = 0, where Ml(λ, μ) is the matrix
defined by

Ml(λ, μ) =
(

l(l − 1 − λ) (l + 2)(l + 1 − λ)

l(l + N − 2)(l − 1) − μ l(l(l − 5) + N (l − 1) − 2) − μ,

)
(A.3)

for all l ∈ N0. If (λ, μ) ∈ R
2 solves the equation detMl(λ, μ) = 0 for some l ∈ N0,

then the associated solutions can be written in the form

ul(r , θ) =
(
Alr

l + Blr
l+2

)
Hl(θ),

where (Al , Bl) ∈ R
2 solves the linear system Ml(λ, μ) · (Al , Bl) = 0 and Hl(θ) is a

spherical harmonic of degree l in R
N .

Proof It is well-known that the weak solutions of �2u = 0 in the unit ball com-
plemented with (A.1) are smooth (see e.g., [19, §2]). Moreover, we recall that any
function u satisfying �2u = 0 on the unit ball B along with the two homogeneous
boundary conditions (A.2) can be written in spherical coordinates in the form

ul(r , θ) = (Arl + Brl+2)Hl(θ), (A.4)

for l ∈ N0, where A, B ∈ R are arbitrary constants and Hl(θ) is a spherical harmonic
of degree l in R

N (see e.g., [12, §5-6] for details). By using the explicit form (A.4)
in (A.2), we find that the constants A, B need to satisfy a homogeneous system of
two linear equations, whose associated matrix is given by (A.3). Hence a non-trivial
solution exists if and only if the determinant of (A.3) is zero. The rest of the statement
is now a straightforward consequence. ��

By Theorem A.1 we immediately deduce the following characterization of the
eigenvalues of (BSμ) and (BSλ). Here by ml we denote the dimension of the space of
the spherical harmonics of degree l ∈ N0 in R

N , that is

ml = (2l + N − 2)(l + N − 3)!
l!(N − 2)! .
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Corollary A.2 Any eigenvalue λ(μ) of (BSμ) on B satisfies the equation

λ(μ)
(
2l3 + (N − 1)l2 − (N − 2)l − μ

)

=
(
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − (1 + 2l)μ

)
, (A.5)

for some l ∈ N0. Any eigenvalue μ(λ) of (BSλ) on B satisfies the equation

μ(λ) (2l + 1 − λ)

= (
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − (

2l3 + (N − 1)l2 − (N − 2)l
)
λ
)
,

(A.6)

for some l ∈ N0. The multiplicity of μ(λ) and λ(μ) corresponding to an index l ∈ N0
equals the dimension ml of the space of the spherical harmonics of degree l in R

N .

By using similar arguments, one can easily prove that the eigenvalues of problems
(DBS) and (NBS) on the unit ball B can also be determined explicitly.

Theorem A.3 Any eigenvalue η of problem (DBS) on B is of the form

η = 2l + 1 (A.7)

for some l ∈ N0 and its multiplicity equals the dimension ml of the space of spherical
harmonics of degree l in R

N .
Any eigenvalue ξ of problem (NBS) on B is of the form

ξ = l(2l2 + (N − 1)l − N + 2), (A.8)

for some l ∈ N0 and its multiplicity equals the dimension ml of the space of spherical
harmonics of degree l in R

N .

By combining Corollary A.2 and Theorem A.3 we can prove the following state-
ment, where λ(l)(μ), μ(l)(λ), η(l) and ξ(l) denote the eigenvalues of (BSμ), (BSλ),
(DBS) and (NBS), respectively, associated with spherical harmonics of order l ∈ N0.

Theorem A.4 For all l ∈ N and μ �= ξ(l)

λ(l)(μ) =
(
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − η(l)μ

)
(
ξ(l) − μ

) . (A.9)

For all l ∈ N and λ �= η(l)

μ(l)(λ) =
(
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − ξ(l)λ

)
(
η(l) − λ

) . (A.10)

Moreover, λ(0)(μ) = η(0) = 1 for all μ ∈ R and μ(0)(λ) = ξ(0) = 0 for all λ ∈ R.
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Proof According to the change of notation for eigenvalues, we denote by λ(l)(μ),
μ(l)(λ), η(l) and ξ(l) the eigenvalues of problems (BSμ), (BSλ), (DBS) and (NBS)
corresponding to the choice of l ∈ N0 in (A.5), (A.6), (A.7) and (A.8). Each of such
eigenvalues has multiplicity ml .

We note that (A.5) and (A.6) can be rewritten as

λ(l)(μ)
(
ξ(l) − μ

) =
(
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − η(l)μ

)
(A.11)

and

μ(l)(λ)
(
η(l) − λ

) =
(
3l4 + 2(N − 2)l3 − (N + 1)l2 − (N − 2)l − ξ(l)λ

)
. (A.12)

If l ∈ N, then from (A.11) and (A.12) we deduce the validity of (A.9) whenμ �= ξ(l)

and of (A.10) when λ �= η(l). If l = 0, the condition detM0(λ, μ) = 0 can be written
in the form μ(λ − 1) = 0 which allows to conclude the proof. ��

We note that

lim
μ→−∞ λ(l)(μ) = η(l)

and

lim
λ→−∞ μ(l)(λ) = ξ(l)

for all l ∈ N0. This is coherent with Theorems 3.7 and 3.12. Moreover,

lim
μ→ξ±

(l)

λ(l)(μ) = ±∞

and

lim
λ→η±

(l)

μ(l)(λ) = ±∞

for all l ∈ N. We have shown that the branches of eigenvalues λ(l)(μ) and μ(l)(λ) are
analytic functions of their parameters onR\{ξ(l)}l∈N0 andR\{η(l)}l∈N0 respectively. In
particular, the branch λ(l)(μ) is a equilateral hyperbole with η(l) as horizontal asymp-
tote and ξ(l) as vertical asymptote, if l ≥ 1, while it is coincides with {(μ, 1) : μ ∈ R}
for l = 0. The branch μ(l)(λ) is a equilateral hyperbole with ξ(l) as horizontal asymp-
tote and η(l) as vertical asymptote, if l ≥ 1, while it is coincides with {(λ, 0) : μ ∈ R}
for l = 0. The situation is illustrated in Fig. 1.
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Fig. 1 Eigenvalues μ(l)(λ) of (BSλ) as functions of λ (the parameter λ correspond to the abscissa). Vertical
asymptotes are the eigenvalues η(l) of (DBS). Horizontal asymptotes are the eigenvalues ξ(l) of (NBS). A
reflection along the angle bisector of the first and third quadrant gives the eigenvalues λ(l)(μ) of (BSμ) as
functions of μ

Appendix B. Asymptotic formulas

It is proved in [28,29] that if � is a bounded domain in R
N with C∞ boundary,

then the eigenvalues of problems (DBS) and (NBS) with σ = 1 satisfy the following
asymptotic laws

η j ∼ 4π

ω
1

N−1
N−1

(
j

|∂�|
) 1

N−1

, (B.1)

and

ξ j ∼ 16π3

ω
3

N−1
N−1

(
j

|∂�|
) 3

N−1

, (B.2)
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as j → ∞. Here ωN−1 denotes the volume of the unit ball in R
N−1.

We state the following theorem, whose proof is omitted since it follows exactly the
same lines as those of Theorems 1.1 and 1.2 of [29].

Theorem B.1 Let� be a bounded domain inR
N of class C∞. Then formulas (B.1) and

(B.2) hold for all σ ∈ ( − 1
N−1 , 1

)
. Moreover, the two following asymptotic formulas

hold for the eigenvalues of problems (BSμ) and (BSλ)

λ j (μ) ∼ 3π

ω
1

N−1
N−1

(
j

|∂�|
) 1

N−1

, (B.3)

and

μ j (λ) ∼ 12π3

ω
3

N−1
N−1

(
j

|∂�|
) 3

N−1

(B.4)

as j → ∞.

We note that the principal term in the asymptotic expansions of the eigenvalues
depends neither on the Poisson’s ratio σ nor on μ or λ. However, lower order terms
have to depend on μ and λ, since, as μ, λ → −∞, λ j (μ) → η j and μ j (λ) → ξ j ,
and asymptotic formulas of λ j (μ) and η j , and of μ j (λ) and ξ j , differ from a factor 3

4 .

Remark B.2 We remark that the approach used in [29] requires that the boundary of
� is of class C∞. However, as proved by another technique in [28], the asymptotic
formulas for the eigenvalues of (DBS) and (NBS) when σ = 1 hold when� is of class
C2.

We now show that in the case of the unit ball B in R
N it is possible to recover

formulas (B.1), (B.2), (B.3) and (B.4) by using the explicit computations in Appendix
A.

Note that for a fixed l ∈ N0, the dimension of the space of spherical harmonics of
degree less or equal than l is (2l+N−1)(N+l−2)!

l!(N−1)! . By (A.8) we deduce that

ξ j = l(2l2 + (N − 1)l − N + 2) (B.5)

whenever j ∈ N is such that

(2l + N − 3)(N + l − 3)!
(l − 1)!(N − 1)! < j ≤ (2l + N − 1)(N + l − 2)!

l!(N − 1)! (B.6)

Moreover,

lim
l→+∞

(2l + N − 3)(N + l − 3)!
(l − 1)!(N − 1)! ÷ 2l N−1

(N − 1)!
= lim

l→+∞
(2l + N − 1)(N + l − 2)!

l!(N − 1)! ÷ 2l N−1

(N − 1)! = 1.
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From (B.5) and (B.6) we deduce that

ξ j ∼ 2
N−4
N−1 (N − 1)! 3

N−1 j
3

N−1 , as j → +∞.

We note that this is exactly (B.2). Indeed, recalling that |∂B| = NωN , a standard
computation shows that

2
N−4
N−1 (N − 1)! 3

N−1 = 16π3

ω
3

N−1
N−1

· 1

|∂�| 3
N−1

,

for which it is useful to note that

ωNωN−1 = 2NπN−1

N ! .

In the same way we verify that

η j ∼ 2
N−2
N−1 (N − 1)! 1

N−1 j
1

N−1 ,

λ j (μ) ∼ 3

4
2

N−2
N−1 (N − 1)! 1

N−1 j
1

N−1 ,

and

μ j (λ) ∼ 3

4
2

N−4
N−1 (N − 1)! 3

N−1 j
3

N−1 ,

as j → +∞, and these asymptotic formulas correspond to formulas (A.7), (A.5) and
(A.6).

Appendix C. The (BS�) and (BS�) problems for � > 0 and � > �1

In this section we briefly discuss problem (BSμ) for μ > 0 and problem (BSλ) for
λ > η1.

We begin with problem (BSμ). Assume that μ ∈ R is such that ξ j < μ < ξ j+1
for some j ∈ N. Recall that ξ j denote the eigenvalues of problem (NBS). We denote
by Uj the subspace of H2(�) generated by all eigenfunctions ui associated with the
eigenvalues ξi with i ≤ j and we set

U⊥
j =

{
u ∈ H2(�) : Qμ,D(u, ϕ) = 0 , ∀ϕ ∈ Uj

}
.

The space U⊥
j is a closed subspace of H2(�). We have the following result.

Theorem C.1 Let � be a bounded domain in R
N of class C0,1 and assume that ξ j <

μ < ξ j+1 for some j ∈ N. Then

H2(�) = Uj ⊕U⊥
j . (C.1)
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Moreover, there exists b ≥ 0 such that the quadratic form Qμ,D(u, v) +
b(γ1(u), γ1(v))∂�, u, v ∈ H2(�), is coercive on U⊥

j .

Note that the decomposition (C.1) is not straightforward sinceQμ,D does not define
a scalar product for μ > 0. However, in order to prove Theorem C.1 one can easily
adapt the analogous proof in [27, Theorem 5.1] but we omit the details.

We observe that, whenever u ∈ U⊥
j , one can consider only test functions ϕ ∈ U⊥

j
in the weak formulation of (3.4). Indeed, adding to ϕ a test function ϕ̃ ∈ Uj leaves
both sides of the equation unchanged. Hence one can perform the same analysis as in
the case μ < 0 and state an analogous version of Theorem 3.3 with the space H2(�)

replaced by U⊥
j . We leave this to the reader.

Remark C.2 If μ = ξ j for some j ∈ N the situation is more involved and is not
analyzed here. However, if we assume that ξ j is an eigenvalue of (3.3) of multiplicity
m such that

Qσ (u, ϕ) = ξ j (γ0(u), γ0(ϕ))∂� , ∀ϕ ∈ H2(�), u ∈ Uξ j , (C.2)

where Uξ j is the eigenspace generated by all the eigenfunctions {u1j , ..., umj } in

H2
0,N (�) associated with ξ j , the problem becomes simpler. Indeed, any function

w ∈ H2(�) can be written in the form w = u + v, where u ∈ Uξ j and v ∈ H2
ξ j

(�),
where

H2
ξ j

(�) :=
{
v ∈ H2(�) : (γ0(v), γ0(u

i
j ))∂� = 0 for all i = 1, ...,m

}
.

Hence, whenever u ∈ H2
ξ j

(�), one can consider only test functions in ϕ ∈ H2
ξ j

(�)

in the weak formulation (3.4) with μ = ξ j . In fact, adding to ϕ a function ϕ̃ ∈ Uξ j

leaves both sides of the equation unchanged. Thus we can perform the same analysis
of Theorem C.1 with H2(�) replaced by H2

ξ j
(�).

Note that equation (C.2) is satisfied with ξ1 = 0 and u a constant function.

We also have an analogous result for problem (BSλ) with λ > η1. Assume that
λ ∈ R is such that η j < λ < η j+1 for some j ∈ N. Recall that η j denote the
eigenvalues of problem (DBS). We denote by Vj the subspace of H2(�) generated by
all eigenfunctions vi associated with the eigenvalues ηi with i ≤ j and we set

V⊥
j =

{
v ∈ H2(�) : Qλ,N (v, ϕ) = 0 , ∀ϕ ∈ Vj

}
.

The space V⊥
j is a closed subspace of H2(�). We have the following result.

Theorem C.3 Let � be a bounded domain in R
N of class C0,1 and assume that η j <

λ < η j+1. Then
H2(�) = Vj ⊕ V⊥

j . (C.3)

Moreover, there exists b ≥ 0 such that the quadratic formQλ,N (u, v)+b(γ0(u), γ0(v))∂�,
u, v ∈ H2(�), is coercive on V⊥

j .
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We observe that, whenever v ∈ V⊥
j , one can consider only test functions ϕ ∈ V⊥

j
in the weak formulation of (3.14). In fact, adding to ϕ a test function ϕ̃ ∈ Vj leaves
both sides of the equation unchanged. Hence one can perform the same analysis as
in the case λ < η1 and state an analogous version of Theorem 3.10 with the space
H2(�) replaced by V⊥

j . We leave this to the reader.

Remark C.4 As in Remark C.2, one can treat the case λ = η j for some j in the special
situation when η j is an eigenvalue of (3.1) of multiplicity m such that

Qσ (v, ϕ) = η j (γ1(v), γ1(ϕ)) , ∀ϕ ∈ H2(�), v ∈ Vη j ,

where Vη j is the eigenspace generated by all the eigenfunctions {v1j , ..., vmj } in

H2
0,D(�) associated with η j . This happens in the case of the unit ball with η1 = 1. We

observe that any function w ∈ H2(�) can be written in the form w = v + u, where
v ∈ Vη j and u ∈ H2

η j
(�), where

H2
η j

(�) :=
{
u ∈ H2(�) : (γ1(u), γ1(v

i
j ))∂� = 0 for all i = 1, ...,m

}
.

Hence, whenever v ∈ H2
η j

(�), one can consider in the weak formulation (3.14) with

λ = η j only test functions in ϕ ∈ H2
η j

(�). In fact, adding to ϕ a function ϕ̃ ∈ Vη j

leaves both sides of the equation unchanged. Thus we can perform the same analysis
of Theorem C.3 with H2(�) replaced by H2

η j
(�).

We conclude this section with a few more remarks. We have observed that the
eigenvalueμ = 0 is always an eigenvalue of (3.14) when λ < η1, and that the constant
functions belong to the eigenspace associated with μ = 0, and in particular belong to
the spaceH2

0,N (�) and are eigenfunctions associated with the first eigenvalue ξ1 = 0
of problem (NBS). Such a situation may occur also for other eigenvalues, as well as
for problem (3.4) (as we have seen in the case of the ball in R

N with the eigenvalue
λ(μ) = η1 = 1 for all μ ∈ R). The following lemma clarifies this phenomenon.

Lemma C.5 Let j ∈ N. Then one of the following two alternatives occurs for problem
(3.4):

i) λ j (μ) < η j for all μ ∈ (−∞, 0);
ii) there exists μ0 ∈ (−∞, 0) such that λ j (μ0) = η j . In this case, η j = λ j (μ) for

all μ ∈ (−∞, μ0] and η j is an eigenvalue of problem (3.4) for any μ ∈ R.

Proof From the Min-Max Principles (3.2) and (3.8) we have that λ j (μ) ≤ η j for
all μ ∈ (−∞, 0), j ∈ N. Assume now that there exists μ0 ∈ (−∞, 0) such that
λ j (μ0) = η j . Again from (3.2) and (3.8) we deduce that we can choose an eigenfunc-
tion v j,μ0 associated with λ j (μ0) which belong toH2

0,D(�) and which coincide with
an eigenfunction u j of problem (3.1) associated with η j . In fact the eigenfunctions
associated with λ j (μ) are exactly the functions realizing the equality in (3.8). We also
note that

Qσ (u j , ϕ) = Qμ,D(u j , ϕ) , ∀ϕ ∈ H2(�), μ ∈ R,

123



On the explicit representation of the trace space…

hence

Qμ,D(u j , ϕ) = η j (u j , ϕ)∂� , ∀ϕ ∈ H2(�), μ ∈ R,

hence η j is an eigenvalue of (3.4) for all μ ∈ R and in particular η j = λ j (μ) for all
μ ∈ (−∞, μ0]. This concludes the proof. ��

In the same way one can prove the following.

Lemma C.6 Let j ∈ N. Then one of the following two alternatives occurs for problem
(3.14):

i) μ j (λ) < ξ j for all λ ∈ (−∞, η1);
ii) there exists λ0 ∈ (−∞, η1) such that μ j (λ0) = ξ j . In this case, ξ j = μ j (λ) for

all λ ∈ (−∞, λ0] and ξ j is an eigenvalue of problem (3.14), for any λ ∈ R.
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25. Kuttler, J.R., Sigillito, V.G.: Estimating eigenvalues with a posteriori/a priori inequalities, volume 135
of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, (1985)

26. Lamberti, P.D., Provenzano, L.: On trace theorems for Sobolev spaces. Matematiche (Catania) 75(1),
137–165 (2020)

27. Lamberti, P.D., Stratis, I.: On an interior Calderón operator and a related Steklov eigenproblem for
Maxwell’s equations. SIAM J. Math. Anal. 52(5), 4140–4160 (2020)

28. Liu, G.: The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian man-
ifolds. Adv. Math. 228(4), 2162–2217 (2011)

29. Liu,G.:On asymptotic properties of biharmonic Steklov eigenvalues. J. Differ. Equ. 261(9), 4729–4757
(2016)

30. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral domains,Mathematical Surveys andMono-
graphs, vol. 162. American Mathematical Society, Providence (2010)
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