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In this paper, we explore a new approach to abstract machines and optimal reduction

via streams, infinite sequences of elements. We first define a sequential abstract machine

capable of performing Directed Virtual Reduction (DVR) and then we extend it to its

parallel version, whose equivalence is explained through the properties of DVR itself. The

result is a formal definition of the λ-calculus interpreter called Parallel Environment for

Lambda Calculus Reduction (PELCR), a software for λ-calculus reduction based on the

Geometry of Interaction. In particular, we describe PELCR as a stream-processing

abstract machine, which in principle can also be applied to infinite streams.

1. Introduction

In the 1960s Peter Landin introduced the Stack, Environment, Core and Dump ma-

chine (SECD), the first abstract machine for the λ-calculus (Landin, 1964). Since then,

abstract machines describing the implementations of functional languages have been con-

ceived of as bridges between a high-level language and a low-level architecture (Hindley

and Seldin, 1986; Curien, 1990; Fairbairn and Wray, 1987; Cousineau and Mauny, 1998;

Accattoli et al., 2014). From the vantage point of logic, it is well-know that the Curry-

Howard isomorphism guarantees a direct correspondence between typed λ-calculus and

constructive logic, so that concepts like λ-terms and formal proofs turn out to be different

representations of the same mathematical objects. Namely, cut-elimination on proofs may

be regarded as identical to β-reduction on λ-expressions, allowing for the mathematical

description of abstract machines as executions of programs. In particular, some abstract

machines (Asperti et al., 1996) have been proposed as a tool for studying the theory and

implementation of optimal reduction of the λ-calculus (Lévy, 1978; Lévy, 1980; Lamp-

ing, 1989) (see also (Asperti and Guerrini, 1998) for an overview of the topic). Other

abstract machines (Pedicini, 1998; Mackie, 1995; Pinto, 2001) are based on the Geome-

try of Interaction (GoI), a mathematical framework developed by J.Y. Girard to provide
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a semantical view of linear logic as well as to model the dynamics of cut-elimination

(Girard, 1989; Gonthier et al., 1992).

In this paper, we explore a new approach to abstract machines and optimal reduction

through streams – infinite sequences of elements – which are ubiquitous in mathemat-

ics and computer science (see for instance (Rutten, 2005a) and (Rutten, 2005b)). The

main goal is to introduce a mathematical model of computation oriented to the quantita-

tive analysis and the optimization of machines performing optimal reduction on parallel

architectures. To this end, we begin by designing sequential abstract machine whose dy-

namic of execution relies on the algebraic properties of dynamic monoids; the sequential

execution is then extended to some degree of parallelisation. Finally, we restrict our in-

vestigation to computations based on GoI to prove the soundness of parallel execution

with respect to the sequential case.

More precisely, we recall that a virtual reduction (Danos and Regnier, 1993) is a fine-

grained way to do optimal reduction based on Girard’s dynamic algebra Λ∗. Virtual

Reduction (VR) hinges on a local and confluent reduction on graphs whose elementary

computational step consists of adding to the graph (representing the state of the com-

putation) new edges representing composed paths. By keeping “algebraic trace” of the

performed compositions to be stored on the current graph, VR allows one to compute

without useless (re)compositions. On the other hand, a Directed Virtual Reduction (DVR)

(Danos et al., 1997) is a variant of VR which exploits the original algebraic machinery of

GoI, by removing the added part of the algebra introduced in (Danos and Regnier, 1993),

while managing to avoid re-compositions. The proposed sequential abstract machine is

a generalization to arbitrary dynamic monoids of DVR.

When one considers the abstract machine performing DVR, the extension to the parallel

implementation yields a formal definition of the PELCR (Parallel Environment for optimal

Lambda-Calculus Reduction) engine, that is a parallel implementation of DVR described

in (Pedicini and Quaglia, 2007) and available on the Web at https://github.com/

pis147879/PELCR.

The style of parallelism of PELCR is similar to the Bulk Synchronous Parallelism (BSP)

originally introduced in Valiant’s paper (Valiant, 1990). In BSP, the computational load is

divided on many processing elements alternating working on separate data sets with com-

municating and synchronising of results; actually, in PELCR this communication phase is

not strictly synchronised, and there are no synchronisation barriers like in BSP approach.

The notion of BSP has been applied in the parallel programming model known as Parti-

tioned Global Address Space (PGAS) and included in the language X10 specified by IBM

(Charles et al., 2005). As a remedy for the difficulties in automatic parallelisation, PGAS

allows people to choose one proper parallel programming model (or a form of mixture

of models) to develop their parallel applications on a particular platform. The program-

ming style PGAS realises is a particular parallelism, oriented to the partitioning of data

sets. On the other hand, PELCR can be regarded as an ante litteram implementation

of a distributed memory model with a global addressing memory space for storing the

current state of the computation. This state is here represented by a partially evaluated

graph of the GoI representation of the initial λ-term. Global addressing of the memory

https://github.com/pis147879/PELCR
https://github.com/pis147879/PELCR
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is obtained by using message passing of virtual addresses via the libraries for Message

Passing Interface (MPI) available on many computer architectures.

To conclude, let us mention some of the advantages of our formal representation of

PELCR’s parallelism. First, it allows us to compare various models of parallel execution

in a uniform setting. By providing an in-deep analysis of parallel execution on differ-

ent models (Valiant, 2011), it permits us to assess quantitatively their differences, and

could impact PELCR itself. Moreover, it provides a grammar to describe extensions of

λ-calculus oriented toward parallel execution, and to quantify the efficiency of their evalu-

ation strategies. It is also worth stressing that GoI is flexible enough to deal with resource

sensitive calculi (Solieri, 2016) as well as with implicit computational complexity logical

systems (Baillot and Pedicini, 2001). In (Canavese et al., 2015) the implementation of

a software library of algebraic type in terms of implicit computational complexity com-

bines a formal approach to complexity with a view of PELCR as the physical device for

distributed execution of arithmetic functions.

This paper is organised as follows. In Section 2 we present the Sequential Abstract

Machine, providing the basics notions and examples that will be useful in the sequel.

In Section 3, we discuss Parallel Abstract Machine, distinguishing between synchronous

and asynchronous parallel machines. In Section 4, we sketch the soundness of the parallel

computation with respect to the sequential one in the case of machines performing DVR.

Finally, Section 5 presents our conclusions.

Acknowledgments: A preliminary version of this paper was presented at the Sym-

posium on Trends in Functional Programming 2014 as (Pedicini et al., 2014). The new

presentation of similar contents is here improved and corrected by filling deficiencies in

their presentation as well as by considering new cases in examples.

2. Sequential Abstract Machine

The processing unit of the abstract machine, which we are about to introduce, is a

universal device which consumes a pipeline of elementary instructions, while producing

further instructions to be processed. The memory of the machine is represented by a

dynamic graph, i.e., a graph characterised by some algebraic properties of its labels, which

are assumed to be taken in a dynamic monoid – see Definition 1 below. Moreover, also

instructions to be executed are edges, and their execution consists of the transformation

of the graph in memory and the production of a sequence of new instructions to be

executed.

We report the pseudocode of the implementation PELCR, which is a parallel interpreter

for λ-terms based on the GoI. In PELCR, many processing elements Pi cooperate to the

evaluation of a single λ-term viewed as a dynamic graph. The single processing unit exe-

cution flow is sketched in Figure 1. Main evaluation loop consists in buffering instructions

coming as messages from other processing units, then processing these instructions one

by one by composing the edge carried by the message with any edge already hosted by

the same target node, deciding where the new node originated by residuals of the compo-

sition must be allocated and sending residual edges to the processing units hosting their

target nodes.
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program Pi;
1 initialize();
2 while not end computation do
3 〈collect all incoming messages and store them in incomingi〉
4 while not empty(incomingi) do
5 〈extract a message m from incomingi〉;
6 if m.target ∈ nodesi ’node already in the local list’
7 then
8 for each edge e ∈ nodesi(m.target).combusted do
9 〈compose the edge carried by m with e〉;
10 〈select the destination process Pj for hosting

the node originated by the composition〉;
11 〈send the edges produced by the composition to

Pk and Ph hosting m.source and e.source
respectively〉

12 endfor
13 else 〈add m.target to nodesi〉; ’delayed creation’
14 〈add the edge carried by m to

nodesi(m.target).combusted〉
15 endwhile;
16 〈end computation = check termination()〉;
17 endwhile

Fig. 1. Pseudocode for a process Pi in PELCR as given in (Pedicini and Quaglia,

2007)

What we achieve in the first part of the paper is the description of a family of abstract

machines whose functioning relies on some requirements satisfied by the PELCR evalu-

ation machine. Moreover, these requirements can be used to design various evaluation

models which in principle could be executed through our abstract machines.

On the one side, the fact that the defined machines can be used to perform DVR ensures

their completeness with respect to computability; on the other side, these very machines

can in turn be employed to define other computational models (see Examples 4 and 5).

The formal definition of these abstract machines will be given in sections 2.4, 3.1 and

3.2. Before defining formally the algebraic version of the PELCR implementation from

which to extract the basic notions for the machines (sections 2.1 and 2.2), it is useful to

sketch hereunder an informal presentation.

Roughly speaking, instructions are (polarized labelled) edges called actions, that are

added to the flow of control. An evaluation sequence as performed in the PELCR machine

is represented by a flow of actions, one by one operating on the current state which is a

graph. Thus, at any evaluation step we have a machine configuration (A,G) which is a

pair, as reported in Figure 2:

— a list A of pending actions (on the left of the picture) and

— a (dynamic) graph G (as represented on the right part of the picture).

The abstract machine transition is obtained by applying an action α, taken from the

sequence A, to the current graph G. In fact, α carries information required to transform

the graph and this information coincides with an edge description: an elementary com-

putational step is then performed by accessing the target node of the edge in G and by

performing the computational payload expressed by the interaction of α with any edge

in G having the same target node.

The result of this elementary computational step is composed of two parts
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current graph/state of the machine

vt

v1 v2 v3 vm

w1 w2 w3 wm

pending actions/sequence of instructions

vt

vs

α

. . .

w

Fig. 2. Evaluation scheme

— a new set ∆α of instructions to be executed called residual actions of α, which are to

be added to pending actions;

— the updated graph G ∪ {α} which now keeps track of the edge carried by α.

We build from the result (∆α, G ∪ {α}) of the elementary step of computation the

corresponding transition

(A,G)
τα→ (A \ {α} ∪∆α, G ∪ {α})

which transforms the configuration (A,G) to a new configuration where residual actions

∆α are added to the list of pending actions A and α is removed from A and a corre-

sponding edge is added to G.

The above transition is a rough description of what is defined as a step of half-

combustion strategy of DVR (see (Pedicini and Quaglia, 2007)): it includes a symbolic

computation in the algebraic structure associated to the graph (the dynamic monoid)

and it is based on computations introduced in the GoI.

The memory of the machine is initialised with an empty graph, so that the execution of

a terminating program on the abstract machine can be summarised by a finite sequence

of transitions

(A0, ∅)
τα0−→ (A1, G1)

τα1−→ · · ·
ταn−1−→ (An, Gn)

ταn−→ (∅, Gn+1) (1)

where αi ∈ Ai for all i = 0, . . . , n. Note that the initial action set A0 is the interpretation

of the program, and the final graphGn+1 represents the result of the evaluation. Following

the notation for GoI, we say that the final graph Gn+1 is the Execution Formula of the

initial sequence A0.

Now we focus on the essential traits of the computation as described above. To this aim,

we rearrange concepts from GoI and DVR to shape an original presentation of an abstract

algebraic setting for the machine: Section 2.1 deals with the formal definition of the

algebraic structure concerning memory and instructions, Section 2.2 gives the elementary

computational step associated to an instruction (half-combustion step), and Section 2.3

illustrates the algebraic version of the communication layers between components (the

notion of stream of actions).

2.1. The state of the machine: polarised dynamic graphs

First of all we recall the definition of monoid and free monoid. A monoid is a set M closed

under an associative binary operation ·, called the product, and containing an identity
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element 1 (i.e., 1 ·m = m · 1 = m, for any m ∈M). The free monoid generated by a set

A is the set A∗ whose elements are all the finite sequences of zero or more elements from

A, with sequence concatenation as the monoid operation.

Definition 1. A dynamic monoid on the alphabet A is the free monoid M generated

by A such that

— there exists 0 ∈ M such that 0 is an absorbing element for product (i.e., 0 · m =

m · 0 = 0, for any m ∈M);

— M is endowed with an inversion operator (·)∗ (an involutive antimorphism for 0, 1 and

product, that is 0∗ = 0, 1∗ = 1 and (a∗)∗ = a and (ab)∗ = b∗a∗, for any a, b ∈M).

Definition 2 (Stable Form Condition).

Let M be a dynamic monoid. A non-zero element a of M is positive if it does not

contain any inversion ∗. Let a, b be positive elements of M : we say that b∗a has a (or

can be rewritten in) stable form if there exist non-zero a′, b′ ∈ M (uniquely determined

by a, b) such that b∗a = a′b′∗. We say that the dynamic monoid satisfies the stable form

condition (SFC) if

for any a, b ∈M either b∗a = 0 or it has a stable form. (SFC)

If SFC holds and it is computable (in linear time), it permits to perform computation

by means of DVR. However, while a dynamic monoid satisfying SFC is enough to execute

computations in the machines we present here, a special kind of dynamic monoid is

required if we wish to have invariant properties (e.g., the invariance of normal form)

given by the logical interpretation of programs. To this aim, we introduce the dynamic

monoid employed by Girard in defining GoI for linear logic, a monoid which can be also

applied to the interpretation of λ-calculus.

Definition 3 (Girard dynamic algebra Λ∗). The so-called Girard dynamic algebra

Λ∗ is the dynamic monoid generated by the constants p, q, and a family W = {wi}i of

exponential generators, with a morphism !(.), such that for any u ∈ Λ∗:

x∗y = δxy for x, y ∈ {p, q, wi}, (ANNIHILATION)

!(u)wi = wi!
ei(u), (COMMUTATION)

where δxy is the Kronecker operator, ei is an integer associated with wi called the lift of

wi, i is called the name of wi and we often write wi,ei to explicitly note the lift of the

generator.

Remark 1. The reader is referred to (Danos and Regnier, 1995). Note well that the

morphism ! is indeed an endomorphism for the dynamic monoid, thus

!(uv) = (!u)(!v) !(u∗) = (!u)∗ !1 = 1 and !0 = 0 for any u and v.

Notice that annhilation and commutation rules imply that for every a, b ∈ Λ∗ either

b∗a = 0 or it has a stable form, that is Λ∗ satisfies SFC. For instance, setting a = w1,2

and b =!2q, by applying the annihilation rule we get:

b∗a = (!2q)∗w1,2 =!(!q∗)w1,2 = w1,2!2(!q∗) = w1,2(!3q)∗ = a′b′∗ (2)
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with a′ = a and b′ =!b.

Definition 4 (Dynamic graph, polarity). Given a dynamic monoid M satisfying

SFC, a dynamic graph G on M is a graph G = (V,E ⊂ V × V ×M) with edges labelled

on M .

A polarised dynamic graph on M is a dynamic graph G whose edges e are endowed

with a source polarity εs ∈ {+,−} and a target polarity εt ∈ {+,−}. More precisely,

the edge set E is a subset of {+,−}2 × V 2 ×M and every edge e is represented by a

triplet 〈(εt, εs), (vt, vs), w〉, where: εt, εs ∈ {+,−} are the target and source polarities of

e, respectively; vt, vs ∈ V are the target and source nodes of e, respectively; and w ∈M
is the label of e.

Definition 5. For any dynamic monoid M we denote by GM (resp. G+
M ) the set of all

(resp. polarised) dynamic graphs on M .

To point out the peculiar role of the edges with respect to the execution of the abstract

machines, we define the actions as graph transformation instructions. Any action has as

a payload information concerning an edge to be added to the current dynamic graph.

We then compute composition with other edges via interaction rules which produce new

instructions from residual edges.

Now we have to introduce the notion of reference to identify those nodes which have

multiple occurrences in a sequence of graphs.

Definition 6. Given a sequence of graphs Gi = (Vi, Ei), we call reference (to a node)

an injective map ρ from the set of all nodes
⋃
i Vi to integers.

The set AM of all possible polarised actions on M is a set of a graph edge specifications,

more precisely:

AM = {〈(εt, εs), (ρ(vt), ρ(vs)), w〉, where ρ(vt) and ρ(vs) are references to nodes of

some graph in G+
M , εt, εs are polarities, and w ∈M}

Pending actions are sequences of instructions for transforming graphs: the core trans-

formation any instruction represents, is the addition of nodes and edges to the graphs,

as we show in Section 2.4. Actions can make reference to nodes which possibly are not

in the current graph (for instance, consider the initial (empty) graph and the initial

stream of pending actions). Therefore, to be more precise we have to say that an action

has information on an edge, while nodes are expressed as references. We can apply the

same strategy in presenting parallel abstract machines: in this case, the current graph

is decomposed by allocating nodes in different processing units, and it can happen that

one edge has source node on a unit and the target node on another. In this case edge

information is hosted in the dynamic graph to which the target node belongs, whilst

source node information is given as a reference to a node of the part of the dynamic

graph hosted by the other unit. For the sake of simplicity, however, we use always the

node notation to avoid to graphically distinguish between a node v and references to that

node ρ(v).

Notation 1. Polarization induces a bi-partition of edges co-inciding on the same node
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v+1 v
−
1 v+2 v

−
2v+t v

−
t

w1 w2

Fig. 3. A polarized graph.

v in two sets of edges with the same polarity. We denote the two sets by v+ and v−

accordingly to their respective polarities.

Example 1. Consider the polarised dynamic graph G ∈ G+
M depicted in Figure 3. We

have G = (V,E) where V = {v1, v2, vt}. The edges of G are

α1 = 〈(+,−), (vt, v1), w1〉 and α2 = 〈(−,+), (vt, v2), w2〉.

Finally we notice that the seminodes associated to vt are the edge sets v+
t = {α1} and

v−t = {α2}.

Example 2 (Encoding λ-terms as inputs for the machine via GoI). We consider

the pure λ-term representing the self application ∆ = λx.xx applied to the term I = λx.x.

In a quite standard way (Regnier, 1992) this term is translated in a linear logic proof

net, represented in Figure 4.

⊗

[ax]1 [ax]2

?

`

`

[ax]4

!

[cut]1

⊗

[ax]3

[t]1

Fig. 4. Proof net of (∆ I)

Indeed, the term (∆ I) can be typed in linear logic by extending the type system with a

fix point equation on formulas (namely, the one used to define Scott domains: D = D →
D). By following its representation as a pure proof net, we get the corresponding GoI
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pending actions

[cut]1

[ax]4

[t]1

[ax]4[ax]3

[cut]1

[ax]3

[cut]1

[ax]2

[cut]1[cut]1

[ax]2

[cut]1

[ax]1

[cut]1

[ax]1

1pq!pq!qpqx1pqx2qx1q

Fig. 5. Initial list of pending actions for the computation of the Execution

Formula of (∆ I)

interpretation, the following matrix with entries in the Girard dynamic algebra:



[ax]1 [ax]2 [ax]3 [ax]4 [cut]1 [t]1

[ax]1 0 0 0 0 qx2 + qx1q 0

[ax]2 0 0 0 0 qx1p+ p 0

[ax]3 0 0 0 0 q!q + q!p 0

[ax]4 0 0 0 0 p 1

[cut]1 x∗2q
∗ + q∗x∗1q

∗ p∗x∗1q
∗ + p∗ (!q∗)q∗ + (!p∗)q∗ p∗ 0 0

[t]1 0 0 0 1 0 0


.

The matrix representation is redundant (the matrix is in some sense symmetric aij = a∗ji,

in some model for Λ∗ we would say hermitian) and sparse. This drawback was one

motivation in Danos and Regnier’s paper (Danos and Regnier, 1993) for considering

virtual reduction using a graph as a notation for the sparse matrix. Thus our example

becomes a graph where nodes are axioms, cuts and conclusions (terminal nodes):

V = {[ax]1, [ax]2, [ax]3, [ax]4, [cut]1, [t]1}

and edges ((vt, vs), w) get a weight w ∈ Λ∗. Note that here vt is the target node and vs
is the source node. In this example, the “sparse” representation, consisting of the list of

edges with a non-null weight, is more compact:

E = {(([cut]1, [ax]1), qx1q), (([cut]1, [ax]1), qx2), (([cut]1, [ax]2), qx1p),

(([cut]1, [ax]2), p), (([cut]1, [ax]3), q!q), (([cut]1, [ax]3), q!p),

(([cut]1, [ax]4), p), (([t]1, [ax]4), 1)}.
(3)

To compute the Execution Formula associated to the term, we initialise the list of pending

actions with such edge set, see Figure 5, and we proceed to the evaluation of these actions

on an initial empty graph as described in Equation (1) (for simplicity, at this stage the

polarities are omitted in the notation):
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vεtt v−εt
t

vε11

vε22

vεmm

vεss
...

w1

w2

wm

w

α context of α

v′
ε′i1
i1 v

′
−ε′i1
i1

v
εi1
i1

v
εi2
i2

v
εin
in

vεss

...
...

v′
ε′i2
i2 v

′
−ε′i2
i2

v′
ε′in
in v

′
−ε′in
in

wi1

wi2

win

w′i1

w′i2

w′in

Res(α)

Fig. 6. Elementary computational step (as half-combustion). Note that the

computation of m interactions originates 2n residual edges, with n ≤ m

2.2. The elementary computational step: generalized half-combustion

Let G ∈ G+
M be a polarised dynamic graph and let α = 〈(εt, εs), (vt, vs), w〉 be an action

on G. We define the context of α to be the set of all edges {β1, . . . , βm} of G such that

βi = 〈(−εt, εi), (vt, vi), wi〉 for some εi, vi, and wi.

In other words, the context of α is the set of edges belonging to the seminode v−εtt , that

is, edges of G insisting on the same target node as α but with opposite target polarity.

Now, consider an action α and an element of its context, βi. By the definition of

dynamic graph, the weights of every edge are elements of a dynamic monoid M , that is

w = a and wi = bi for some a, bi ∈ M . If b∗i a is different from 0, let a′ib
′
i
∗

be its normal

form. Then the interaction between α and βi generates a new node v′i and new actions

αi := 〈(εi, ε), (vi, v′i), a′i〉 and β′i := 〈(εs,−ε), (vs, v′i), b′i〉, (4)

where ε is arbitrarily chosen in {+,−}. The node v′i is added, together with its outgoing

edges (vi, v
′
i) and (vs, v

′
i), to G. The set of all residual actions originated by α after

performing the elementary computational step (that is the computation of all interactions

for i = 1, . . . ,m, as depicted in Figure 6), is therefore the set

Res(α) := {αi1 , β′i1 , . . . , αin , β
′
in} ⊆ {α1, β

′
1, . . . , αm, β

′
m} (5)

where indices ij are those for which a′ij b
′∗
ij
6= 0.

Remark 2. The number of residual pairs is possibly less than the number of actions βi
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v−s v+t v
−
t v−1 v−s v′ε1 v′−ε

1 v−1
!2q w1,2 w1,2 !3q

(a) the action α and its context node vt (b) the set Res(α) of residuals of α

v′ε1 v′−ε
1

α context of α Res(α)

Fig. 7. Elementary computational step of an action α acting on a context with

one edge

in the context, therefore we write n ≤ m residuals. The reason is that for some of them

there may not be a stable form of the product bi
∗a (i.e., the result is null).

Example 3. As in Definition 3, assume M = Λ∗ and a =!2q and b = w1,2. Let α =

〈(+,−), (vt, vs), a〉 and assume that its context is the edge β = 〈(−,−), (vt, v1), b〉. Recall

from Equation 2 that b∗a = a′b′∗ where a′ =!3q and b′ = w1,2. We have in Figure 7 a

step of computation.

Example 4 (Encoding natural numbers via Girard dynamic algebra). As a first

step towards an embedding of recursive functions into dynamic graphs, we represent the

natural number n ∈ N in terms of the polarised dynamic graph GΛ∗(n) in Figure 8 part

(a), whereas in part (b) we show the representation of the successor of n. We illustrate how

to obtain, through the same GoI reduction mechanism, a representation of the successor

function on integers. For the sake of simplicity, the labels of nodes are here omitted, while

keeping the fact that polarities bipartite nodes in two sets.

The application of the successor function to n is represented by the interaction between

GΛ∗(n) and the action labelled with w1,2 (notice that in GoI this interaction represents the

reduction of a commutative cut). Figure 8 (c) displays the application of the successor

function to the integer n, whilst Figure 9 shows the reduction steps. The reader may

notice that the result (Figure 9 (c)) is not the representation of n+1 as given in Figure 8

(b)) as we would expect from Figure 8. To overcome this sort of problem, however,

we exploit a modified interaction considered in (Pedicini and Quaglia, 2007) and called

1

!nw1,2

(a) Integer n

1

!n+1w1,2

(b) Integer n + 1

w1,2

1

!nw1,2

(c) Successor function applied to n

Fig. 8. Polarised dynamic graphs representing the two integer numbers n and

n+ 1, and the successor function applied to n
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w1,2

1

!nw1,2

(a) Successor function applied to n

w1,2

!n+1w1,2w1,2

1

(b) Residuals after the execution of the first
step of computation

1

!n+1w1,21

1

(c) The final graph

Fig. 9. Polarised dynamic graphs representing intermediate states during the

reduction of the successor function applied to an integer number n

optimisation of one (see Figure 10 (a)). In case of residuals labelled by identity, such an

interaction works by creating only one residual in place of the two prescribed by the usual

interaction rule (see Equation 4). This example also illustrates how a computation runs

during execution by means of elementary steps; and, on the other hand, the encoding of

such a basic function (in the class of recursive functions) is an indication that other basic

recursive functions can be realised by this computational device. Anyway, the problem

of completeness of dynamic graphs with respect to the class of recursive functions is not

considered with this encoding of integers, being beyond the scope of the present paper.

Example 5 (Computing languages of automata). In this example we show a coding

into dynamic graphs for deterministic finite state automata. This approach is informally

justified by the discussion of the particular case where paths are preserved by reduction.

The aim of this example is to give some hints of non-standard applications of the GoI

machinery, however the rigorous discussion of the general case is postponed to a future

work.

Let A = (T, q0, F ) be a deterministic finite state automaton with alphabet A =

{a1, . . . , an} and finite set of states Q = {q0, q1, . . . qm}.
The transition function T : Q × A → Q for any pair (q, a) associates a new state

T (q, a). The state q0 is called the initial state and F ⊂ Q is the set of final (accepting)

states.

We provide here a correspondence between automata and dynamic graphs on the

Girard monoid Λ∗, such that the computation of the execution of the graph corresponds

to the computation of the regular language accepted by the automaton.
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v−1 v+t v
−
t v+2 v−1 v+2

a b u

(a) the action α and its context node vt (b) the optimised set Resopt(α) of residuals of α

α context of α Resopt(α)

(a) Optimised interaction rule: the elementary step of computation (for the dynamic graph on the left) in general

(if the product of the labels involved in the interaction is different from 0) includes the creation of a new source

node vs and of a couple of edges targeting the nodes v1 and v2 (with labels, say, u1 and u). Nevertheless, in the
particular case where u1 = 1, an optimised rule can be applied avoiding the creation of the node vs and only

a residual is created (corresponding to an edge with source v1 and target v2 and labeled with u as depicted on
the right).

w1,2

1

!nw1,2

(b) Successor function applied to n (as in Fig-

ure 9)

!n+1w1,2w1,2

w1,2

(c) Residuals after the execution of the first
steps of computation (using the optimised in-

teraction rules)

1

!n+1w1,2

(d) The final optimised
graph

Fig. 10. Optimisation of one

Definition 7. For any automaton A let us define its dynamic graph

[A] := (G, v0, VF ) where G = (Vq∪Vt, E) ∈ G+
Λ∗ , v0 ∈ Vq, and VF ⊆ Vq∪Vt is a vertex set.

— every state q ∈ Q is associated with a vertex vq ∈ Vq;
— every element ai ∈ A is coded as the element !w∗i,1 of Λ∗, then the mapping is extended

to A∗ by monoid homomorphism; namely, a word x = x1x2 . . . xn ∈ A∗ is represented

by !w∗in . . .!w
∗
i1

=!(win . . . wi1)∗, if xk = aik ∈ A. We notice that the empty word

ε ∈ A∗ is then mapped onto 1 ∈ Λ∗;

— transitions are represented via auxiliary vertices (composing the vertex subset Vt)

and edges. In particular, every (q1, q2) ∈ Q×Q and a ∈ A such that δ(q1, a) = q2 is

associated with a triplet (e1, e2, v12) ∈ E × E × Vt where

e1 = ((+,−), (vq1 , v12), 1) e2 = ((−,+), (vq2 , v12), !w∗1,1);

— initial node q0 is coded into the vertex v0;
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w0,1!w1,1 → 1 !w1,1

Fig. 11. The reduction rule for final nodes of the automaton.

a1 7→ !w1,1 1

(a) Coding of a transition

a1
a2 7→

!w1,1

1

!w2,1

1

(b) Coding of a loop

Fig. 12. Graph representations of some automata and their coding as dynamic

graph

— the final nodes qf ∈ F are coded as elements of the vertex subset VF . The property

of being a “final” node is propagated during the computation by the rule depicted in

Figure 11.

See Figure 12 for some examples of application of the above rules. We notice that the

elementary step of computation preserves paths. Consider for instance the path along

an automaton and its coding as a dynamic graph depticted in Figure 13(a). After a

step of reduction we get the configuration depicted in Figure 13(b) and, subsequently,

the configuration in Figure 13(c). (recall indeed that the involution ∗ represents an arc

reversal on dynamic graphs). Hence the path from the leftmost node to the rightmost

node is !w∗1,1!w∗2,1, which corresponds to the element ab in A∗.

Consider the automaton A and its coding according to the above rules, depicted in

Figure 14

We remark that A recognizes the regular language L = {a1u | u ∈ A∗}, where A =

.

a2a1 7→ 1!w2,11!w1,1

(a)

1!w2,1 1!w1,1

(b)

1!w∗2,1 1!w∗1,1

(c)

Fig. 13. Coding of an automaton and some steps of reduction
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a1
a1, a2

a1, a2

a2

7→
1

1 !w1,1

1 1

!w1,1 !w2,1

!w2,1

1!w1,1

1

!w2,1

Fig. 14. Coding of the automaton A

1

!w1,1

!w2,1
!w1,1

!w2,1

!w1,1

1

1

1

1

1

1

!w2,1

!w1,1

1 1

!w1,1 !w2,1

!w2,1

Fig. 15. Dynamic graph representing the automaton A after a step of reduction

{a1, a2}. After one reduction step (of the edges insisting on the target node) we get the

polarised dynamic graph depicted in Figure 15.

We notice that the paths from the initial state to final nodes are !w∗1,1!∗w1,11 and

!w∗1,1!w∗2,11 and they correspond to a1a1 and a1a2 in A∗, i.e. the words of length 2

accepted by the automaton.

Remark 3 (The role of polarity in DVR). In the DVR procedure, a strong assump-

tion on the input is made: that is, the input graph is the interpretation of a proof-net

into a virtual net (the proof net, at its turn, could be the interpretation of a λ-term).

Consequently, any edge in the virtual net represents a half of a straight path. We recall

that a straight path in a proof net is any path which is neither bouncing nor twisting. We
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say that a path is non-bouncing if it does not contain any edge a followed by the same

edge taken in the reversed direction a∗, whereas the path is non-twisting if it does not

contain any edge aj follow by a distinct premise of the same link a∗j . Note that although

neither non-bouncing nor non-twisting properties are preserved by path composition, we

know that all the weight of straight paths incident on the same node form two orthogonal

sets, such that residuals of orthogonal paths are still orthogonal (Pedicini and Quaglia,

2007, §3).

The original purpose of introducing polarity in DVR procedure was then to distinguish

the elements belonging to each of those orthogonal sets, to reduce useless computation.

Indeed if two labels belong to orthogonal sets, then their normal form is 0: if this infor-

mation is properly stored in the polarity sign (and properly propagated to the residuals)

then one can avoid to compute their normal form. This mechanism is automatised by

restricting the computation to those edges with opposite target polarities. In the more

general setting presented here, this orthogonality property of incident edges does not

hold: assigning a polarity to the edges is a procedure more oriented to flow control than

to the optimisation of the computation.

2.3. Streams

Let A be any set. We avoid any assumption on A in this section. Yet in what follows

we use streams to distribute the computational load on many devices and this means

that we need to define streams of actions. So, we have to look at A as the set of all

possible actions the computational device can perform. For the ease of exposition of the

execution equivalence results given in Section 4, we consider A as the set of formal sums

of elements of A, in particular a null element (the empty sum) 0, such that 0 + α = α.

Following Rutten (2005) we give the following

Definition 8. A stream S on A is a sequence S : N → A of elements of A. We define

the set Aω of all streams as Aω = {S | S : N→ A}.

For a stream S, we call S(0) the initial value of S and we adopt the following notations:

S = (S(0), S(1), S(2), . . . )

and

α :: S = (α, S(0), S(1), S(2), . . . )

and nil as the stream defined by the equation

nil = 0 :: nil.

We consider the following operations on shifts.

Definition 9 (Shift and zip). The shift operation (also called derivative, or tail) is

defined by the equation

S = S(0) :: shift(S). (6)
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The zip of a couple of streams S and T is given by the system of equations{
shift(zip(S, T )) = zip(T, shift(S))

zip(S, T )(0) = S(0)

We also adopt the following notation S n T := zip(S, T ).

Remark 4. Notice that by definition

zip(S, T )(2i) = S(i),

zip(S, T )(2i+ 1) = T (i)

for all i ∈ N. Also note that zip is not commutative.

Definition 10 (Strip). The strip of a proper sub-stream S2 from a stream S1 is

strip(S1, S2) :=

{
strip(shift(S1), shift(S2)) if S1(0) = S2(0)

S1(0) :: strip(shift(S1), S2) if S1(0) 6= S2(0)

Definition 11 (Weak-bisimulation and weakly-bisimilar streams). A weak-bisimulation

on A is a relation ρ ⊂ Aω ×Aω such that, for all streams S and T on A, if (S, T ) ∈ ρ
then one of the following holds:

S(0) = T (0) and (shift(S), shift(T )) ∈ ρ; (7a)

S(0) = 0 and (shift(S), T ) ∈ ρ; (7b)

T (0) = 0 and (S, shift(T )) ∈ ρ. (7c)

Two streams S and T defined on A are weakly-bisimilar, denoted S ≈ T if there exists a

weak-bisimulation ρ such that SρT .

Note that S ≈ T if and only if strip(S, nil) = strip(T, nil). Needless to say, it is not

possible to have strip(nil, nil) since nil is not a subsequence of itself.

We finally introduce the notion of node view (or view of base v) of a stream S of actions

(of a polarised dynamic graph):

Definition 12. Given a stream of actions S and a node v, the polarised view of base

vε is defined by selecting actions with target node v and opposite target polarity with

respect to the polarity of the base. Namely:

(S)vε :=


nil if S = nil

S(0) :: (shift(S))vε if S(0) = 〈(−ε, εs), (ρ(v), ρ(vs), w〉
(shift(S))vε otherwise

We define also the view of base v as (S)v = (S)v+ n (S)v− .

In a similar way, it is possible to define the graph view of a stream of actions S:

Definition 13. Given a stream of actions S and a graph G = (V,E) ∈ G+
M , we define a
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sub-stream of actions by selecting actions with target node in V :

(S)G :=


nil if S = nil

S(0) :: (shift(S))G if S(0) = 〈(ε, εs), (ρ(v), ρ(vs)), w〉 and v ∈ V
(shift(S))G otherwise.

Definition 14. Given a set X ⊂ A we define

streamset(X) :=

{
x :: streamset(X\x) for some x ∈ X,

nil if X = ∅.

Note that the above definition gives a stream which is defined up to a permutation.

Given an action α, and the corresponding set of residuals Res(α) (as in Equation (5))

we define the finite stream obtained rearranging actions in Res(α) as

execute(α) := streamset(Res(α)).

Note that Res(α) can be an empty set, in this case

execute(α) = streamset(∅) = nil.

Remark 5. This non deterministic definition stems from one of the main features of local

and asynchronous execution displayed in virtual reductions: parallel implementation can

get rid of the typical confluence and the synchronisation difficulties in distributed systems,

inasmuch as the algebraic machinery ensures the correctness of the computation.

2.4. Sequential Abstract Machine

In a way similar to that of classical SECD machines we define the set of machine config-

urations in terms of four components:

— the stack S, which is used to store the current action;

— the environment E, is a node of the graph and it provides the local environment

where the current action has to be performed, or it not determined (NULL);

— the control C is a stream of actions either provided as initial input or created during

the execution of other actions, it has to be executed in the context of the graph stored

in the memory of the machine;

— the dump D is the current dynamic graph and contains the environment for next

actions.

For a given dynamic monoid M , at any step of computation, the machine has a con-

figuration taken in the set:

CM :=

(S,E,C,D) such that S ∈
⋃
n≥0

AnM , D = (VD, ED) ∈ G+
M , E ∈ VD, C ∈ A

ω
M

 ,

where S is a finite set of actions of AM (see Definition 6), D is a dynamic graph, E is a

vertex of D and C is a sequence, possibly infinite of actions from AM .

For the sake of simplicity, we adopt the following notation in the case where we have
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to add nodes to the dump: D ∪ {vt, vs} = (VD ∪ {vt, vs}, ED), or where we have to add

an edge D ∪ {α} = (VD, ED ∪ {α}). Moreover, in the latter case we denote the edge to

be added in the same way as the action, namely if the action uses references to nodes

α = 〈(εt, εs), (ρ(vt), ρ(vs)), w〉, then the corresponding edge is 〈(εt, εs), (vt, vs), w〉.
We denote the empty dump (resp. a new/uninitialized environment) with ∅ (resp.

NULL). We also introduce the notation

target(α) =

{
vt if α = 〈ε, (vt, vs), w〉
NULL if α = 0.

This function takes as a value a node of the graph, considered as the environment where

the action represented by α has to be performed (if α = 0 we get the NULL environment).

Then target(α) is added to the graph as a node. Again if α = 0 we put

D ∪ {target(0)} = D.

We define the basic operations of this SECD machine in terms of a series of transitions

from one configuration to another:

name
configuration before

configuration after

INIT
(〈〉, NULL, nil, ∅)

(〈〉, NULL, read(), ∅) ENV
(〈α〉, NULL, C,D) α 6= 0

(〈α〉, target(α), C,D ∪ {target(α)})

POP
(〈〉, NULL, α :: C,D)

(〈α〉, NULL, C,D)
NENV

(〈α〉, NULL, C,D) α = 0

(〈〉, NULL, C,D)

HC
(〈α〉, target(α), C,D)

(〈〉, NULL, C n execute(α), D ∪ {α})

Fig. 16. Sequential Abstract machine

We denote by R1; R2 the composition of the application of the transition rule R1 fol-

lowed by the application of R2. So, let us assume that the machine has configuration

(S,E,C,D). Then, we obtain the new configuration by applying the transition R1 and

we write R1(S,E,C,D) = (S′, E′, C ′, D′).

In Figure 16, we give the five types of transition which fully describe our first machine,

the sequential abstract machine; the infinite execution loop for this machine is given by

(INIT; ((POP; NENV)∗; POP; ENV; HC)∗)∗ (8)

to be applied to the initial configuration S0 := (〈〉, NULL, nil, ∅).
Note that the infinite loop in Equation 8 is the only way to concatenate the transitions;

in fact, if we consider hypothesis conditions on the rules, we have the following mutually
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exclusive conditions on the configuration:

(configuration = S0) (T0)

(configuration = (〈α〉, NULL, C,D)) and α = 0 (T1)

(configuration = (〈α〉, NULL, C,D)) and α 6= 0 (T2)

(configuration = (〈α〉, target(α), C,D)) (T3)

We can restate the machine in a procedural style as reported in Algorithm 1.

Algorithm 1 Restatement of the execution cycle (Eq. 8) of the sequential machine

in Fig. 16

configuration← S0

while true do

configuration← INIT(configuration)

while ¬T0 do

configuration← POP(configuration)

if T1 then

configuration← NENV(configuration)

else

configuration← ENV; HC(configuration)

end if

end while

end while

Remark 6. With the settings of the Example 2, the stream returned by the function

read() is the GoI interpretation of the λ-term (∆I) concatenated with the stream nil.

Remark 7. By construction, at every step of computation the stack S is either the empty

stack, 〈〉, or it contains the next action acting on the graph 〈α〉. However, by definition

S may contain any finite number of actions: this more general setting is actually used to

prove the correctness of the machine, see the definition in Figure 17 below.

Remark 8 (On the effectiveness of stream-based computation). The fact that

the computation is stream oriented — i.e., the input is a finite or infinite stream —

implies that the machine never stops: if the input is infinite, then it has no last non-null

action; if the input is finite, then it is a stream which eventually coincides with nil. Both

cases display the problem of getting the result of the computation, for the result has to

be extracted from the dump D. Thus, nodes in the dump graph must be partitioned in

terminal nodes and non-terminal ones and the sub-graph of terminal nodes is the result

of the computation. To manage the terminal nodes, during initialisation we need an

explicit information tagging terminal nodes in the read stream. Then, in the course of a

computation, this tag is broadcasted to nodes which are source node of actions pointing

to terminal nodes.

As an alternative, actions pointing to terminal nodes can be emitted through a devoted



Abstract Machines, Optimal Reduction, and Streams 21

output stream. Note that in the special case in which the read stream has a finite number

of actions pointing to terminal nodes, the termination can be checked dynamically during

the computation even if the read stream is infinite: all we need to keep updated, at each

step of computation, is the number of actions with a terminal node as source. This

number can be computed by counting the residual actions with terminal source node

and by adding this value to the previously computed sum (decreased by one, if the

current action is terminal). When the total number of such actions in the stream equals

zero, then any further step of computation will never produce new terminal actions and

the machine can be stopped.

2.5. Generalised full combustion abstract machine

Now we introduce a variant of the SECD machine defined in Section 2.4. This variant

processes all the actions in a view of base v before focusing on another node: this execution

strategy generalizes to arbitrary dynamic monoids the full combustion strategy for DVR.

INIT
(〈〉, NULL, nil, ∅)

(〈〉, NULL, read(), ∅) NENV
(〈〉, NULL, C,D) (C)v = nil

(〈〉, NULL, C,D)

POP†
(〈〉, NULL, C,D) X = {α1, . . . , αn} (C)v = streamset(X) ZOV(v)

(〈α1, . . . , αn〉, v, strip(C, (C)v), D ∪ {v})

HC
(α :: S, v, C,D)

(S, v, C n execute(α), D ∪ {α})

Fig. 17. Sequential Full Combustion Abstract machine

Operations of the full combustion machine are given in Figure 17; they differ from the

ones given in the sequential case since the POP and ENV rules have been combined in

a unique POP† rule. This rule depends on the choice of a node v, and it can be applied

whenever the stream C contains a finite set of actions whose target refers to v. Moreover,

if v does not appear as source node of any action in the stream we have that (as a

consequence of the half combustion rule) that no further action with v as target node

can be produced as residual of a reduction step. Any node which satisfies the condition

(of not appearing as) source node of any action in the core stream is called a zero-valence

node, see (Danos et al., 1997). So in Figure 17, we denote the property of a node to be of

zero-out-valence by ZOV(v), the choice of v must fall on zero-out-valence nodes moreover

if v is such that no action in C has that node as the target, then we apply the NENV rule.

Processing actions in the stack by the elementary computational step HC is then carried

one action at time step as in the sequential machine until the empty stack is reached.

The behaviour of this machine is described by the following loop:

(INIT; (NENV∗; POP†; HC∗)∗)∗. (9)
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2.6. Strong local confluence in the case M = Λ∗

In the introduction to Section 2, we provided the general description of what is the model

of calculus based on a computing device with a state represented by a dynamic graph G

and the task to be executed represented by a sequence of actions A, see Equation (1). The

machine consumes the first action of the sequence, modifies the state (i.e., the dynamic

graph) and finally the residual actions ∆α produced by the execution, are added to the

sequence of actions.

This step of computation has been then formalised as the elementary step of com-

putation, Section 2.2 and included in the formal description of the SECD machine in

Section 2.4.

When M = Λ∗ and the input is the coding of a λ-term into a virtual net (see Example

2) then an elementary step of computation coincides with an half-combustion step of

DVR. In (Danos and Regnier, 1993), the theory of virtual reductions was introduced to

optimize the execution order: the resulting calculus was a local and asynchronous way to

compute the GoI Execution Formula. Moreover that calculus was in line with the theory

of interaction nets and a strong confluence property was showed: in fact, the algebraic

modification was sufficient to keep coherent the computation. As a consequence, since

DVR is obtained as a special case of VR, we get the same strong local confluence and

after one step of computation, the generated residuals can be applied in any order to

the graph, without affecting the result. This fact is at the origin of the idea that the

computational device can be easily parallelised, and therefore it can be viewed at the

origin of the implementation of PELCR as well (Danos et al., 1997; Pedicini and Quaglia,

2007).

Remark 9. Inasmuch as a term in untyped λ-calculus may not have a finite execution

(even a normalizing one), we need to be able to cope with an infinite output to design

a machine that can evaluate terms in parallel (with two or more computational units

exchanging data). This is a further motivation for a stream-based approach, which allows

the infinite sequence of actions to be used as input in a different computation.

3. Parallel Abstract Machine

We draw a distinction between synchronous and asynchronous parallel machines. In the

first case the computing units perform a step of computation at the same time, the

machines are clock synchronised and the computation proceeds on all machines. In the

asynchronous computation one machine can perform many steps of computation while

other machines perform one single step. In this second case we consider a scheduler which

decides which is the current unit.

Let us introduce the following notation on tensors which represent components of the

multiple units of the parallel machine. First of all, we can use a compact notation for k

stacks as follows:
k⊗
i=1

Si = S1 ⊗ S2 ⊗ · · · ⊗ Sk
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INIT
(〈〉k, NULLk, nilk, ∅k)

(〈〉k, NULLk, read()⊗ nilk−1, ∅k)

ENV

(
⊗k

i=1 〈αi〉, NULLk,
⊗k

i=1 Ci,
⊗k

i=1Di) αi 6= 0 for some i ∈ {1, . . . , k}

(
⊗k

i=1 〈αi〉,
⊗k

i=1 target(αi),
⊗k

i=1 Ci,
⊗k

i=1Di ∪ {target(αi)})

POP

(〈〉k, NULLk,
⊗k

i=1 αi :: Ci,
⊗k

i=1Di)

(
⊗k

i=1 〈αi〉, NULLk,
⊗k

i=1 Ci,
⊗k

i=1Di)

NENV

(
⊗k

i=1 〈αi〉, NULLk,
⊗k

i=1 Ci,
⊗k

i=1Di) αi = 0 for all i ∈ {1, . . . , k}

(〈〉k, NULLk,
⊗k

i=1 Ci,
⊗k

i=1Di)

HC

(
⊗k

i=1 〈αi〉,
⊗k

i=1 vi,
⊗k

i=1 Ci,
⊗k

i=1Di) αi1 6= 0 . . .αid 6= 0 αi = 0 if i 6= ij

(〈〉k, NULLk,
⊗k

i=1 Ci n (execute(αi1))Di n . . .n (execute(αid))Di ,
⊗k

i=1Di ∪ {αi})

Fig. 18. Parallel k-Units Synchronous Abstract Machine

Then, in the special case in which all the Si’s are the empty stack, we introduce such a

notation:

〈〉k = 〈〉 ⊗ · · · ⊗ 〈〉︸ ︷︷ ︸
k−times

=

k⊗
i=1

〈〉.

Note that the dumped graph D = D1 ⊗D2 ⊗ · · · ⊗Dk can be defined as the union of

edge sets in the individual Di that is

D =

k⋃
i=1

Di.

3.1. Synchronous Case

The synchronous model of execution makes the machine step into the computational

cycle in a synchronous way. This means that the same step of computation is performed

(synchronously) on any computational unit. This forces to mix together the rules ENV

and NENV: in Figure 18 such a mixed rule is referred to as ENV, while NENV is used to

denote the special situation in which all the current actions in the stack of every unit are

0.

Note also that at any step of computation the dumped graphs provide a partition of

the global current graph D = D1 ∪ · · · ∪ Dk; one problem arises with respect to the

edges with a source node on a graph and target node on the other. To avoid duplication

of nodes, we adopt the following strategy: edges are stored on a graph by accessing the

source node with the reference and the target node explicitly. Thus in the HC step of

Figure 18 we write Di ∪{αi} meaning that from an action αi we dump an edge specified

by the target node and the reference to the source node:

αi = 〈εi, (vit, ρ(vis)), wi〉, (10)
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which uniformly treats any edge of the graph and solves the question of the special edges

which crosses the partition of the graph.

Remark 10.

1. The computation of the stream (execute(αj))Di is performed by the j-th computing

unit, while the sub-stream relative to the nodes in the i-th dumped graph Di is

zipped to the stream Ci on the i-th computing unit: this leads to the communication

of residual actions towards their respective computing units.

2. Actions in the set of residuals Res(αi) of the action αi, possibly have target nodes in

the dumped graph distributed on the units. In fact, the target node of these newly

created actions , coincides with the αi source node vis. The unit hosting the node vis
is selected by considering the view with respect to the dumped graph of the unit,

namely when from the stream execute(αj) we extract the sub stream (execute(αj))Di
by selection of actions with target node in Di.

Notice that the source node of pairs of residuals coming from the same action-action

interaction is a newly created node v = new(). The new node v can be allocated to

any computing unit depending on the chosen load balancing strategy, whereas vis is

hosted by the unit decided once it was created as a source node in previous steps of

computation.

3.2. Asynchronous Case

In the asynchronous case one deals with modelling the behaviour of the parallel machine

when the execution steps are not performed at the same time on all computing units.

This model is realised through an asynchronous scheduling mode which rules the order

of execution.

Let us consider a parallel machine with k computing units whose state is therefore

represented by

(p, S,E,C,D) = (p, S1 ⊗ · · · ⊗ Sk, E1 ⊗ · · · ⊗ Ek, C1 ⊗ · · · ⊗ Ck, D1 ⊗ · · · ⊗Dk)

where p ∈ {1, . . . , k} is the control of the unit to be activated at the next transition

step. The asynchronous model of execution makes the machine units to step in the

computational cycle in an independent way. While each unit has to follow the execution

cycle as specified in Equation 8, irrespective of the application on different units. In a way,

this amounts to performing in one step any combination of k rules on the k components.

We add a control p which represents the computing unit which has to perform the next

computational step. Then, the machine by itself has the update rules in Figure 19, where

the next scheduled unit p′ is randomly chosen with uniform probability in {1, . . . , k}.
In fact, this asynchronous machine is very similar to the sequential one (and the two

definitions coincide for k = 1). We recognise conditions for the application which are the

very same T0, T1, T2 and T3 of the sequential machine albeit parametrised by the chosen

component p.

The sequence of controls p is by itself a stream (of integers in the set of unit identifiers:
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INIT
(p, 〈〉k, NULLk, nilk, ∅k)

(p′, 〈〉k, NULLk, nilp−1 ⊗ read()⊗ nilk−p, ∅k)

ENV(p)

(p,
p−1⊗
i=1

Si ⊗ 〈αp〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
k⊗

i=1

Di) αp 6= 0

(p′,
p−1⊗
i=1

Si ⊗ 〈αp〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ target(αp)⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
p−1⊗
i=1

Di ⊗Dp ∪ {target(αp)} ⊗
k⊗

i=p+1

Di)

POP(p)

(p,
p−1⊗
i=1

Si ⊗ 〈〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
p−1⊗
i=1

Ci ⊗ αp :: Cp ⊗
k⊗

i=p+1

Ci,
k⊗

i=1

Di)

(p′,
p−1⊗
i=1

Si ⊗ 〈αp〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
k⊗

i=1

Di)

NENV(p)

(p,
p−1⊗
i=1

Si ⊗ 〈αp〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
k⊗

i=1

Di) αp = 0

(p′,
p−1⊗
i=1

Si ⊗ 〈〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
k⊗

i=1

Di)

HC(p)

(p,
p−1⊗
i=1

Si ⊗ 〈αp〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ target(αp)⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci,
p−1⊗
i=1

Di ⊗Dp ∪ {αp} ⊗
k⊗

i=p+1

Di)

(p′,
p−1⊗
i=1

Si ⊗ 〈〉 ⊗
k⊗

i=p+1

Si,
p−1⊗
i=1

Ei ⊗ NULL⊗
k⊗

i=p+1

Ei,
k⊗

i=1

Ci n (execute(αp))Di,
p−1⊗
i=1

Di ⊗Dp ∪ {αp} ⊗
k⊗

i=p+1

Di)

Fig. 19. Parallel k-units Asynchronous Abstract Machine

{1, . . . , k}). In place of a random sequence, we may force a particular scheduling by

explicitly specifying the sequence.

Remark 11. By choosing the scheduling constant to 1 and by allocating newly created

nodes (see Remark 10.2) to the first computing unit, we recover the sequential machine.

Moreover, if we fix the round-robin scheduling 1, 2, . . . , k, 1, 2, . . . k, . . . which scans the

computing units sequentially one after the other, we have a k-steps correspondence with

the parallel synchronous model.

In the sequel, we will use full combustion strategy as a way to show invariance of

execution with respect to the parallel version. To this aim, we have to introduce full

combustion also in the case of k-units machines. This strategy is straight-forwardly im-

plemented in the asynchronous case by adding a POP† rule which performs on the unit

hosting the chosen zero-out-valence node v. Therefore, the scheduling sequence in the

full combustion strategy for the parallel asynchronous machine consists in a sequence of

nodes v from which depends the sequence of hosting units. For a given node v we denote

the hosting unit by p(v).

The POP-rule for the k-units machine performing full combustion is therefore given as

POP†(v)

p = p(v) (p, 〈〉k, NULLk,
k⊗
i=1

Ci,
k⊗
i=1

Di) X = {α1, . . . , αn} (Cp(v))v = streamset(X) ZOV(v)

(p, 〈〉p−1 ⊗ 〈α1, . . . , αn〉 ⊗ 〈〉k−p, NULLp−1 ⊗ v ⊗ NULLk−p,

p−1⊗
i=1

Ci ⊗ strip(Cp, (Cp)v)⊗
k⊗
i=p

Ci,

p−1⊗
i=1

Di ⊗Dp ∪ {v} ⊗
k⊗

i=p+1

Di)

thus the full combustion consists in applying rules in a loop similar to Equation 9 by
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following scheduling driven by the choice of a node v and acting on the hosting unit p(v):

(INIT; (NENV∗; POP†(v); HC∗)∗)∗. (11)

Note that by “HC”, we mean a k-ary version of the half combustion rule depicted in

Figure 17 since in this mode of execution at most one stack is non empty at any given

step

HC

(p, 〈〉p−1 ⊗ α :: S ⊗ 〈〉k−p, NULLp−1 ⊗ v ⊗ NULLk−p,
k⊗
i=1

Ci,
k⊗
i=1

Di)

(p, 〈〉p−1 ⊗ S ⊗ 〈〉k−p, NULLp−1 ⊗ v ⊗ NULLk−p,
k⊗
i=1

Ci n (execute(α))Di ,

p−1⊗
i=1

Di ⊗Dp ∪ {α} ⊗
k⊗

i=p+1

Di)

Note that in this version of the machine the schedule is determined by the choice of the

node selected in the POP rule, therefore it can be omitted when stating the POP and

HC.

4. Execution equivalence

In this section we assume M = Λ∗ and the input is the coding of a λ-term into a virtual

net. As mentioned in Section 2.6, under these assumptions, the sequential machine realises

the graph reduction introduced in (Danos et al., 1997), namely DVR. We sketch the

soundness of the parallel computation with respect to the sequential one. We assume the

soundness of the sequential machine by definition of DVR and we get the soundness of the

parallel version by showing that for any input stream obtained by the read() operation

at step 0 of the parallel and of the sequential machines, we have the same sequence of

computational steps, executed by both the machines (up to zero steps or reordering of

residuals of computational steps).

We need to introduce the notion of equivalence of the states of two machines.

Definition 15 (Dynamic graph isomorphism). A graph isomorphism φ : D1 → D2

is a bijection between graphs preserving adjacency, i.e., v1 and v2 are adjacent if and only

if φ(v1) and φ(v2) are adjacent. We extend this definition to polarised dynamic graphs by

assuming that φ preserves the labels of edges and the product of target polarities of pairs

of edges inciding on the same node. In particular, for each edge e1 = ((εt, εs), (vt, vs), w)

of D1 one has φ(e1) = ((ε′t, ε
′
s), (φ(vt), φ(vs)), w) and for all pairs of edges inciding on the

same node, the corresponding target polarities, say εt1 and εt2 , satisfy εt1εt2 = ε′t1ε
′
t2
†.

Definition 16. Let A = (S1, E1, C1, D1) and B = (S2, E2, C2, D2) configurations of the

machines M1 and M2, respectively. We say that A is equivalent to B (A ' B) whenever

1. D1 and D2 are isomorphic as polarised dynamic graphs, namely there exists an iso-

morphism φ of dynamic polarised graphs, such that:

† Notice that by construction, when considering couples of dynamic graphs generated by the sequential

abstract machine, the product of source polarities of edges outgoing from the same node is automat-

ically preserved.
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2. for any node v ∈ D1 we have equivalent views on the controls (the two streams of

actions) when taking v and its corresponding node φ(v), (C1)v ≈ σ((C2)φ(v)) for some

permutation of actions σ, and

3. the two stacks contain isomorphic actions: S1 = 〈α〉 is isomorphic with S2 = 〈β〉 (i.e.,

β = φ(α)).

Lemma 1. The state equivalence ' is an equivalence relation.

Proof. Trivial: ' is the intersection of two equivalence relations.

Another important fact is that:

Lemma 2. For any fixed polarised node vε, actions in α ∈ (S)vε are originated by

actions acting on the same node, i.e., there exists v0 such that for any α ∈ (S)vε there

exists β with target(β) = v0 and α ∈ Res(β).

In some sense this lemma guarantees that all the elementary steps of reduction per-

formed on actions with the same target node are done on the same computational unit.

This lemma follows from the Definition 12 and it provides evidence that execution done

on parallel machines performs in a way isomorphic to sequential ones. Nevertheless, this

property is not sufficient to guarantee the state equivalence of the resulting graphs after

the execution of a single action.

A node in the dumped graph without incident actions is called a ghost node (Pedicini

and Quaglia, 2007, §3). Edges pointing to ghost nodes are ghost edges. Let the valence

of a node be the number of non ghost edges exiting this node.

Definition 17. In DVR the combustion strategy (Danos et al., 1997, §4.1) chooses a

node of valence 0 and performs all the possible actions on that node.

The correctness of the execution is guaranteed by two facts:

1. full combustion of a node is correct because it is equivalent to a particular synchroni-

sation strategy of directed virtual reduction;

2. half-combustion is a less synchronous version of full-combustion, therefore it permits

to execute actions in a different order, by choosing (zero-valence) nodes in any order

and performing partial execution of incident actions.

We provide here the analogue proof of correctness in the setting of abstract machines.

First, we consider the particular synchronisation of the sequential machine given in Fig-

ure 17: such a synchronisation gives us a machine implementing full combustion . Then,

we show that the machine implements an asynchronous version of full combustion. In

fact, in the full combustion we need to focus on nodes which appear as target node in

actions, while not appearing in the dumped graph; the residuals of any action have, by

definition, fresh source nodes in the graph, and these nodes are added to the dumped

graph only when a (first) action is executed on that node. We call such a node (existing

as a target node of actions but not in the dumped graph) s-node (spiritual node). The

full combustion (see Figure 17) processes all the actions in a view of base a zero out

valence node v before focusing on another node.
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Remark 12. We notice that sequential abstract machines are initialised with empty

configurations. Also, after a read operation, the view of base v even if considered on

multiple streams (like in the case of parallel machines) corresponds to the view with

respect to just one stream because the base v possibly belongs to at most one of the

dumped graphs (as a consequence of the redistribution of residual actions with respect

to the dumped graph where a node is dumped, see Equation (10)). Thus, the notion

of full action v.A is the configuration obtained starting with configuration A after the

execution of one step of full-combustion with base v that is:

v.A := POP†v; HC∗(A)

When applied to parallel machines, it results in performing the pop of the set of actions

with target node v and then by iterating the elementary computational step on such a

set of actions on the unit containing the node v. Notice also that the dumped graphs of

the other units are left unchanged.

By means of full combustion we are in position to prove that full combustion imple-

mented in the parallel case is equivalent to sequential full combustion:

Theorem 1. Given a (sequential) machine M1 and a (parallel) machine M2 such that the

configurationA of the machineM1 is equivalent to the configurationB of the machineM2,

(i.e., there exists an isomorphism φ such that φ(A) = B), then we have that v.A ' φ(v).B.

Proof. If we consider a zero-out-valence s-node v, and we compute the residuals of

the view of base v, i.e. residuals obtained by processing actions in (C)v, then we may

consider the complete set of residuals relative to the node v: let us indicate this set by

Xv =
⋃
α∈(C)v

execute(α); note that this cumulative set of residual actions is redistributed

in any order whatsoever on the various unit core-streams, according to the respective

target nodes‡.

After this step of computation v becomes a ghost node, and since its out-valence is

zero we know that no action with target node v will appear in any stream. The set Xv

contains residuals for any pair of actions with opposite polarities which appears in (C)v:

the order of execution is immaterial since any pair is used exactly once, and any single

action is unaffected after the use. What remains modified by the ordering of the steps of

computation is the way used to mix the streams obtained by the residuals of any action

with the total stream of actions. These residuals, in fact, modify the views with the

base in the source nodes appearing in the performed actions and this is in accord with

definition of configuration isomorphism, see Definition 16, where sequences of actions in

the isomorphic core streams are considered up to reordering as stated in case 2 of the

definition.

‡ See Remark 10 where for any unit i the sub-stream of residuals selected in accord to the graph Di is

zipped to the core stream of the unit i: Ci n (Xv)Di .
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5. Conclusions

In this paper, we introduced a stream-based class of abstract machines whose elementary

step generalizes the half-combustion strategy for DVR. When considering the classical GoI

setting, the proposed approach provides a stream-based description of PELCR, thus high-

lighting the message interchange mechanism at the base of the parallel executions of terms

with PELCR. Although there exists implementations of functional languages which are

generally more efficient in the sequential case, PELCR can execute those jobs whose huge

size is intractable on sequential machines. Parallel implementations of optimal reductions

are tricky, insofar as without optimization they are not particularly efficient. Moreover,

most of the significant optimizations only work in the sequential case, like in Asperti’s

implementation (Asperti and Chroboczek, 1997) (cf. §2), based on safe operators, which

employs a sequential safe-tagging algorithm. PELCR’s ability to distribute dynamically

the workload among the available processors displays intrinsic parallelism of programs

at hand (thus requiring no annotation from the programmer).

Starting from this work, we plan to conduct a quantitative analysis of the behaviour of

PELCR when executed on parallel and distributed architectures. We finally remark that

the paper also contains a first exploration of possible applications of PELCR to inputs

structures different from virtual nets. Indeed an example of computation of the language

recognized by an automaton and a coding of natural numbers are proposed. In future

works, we plan to investigate possible further relations between PELCR and other models

of computations.
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