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Abstract We present a class of maximally entangled states generated by a high-
dimensional generalisation of the cnot gate. The advantage of our constructive
approach is the simple algebraic structure of both entangling operator and resulting
entangled states. In order to show that the method can be applied to any dimension, we
introduce new sufficient conditions for global and maximal entanglement with respect
to Meyer and Wallach’s measure.
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1 Introduction

Entanglement is a key feature of quantum mechanical systems with wide applications
to the field of quantum information theory. The class of quantum processes relying on
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entangled states include quantum state teleportation [2], quantum error correction [3],
quantum cryptography [15], and some quantum computational speedups [9]. Multi-
qubit entangled states are regarded as a valuable resource for processing information:
for instance, several authors applied multi-qubit entanglement (and related entangling
procedures) tomulti-agent generalizations of the quantum teleportation protocol intro-
duced in the paper by Bennett et al. [2]—see for instance [23]. Also, other classes of
multi-qubit entangled states turned out to be suitable for superdense coding.

Applications to quantum information theorymotivated the search for themathemat-
ical characterisations ofmulti-particle entanglement and for highly entangled quantum
states. The approaches to this problem include an analytical classifications of entangled
states [4,22], numerical optimisation techniques [5], and geometric characterisations
[13].

Here, we present an orthonormal base of maximally entangled states, that we call
general Bell states or 2n-dimensional Bell states, generated by an arbitrarily high-
dimensional generalisation of the cnot gate. The advantage of our approach is the
simple algebraic structure of both entangling gates and resulting states. In order to
show the full generality of the method, we prove new sufficient conditions for both
global entanglement and maximal entanglement (with respect to Meyer andWallach’s
measure, see Eq. (1)): being based on the expectation value of an explicitly given
operator, these criteria feature a simple formulation, scalability and observability.

In [17] Osterloh and Siewert propose a general method to construct new classes
of entanglement measures based on suitable products and combinations of Pauli’s
matrices. Inspired by this approach, aswell as by themulti-qubit concurrence proposed
in [1] and by the relation between antilinear operators and concurrence [21], in what
follows, we introduce a particular antilinear operator (Definition4) and we use its
expectation value as an entanglement criterion (Proposition 6) for general Bell states.
In Proposition 9, we show that such an operator turns out to be related to Meyer and
Wallach’s (MW) measure [16] and we employ this relation to show that the general
Bell states are maximally entangled with respect to this measure—Theorem17.

To the best of our knowledge, an univoque and commonly accepted notion of entan-
glement measure in high-dimensional systems has not yet been introduced. Several
proposals in the literature try to capture distinct aspects of a maximally entangled
state. For instance, the Schmidt decomposition, see [8], induces a measure related to
the minimum number of terms in the product expansion of a state, while the fully
entangled fraction measures the ability of a state to perform tasks related to quantum
computing, such as teleportation and dense coding [12].

Brown et al. and Tapiador et al. [7,20] used a computationally tractable entan-
glement measure based on the negative partial transpose criterion. Another relevant
attempt, introduced in [10,14], was to define the maximal entanglement through four
equivalent criteria; moreover, by following this approach, maximally entangled states
determine an orthogonal basis.

Throughout this paper, we focus on MWmeasure [16]. This measure interprets the
global entanglement as the average bipartite entanglement of every qubit with respect
to the rest of the system. It has thus the advantage of a simple physical meaning as
well as a simple formulation, introduced in [6]:
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Quantum entanglement and the Bell matrix 2925

Q(|ψ〉) := 2

⎛
⎝1 − 1

n

n∑
j=1

T r [ρ2
j ]

⎞
⎠ (1)

where n is the number of qubits of the system, ρ j,ψ is the density matrix obtained by
tracing out the j-th qubit of the state |ψ〉 and T r [·] represents the trace operator.

The main result we present here is a sufficient condition on multi-qubit states to
be maximally entangled (with respect to MW measure) and, as mentioned above, we
establish this result in order to show that a set of states generalising Bell states have
maximal MW measure.

The paper is organised as follows. In Sect. 2we show sufficient conditions for global
entanglement and for the maximality of the MW measure of a state in a multi-qubit
system. In Sect. 3 we propose a generalisation of the cnot gate to multi-qubit systems
a related class of states, that we call 2n-dimensional Bell states. By applying the criteria
introduced in Sect. 2, we are able to show that these generalisations of Bell states are
maximally entangled with respect to MW measure. Some possible extensions of this
approach are illustrated in Sect. 3.1.

2 An entanglement criterion

First of all we give the formal definition of globally entangled state.

Definition 1 A state |ψ〉 is globally entangled if for any |φ1〉 and |φ2〉we have |ψ〉 �=
|φ1〉 ⊗ |φ2〉.

Remark 2 Throughout this paper we consider elements of Hilbert spaces |ψ〉 ∈ C
2n

which are pure quantum states, i.e., they are complex vectors of unit Euclidean norm:
|ψ〉 = (ψ1, . . . , ψ2n ) and

∑2n

j=1 |ψ j |2 = 1; for brevity we refer to them simply as
“states”.

Notation 3 We use the symbol I2n to denote the 2n-dimensional identity matrix:

I2n := I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−times

.

being I2n = (1) if n = 0.
The expectation value of the operator A in the state ψ is denoted by

〈A〉ψ := 〈ψ |A|ψ〉.

Moreover we denote by σy the Pauli matrix

(
0 −i
i 0

)
.
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We introduce the following two operators, they are used to define the particular
antilinear operator we apply to states constructed with algorithm in Sect. 3 in order to
prove they are entangled states.

Definition 4 Let us denote by F : C2n → C the function which associates to a state
|ψ〉 the expectation value of the operator M2n K2n in the state |ψ〉, namely:

F(|ψ〉) := 〈M2n K2n 〉ψ (2)

where M2n := σy ⊗ I2n−2 ⊗ σy and K2n is the conjugation operator.

Note that

F(|ψ〉) := 〈M2n K2n 〉ψ = 〈ψ |M2n K2n |ψ〉 = 〈ψ |M2n |ψ̄〉

where |ψ̄〉 denotes the complex conjugate of |ψ〉.
Example 5 We explicitly compute M4:

M4 := σy ⊗ I22−2 ⊗ σy = σy ⊗ (1) ⊗ σy

= σy ⊗ σy =
(
0 −i
i 0

)
⊗ σy =

(
0 −iσy

iσy 0

)
=

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠

For a representation of matrices M2n with n ≥ 2 see Fig. 1.

We now show that M2n K2n has zero expectation value on product states.

Proposition 6 If |ψ〉 is an unentangled state then F(|ψ〉) = 0.

Proof Let n ≥ 1, |ψ〉 ∈ C
2n
, |φ1〉 ∈ C

2n1 , |φ2〉 ∈ C
2n2 , n1 + n2 = n and assume

|ψ〉 = |φ1〉 ⊗ |φ2〉. Also let |φ̄1〉 = (a, b) ∈ C
2n1 defined by a, b ∈ C

2n1−1
, two half

vectors of its coordinates in the standard basis. One has

(σy ⊗ I2n1−1)(a, b) = −i(b,−a).

Consequently

〈φ1|σy ⊗ I2n1−1 |φ̄1〉 = (a, b)t(σy ⊗ I2n1−1)(a, b) = −ia · b + ib · a = 0. (3)

Similarly, if |φ̄2〉 = (y1, . . . , y2n2 ) then

(In2−1 ⊗ σy)|φ̄2〉 = (In2−1 ⊗ σy)(y1, . . . , y2n )

= −i(y2,−y1, y3,−y4, . . . , y2n2 ,−y2n2−1)
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Quantum entanglement and the Bell matrix 2927

Fig. 1 We show in this picture the matrices M2n for n = 2, . . . , 7. For each n, a matrix is represented as
a square of fixed length, partitioned into 2n × 2n pixels. Each pixel represents an entry of the matrix: for
instance, the leftmost top pixel is related to the entry M2n (1, 1) of the corresponding matrix. The value of
the entry is encoded by the colour of the corresponding pixel: entries 0 are shown in grey colour, entries
1 by black colour and entries −1 by white colour. For instance M2n (1, 1) = 0 for each n = 2, . . . , 7 and
this information can be read in the picture by noting that the lefmost top pixel is always grey

thus

〈φ2|In2−1 ⊗ σy |φ̄2〉 = (y1, . . . , y2n2 )
t(In2−1 ⊗ σy)(y1, . . . , y2n2 )

= −i(y1, . . . , y2n2 )
t(y2,−y1, y3,−y4, . . . , y2n2 ,−y2n2−1) = 0.

(4)
By equalities (3) and (4) one finally has

F(|ψ〉) = 〈ψ |M2n |ψ̄〉 = 〈φ1 ⊗ φ2|σy ⊗ I2n−2 ⊗ σy |φ̄1 ⊗ φ̄2〉
= 〈φ1 ⊗ φ2|σy ⊗ I2n1−1 ⊗ I2n2−1 ⊗ σy |φ̄1 ⊗ φ̄2〉
= 〈φ1|σy ⊗ In1−1|φ̄1〉〈φ2|In2−1 ⊗ σy |φ̄2〉 = 0.

	

Next result shows that F also provides a sufficient condition for maximal entan-

glement. It is useful to recall the following:

Definition 7 (Schmidt decomposition) Let n1, n2 ∈ N such that n1 + n2 = n and let
A = C

2n1 and B = C
2n2 so that C2n = A ⊗ B. Then any state |ψ〉 ∈ C

2n
can be

written in the form

|ψ〉 =
K∑

k=1

ck |φA
k 〉 ⊗ |φB

k 〉
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2928 A. C. Lai et al.

where K = min{dim(A), dim(B)} = min{2n1, 2n2}, ck ≥ 0 and {|φA
k 〉}, {|φB

k 〉} are
two orthonormal subsets of A and B, respectively, see [18]. This decomposition takes
the name of Schmidt decomposition1.

Remark 8 Consider the decomposition C
2n = A ⊗ B and let ρA,ψ be the density

operator of the state |ψ〉 on the subsystem A. Then the set of the positive eigenvalues
of ρA,ψ coincides with the set {c2k | ck > 0} of positive squared coefficients of Schmidt
decomposition of the state |ψ〉 with respect to the decomposition C2n = A ⊗ B – see
for instance [19]. As a consequence, T r [ρA,ψ ] = ∑K

k=1 c2k = 1 and T r [ρ2
A,ψ ] =∑K

k=1 c4k .

Proposition 9 If |F(|ψ〉)| = 1 then |ψ〉 is maximally entangled with respect to MW
measure.

Proof First of all we notice that

(a) If |φ〉 ∈ C
2 then 〈φ|σy |φ̄〉 = 0;

(b) If {|φ1〉, |φ2〉} is an orthonormal base of C2 then |〈φ1|σy |φ̄2〉| = 1 and

〈φ1|σy |φ̄2〉 = −〈φ2|σy |φ̄1〉

(c) For all |ξ1〉, |ξ2〉 ∈ C
2n−1

one has

|〈ξ1|I2n−2 ⊗ σy |ξ̄2〉| ≤ 1;

and

〈ξ1|I2n−2 ⊗ σy ξ̄2〉 = −〈ξ2|I2n−2 ⊗ σy |ξ̄1〉.

Also remark that the Schmidt decomposition of |ψ〉 with respect the decomposition
that singles out a generic qubit of the system reads:

|ψ〉 =
2∑

k=1

ck |φk〉 ⊗ |ξk〉

for some c1, c2 ≥ 0 such that c21 + c22 = 1, some orthonormal base {|φ1〉, |φ2〉} of C2

and some orthonormal subset {|ξ1〉, |ξ2〉} of C2n−1
.

In view of (a)-(c), we then have

|F(|ψ〉)| = |
2∑

k,h=1

ckch〈φk |σy |φh〉〈ξk |I2n−2 ⊗ σy |ξ̄h〉|

= |2c1c2〈ξ1|I2n−2 ⊗ σy |ξ̄2〉| ≤ |2c1c2|

1 More generally, the Schmidt decomposition is well defined for pure states belonging to general Hilbert
spaces X .
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On the other hand |2c1c2| ≤ 1 for all c1, c2 ∈ R such that c21 + c22 = 1, and the
maximum |2c1c2| = 1 is attained at the points satisfying c21 = c22 = 1/2 (Fig. 2).
Therefore we may conclude that if |F(|ψ〉)| = 1 then c21 = c22 = 1/2. Since this
argument holds for any qubit, we have that

T r [ρ2
j,ψ ] = c41 + c42 = 1

2
for all j = 1, . . . , n

see also Remark 8. Consequently,

Q(|ψ〉) = 2

⎛
⎝1 − 1

n

n∑
j=1

T r [ρ2
j,ψ ]

⎞
⎠ = 1.

	

Above results relate the value of |F(|ψ〉)| to a measure of entanglement of the state

|ψ〉. In particular if |F(|ψ〉)| is minimal, i.e., |F(|ψ〉)| = 0, then |ψ〉 is not entangled
while if |F(|ψ〉)| is maximal, i.e., |F(|ψ〉)| = 1 then |ψ〉 is maximally entangled.
However, the condition |F(|ψ〉)| = 0 (respectively |F(|ψ〉)| = 1) is a sufficient but
not necessary condition to have |ψ〉 unentangled (resp. maximally entangled). Indeed,
consider the Greenberger-Horne-Zeilinger state

|G H Zn〉 := 1√
2
(|0n〉 + |1n〉).

For all n ≥ 2, the state |G H Zn〉 is globally entangled state and yet, for n ≥ 3,
F(|G H Zn〉) = 0: this implies that, in general, the inverse implication of Proposition
6 (that is, F(|ψ〉) = 0 implies |ψ〉 is unentangled) is not true. Furthermore, for all
n ≥ 2, the state |G H Zn〉 is maximally entangled with respect to MW measure and
F(|ψ〉) �= 1, thus also the inverse implication of Proposition 9 (that is, F(|ψ〉) = 1
implies |ψ〉 is maximally entangled) in general is not true.

Fig. 2 Bell Circuit:
entanglement of two elements of
the canonical basis |0〉 and |1〉

H2|0〉

⊗ βCNOT

1
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2930 A. C. Lai et al.

3 n-qubit entanglement algorithm

In this section we introduce a generalisation of the cnot gate and we show that the
resulting Bell states are fully entangled (Fig. 3).

To this end we adopt the following notations:

Notation 10 We use H2 := 1√
2

(
1 1
1 −1

)
is the Hadamard matrix and

H2n := H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
n times

is its 2n-dimensional generalisation, i.e., the 2n-dimensional Walsh matrix. We use the
symbols σx , σy and σz to denote Pauli’s matrices

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

We finally consider the orthogonal projectors

L :=
(
1 0
0 0

)
, R :=

(
0 0
0 1

)
.

In view of above notation, we remark that the cnot gate satisfies the equality

cnot :=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ = L ⊗ I2 + R ⊗ σx

while the columns of the matrix

B4 := 1√
2

⎛
⎜⎜⎝
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞
⎟⎟⎠ = cnot(H2 ⊗ I2)

are the coordinate vectors of the Bell states in the standard base. We extend the above
definitions of cnot and of B2 to an arbitrary number of qubits as follows

Definition 11 For n ≥ 2 we set

cnot2n := L ⊗ I2n−1 + R ⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸
n times

(5)

and
B2n := cnot2n (H2n−1 ⊗ I2). (6)
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Fig. 3 A representation of Bell matrices B2n for n = 2, . . . , 7

We define 2n-dimensional Bell state any state

|bk〉 := B2n |k〉

where k = 0, . . . , 2n − 1 and |k〉 is the k-th element of the standard base of C2n
.

Remark 12 Note that for any pair of squarematrices A and B with same dimension, the
matrix L⊗A+R⊗B is usually referred to as theirKronecker sum; this operation shares
with the Kronecker (tensor) product the property of preserving unitarity, [11, Chapter
8]. Then by construction, the matrix B2n is product, tensor product and Kronecker sum
of unitary matrices, and consequently, it is a unitary matrix. As columns of a unitary
matrix, the Bell states |bk〉, with k = 1, . . . , 2n form a complete orthonormal basis for
C
2n
.

In what follows we show that the 2n-dimensional Bell states are maximally entan-
gled with respect to MW measure. We introduce the matrix

L2n := B†
2n M2n B2n , (7)

whose relevance in our investigation is motivated by the following

Lemma 13 If |〈φ|L2n |φ̄〉| = 1 and if |ψ〉 = B2n |φ〉 then |ψ〉 is maximally entangled
with respect to the MW measure.

In particular, if |〈k|L2n |k̄〉| = 1, where |k〉 is the k-th element of the standard base,
then the k-th Bell state is maximally entangled with respect to the MW measure.

123



2932 A. C. Lai et al.

Proof By the definition of L2n and by the assumption |ψ〉 = B2n |φ〉 one has

|〈φ|L2n |φ̄〉| = |〈φ|B†
2n M2n B2n |φ̄〉|

= |〈B2n φ|M2n |(B2n |φ)〉| = |〈ψ |M2n |ψ̄)〉| = |F(|ψ〉)|.

The first part of the claim hence follows by Proposition 9.
The second part of the claim readily follows by applying above reasoning to |φ〉 =

|k〉 and by the definition of 2n-dimensional Bell state. 	

Remark 14 There exist states φ which not satisfy |〈φ|L2n |φ̄〉| = 1 and such that
B2n |φ〉 is maximally entangled, an example of this phenomenon is given by the state
φ = B−1

2n |G H Zn〉.
Next result gives a closed formula for L2n and relates its diagonal elements to the

Thue-Morse sequence, that is the binary sequence (τi ) defined by the recursive relation

τ1 : = 0

τ2n : = 1 − τn

τ2n−1 : = τn

for all positive integers n. We notice that for all n ≥ 1

τ2n+i = 1 − τi for all i = 1, . . . , 2n . (8)

Remark 15 Equality (8) characterises the Thue-Morse sequence via bitwise negation;
indeed, it states that every initial block of length 2n , i.e, τ1, . . . , τ2n , is followed by
a block of equal length that is its bitwise negation, i.e., τ2n+1 = 1 − τ1, . . . , τ2n+1 =
1 − τ2n . This can be proved by an inductive argument, indeed the case n = 1 follows
by a direct computation and, assuming (8) as inductive hypothesis, one readily gets
the inductive step

τ2n+1+i =
{

τ2(2n+i/2) = 1 − τ2n+i/2 = 1 − τi/2 = 1 − τi if i is even;
τ2(2n+i/2) = τ2n+(i+1)/2 = 1 − τ(i+1)/2 = 1 − τi if i is odd.

Lemma 16 For all n ≥ 2
L2n = − σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

n times

. (9)

Moreover L2n is a diagonal matrix whose diagonal elements L2n ,i , i = 1, . . . , 2n,
satisfy

L2n ,i = 2τi − 1, for all n = 1, . . . , 2n, (10)

where (τi ) is the Thue-Morse sequence.
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Proof In order to prove (9), we recall the definition of L2n in Eq. (7)

L2n =B†
2n M2n B2n

=(L H2)
†σy RH2 ⊗ (H†

2 σx H2) ⊗ · · · ⊗ (H†
2 σx H2)︸ ︷︷ ︸

n−1 times

⊗σyσx+

+ (RH2)
†σy L H2 ⊗ ((σx H2)

†H2) ⊗ · · · ⊗ ((σx H2)
†H2)︸ ︷︷ ︸

n−1 times

⊗σ †
x σy

(11)

the second equality is obtained by applying Definition 11, Equations (5) and (6) where
B2n is given in terms of cnot2n , namely

B2n = (L H2) ⊗ H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
(n−1) times

+(RH2) ⊗ σx H2 ⊗ · · · ⊗ σx H2︸ ︷︷ ︸
(n−1) times

and by applying L†σy L = R†σy R = 0. By a direct computation

(RH2)
†σy L H2 = ((L H2)

†σy RH2)
† = − i

2

(−1 1
−1 1

)
and σ †

x σy = (σyσx )
† = iσz .

By plugging above relations in (11), we obtain the first part of the claim, indeed

L2n = i

2

(−1 1
−1 1

)
⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

n−2 times

⊗(−iσz) − i

2

(−1 −1
1 1

)
⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

n−2 times

⊗iσz

=1

2

(−1 1
−1 1

)
⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

n−1 times

+1

2

(−1 −1
1 1

)
⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

n−1 times

= − σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n times

.

Now, above equality implies
L2n = σz ⊗ L2n−1 (12)

and, by an inductive argument, that L2n is a diagonal matrix.
Finally we prove (10) by induction on n. The base of induction, i.e. the case n = 1,

readily follows by L2 = σz and by the definition of τ1 and of τ2. Now we prove the
inductive step, i.e., we assume (10) as inductive hypothesis and we show

L2n+1,i = 2τi − 1, for all i = 1, . . . , 2n+1, (13)

By (12) we have L2n+1 = σz ⊗ L2n and, consequently,

L2n+1,i =
{

L2n ,i if i ≤ 2n

−L2n ,i−2n otherwise.
.

123



2934 A. C. Lai et al.

This, together with (8), implies (13), indeed we have

L2n+1,i = L2n ,i = 2τi − 1

L2n+1,2n+i = −L2n ,i = 1 − 2τi = 2τ2n+i − 1

for all i = 1, . . . , 2n and this completes the proof. 	

Theorem 17 The 2n-dimensional Bell states are maximally entangled with respect to
MW measure.

Proof By Lemma 16, L2n is a diagonal matrix with 1 or−1 as diagonal elements then
|〈k|L2n |k̄〉| = 1 for all k = 0, . . . , 2n − 1 and this, together with Lemma 13, implies
the claim. 	


3.1 Some remarks on an entanglement criterion

Lemma 13 provides amaximal entanglement criterion that can be rephrased as follows
“If |〈φ|L2n |φ̄〉| = 1 then B2n |φ〉 is maximally entangled”. Then one may ask how is
made the space of states satisfying this condition. Lemma16 provides some answers
to this question. Indeed we already used in the proof of Theorem17 the fact that
|〈k|L2n |k〉| = 1, if |k〉 is an element of the canonical base. Next result investigates this
property in the larger class of states whose coordinates in the standard base are real
valued.

Proposition 18 Let (τi ) be the Thue-Morse sequence and let oi and ei be the index
sequences such that τoi = 1 and τei = 0 for all i ∈ N. Then for all x ∈ R

2n
with

|x | = 1, one has |xtL2n x | = 1 if and only if either xei = 0 for all i = 1, . . . , 2n−1 or
xoi = 0 for all i = 1, . . . , 2n−1.

Proof Let x = (x1, . . . , x2n ) ∈ R
2n

with |x | = 1. Since x is real valued then
|xi |2 = x2i for all i = 1, . . . , 2n and

∑2n

i=1 x2i = |x |2. On the other hand |xtL2n x | =
| ∑2n

i=1 τi x2i | = 1 if and only if either
∑2n

i=1 L2n ,i x2i = 1 or
∑2n

i=1 L2n ,i x2i = −1,
where L2n ,i is the i-th diagonal element of L2n . Since |x | = 1, the former case is equiv-
alent to

∑2n

i=1 L2n ,i x2i = ∑2n

i=1 x2i and, this, together with the equality L2n ,i = 2τi −1
proved in Lemma 16, implies

0 =
2n∑

i=1

(L2n ,i − 1)x2i =
2n∑

i=1

(2τi − 2)x2i = −2
2n−1∑
i=1

x2ei
.

Above equality holds if and only if xei = 0 for all i = 1, . . . , 2n−1. It follows by a
similar argument that

∑2n

i=1 τi x2i = −1 is equivalent to xoi = 0 for all i = 1, . . . , 2n−1

and this completes the proof. 	

Remark 19 Thematrix L2n provides an explicit method for buildingmaximally entan-
gled states, indeed if |〈xtL2n x〉| = 1 then B2n |x〉 is a maximally entangled state.
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Lemma 16 points out the intimate relation between L2n and the first 2n terms of the
Thue-Morse sequence 0110 1001 · · · . Indeed the i-th diagonal element of L2n is
2τi − 1, that is, the diagonal elements of L2n are the finite sequence of digits +1 and
−1 obtained by replacing with −1 every occurence of 0 in the Thue-Morse sequence.
Conway’s evil and odious numbers are index sequences ei and oi associated with the
Thue-Morse sequence by the following rule: τei = 0 for each i ∈ N and τoi = 1 for
each i ∈ N. For instance, the first terms of (ei ) are 1, 4, 6, 7, . . . while the first terms of
complementary sequence (oi ) are 2, 3, 5, 8, . . . . Above Proposition characterises the
set for each real valued unitary vectors x ∈ R

n satisfying |xtL2n x | = 1 via a class of
constraints on the occurrences the 0’s in x based on evil and odious numbers. In partic-
ular it states that x ∈ R

2n
satisfies |xtL2n x | = 1 if and only one of the following cases

occurs: either x belongs to the class of “evil” states (that is xei = 0 for each i such that
ei ≤ 2n) or x belongs to the class of ‘odious” states (that is xdi = 0 for each i such that
ei ≤ 2n). For instance x = 1

2 (0, 1, 1, 0, 1, 0, 0, 1) and y = 1√
2
(0, 1, 0, 0, 0, 0, 0, 0, 1)

are “evil” states, indeed x1 = y1 = x4 = y4 = x6 = y6 = x7 = y7 = 0 (recall that the
first evil numbers are 1, 4, 6, 7). It hence follows from Proposition18 and Lemma13
that B2n x and B2n y are maximally entangled states.

On the other hand, the state z = 1
2 (1, 1, 1, 1, 0, 0, 0, 0) is not “evil” nor “odious”

because ze1 �= 0 and zo1 �= 0, therefore B2n z may be not maximally entangled.
Finally note that Proposition18 applies only to real valued vectors. For instance

the state z = 1
2 (1, 0, 0, 1, 0, i, i, 0) is “evil” and yet |〈xtL2n x〉| = 0 �= 1; therefore,

B2n |z〉 may be not a maximally entangled state.

4 Conclusions

We proposed a family of unitary transformations generalising the cnot gate to an
arbitrary number of qubits. We showed that a circuit composed by Walsh matrix and
our general cnot gate yields a maximally entangled (with respect to MW measure)
set of states, that we called generalised Bell states. In order to prove the validity of the
method,we developed ad hoc entanglement criteria based on the definition of a suitable
antilinear operator. The paper also contains a preliminary theoretical investigation of
such operator,which turned out to be relatedwith the celebratedThue-Morse sequence.

Results in the present paper open the way to further investigations in several
directions. For instance, it could be interesting to extend the method to general con-
trolled unitary operations. Also, a deeper investigation of antilinear operators with
zero expectation value on product states could represent a step towards an algebraic
characterisation of the states with maximal MW measure. Finally, it could be inter-
esting to better understand the intriguing relation between states with maximal MW
measure and the Thue-Morse sequence.
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