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Abstract

A novel two-scale modeling approach, linking di�erent structural models at macro and microscale, is pro-

posed to describe response of masonry walls with periodic texture. At the higher macroscopic scale, the real

heterogeneous material is modeled as a homogenized medium, considering the classical Mindlin-Reissner

theory for �at shells. At the lower microscopic scale, a representative masonry Unit Cell (UC), accounting

for the actual geometry, arrangement and nonlinear behavior of constituent materials, is analyzed in detail

by resorting to a three-dimensional Cauchy model. The UC is modeled as the assembly of elastic bricks

and nonlinear zero-thickness interfaces, in which the sliding frictional and damaging mechanisms are concen-

trated. To perform the macro-micro information transition a proper kinematic map is de�ned, whereas the

up-scaling process is performed via a homogenization procedure based on the Transformation Field Analysis

(TFA), properly extended to the case of interfaces. The developed homogenization procedure invokes a gen-

eralized Hill-Mandel principle and requires to satisfy `non-standard' constraints at the microlevel, for which

the perturbed Lagrangian method is employed.

Numerical applications are performed to prove the model e�ciency in describing the response of a running

bond UC subjected to in-plane and out-of-plane loads. Special attention is devoted to the analysis of shell

bending and shear behavior, comparing the results obtained with the proposed model with those recovered

by detailed micromechanical analyses.

Keywords: multiscale model, thick shell, masonry, damage-friction, 3D RVE, TFA approach.

1. Introduction

The structural assessment of masonry constructions is even now a challenging task due to their large

spread in civil and architectural heritage of many countries. Commonly, these are ancient constructions built

according to old technical codes or, in many cases, following good rules of thumb. Thus, their structural

performance needs to be carefully assessed in order to evaluate and design repairing and strengthening

interventions, if needed. The three main mechanisms, that can cause the collapse of masonry constructions,

can be hierarchically classi�ed as crumbling, out-of-plane and in-plane. Focusing on the out-of-plane masonry

structural response, this plays a signi�cant role on the construction stability. As a matter of fact, out-of-plane

collapse of masonry walls is one of the main causes of human life loss and signi�cant economic damage.

Many features in�uence the out-of-plane mechanism, such as texture of the brickwork, geometric and

mechanical properties of the constituents, boundary conditions. In particular, the speci�c arrangement of
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the constituents, bricks/blocks and mortar, strongly determines the wall failure mechanism, ultimate strength

and hysteretic dissipation associated to the collapse.

Several experimental tests were developed during the last two decades to investigate the in�uence of the

actual texture on the masonry wall response, even in view of a possible reinforcement adopting FRP (Fiber

Reinforced Polymers) or FRCM (Fiber Reinforced Cementitious Matrix). Many numerical procedures were

also formulated relying on di�erent approaches, ranging from the simpli�ed tools to the most sophisticated

models. A recent review of the modeling strategies for masonry construction can be found in [15].

An accurate, but computational very demanding, approach is the three-dimensional (3D) micromechanical

modeling, which describes the detailed arrangement, geometry and mechanical response of the masonry

constituents [4, 5, 27, 14]. This commonly adopts 3D solid �nite elements for both bricks and mortar joints

and introduces damage-plastic constitutive laws to account for the main occurring nonlinear mechanisms.

Alternatively, zero-thickness cohesive-frictional interfaces are employed to model the mortar joints and their

connections to the bricks [30]. Giambanco et al. in [19] formulated an interface element for mortar joints

in masonry relying on elasto-plasticity for non-standard materials to simulate the softening response which

occurs along with the decohesion process in presence of shear and tension tractions. Macorini and Izzudin

in [21] proposed a 2D nonlinear interface element for modeling both mortar and brick-mortar interfaces

in case of 3D arrangement for brick-masonry, accounting for the in-plane stacking mode and the through-

thickness geometry. Lebon in [20] presented four interface models for masonry structures also referring to

some experimental studies.

A fair compromise between modeling accuracy and computational e�ciency is the multiscale approach,

which constitutes one of the most modern and attractive method to study the response of structural elements

made of heterogeneous materials. This analyzes the real construction at di�erent scales, whose sizes depend

on the problem tackled. Regarding masonry structures, two scales are usually considered corresponding to

the structural (macroscale) and material (microscale) level. A �ctitious homogenized continuum medium is

adopted at the macroscale and, to derive the constitutive response at each macroscopic point, a downscaling

is performed. Then, the response of a representative volume element (RVE), properly selected to describe

the real material texture, is analyzed in detail [9, 22].

In the last decades, the so called computational homogenization methods have taken hold and a broad

range of models was proposed for masonry in this framework. In these procedures micro and macroscale

exchange information at each iteration of the global solution procedure [23, 16].

Usually, a parallel computing strategy is adopted to reduce the computational burden. A number of

computational homogenization methods was proposed to study the nonlinear response of masonry structural

elements subjected to in-plane loading, focusing on �exural and shear failure mechanisms. These can adopt

the Cauchy continuum to model both macro and microscale, as well as higher-order, micropolar and Cosserat

formulations mainly at the macroscale [16, 10]. Most of them use damage-plastic constitutive laws at the

microscale to describe the nonlinear degrading and sliding friction mechanisms occurring in the masonry

constituents, bricks and mortar, and adopt various techniques to regularize the numerical response in presence

of strain-softening. Analogously to the micromechanical models, at the RVE level, continuum FEs or interface

elements can be used to model the mortar joints. A �rst attempt to extend the homogenization procedure

for periodic media, well consolidated for in-plane 2D masonry problems, to 3D strain and stress states was

made by Anthoine [8], who underlined that the 2D formulation can be naturally extended to 3D masonry

problems with three periodicity directions, that is in case of masonry bulks characterized by 3D periodic

texture of bricks and mortar. Conversely, for masonry walls where only two directions of periodicity can be

de�ned lying in the mid-plane, the trough-thickness direction needs a di�erent and speci�c formulation. In

this context, recently, some computational homogenization methods were formulated to describe masonry
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failure mechanisms under out-of-plane loading. Addessi et al. [6, 2] proposed a two-scale model adopting

beam formulations at both the macroscopic scale and the RVE level to study the out-of-plane response

of masonry columns and walls characterized by cylindrical deformation mode. Mercatoris et al. [24, 25]

proposed homogenized shell-like models to overcome the limits of the classical 3D homogenization. These

approaches usually couple a 3D UC at the microscale to a shell model at the macro structural level. Most of

the proposed models relies on the Kirchho�-Love theory for thin shells, often assuming bricks as rigid and

mortar modeled by interfaces [13], but some recent works discussing the homogenization procedure for thick

shells based on the Mindlin theory can be found [12, 28].

Although very powerful and e�ective when employing parallel computing, multiscale procedures can result

very cumbersome and time demanding. Thus, some simpli�ed and interesting techniques were developed

in the framework of the Reduced Order Models (ROM), aiming at signi�cantly reducing the computational

burden, although preserving the advantages of the multiscale modeling. Among the ROM techniques, the

Transformation Field Analysis (TFA) [17, 26, 18] represents a very interesting and e�ective homogenization

procedure, successfully adopted for di�erent nonlinear composite materials. Several TFA versions for ma-

sonry were proposed in literature, mainly devoted to study the in-plane mechanical response of masonry

panels [3].

This paper presents a multiscale model for the nonlinear in-plane and out-of-plane analysis of masonry

walls. In particular, a regular masonry texture is considered, so that the masonry fabric can be assumed as

repetitive and, hence, periodic. At the structural scale, a thick shell formulation is adopted, thus including

both the membrane and thick plate strain and stress components at the macroscopic level. Because of the

material periodicity in the wall mid-plane, at the microscale, a unit cell (UC) is selected and a full three-

dimensional modeling is adopted, assuming zero traction on the two free opposite surfaces in the direction

orthogonal to the thickness. A kinematic driven homogenization procedure is then performed, that is a

kinematic map is de�ned on the basis of the introduced macroscopic strain measures. The displacement

�elds in the UC are represented as the additive composition of the assigned kinematic map and an unknown

perturbation terms, satisfying periodicity conditions on the UC boundary, except for the free surfaces.

Bricks response is modeled as linear elastic, while all the nonlinear damage and sliding friction mechanisms

are concentrated in the mortar joints. These latter are modeled as zero-thickness interfaces, adopting and

extending the formulation presented in [3] for the 2D UC to the 3D case. To obtain a fast and e�cient

multiscale procedure, a TFA-based technique is employed to solve the nonlinear homogenization problem,

assuming that the nonlinear mechanisms are uniformly distributed in some subsets, properly de�ned in the

UC according to the periodicity conditions and discretized through the thickness. Computational issues are

discussed in detail, both concerning the micromechanical solution algorithm and the TFA procedure. Finally,

some numerical examples are illustrated showing the response of the RVE under typical loading conditions

simulating the in-plane and out-of-plane most relevant cases.

The paper is organized as follows. After the introduction, in Section 2 the multiscale procedure is discussed

giving details on the governing equations at macro and microscale and the procedure for linking the two

scales. Section 3 describes the TFA procedure developed to derive the reduced order model. Section 4

illustrates some speci�c computational aspects. Numerical applications are carried out in Section 5. Finally,

concluding remarks are given in Section 6.

2. Multiscale procedure for masonry wall

A two-scale modeling approach is presented to describe in-plane and out-of-plane nonlinear mechanisms

of masonry walls. Although a masonry wall is a heterogeneous 3D body, considering the common case in
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which the wall thickness is signi�cantly lower than the other two dimensions, the shell structural model is

adopted at the macroscale, where an e�ective homogenized medium is considered. Moreover, to accurately

account for the microscopic mechanisms arising between bricks and mortar, as discussed for instance in [1],

a full 3D model is adopted at the microscale.

The two scales, macro and micro, are regarded as far enough to be considered as separated and a kinematic

map is de�ned to link them. The separation of scale assumption is introduced here, considering the scale of

the structural element much greater than the scale of the heterogeneities and, then, of the material. Indeed,

the macro- and microscale are coupled as the overall constitutive response at the macroscale is derived by

the analysis of the response at the microscale. To be noted is that in case of brittle or cohesive materials, an

important information that have to be transferred from the micro- to the macroscale is the dissipated energy

depending on the characteristic length (microstructural size) at the microscale. If correctly transferred,

this information allows to avoid pathological mesh-dependency of the numerical response at the macroscale

related to localization phenomena.

At both scales, small displacements and strains are assumed. A generalized Hill-Mandel principle is invoked

to properly link the two scales and, thus, to evaluate the homogenized stress measures for the shell at the

macroscale on the basis of the stresses computed for the constituents at the microscale.

2.1. Shell formulation at the macroscale

At the structural macroscopic scale, the real heterogeneous masonry wall characterized by periodic texture

and constant thickness t is modeled as an equivalent homogenized shell, adopting the classical Mindlin-

Reissner theory for �at shells. The Cartesian coordinate system (X1, X2, X3) is introduced, with X1 and X2

lying in the shell mid-plane and X3 running along the thickness. In the following, the in-plane quantities

involved in the analysis are organized in vectors overlined with the hat symbol.

The 3D displacement �elds U =
{

ÛT U3

}T
, with Û = {U1 U2}T collecting the displacement components

along directions X1 and X2 at each point X =
{

X̂T X3

}T
of the wall and X̂ = {X1 X2}T , are represented

according to the Mindlin shell theory in the form:

Û
(
X̂, X3

)
= V̂

(
X̂
)

+X3 Φ
(
X̂
)

U3

(
X̂, X3

)
= V3

(
X̂
)

(1)

where V =
{

V̂T V3

}T
contains the mid-plane translation components, with V̂ = {V1 V2}T collecting those

lying in the X1-X2 plane, and Φ = {Φ1 Φ2}T the rotation components of the �ber orthogonal to the mid-

plane about direction X2 and −X1, i.e. the speci�c positive rotation convention for shell model is adopted.

By applying the compatibility conditions, the 3D strain �elds, Θ =
{

Θ̂
T

Θ33 ΘT
3

}T
, with Θ̂ = {Θ11 Θ22 Θ12}T

and Θ3 = {Θ13 Θ23}T , are derived as:

Θ̂ = Ê +X3 K

Θ33 = 0 (2)

Θ3 = Γ

where Ê = {E11 E22 Γ12}T , K = {K11 K22 K12}T and Γ = {Γ13 Γ23}T are the membrane strains, plate

curvatures and plate shear strains, respectively. These quantities are arranged in the generalized shell strain
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vector E =
{

ÊT KT ΓT
}T

and are de�ned as:

Ê = D̂XV̂

K = D̂XΦ (3)

Γ = ∇̂XV3 + Φ

where D̂X and ∇̂X denote the in-plane compatibility and gradient operator, respectively, at the macroscopic

level and result as follows:

D̂X =


∂
∂X1

0

0 ∂
∂X2

∂
∂X2

∂
∂X1

 , ∇̂X =

{
∂
∂X1

∂
∂X2

}
(4)

Accordingly, the work-conjugate stress quantities are collected in vectors N = {N11 N22 N12}T , containing
the membrane stresses, M = {M11 M22 M12}T , collecting the plate bending and torsional couples, and

Q = {Q13 Q23}T , listing the plate shear forces. Then, the equilibrium equations governing the shell problem

are written as:

D̂T
XN + B̂ = 0 (5)

D̂T
XM + Q = 0 (6)

∇̂
T

XQ +B3 = 0

where B̂ = {B1B2}T contains the thickness resultants of the distributed load components applied along

directions X1 and X2 and B3 is the thickness resultant of the distributed load component applied along the

orthogonal direction to the shell mid-plane.

The constitutive response at each point of the shell is derived by performing the downscaling, that is by

analyzing the response of the UC at the microscale.

2.2. Formulation of the 3D problem at the microscale

The UC selected for the analysis at the microscale level accounts in detail for the real medium geometry

and arrangement and is denoted in the following as Ω; it . In particular, the 3D UC illustrated in Figure

1(a) is considered, with dimensions 2 a1 × 2 a2 × t and volume V = A t, with A denoting the area of the

UC mid-plane. The Cartesian coordinate system (x1, x2, x3) is introduced with x1 and x2 lying in the UC

mid-plane and x3 ≡ X3 along the shell thickness. Mortar joints are here modeled as zero-thickness interfaces

between adjacent bricks (Figure 1(b)). Hence, interfaces represent both the mortar and the two adhesion

surfaces between bricks and mortar.

As a running bond texture is here considered, mortar joints are parallel to x1-x3 plane (bed joints) and x2-

x3 plane (head joints), with the unit normal vectors resulting as j = {0 1 0}T and j = {1 0 0}T , respectively.
The 2D domain collecting all the bed joints is denoted by =b, while that collecting all the head joints is

denoted by =h. Thus, the whole domain results Ω = Ωb ∪ =b ∪ =h, being Ωb the bricks domain.

The 3D model is adopted for the UC, and the displacement �elds u =
{
ûT u3

}T
, with û = {u1 u2}T , at

each point x =
{
x̂T x3

}T
of the UC, with x̂ = {x1 x2}T , are represented as the additive composition of an

assigned part, ū =
{

ˆ̄uT ū3

}T
, with ˆ̄u = {ū1 ū2}T , expressed as function of the macroscopic shell strains,

and an unknown contribution u? =
{
û?T u?3

}T
, with û? = {u?1 u?2}

T
, denoted as perturbation �elds. Hence,
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Figure 1: 3D Unit Cell describing masonry running bond texture.

it is:

u (x) = ū (x) + u∗ (x) (7)

that, explicitly, results as:

u1 (x1, x2, x3) = E11x1 +
1

2
Γ12x2 + x3

(
K11x1 +

1

2
K12x2

)
+ u?1 (x1, x2, x3)

u2 (x1, x2, x3) =
1

2
Γ12x1 + E22x2 + x3

(
1

2
K12x1 +K22x2

)
+ u?2 (x1, x2, x3) (8)

u3 (x1, x2, x3) = Γ13x1 + Γ23x2 −
1

2

(
K11x

2
1 +K22x

2
2 +K12x1x2

)
+ u?3 (x1, x2, x3)

The introduction of the perturbation �elds u? allows to simultaneously account for the material heterogeneity

and the three-dimensional e�ects with respect to the shell structural model. These satisfy the following

periodicity conditions:

u? (−a1, x2, x3) = u? (a1, x2, x3)

u? (x1,−a2, x3) = u? (x1, a2, x3) (9)

In Figure 1(b) the typical interface is illustrated. The kinematic descriptors for the zero-thickness interfaces

are represented by the displacement jumps, s =
{
ŝT s3

}T
, with ŝ = {s1 s2}T , i.e. the relative displacements

between the two overlapping faces, de�ned as:

s = u+ − u− (10)

where the displacements of the points belonging to the positive and negative lips of the interface are denoted

as u+ and u−, respectively. Considering the representation form (7), the relative displacements (10) can be

written as:

s =
(
ū+ + u∗+

)
−
(
ū− + u∗−

)
= u∗+ − u∗− (11)

as ū+ = ū−, so that the displacement jumps at the interface are only de�ned by the displacement perturba-

tion. On the other hand, this means that the displacement �elds u∗ are discontinuous in Ω, as these include

the displacement jumps at the interfaces [31].

The compatible strain �elds at the microscale, ε =
{
ε̂T ε33 γ

T
}T

, are derived from the displacements
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expressed by (8) in the regions where these are continuous and, in compact form, can be written as:

ε̂ = Ê + x3K + ε̂?

ε33 = u?3,3 (12)

γ = Γ + γ?

where ε̂ = {ε11 ε22 γ12}T , γ = {γ13 γ23}T , ε̂? = {ε?11 ε
?
22 γ

?
12}

T
and γ? = {γ?13 γ

?
23}

T
. Eqs. (12), expressed in

components, result as:

ε11 = E11 + x3K11 + u?1,1

ε22 = E22 + x3K22 + u?2,2

ε33 = u?3,3

γ12 = Γ12 + x3K12 + u?1,2 + u?2,1 (13)

γ13 = Γ13 + u?1,3 + u?3,1

γ23 = Γ23 + u?2,3 + u?3,2

u?i,j being the derivative of u?i with respect to xj .

2.3. UC materials constitutive response

A linear elastic constitutive law is assumed for the bricks, so that the stress-strain relationship is written

in the classical form:

σb = Cbε , (14)

where Cb denotes the 6× 6 isotropic constitutive matrix.

To reproduce masonry nonlinear response, a damage-friction model is here adopted for interfaces repro-

ducing the response of the mortar joints. In detail, the constitutive model presented in [3] for 2D problems

and accounting for damage, sliding friction and unilateral contact is here extended to the 3D framework.

To de�ne the constitutive relationship for the interface, it is convenient to introduce the local coordinate

system (xT1, xT2, xN ) shown in Figure 1(b), with xT1 and xT2 lying on the interface plane and xN denoting

the direction normal to it, so that a positive orientation of the unit normal j is de�ned. Accordingly, the

positive and negative lips of the interface can be identi�ed. The displacement jumps are then expressed with

reference to the local coordinate system, i.e. s = {sT1 sT2 sN}T , with sT1 and sT2 denoting the displacement

jumps along the xT1 and xT2 directions and sN that in the normal direction xN .

To de�ne the interface constitutive law, a representative element of area (REA) de�ned at a lower scale,

where a microcrack is located, is linked to the typical point of the interface. The REA area S is subdivided

into an undamaged portion, Su, and a damaged one, Sd. Then, the damage parameter D is de�ned as the

ratio between the damaged and the whole area, i.e. D = Sd/S.

The tractions in the undamaged area Su, tu, are related to the displacement jumps by a linear elastic

relationship. Those in the damaged area Sd, td, are zero when the microcrack is open, while emerge due to

the unilateral contact and friction e�ect when the microcrack is closed. Then, the overall tractions t result
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from the composition of tu and td, and are expressed as:

t = (1−D)tu +D td = C (s− π) (15)

tu = C s (16)

td = C [s− (c + p)] (17)

where C is the diagonal matrix collecting the sti�ness values in the two tangential, CT1, CT2, and normal,

CN , directions to the interface. In the following, it is assumed an isotropic response of the interface in its

plane, so that CT1 = CT2 = CT . The inelastic vector π is de�ned as:

π = D (c + p) (18)

where the two contributions c and p are the contact and sliding friction displacement jump vectors, respec-

tively. These account for the unilateral contact and sliding friction phenomena and are de�ned as:

c = H(sN )


0

0

sN

 , p =


pT1

pT2

0

 (19)

with H(sN ) denoting the Heaviside function applied to sN . The evolution of the sliding friction displacement

jumps p, occurring only when damage is activated at the interface, is ruled by the classical Coulomb yield

function, expressed as:

f
(
td
)

= µ tN
d +

√
tdT1

2
+ tdT2

2
(20)

where µ is the friction coe�cient. The two sliding friction displacement jump components, pT1 and pT2,

evolve according to the following �ow rules and Kuhn-Tucker loading-unloading conditions:

ṗT1 = λ̇
∂f

∂tdT1

, ṗT2 = λ̇
∂f

∂tdT2

(21)

λ̇ ≥ 0, f
(
td
)
≤ 0, λ̇f

(
td
)

= 0 (22)

The evolution law of the damage variable D induces a linear softening response for the interface under

monotonic loading condition. It accounts for the coupling of fracture modes I and II by introducing two

variables, ηN and ηT , de�ned as the ratios between the �rst cracking relative displacements, s0
N and s0

T , and

those corresponding to the full damaged state, sfN and sfT . These result as:

ηN =
s0
N

sfN
=
s0
N t

0
N

2GcN
, ηT =

s0
T

sfT
=
s0
T t

0
T

2GcT
(23)

where t0N and t0T are the peak stresses corresponding to the �rst cracking relative displacement and GcN and

GcT the fracture energies for mode I and II, respectively. The two parameters de�ned in (23), assuming the

same values for the two tangential directions, are properly combined to de�ne parameter η as:

η = 1− 1

α2

(
〈sN 〉2+ ηN + sT1

2ηT + sT2
2ηT

)
(24)

where α measures the average displacement jump as:

α =
√
〈sN 〉2+ + (sT1)

2
+ (sT2)

2
(25)
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〈sN 〉+ being the positive part of the normal displacement jump.

The damage associated variable is introduced as:

β =

√( 〈sN 〉+
s0
N

)2

+

(
sT1

s0
T

)2

+

(
sT2

s0
T

)2

− 1 (26)

so that, damage evolves according to the following irreversible law:

D = max
history

{
0,min

{
1, D̃

}}
with D̃ =

1

η

(
β

1 + β

)
(27)

2.4. Linking of micro and macro scales

According to the fundamental rules of the homogenization techniques, average conditions relate the micro-

scopic and macroscopic strain quantities. As for the microscopic components in ε̂, their averages result:

ε̂ = Ê +
1

V

[∫
Ωb

D̂xû? dV +

∫
=h∪=b

Jŝ d=
]

(28)

where D̂x is the compatibility operator referred to the microscale Cartesian coordinates x1 and x2, i.e.

ε̂? = D̂xû?. Matrix J collects the �rst two components of the unit vector j normal to the interface, that is:

J =


j1 0

0 j2

j2 j1

 (29)

Eq. (28), written in components, results as:

ε11 = E11 +
1

V

[∫
Ωb

u?1,1 dV +

∫
=h

s1 dx2 dx3

]
ε22 = E22 +

1

V

[∫
Ωb

u?2,2 dV +

∫
=b

s2 dx1 dx3

]
(30)

γ12 = Γ12 +
1

V

[∫
Ωb

(
u?1,2 + u?2,1

)
dV +

∫
=b

s1 dx1 dx3 +

∫
=h

s2 dx2 dx3

]
To satisfy the average condition requiring that the average of the microscopic components must be equal

to the corresponding macroscopic quantities, the terms in the brackets in Eq. (28), or equivalently in Eqs.

(30), need to vanish, that is: ∫
Ωb

D̂xû? dV +

∫
=h∪=b

Jŝ d= = 0 (31)

As a consequence of the periodic nature of the perturbation displacement components u?1 and u?2, Eq. (31)

is automatically satis�ed.

The evaluation of the equivalent curvatures at the microscale requires the de�nition of the equivalent

rotations, φ = {φ1 φ2}T , of the �bers orthogonal to the UC mid-plane. Displacement vector û, collecting

the components along x1 and x2, can be decomposed into two terms:

û = ûr + ûd (32)
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where ûr are the rigid displacements of the �ber orthogonal to the wall mid-plane, represented in the form:

ûr = v̂ + x3φ (33)

Term v̂ collects the in-plane displacement components of the points lying in the UC mid-plane, that is at

x3 = 0 and φ = {φ1 φ2}T describes the rigid rotation of the �ber. Note that v̂ and φ are functions only of

the in-plane coordinates x1 and x2. In order to enforce that the rigid displacements ûr be the better linear

approximation of the displacement �elds û, a least square minimization problem can be stated in the form:

min
v̂ ,φ

∫ t/2

−t/2
[û− ûr (v̂ ,φ)]2 dx3 (34)

By solving problem (34) and accounting for Eqs. (32) and (33) the following conditions are derived:

∫ t/2

−t/2
ûd dx3 = 0,

∫ t/2

−t/2
x3û

d dx3 = 0 (35)

leading to:

v̂ =
1

t

∫ t/2

−t/2
û dx3, φ =

12

t3

∫ t/2

−t/2
x3û dx3 (36)

By introducing Eqs. (8) in the second of Eq. (36) and eliminating the vanishing integral terms, it results in

components:

φ1 = K11x1 +
1

2
K12x2 +

12

t3

∫ t/2

−t/2
x3u

?
1 dx3 (37)

φ2 =
1

2
K12x1 +K22x2 +

12

t3

∫ t/2

−t/2
x3u

?
2 dx3 (38)

Once the equivalent �ber rotation is determined from the 3D perturbation displacement �elds, the micro-

scopic plate curvature vector, κ = {κ11 κ22 κ12}T , is de�ned as:

κ = D̂x φ (39)

Then, by accounting for Eqs. (37) and (38), it results:

κ = K +
12

t3

∫ t/2

−t/2
x3D̂xû? dx3 (40)

so that, the average of κ evaluated over the UC mid-plane area A, in compact form, reads as:

κ = K +
12

At3

[∫
Ωb

x3 D̂xû? dV +

∫
=h∪=b

x3 Jŝ d=
]

(41)

which, written in components, results:

κ̄11 = K11 +
12

A t3

[∫
Ωb

x3u
?
1,1 dV +

∫
=h

x3 s1 dx2 dx3

]
κ̄22 = K22 +

12

A t3

[∫
Ωb

x3u
?
2,2 dV +

∫
=b

x3 s2 dx1 dx3

]
(42)

κ̄12 = K12 +
12

A t3

[∫
Ωb

x3

(
u?1,2 + u?2,1

)
dV +

∫
=b

x3 s1 dx1 dx3 +

∫
=h

x3 s2 dx2 dx3

]

10



To satisfy the average condition for the curvature components, the terms in the brackets at the right-hand-

side of Eq. (41), or equivalently of Eqs. (42), need to vanish, i.e.:∫
Ωb

x3 D̂xû? dV +

∫
=h∪=b

x3 Jŝ d= = 0 (43)

The periodicity conditions (9) automatically imply that Eq. (43) is satis�ed.

Finally, the average plate shear strains are evaluated. By considering Eqs. (13)5-6, it results in compact

form:

γ = Γ +
1

V

[∫
Ωb

(
û?,3 + ∇̂xu

?
3

)
dV +

∫
=h∪=b

ĵs3 d=
]

(44)

where ∇̂x denotes the gradient operator referred to the microscale Cartesian coordinates x1 and x2 and ĵ

contains the �rst two components of the unit vector j normal to the interface. Eq. (44), in components,

results:

γ13 = Γ13 +
1

V

[∫
Ωb

(
u?1,3 + u?3,1

)
dV +

∫
=h

s3 dx2 dx3

]
γ23 = Γ23 +

1

V

[∫
Ωb

(
u?2,3 + u?3,2

)
dV +

∫
=b

s3 dx1 dx3

]
(45)

To ensure that the averages of the microscopic shear strains are equal to the macroscopic corresponding

components, the terms in the brackets of Eq. (44), or equivalently of Eqs. (45), need to vanish. The periodic

nature of the displacement component u?3 implies that:∫
Ωb

∇̂xu
?
3 dV +

∫
=h∪=b

ĵs3 d= = 0 (46)

Then, additional `non-standard' conditions have to be enforced, resulting as:∫
Ωb

û?,3 dV = 0 (47)

Relying on the generalized Hill-Mandel principle which can be interpreted as the principle of virtual works

for a two scale problem, the shell generalized stresses are derived by enforcing the equivalence of the virtual

work at the macroscopic point and the average virtual work measured in the UC, in the form:

δÊTN + δKTM + δΓTQ =
1

A

∫
A

(∫ t/2

−t/2
δεTσ dx3

)
dA (48)

where the microscopic stress vector work-conjugate to the microscopic strains ε is de�ned as σ =
{
σ̂T σ33 τ

T
}T

,

with σ̂ = {σ11 σ22 σ12}T and τ = {τ13 τ23}T . By introducing the virtual variation of the microscopic strains

expressed on the basis of the kinematic map in Eq. (13), the expressions of the generalized shell stresses are

derived, resulting:

N =
1

A

∫
A

∫ t/2

−t/2
σ̂ dx3 dA (49)
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for the membrane components,

M =
1

A

∫
A

∫ t/2

−t/2
x3 σ̂ dx3 dA (50)

for the �exural and torsional couples, and:

Q =
1

A

∫
A

∫ t/2

−t/2
τ dx3 dA (51)

for the shear forces. To be noted is that only microscopic stresses σb arising in the bricks are averaged to

evaluate the macroscopic stress components, as the interfaces give null contributions. Hence, the generalized

shell stresses, all collected in vector Σ, result as:

Σ =
{
NT MT QT

}T
=

1

A

∫
A

∫ t/2

−t/2
BT (x)σb(x) dx3 dA (52)

being B(x) the matrix ruling the macro-micro kinematic map deduced by Eq. (13) and resulting equal to:

B(x) =



1 0 0 x3 0 0 0 0

0 1 0 0 x3 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 x3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(53)

3. TFA-based nonlinear homogenization technique

In this section, the adopted TFA-based nonlinear homogenization technique, properly extended to the case

of interfaces modeling mortar joints, is presented. This is an enriched version of the procedure recently

proposed in [3] with the aim of studying both the in-plane and out-of-plane behavior of periodic masonry.

In the framework of the multiscale approach, the proposed procedure permits to derive the constitutive

macroscopic behavior of the composite material on the basis of the micromechanical response of the repre-

sentative UC. This is regarded as the assembly of elastic bricks and nonlinear interfaces representing mortar

joints. The latter are divided into ns regions S j (j = 1, ...ns), called `subsets', where the inelastic phenomena

are considered as uniform.

Figure 2 shows a possible arrangement of the subsets with reference to the running bond UC. This subset

identi�cation derives from the mechanical response of the cell. As a consequence of the assumed running

bond texture, the following periodicity conditions hold in the bed joint domain =b:

s
(
x1,−a22 , x3

)
= s

(
x1 + a1,+

a2
2 , x3

)
∀x1 ∈ [−a1, 0] ,∀x3 ∈

[
− t

2 ,
t
2

]
s
(
x1,+

a2
2 , x3

)
= s

(
x1 + a1,−a22 , x3

)
∀x1 ∈ [−a1, 0] ,∀x3 ∈

[
− t

2 ,
t
2

] (54)

and in the head joint domain =h:

2 s (a1, x2, x3) = 2 s (−a1, x2, x3) = s (0, x2 − a2, x3) ∀x2 ∈
[
0,+a2

2

]
,∀x3 ∈

[
− t

2 ,
t
2

]
2 s (a1, x2, x3) = 2 s (−a1, x2, x3) = s (0, x2 + a2, x3) ∀x2 ∈

[
−a22 , 0

]
,∀x3 ∈

[
− t

2 ,
t
2

] (55)

To be noted is that periodicity of the medium can be described by means of a frame of reference made of

two independent vectors, v1 and v2, and the mechanical properties of the medium are invariant along any
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Figure 2: Possible subset identi�cation for a running bond UC.

translation of this frame considering a linear combinations of the two vectors [8]. Then, the frame of reference

and the associated cell are not uniquely de�ned, as evident from Figure 3 where two possible choices are

shown. As for the considered masonry arrangement, periodicity is expressed by Eqs. (9), (54) and (55) as

well.

v
1

v
2

v
1

v
2

Figure 3: Masonry running bond texture and frame of reference.

If only in-plane loads were applied, three subsets could be considered, i.e. ns = 3, located as shown in

Figure 2(a). The �rst, S 1, collects the head joints, the second, S 2, the bed joints in the positive-positive

and negative-negative x1-x2 quarters and the third, S 3, the bed joints in the positive-negative and negative-

positive x1-x2 quarters. However, when out-of-plane loads act and shear-�exural behavior is activated, a

through-thickness subdivision is required, as non-uniform behavior is expected through the thickness t.

Hence, the number of subsets increases, because of the further discretization required along the x3 direction.

Denoting by nt the number of independent layers considered along the thickness, the total number of subsets

in the UC is equal to ns = 3× nt. The resulting arrangement is shown in Figure 2(b) for nt = 4, so that it

results ns = 12. Here, the regions of the UC belonging to the same subset are plotted with the same color.

To be noted is that the proposed procedure is general and can be adopted for any kind of single leaf

masonry texture and UC geometry, by identifying the proper subset arrangement.

To determine the macroscopic constitutive behavior, the overall response of the cell is obtained by su-

perimposing two independent contributions: one due to the average strains E and the other due to the

inelastic displacement jumps πi of each subset, with i = 1, ..., ns. Consequently, two sets of linear elastic

micromechanical problems have to be solved for the UC under the periodicity conditions in Eq. (9), that is:

a) 8 problems, where one component at time of E is set equal to 1 while all the others are zeros, considering

πi = 0, with i = 1, ..., ns

b) 3ns problems (3 per each subset), where the components in πi are the input parameters set equal to

1 one at time, with i = 1, ..., ns, considering E = 0 and πj 6=i = 0, with j = 1, ..., ns.
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The above linear elastic analyses give as output the localization matrices required to recover local strain,

stress and displacement jump values at any point of the UC, when E and πi are prescribed.

When the average strains E are applied (set a), the solution of the micromechanical problems allows to

compute strains and stresses at the typical point x of the bricks as:

εbE (x) = Pb (x) E

σbE (x) = Cb Pb (x) E
(56)

and the displacement jumps and tractions at the j−th subset S j as:

sjE(xjT1, x
j
T2) = Rj(xjT1, x

j
T2)E

tjE(xjT1, x
j
T2) = Cj Rj(xjT1, x

j
T2)E

(57)

In Eqs. (56) and (57), Pb (x) and Rj(xjT1, x
j
T2) denote the localization matrix of the strains in the bricks

and that of the displacement jumps in the subset S j , respectively, due to the macroscopic strains E.

When the inelastic displacement jumps πi are prescribed (set b), the resulting strains and stresses at the

typical point of the bricks are:

εbπi (x) = Pb
πi (x)πi

σbπi (x) = Cb Pb
πi (x)πi

(58)

and the displacement jumps and tractions at the subset S j are:

sjπi(x
j
T1, x

j
T2) = Rj

πi(x
j
T1, x

j
T2)πi

tjπi(x
j
T1, x

j
T2) = Cj

(
Rj

πi(x
j
T1, x

j
T2)− δijI

)
πi

(59)

In Eqs. (58) and (59), Pb
πi (x) and Rj

πi(x
j
T1, x

j
T2) denote the localization matrix of the strains in the bricks

and that of the displacement jumps at the subset S j , respectively, due to the inelastic strains πi, I is the

3× 3 identity matrix, while δij = 1, if i = j, and δij = 0, if i 6= j.

By superimposing the above solutions, displacement jump and traction �elds in each subset S j result as:

sj(xjT1, x
j
T2) = Rj(xjT1, x

j
T2)E +

ns∑
i=1

Rj
πi(x

j
T1, x

j
T2)πi

tj(xjT1, x
j
T2) = Cj

[
Rj(xjT1, x

j
T2)E +

ns∑
i=1

(
Rj

πi(x
j
T1, x

j
T2)− δij I

)
πi

] (60)

The corresponding average values in the subset S j are:

sj = R
j
E +

ns∑
i=1

R
j

πiπi

t
j

= Cj

[
R
j
E +

ns∑
i=1

(
R
j

πi − δij I
)
πi

] (61)

with

R
j

=
1

Aj

∫
S j

Rj(xjT1, x
j
T2) dxjT1 dx

j
T2 , R

j

πi =
1

Aj

∫
S j

Rj
πi(x

j
T1, x

j
T2) dxjT1 dx

j
T2 (62)

being Aj the total area of all interface portions belonging to subset S j .
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Similarly, strain and stress �elds in the bricks result:

εb (x) = Pb (x) E +

ns∑
i=1

Pb
πi (x)πi

σb (x) = Cb

[
Pb (x) E +

ns∑
i=1

Pb
πi (x)πi

] (63)

Finally, by taking into account Eqs. (52) and (63), the generalized shell stress vector Σ can be determined

as:

Σ =
1

A

∫
A

∫ t/2

−t/2
BT (x)Cb

[
Pb (x) E +

ns∑
i=1

Pb
πi (x)πi

]
dx3 dA = CE +

ns∑
i=1

Cπiπi (64)

with

C =
1

A

∫
A

∫ t/2

−t/2
BT (x)CbPb (x) dx3 dA , Cπi =

1

A

∫
A

∫ t/2

−t/2
BT (x)CbPb

πi (x) dx3 dA (65)

To be noted is that C represents the equivalent initial elastic sti�ness matrix governing the constitutive

relation linking the macroscopic shell quantities Σ and E.

It is worthwhile remarking that the main limit of TFA technique relies on the a-priori de�nition of the

volume regions, i.e. subsets, where nonlinear phenomena can occur and the assumption of simpli�ed dis-

tribution for the nonlinear variables along the subsets. At the same time, this results in a very signi�cant

computational savings as shown in the next section illustrating the numerical results.

4. Computational aspects

Computational aspects concerning the evaluation of the solution of the micromechanical problem are

discussed in the following.

The �nite element (FE) procedure is adopted to perform the `o�ine' computations described below and

required by the TFA procedure. Moreover, the FE solution of the micromechanical problem is computed

and used to validate the proposed TFA approach.

4.1. FE at the microscale

The micromechanical problem described in Sections 2.2 and 2.3 is solved making use of the classical

displacement-based 3D FE procedure. The adopted FE procedure is standard for most of the aspects, but

some details are required to illustrate how the constraint condition stated by Eq. (47) is managed.

Classical 8-node hexaedral FEs are used to discretize the bricks, while 4+4 zero-thickness quadrilateral

FEs are used for the interfaces. The displacement degrees of freedom at node k of the mesh are denoted as

qk = {q1k q2k q3k}T and collected in the global vector q =
{
qT1 qT2 ...q

T
nd

}T
, nd being the number of nodes

of the mesh. At the element level, the displacement degrees of freedom are collected in vector qe, and the

following expansions are introduced:

ue = Ne qe , εe = Le qe , se = He qe , ue1 ,3 = Ge
1 qe , ue2 ,3 = Ge

2 qe (66)

for the element displacement and strain �elds of the hexaedral FEs, the displacement jumps at the interface

FEs and the derivative with respect to x3 of the in-plane displacement components, respectively. Matrix Ne

contains the 3D displacement shape functions, N1, N2, . . . , N8, referred to the 8 element nodes, while matrix
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Le = Dx Ne contains their derivatives according to the 3D compatibility operator Dx. Matrix He collects

the 2D shape functions to evaluate the interface displacement jumps, while Ge
1 and Ge

2 list the derivative of

the 8 shape functions with respect to x3 in the form:

Ge
1 =

[
N1,3 0 0 N2,3 0 0 . . . N8,3 0 0

]
, Ge

2 =
[
0 N1,3 0 0 N2,3 0 . . . 0 N8,3 0

]
(67)

The equation governing the FE problem at the element level is:

δqeTpe +

∫
Ωe

b

δueTbe dV e =

∫
Ωe

b

δεeTσe dV e +

∫
=e

h∪=
e
b

δseT te d=e +

∫
Ωe

b

δλT
(
û?e,3 −

1

2h
λ

)
dV e (68)

with pe collecting the internal element nodal forces and be the distributed loads over the FE, which are

neglected in the TFA homogenization procedure. The perturbed Lagrangian method [32] is employed to

enforce the constraints on the average of û∗,3, with λ = {λ1 λ2}T denoting the Lagrange multiplier vector

and h the penalty parameter. To be noted is that the additional constraints are only imposed on the FEs

discretizing the bricks, as these give rise to vanishing contributions for the interfaces.

By accounting for Eqs. (66), Eq. (68) becomes:

δqeTpe + δqeT
∫

Ωe
b
NeTbe dV e = δqeT

∫
Ωe

b
LeTσe dV e + δqeT

∫
=e

h∪=
e
b
HeT te d=e

+ δλT
∫

Ωe
b

{
Ge

1q
e

Ge
2q
e

}
dV e − 1

2h
δλTλ

(69)

By assembling the element contributions, the global virtual work equation is obtained. According to the

Newton-Raphson iterative procedure, this is linearized and the following set of equations is derived, governing

the micromechanical FE problem:
Skt gT1 gT2

g1 − 1

h
0

g2 0 − 1

h




∆qk+1

∆λk+1
1

∆λk+1
2

 = −


Rk
q

Rkλ1

Rkλ2

 (70)

where superscript `k + 1' denotes the current iteration index. Matrices g1 and g2 result by assembling the

following element contributions:

ge1 =

∫
Ωe

b

Ge
1 dV

e , ge2 =

∫
Ωe

b

Ge
2 dV

e (71)

In Eq. (70), Rk
q denotes the residual of the equilibrium equations, Rkλ1

and Rkλ2
those of the constraint

equations. Finally, Skt is the tangent global sti�ness matrix that could result non symmetric because of the

non associativity of the interface constitutive law.

The evolution problems of the damage and friction variables governing the interface constitutive response

are solved at each of the 2× 2 quadrature points located at the interface. To this end, a predictor-corrector

algorithm is followed. At the current iteration k+ 1, the displacement jumps at each interface are evaluated.

On the basis of these, the damage associated variable βk+1 is computed, together with parameter ηk+1

governing the coupling of fracture modes I and II. Then, the damage variable Dk+1 is updated. If the

interface is a�ected by the damaging process, the unilateral contact problem and the sliding friction problem

are solved, that is the Heaviside functionH
(
sk+1
N

)
and the contact vector ck+1 are evaluated. Concerning the

sliding friction problem, a prediction-correction technique is implemented. A trial prediction of the sliding

friction displacement jumps is computed by setting their values equal to those evaluated at the previous time
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step tn. The trial normal and shear stresses are then evaluated, on the basis of which the trial yield function

fk+1,tr is calculated. The correction phase is performed, if fk+1,tr > 0. Once the damage, the unilateral

contact and the friction problems are solved, the values of the inelastic displacement jumps are updated.

The scheme of the described solution algorithm is reported in Table 1.

Table 1: Damage-friction solution procedure for interfaces =b and =h.

Iteration 'k + 1'
Damage evaluation

- displacement jumps〈
sk+1
N

〉
+
, sk+1

T1 , sk+1
T2

- damage associated variable
βk+1 (Eq. (26))
- combination parameter of mode I and II
ηk+1 (Eq. (24))
- damage
Dk+1 (Eq. (27))
Unilateral e�ect evaluation

if sk+1
N ≤ 0 then H

(
sk+1
N

)
= 0 else H

(
sk+1
N

)
= 1

- inelastic contact vector
ck+1 (Eq. (19))
Sliding friction plasticity evaluation

if Dk+1 > 0
- Prediction phase

pk+1,tr
T1 = pT1n

pk+1,tr
T2 = pT2n

�trial yield function

fk+1,tr = µ td
k+1,tr

N +

√(
td

k+1,tr

T1

)2
+
(
td

k+1,tr

T2

)2
-check sliding friction

if fk+1,tr < 0 ⇒ ∆pk+1
T1 = 0 , ∆pk+1

T1 = 0 else
- Correction phase
∆λk+1 = 1

CT
fk+1,tr with

∆λk+1 ≥ 0 fk+1 ≤ 0, ∆λk+1 fk+1 = 0

∆pk+1
T1 = ∆λk+1 td

k+1,tr

T1√(
td

k+1,tr

T1

)2
+
(
td

k+1,tr

T2

)2

∆pk+1
T2 = ∆λk+1 td

k+1,tr

T2√(
td

k+1,tr

T1

)2
+
(
td

k+1,tr

T2

)2

4.2. Numerical procedure for the TFA-based homogenization technique

The nonlinear homogenization technique described in Section 3 requires the evaluation of matrices R
j
,

R
j

πi , C and Cπi (j = 1, ..., ns, i = 1, ..., ns) in Eqs. (62) and (65), which are computed by adopting the

FE approach. Thus, the two sets of problems a) and b) described in Section 3 are solved by using the FE

micromechanical model. For all analyses, average stresses Σ in the UC and average displacement jumps s̄j

in each subset are computed. These are used to assemble matrices C and R
j
, respectively, when analyses

of set a) are performed, and matrices Cπi and R
j

πi , respectively, when analyses of set b) are carried out.

All the analysis performed to solve problems a) and b) are called o�ine and executed before starting the

nonlinear evolutive analysis of the UC.

Once these matrices are determined, the macroscopic response of the UC is evaluated through a strain

driven procedure, i.e. for a given history of the macroscopic strains E, the corresponding macroscopic

stresses Σ is computed through Eq. (64). To be noted is that this depends on the inelastic displacement
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jumps πi, whose evaluation requires to perform an iterative elastic predictor - inelastic corrector procedure.

The damage and unilateral contact-friction evolution problems are, then, solved in each subset S i, and

the inelastic displacement jumps πi are computed. It is assumed that the evolution of damage and sliding

friction depend on the average displacement jumps si, which, in turn, depend on the prescribed overall

strains E and the inelastic displacement jumps of all subsets, as it is clear from Eq. (61). Consequently, the

evolution problems of damage and sliding friction variables in all subsets result coupled and a proper solution

algorithm has to be employed. In this study, in the spirit of the splitting method, an iterative procedure is

adopted by solving a set of ns uncoupled evolution problems.

Table 2 summarizes the main steps of the developed solution algorithm. Subscript `n' and superscripts

`k' and `k + 1' indicate quantities evaluated at the previous time step tn of the global analysis and at the

previous and current iteration of the iterative procedure, respectively.

At the �rst iteration, `0', considering the inelastic jumps as frozen at the previous time tn, i.e. π
j,0 = πjn,

the average displacement jumps sj,0 are evaluated in each subset. These are used as input to solve the

evolution problems of damage and sliding friction according to Table 1 and the inelastic displacement jumps

πj are updated. Thus, a further iteration is performed by solving again damage, unilateral contact and

sliding friction problems in all subsets and the procedure goes on until a convergence test is satis�ed. In

detail, a residual error is evaluated on the basis of the displacement jumps at the current, previous and �rst

iteration. If this error is lower than a given tolerance, the iterative procedure is stopped and the shell stress

vector Σ is computed according to Eq. (64), thus providing the homogenized response of the UC in terms

of Σ and E.

Table 2: Solution algorithm for the TFA procedure.

Iterative solution procedure
1. macroscopic strain vector

E given
2. initialize damage, inelastic contact and sliding friction dispacement jumps in each
subset S j

Dj,0 = Dj
n, cj,0 = cjn, pj,0 = pjn

3. initialize the inelastic vector in each subset S j

πj,0 = πjn
4. localize the displacement jumps in each subset S j

sj,k+1 = sj,0 (Eq. (61)1)
5. evaluate damage, inelastic contact and sliding friction dispacement jumps in each
subset S j

sj,k+1 = sj,k+1 → Dj,k+1, cj,k+1, pj,k+1 (Table 1)
6. update inelastic displacement jumps in each subset S j

πj,k+1 (Eq. (18))
7. update displacement jumps in each subset S j

sj,k+1 (Eq. (61)1)
8. compute residual

ρ =

√∑ns

j |s
j,k+1 − sj,k|2∑ns

j |s
j,0|2

if ρ > tol ⇒ go to 5
8. evaluate the generalized shell stress vector

Σ (Eq. (64))
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5. Numerical results

This section presents the numerical results obtained by applying the proposed TFA procedure to study the

response of the running bond UC in Figure 1 with dimensions 2a1 = 250mm, 2a2 = 140mm, t = 120mm,

block size equal to 240mm× 60mm× 120mm and mortar layer thickness equal to l = 10mm. The material

mechanical parameters are those contained in Table 3. Here, Eb/m and Gb/m denote Young's and shear

modulus of brick and mortar, respectively; gcN and gcT are the mode I and II fracture energy densities

governing the mortar nonlinear behavior. The corresponding quantities referred to the interface elements

are evaluated on the basis of the mortar joint thickness l̂, i.e. CN = Em/l̂, CT = Gm/l̂, GcN = gcN × l̂ and
GcT = gcT × l̂, being l̂ = l/2 for interface elements representing head joints located at the UC boundary and

l̂ = l otherwise (see Figure 1). To be noted is that the adoption of previous expression for CN corresponds to

uniaxial stress state behavior of the mortar joint. For thin enough and/or large enough joints, con�nement of

the mortar can in�uence the joint response and lead to actual sti�er behavior, because of the Poisson e�ect.

Indeed, assuming perfect con�nement of the mortar, the adopted value for CN should be multiplied for a

factor that ranges from 1.02 to 1.06 for ν = 0.1 to ν = 0.15 (classical values for the mortar), respectively.

Taking into account of the uncertainty of the mortar joint thickness, a good practice is to calibrate CN from

experimental tests where assemblages of bricks and mortar joints like those adopted in the real structural

member are studied (see for instance [2]).

Table 3: Material parameters for bricks and mortar.

Eb Gb Em Gm t0N t0T gcN gcT µ
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [-]

18000 7826.09 1000 434.78 0.500 0.435 1.25× 10−3 2.17× 10−3 0.5

The subset arrangement chosen for the proposed TFA procedure is that shown in Figure 2. However,

six values of nt are considered for the layer subdivision across the UC thickness, i.e. nt = 1, 2, 4, 6, 8, 10,

maintaining the same subset arrangement in the x1-x2 plane (Figure 2(a)).

As described in Section 3, the inelastic displacement jumps and, hence, the damage and friction slip are

assumed to be uniform within each subset. In the following, the validity of this assumption is investigated

by comparing the TFA solution with that obtained by adopting the FE micromechanical model. For the

micromechanical model, blocks and mortar layers are independently modeled through linear elastic brick

FEs and nonlinear interfaces, respectively. The FE mesh assumed for the micromechanical model is plotted

in Figure 4, where bricks and interfaces are depicted in red and green, respectively.

To be noted is that, as zero-thickness interfaces are adopted, bricks are resized to correctly model the

UC texture. Hence, a modi�ed value of bricks elastic modulus should be adopted to take into account

the expanded area of blocks. However, no modi�cations have been made in this work, as not signi�cant

di�erences emerge.

As �rst step, matrices C, Cπi , R
j
, R

j

πi , with i = 1, ..., ns and j = 1, ..., ns are computed according to the

o�ine procedure described in Section 4.2, that is by adopting the same FE micromechanical model in Figure

4, yet considering a total of sixteen and twenty FEs along direction x3 for nt = 8 and nt = 10, respectively,

(two FEs per each subset) and twelve FEs for all other cases.

The overall orthotropic elastic matrix does not depend on the number of layers nt, but depends on the FE

mesh adopted for the preliminary elastic analyses. For that reported in Figure 4, it results (units in N and

19



12
3

(a) UC

12
3

(b) Interfaces extracted from the UC

Figure 4: FE model adopted for micromechanical analyses.

mm):

C =



1395554 58607 0.00 0.00 0.00 0.00 0.00 0.00

58607 607199 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 235522 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1743143680 73488602 0.00 0.00 0.00

0.00 0.00 0.00 73488602 730798248 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 371686681 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 262929 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 635344


(72)

Figures 5 to 7 show the total deformed con�guration of the UC, i.e. that resulting from the total displace-

ment �elds u (x), obtained when nt = 4 for analysis of set a), while Figures 8 to 10 show that obtained for

the analysis of set b) when the inelastic displacement jumps at the �rst three subsets are prescribed. Regions

of the UC belonging to the same subset are plotted with the same color, as in Figure 2.

12
3

(a) Ê = {1 0 0}T

12
3

(b) Ê = {0 1 0}T

12
3

(c) Ê = {0 0 1}T

Figure 5: UC total deformed con�gurations obtained by applying the average strains in Ê, withK = 0 and Γ = 0 (displacement
scale factor equal to 0.25).

After computation of matrices C, Cπi , R
j
, R

j

πi , the nonlinear behavior of the UC is investigated, distin-

guishing the in-plane (membrane) response, involving strain components in Ê, and the out-of-plane (plate)

bending and shear responses, involving strain components inK and Γ, respectively. In particular, eight types

of loading histories (LH) are considered. These impose di�erent combinations of the total average strain

components in E, as reported in Table 4, where a single value indicates that the corresponding quantity is
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(a) K = {1 0 0}T
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(b) K = {0 1 0}T
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(c) K = {0 0 1}T

Figure 6: UC total deformed con�gurations obtained by applying the average strains inK, with Ê = 0 and Γ = 0 (displacement
scale factor equal to 0.005).
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(a) Γ = {1 0}T
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(b) Γ = {0 1}T

Figure 7: UC totoal deformed con�gurations obtained by applying the average strains in Γ, with Ê = 0 andK = 0 (displacement
scale factor equal to 0.25).
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(a) π1 = {1 0 0}T
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(b) π1 = {0 1 0}T
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3

(c) π1 = {0 0 1}T

Figure 8: UC total deformed con�gurations obtained by applying inelastic displacement jumps π1 in subset S 1 (displacement
scale factor equal to 100).

kept as constant, while two values separated by symbol '→' indicate that the corresponding quantity linearly

increases according to the indicated range.

5.1. In-plane (membrane) response

LHs 1, 2 and 3 in Table 4 are used to analyze the membrane behavior of the UC. These consider linearly

increasing strains E11, E22 and Γ12, respectively. For LH 3, a costant value of compressive strain E22 is also

applied to investigate the in�uence of sliding friction e�ects on the UC in-plane shear response.

Figure 11 compares the solution obtained with the TFA procedure (red solid curves) with that computed

with the FE micromechanical model (blue dashed curves) for (a) LH 1, i.e. tensile response in the x1

direction, (b) LH 2, i.e. tensile response in the x2 direction and (c) LH 3, i.e. shear response under constant
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(a) π2 = {1 0 0}T
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(b) π2 = {0 1 0}T
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(c) π2 = {0 0 1}T

Figure 9: UC total deformed con�gurations obtained by applying inelastic displacement jumps π2 in subset S 2 (displacement
scale factor equal to 100).
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(c) π3 = {0 0 1}T

Figure 10: UC total deformed con�gurations obtained by applying inelastic displacement jumps π3 in subset S 3 (displacement
scale factor equal to 100).

compressive strain in the x2 direction. Only the case where nt = 1 is considered for the TFA procedure, as

uniform behavior is expected across the UC thickness and, thus, layer subdivision is not required. For all
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Figure 11: Average normal and shear stresses N11, N22 and N12 versus the average strains E11, E22 and Γ12, respectively, for
the UC subjected to (a) LH 1, (b) LH 2 and (c) LH 3.

loading conditions, the results obtained with the two models perfectly match proving that the assumption

of uniform inelastic jumps inside each subset reasonably holds for these strain states.

This is con�rmed by the plots shown in Figures 12 and 13, where damage distributions resulting in the

mortar joints for the micromechanical and TFA model, respectively, are depicted. Similar results are found

with the TFA 2D-2D procedure proposed in [3].
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Table 4: Loading histories considered for the analyses of the UC response.

LH E11 E22 Γ12 K11 K22 K12 Γ23 Γ13

1 0→ e1 0 0 0 0 0 0 0
2 0 0→ e2 0 0 0 0 0 0
3 0 ē 0→ e3 0 0 0 0 0

4 0→ α1e4 0 0 0→ e4 0 0 0 0
5 0 0→ α2e5 0 0 0→ e5 0 0 0
6 0→ α3e6 0→ α3e6 0 0 0 0→ e6 0 0

7 0 ē 0 0 0 0 0→ e7 0
8 0 ē 0 0 0 0 0 0→ e8

e1 = 1.0× 10−3 e2 = 8.0× 10−4 e3 = 2.0× 10−3 e7 = 2.0× 10−3

e4 = 2.0× 10−6 mm−1 e5 = 1.2× 10−6 mm−1 e6 = 1.5× 10−5 mm−1 e8 = 1.0× 10−3

ē = −1.0× 10−4 α1 = 0, t2 , t α2 = t
2 ,

3t
4 , t α3 = 0, t8 ,

t
4

12
3

(a) LH 1 at E11 = 0.4× 10−3

12
3

(b) LH 2 at E22 = 4× 10−4

12
3

(c) LH 3 at Γ12 = 1.0× 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for (a) LH 1, (b)
LH 2 and (c) LH 3.

(a) LH 1 at E11 = 0.4× 10−3 (b) LH 2 at E22 = 4× 10−4 (c) LH 3 at Γ12 = 1.0× 10−3
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Figure 13: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for (a) LH 1, (b) LH 2
and (c) LH 3.

5.2. Out-of-plane (plate) bending response

LHs 4, 5 and 6 are used to analyze the plate bending behavior of the UC. These consider linearly increas-

ing curvatures K11, K22 and K12, respectively. However, to simulate typical tensile-bending strain states

occurring in the masonry, plate curvature values are combined with linearly increasing proportional values

of the in-plane membrane strains. Coe�cients α1, α2 and α3 in Table 4 are used to set the proportionality.

Figure 14 compares the solution obtained with the TFA procedure (solid curves) with that computed

with the micromechanical model (dashed curves) for (a) LH 4, i.e. bending around x2 axis combined with

membrane tensile strain in the x1 direction. TFA solution for nt = 2, 4, 6, 8, 10 are plotted in Figure 14(a),
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(b) In�uence of the tensile strain E11 for nt = 10

Figure 14: Average bending moment M11 versus the average curvature K11 for the UC subjected to LH 4.

assuming α1 = t. As shown, two layers su�ce to determine the elastic limit strength of the UC, but

at least six layers are required to better capture the variation of the nonlinear quantities across the UC

thickness. Layer subdivision with nt = 4 can be also used to obtain good approximations of the solution

when computational cost needs to be reduced.

To be noted is that, when layer number nt increases, TFA solution converges to the micromechanical

response only for lower values of the bending curvature. ForK11 greater than 1×10−6 mm−1, TFA procedure

overestimates the UC strength. This is caused by the particular arrangement of subset assumed in the x1-x2

plane (Figure 2). In fact, as shown in Figure 15, when K11 exceeds 1× 10−6 mm−1 damage starts growing

in the bed joints, assuming a nonuniform distribution in the x1 direction. By contrast, uniform variation is

assumed in the TFA approach, resulting in the damage distributions in Figure 16.

This e�ect reduces when the tensile strain component E11 reduces, as shown in Figure 14(b), where TFA

solutions obtained with nt = 10 for three values of the proportional coe�cient α1 are plotted. For α1 = t/2

a perfect match between the models results up to K11 = 1.7 × 10−6 mm−1, while for α1 = 0, the entire

response curve obtained with TFA procedure coincides with that of the micromechanical model.
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Figure 15: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for LH 4 and
α1 = t.

A di�erent behavior results for bending around x1 axis combined with membrane tensile strain in the x2

direction, as shown in Figure 17. This compares the solution obtained with the TFA procedure (solid curves)

with that computed with the micromechanical model (dashed curves) for LH 5. As for LH 4, at least four
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(a) K11 = 0.9× 10−6 mm−1 (b) K11 = 1.35× 10−6 mm−1 (c) K11 = 1.8× 10−6 mm−1
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Figure 16: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for LH 4, α1 = t and
nt = 10.

layers are required along the UC thickness to obtain satisfactory results (Figure 17(a)). However, when a

denser layer subdivision is adopted, the TFA solution always matches that of the micromechanical model,

regardless of the value of the tensile strain E22 (Figure 17(b)).
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(b) In�uence of the tensile strain E22 for nt = 10

Figure 17: Average bending moment M22 versus the average curvature K22 for the UC subjected to LH 5.

In fact, as represented in Figure 18, for this LH, damage occurs only in the bed mortar joints with uniform

variation in the x1 direction. As shown in Figure 19, the subset arrangement chosen for the TFA is able to

capture this damage evolution and, thus, to well reproduce the micromechanical response of the UC.

Finally, Figure 20 compares the solution obtained with the TFA procedure (solid curves) with that com-

puted with the micromechanical model (dashed curves) for LH 6, i.e. torsion around x1 and x2 axes combined

with membrane tensile strains in the x1 and x2 directions. Figure 20(a) shows the in�uence of the layer

subdivision for α3 = t
4 , while Figure 20(b) shows that of tensile strains E11 and E22 for nt = 10.

As observed for LH 4, the assumed subset arrangement for the TFA procedure considers only uniform dam-

age variations along the mortar joints, while micromechanical solution shows that nonuniform distributions

arise in both bed and head mortar joints (Figures 21 and 22).

Di�erent subset arrangements in the x1-x2 plane or nonuniform TFA procedure [29] should be considered

to increase model accuracy and capture the nonuniform damage variation along the joints.
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Figure 18: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for LH 5 and
α2 = t.

(a) K22 = 0.66× 10−6 mm−1 (b) K22 = 0.9× 10−6 mm−1 (c) K22 = 1.1× 10−6 mm−1
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Figure 19: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for LH 5, α2 = t and
nt = 10.
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(a) In�uence of the layer number nt for α3 = t/4
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(b) In�uence of the tensile strains E11 and E22 for nt = 10

Figure 20: Average bending moment M12 versus the average curvature K12 for the UC subjected to LH 6.

5.3. Out-of-plane (plate) shear response

Finally, LHs 7 and 8 are considered to analyze the plate shear behavior of the UC. These consider linearly

increasing shear strains Γ23 and Γ13, respectively, while strain E22 is �xed to a constant compressive value

equal to ē. Figure 23 compares the solution obtained with the TFA procedure (solid curves) with that

computed with the micromechanical model (dashed curves) for (a) LH 7, i.e. shear response in the x2-x3

plane and (b) LH 8, i.e. shear response in the x1-x3 plane. Cases with E22 = 0 are also plotted, to show
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Figure 21: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for LH 6 and
α3 = t/4.

(a) K12 = 0.5× 10−5 mm−1 (b) K12 = 1.0× 10−5 mm−1 (c) K12 = 1.5× 10−5 mm−1
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Figure 22: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for LH 6, α3 = t/4 and
nt = 10.

= 1

(a) Q23-Γ23 for LH 7

= 1

(b) Q13-Γ13 for LH 8

Figure 23: Average shear stresses Q23 and Q13 versus the average shear strains Γ23 and Γ13 for the UC subjected to LH 7 and
8, respectively, with in�uence of the tensile strain E22.

the in�uence of sliding friction e�ects on the UC shear response. Only solutions obtained for nt = 1 are

considered for the TFA procedure, as very similar outcomes result by assuming nt > 1. Indeed, when the

UC is subjected to this strain state, almost uniform distribution of the nonlinear quantities results across

thickness t and, thus, layer subdivision is not required.

Plots of the damage distributions resulting in the mortar joints for the micromechanical model are depicted
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in Figure 24 and 26 for LH 7 and 8, respectively. Same distributions resulting for the TFA approach are

depicted in Figure 25 and 27.
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Figure 24: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for LH 7 and
E22 = ē.

(a) Γ23 = 0.5× 10−3 (b) Γ23 = 1.0× 10−3 (c) Γ23 = 1.8× 10−3
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Figure 25: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for LH 7 and E22 = ē.
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Figure 26: Distribution of damage variable D resulting at mortar joints obtained with micromechanical model for LH 8 and
E22 = ē.

As shown, when shear strain in x2-x3 plane is applied (LH 7), TFA solution perfectly matches that obtained

with the micromechanical model. Indeed, in this case, slip and damage only take place in bed mortar joints,

with inelastic quantities showing uniform variations in the x1 direction.

When shear strain in x1-x3 plane is applied (LH 8), a slight di�erence is noticed between the solutions

obtained with the two models (Figure 23(b)). This occurs when slip in the mortar interfaces is small, i.e.
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(a) Γ13 = 0.3× 10−3 (b) Γ13 = 0.6× 10−3 (c) Γ13 = 0.9× 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 27: Distribution of damage variable D resulting at mortar joints obtained with TFA approach for LH 8 and E22 = ē.

near the peak of the response curve, as nonuniform damage variations in the mortar joints are induced at

this stage (Figure 26(a)). As already discussed, these nonuniform variations are not captured by the TFA

procedure (Figure 27(a)). However, when slip in the mortar increases, damage tends to become uniform in

the mortar (Figures 26 (b,c) and Figures 27 (b,c)) and good match results between micromechanical and

TFA responses.

5.4. TFA vs micromechanical computational cost

In most of the analyzed cases, the proposed ROM permits to accurately describe the UC micromechanical

response with signi�cant computational saving.

The micromechanical model sketched in Figure 4 counts 6721 nodes and, consequently, the linearized system

in Eq. (70) governing the global FE problem involves a high number of unknowns (6721 × 3 + 2 = 20165).

Moreover, to solve the nonlinear evolution problem of damage and friction, 3 history variables (HVs), i.e.

damage (D) and the two slips (pT1, pT2), have to be stored at each quadrature point of the interface elements,

resulting in a total number of HVs = 10080. Instead, when adopting the TFA technique, only 4 HVs (damage,

slips, contact displacement jump) are required for each subset, with a total maximum number HVs = 120,

obtained for the most accurate case (that is nt = 10 and ns = 30). These considerations justify the di�erent

computational e�ort required by the two modeling strategies. In Table 5 a comparison in terms of CPU

time is provided for some of the benchmarks analyzed (LH 5 and LH 7). In cases of TFA computations, the

indicated CPU time refers to that required by the iterative procedure reported in Table 2 to determine the

macroscopic constitutive response. However, the proposed homogenization technique also requires to perform

the two sets of preliminary elastic analyses to determine matrices C, Cπi , R
j
, R

j

πi , resulting in additional

CPU time equal to 142.47 s (nt = 1), 184.27 s (nt = 2) and 372.14 s (nt = 6). It is worth remarking that

these preliminary analyses have to be performed only once, before starting the multiscale analysis. Hence,

computational saving is more and more relevant when the overall response of real structural elements or

structures is studied, as same localization matrices are used for all the quadrature points of the mascroscopic

mesh linked to UC with same geometric and mechanical properties. Moreover, such advantage emerges not

only in comparison with the micromechanical strategy, but also with respect to the classical FE2 multiscale

approach, which requires to solve the UC micromechanical problem at each quadrature point of the macro

model.

The in�uence of the layer subdivision across the UC thickness is shown in Table 5 for LH 5, considering

nt = 2 and nt = 6.

All analyses were performed by means of the same personal computer under equal performance.
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Table 5: Computational time required by the micromechanical and TFA approaches for some benchmarks.

CPU time CPU time CPU time CPU time
LH TFA nt = 1 TFA nt = 2 TFA nt = 6 micromechanical

5 (α2 = t) 0.047 s 0.172 s 1029.20 s
7 (E22 = ē) 0.031 s 1733.32 s

6. Conclusions

The real texture of masonry walls can play a very important role in the mechanical response of structural

elements. This point was very clear since old times; in fact, master builders knew well how to best arrange

the bricks in masonry elements, like walls, dome and vaults. The texture leads to an anisotropic mechanical

response of masonry and anisotropic failure conditions, that is a very relevant issue in many real structural

cases.

Multiscale approach allows to perform structural analyses accounting for the real texture and microme-

chanical behavior of the masonry material through homogenization of the representative volume element.

The TFA is a reliable technique for performing homogenization of composites characterized by nonlinear

response of the components.

In this paper, the TFA is developed in the framework of homogenization that considers two di�erent

models at two di�erent scales: a structural shell model at the macroscale and a 3D Cauchy model at the

microscale. The presence of two di�erent models is important in order to reduce the computational burden

at the macroscale and carefully account for the 3D micromechanical mechanisms at the lower scale.

Even in this case, the TFA procedure, whose limits mainly rely on the pre-de�nition of the regions where

nonlinear e�ects can occur and the pre-assumed variation of these latter, demonstrated very good perfor-

mances. Summarizing, it has been seen that:

• for loading histories involving membrane strains, the TFA allows to obtain results in very good accor-

dance with the FE micromechanical analyses, even considering only one subdivision in subsets along

the thickness coordinate;

• for loading histories involving out-of-plane shear strains, an analogous result is obtained, so that it is

su�cient only one subdivision in the masonry wall thickness to get very satisfactory results;

• for bending problem around the x1 axis, it is demonstrated that increasing the number of subsets in

the thickness convergence to the FE solution is reached. In fact, very accuracy results (with respect

to the FE reference solution) are recovered setting nt = 10;

• less accurate, but globally satisfactory, results are obtained for bending around the x2 axis and torsional

loading condition; this is due to the nonuniform inelastic jumps arising in the subsets of the TFA model,

in contrast to one of the main assumption of the developed technique.

Finally, it could be concluded that:

• the use of di�erent schemes at the two scales presents an indubitable computational advantage in

studying the nonlinear response of periodic masonry walls;

• the TFA procedure reveals to be, even in this application, a very reliable and e�ective procedure for

resorting to a reduced order model.

Inaccuracies of the proposed TFA procedure are probably negligible when it is implemented in a full scale

model and used to analyze a whole structure. This point will be investigated in future researches. It is worth
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pointing out that, as a consequence of the degrading constitutive law derived for the structural macroscopic

point by means of the TFA procedure applied to the masonry UC, localization phenomena are likely to

occur at the macroscale. Thus, to avoid pathological mesh-dependency of the FE numerical solution a

regularization technique needs to be adopted. Various approaches could be selected to this purpose, as for

example a nonlocal integral macroscopic model could be formulated introducing the nonlocal de�nition of

the shell strain measures [11], as well as enriched (Cosserat), fracture mechanics, smeared crack models could

be adopted. In this paper, even if the macromechanical problem is not explicitly treated, it is implicitly

assumed that a smeared crack approach is used at the macroscale. Thus, a relation between the energy

dissipation and the size of the UC, with the damage energy and the localization width should be introduced.

Further improvements of the proposed model could be performed considering nonuniform inelastic jumps

or adopting speci�c mathematical procedures, as that proposed in [7], to get an optimal distribution of

subsets in the UC. Moreover, further nonlinear mechanisms could be introduced in the TFA procedure as

those involving the bricks, as well other masonry textures could be easily studied by properly setting location

and number of the nonlinear subsets.

Nonlinear geometric e�ects, neglected in the above proposed procedure, could also be taken into account.

These could be particularly relevant for some typical masonry structural elements, like slender columns, walls

and arches where stability issues need to be tackled [2]. An e�ective and promising methodolody to include

nonlinear geometry behavior is the corotational approach, already employed in [2], that would permit to

account for large displacements at the macroscale level without modifying the microscopic formulation, that

is the TFA technique.

Eventually, the developed TFA-based homogenization procedure will be introduced in a multiscale frame-

work and used to study real-scale structural problems.
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